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Abstract 1 

Typical adults read remarkably quickly. Such fast reading is facilitated by brain processes that are 2 

sensitive to both word frequency and contextual constraints. It is debated as to whether these 3 

attributes have additive or interactive effects on language processing in the brain. We investigated 4 

this issue by analysing existing magnetoencephalography data from 99 participants reading intact 5 

and scrambled sentences. Using a cross-validated model comparison scheme, we found that lexical 6 

frequency predicted the word-by-word elicited MEG signal in a widespread cortical network, 7 

irrespective of sentential context. In contrast, index (ordinal word position) was more strongly 8 

encoded in sentence words, in left front-temporal areas. This confirms that frequency influences 9 

word processing independently of predictability, and that contextual constraints affect word-by-10 

word brain responses. With a conservative multiple comparisons correction, only the interaction 11 

between lexical frequency and surprisal survived, in anterior temporal and frontal cortex, and not 12 

between lexical frequency and entropy, nor between lexical frequency and index. However, 13 

interestingly, the uncorrected index*frequency interaction revealed an effect in left frontal and 14 

temporal cortex that reversed in time and space for intact compared to scrambled sentences. 15 

Finally, we provide evidence to suggest that, in sentences, lexical frequency and predictability may 16 

independently influence early (<150ms) and late stages of word processing, but also interact during 17 

late stages of word processing (>150-250ms), thus helping to converge previous contradictory eye-18 

tracking and electrophysiological literature. Current neuro-cognitive models of reading would 19 

benefit from accounting for these differing effects of lexical frequency and predictability on 20 

different stages of word processing. 21 

  22 

Manuscript Click here to access/download;Manuscript;Lexical frequency in
sentence context_1September2021.docx
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1. Introduction 23 

When reading a text, the reader’s brain is capable of rapidly extracting meaning from the structured 24 

sequence of individual words. In order to achieve its remarkable efficiency in processing, the brain 25 

network for language not only extracts, and actively uses, lexical properties of the individual 26 

words, but is also greatly influenced by the context in which those words occur. On the one hand, 27 

for instance, words that maintain a highly frequent occurrence in day-to-day language use are 28 

processed faster and with less effort than words that occur less frequently (Calvo & Meseguer, 29 

2002; Inhoff & Rayner, 1986; Rayner & Duffy, 1986; Rubenstein, Garfield, & Millikan, 1970). 30 

On the other hand, as a linguistic expression unfolds, the previously read input provides the brain 31 

with a constraining semantic and syntactic context, which may allow for predictions to be made 32 

about the upcoming word. This results in measurable effects at fast timescales, in response times 33 

(Staub, Grant, Astheimer, & Cohen, 2015), and in both electrophysiological (Van Petten & Kutas, 34 

1990) and eye movement signals (Calvo & Meseguer, 2002). 35 

Typical adult readers effortlessly process an average of 238 words per minute (Brysbaert, 2019), 36 

fixating on each word for an average of only 235ms (Rayner, 1986). The brain’s rapid word 37 

processing has been shown to be facilitated when the word frequently occurs within a given 38 

language (i.e. has a high lexical frequency). Compared to low frequency words, high frequency 39 

words are fixated for shorter durations during reading (Calvo & Meseguer, 2002; Inhoff & Rayner, 40 

1986; Rayner & Duffy, 1986), are responded to faster in lexical decision tasks (Rubenstein et al., 41 

1970), and produce smaller electrophysiological (Smith & Halgren, 1987; Van Petten & Kutas, 42 

1990) and hemodynamic responses (Chee, Hon, Caplan, Lee, & Goh, 2002). Although the specific 43 

temporal and spatial dynamics of electrophysiological frequency effects may be sensitive to task 44 
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context (Chen, Davis, Pulvermüller, & Hauk, 2015; Strijkers, Bertrand, & Grainger, 2015), overall, 45 

it seems that processing of high frequency words is less effortful than low frequency words.  46 

The prediction of upcoming sentential content is another mechanism that seems to facilitate the 47 

remarkable speed of sentence reading. There is now ample evidence that one is able to predict 48 

upcoming linguistic input, although whether this is to the level of semantics, syntactic content or 49 

the word form is still debated (Pickering & Gambi, 2018). Regardless of the level at which 50 

prediction takes place, highly predictable words seem to be processed faster than unpredictable 51 

words, reflected in shorter fixation durations (Calvo & Meseguer, 2002; Rayner & Well, 1996) 52 

and smaller N400 responses (Van Petten & Kutas, 1990). The N400 is an electrophysiological 53 

marker of semantic processing, which occurs between 200-600ms at a centro-parietal topography, 54 

and is thought to reflect either the integration and unification of semantic information (Hagoort, 55 

Baggio, & Willems, 2009; Kutas & Federmeier, 2011) or conceptual (or possibly lexical) pre-56 

activation (Lau & Namyst, 2019; Lau, Phillips, & Poeppel, 2008). A larger N400 response is 57 

observed when the integration of semantic information is more difficult, or in the absence of 58 

conceptual/lexical pre-activation, for example when the word is less predictable.   59 

There is increasing agreement that there are two mechanisms through which prediction can take 60 

place. Firstly, through a fast, effortless and automatic mechanism, in which activity spreads to 61 

associated features, or, secondly, through a higher level mechanism, in which world knowledge 62 

and the surrounding context are combined to form predictions (Huettig, 2015; Pickering & Gambi, 63 

2018). Lexical frequency could therefore influence the automatic, bottom-up prediction 64 

mechanism, where activation thresholds are lower for high compared to low frequency words. In 65 

contrast, effects of the semantic and syntactic constraints, provided by the context that a word is 66 

presented in, may reflect a prediction mechanism that relies on the top-down flow of information 67 
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from strong priors. For example, as semantic context increases as the sentence unfolds a stronger 68 

foundation on which to base predictions is provided. In this study, we follow earlier approaches in 69 

using ordinal word position in a sentence (or index) to roughly quantify context. Indeed, the N400 70 

has been shown to decrease with both increased lexical frequency and increased index 71 

(Dambacher, Kliegl, Hofmann, & Jacobs, 2006; Payne, Lee, & Federmeier, 2015; Van Petten & 72 

Kutas, 1990), which suggests that word integration becomes easier as each of these factors 73 

increase. 74 

A recurring finding in the literature is that there is an interaction between effects of increased 75 

predictability and lexical frequency on the N400, where the effect of word frequency on the N400 76 

amplitude during word processing is greatly diminished or disappears with increased context or 77 

predictability (Alday, Schlesewsky, & Bornkessel-Schlesewsky, 2017; Dambacher et al., 2006; 78 

Payne et al., 2015; Sereno, Hand, Shahid, Mackenzie, & Leuthold, 2019; Van Petten & Kutas, 79 

1990). Similar interactions have also been observed at earlier time windows (Dambacher et al., 80 

2012; Sereno, Brewer, & O'Donnell, 2003; Sereno et al., 2019) and with functional near-infrared 81 

spectroscopy (fNIRS; Hofmann et al., 2014). In an MEG study, Fruchter, Linzen, Westerlund, and 82 

Marantz (2015) additionally found word frequency and predictability to interact in the left MTG, 83 

in time windows both preceding and succeeding the predictable word onset. Overall, these findings 84 

demonstrate that the interaction between lexical frequency and increased context is a robust and 85 

well replicated finding, which reflects both the reduced influence of lexical frequency on word 86 

processing with increased context, as well as a greater benefit of predictability for processing low 87 

compared to high frequency words. 88 

The reduced effect of lexical frequency on word processing with increased context has lead authors 89 

to conclude that lexical frequency merely reflects a bottom-up, baseline level of expectation that 90 
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is soon overridden with top-down information in the presence of context (Kretzschmar, 91 

Schlesewsky, & Staub, 2015). However, there is a well-documented discrepancy between the 92 

aforementioned electrophysiological literature and the eye-tracking literature as to whether 93 

frequency and predictability indeed have an interactive effect on word processing, or whether 94 

effects are additive (Kretzschmar et al., 2015). In contrast to the findings of the N400 literature, 95 

recording participants’ eye gaze during reading has consistently demonstrated an additive effect 96 

of lexical frequency and predictability on fixation durations. Fixation durations are longer for 97 

highly predictable low frequency words than highly predictable high frequency words, and again 98 

longer for unpredictable low frequency words (Kennedy, Pynte, Murray, & Paul, 2013; 99 

Kretzschmar et al., 2015; Staub, 2015; Staub & Benatar, 2013). One explanation for these 100 

contradictory findings is that lexical frequency and prediction have separate additive effects during 101 

early processing stages (Sereno et al., 2019; Staub & Goddard, 2019), for example during 102 

sublexical orthographic processing, morphological decomposition or lexical retrieval, but that 103 

frequency effects are not present with increased context during later semantic processing and 104 

integration.  105 

1.1. The current work 106 

Considering the aforementioned ambiguity in the theoretical understanding of how lexical 107 

frequency influences subsequent processing, specifically in the light of additional context-based 108 

predictability, the current work performed a novel analysis on an existing dataset, with the aim to 109 

dissociate lexical frequency effects from predictability effects. Although previous work has sought 110 

to define when frequency and predictability interact, less attention has been invested into 111 

examining the spatiotemporal dynamics of this interaction (although, see the exploratory analysis 112 

in Fruchter et al., 2015 for an exception). We aimed to determine at which time points and in which 113 
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locations lexical frequency and predictability independently influence word processing, and at 114 

which points they interact, thereby providing valuable information for models of word reading. 115 

Staub and Goddard (2019) recently highlighted that current models of word reading, such as the 116 

E-Z reader (Reichle, Rayner, & Pollatsek, 2003) and SWIFT (Engbert, Nuthmann, Richter, & 117 

Kliegl, 2005), do not yet completely account for effects of predictability and invalid previews on 118 

fixation durations. Considering the complex effects lexical attributes have on the neural processing 119 

of language, a comprehensive account of word reading could benefit from improving upon both 120 

the temporal and spatial resolution of previous work.  121 

Specifically, we used the Mother of all Unification Studies (MOUS; Schoffelen et al., 2019), a 122 

large sample size open-access dataset of 102 participants in which magnetoencephalography 123 

(MEG) was recorded while they read intact sentences and scrambled sentences. Improving upon 124 

previous electroencephalography (EEG), functional magnetic resonance imaging (fMRI) and 125 

fNIRS research, MEG provides both the temporal and spatial resolution to detect subtle and fine-126 

grained differences in the extent that lexical frequency and predictability are encoded in the MEG 127 

signal after word-onset, which could have previously been lost by averaging over time and space. 128 

Distinct from most previous work, with respect to the analysis, we exploited the word-by-word 129 

variability in the MEG signal, which is often lost through averaging across words of the same 130 

experimental condition. Specifically, we used multiset canonical correlation analysis (MCCA) to 131 

boost the stimulus-specific signal (Arana, Marquand, Hultén, Hagoort, & Schoffelen, 2020), and 132 

performed detailed cross-validated single-trial encoding model analysis, using regression models 133 

that quantified the degree to which lexical frequency and various measures of predictability are 134 

encoded in the MEG signal. 135 
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To investigate the extent that context influences effects of lexical frequency on word processing, 136 

we first compared sentences and scrambled sentences as to the amount of variance in the ongoing 137 

brain signal explained by lexical frequency. The scrambled sentences were created by randomly 138 

shuffling the order of the words in the intact sentences, and therefore matched the intact sentences 139 

word-for-word, differing only in the order that words were presented in. This meant that the two 140 

conditions (intact/scrambled) differed only in the presence/absence, respectively, of the build-up 141 

of a rich sentence context. Although some degree of sparse combinatorial processing may have 142 

been possible at the semantic level in the scrambled sentences, the ability to derive a coherent 143 

sentence level context and produce top-down driven predictions was possible only in the sentences. 144 

In addition to the level of sentential context provided by the presence/absence of syntax, we 145 

approximately quantified context with the ordinal word position in the sentence (index), consistent 146 

with previous approaches (Dambacher et al., 2006; Payne et al., 2015; Van Petten & Kutas, 1990). 147 

Index captures the incremental build-up of the entire sentence context. Moreover, as context 148 

increases with increased word position, predictability is expected to increase with increased 149 

context (for a similar argument, see Levy, 2008; Schuster, Hawelka, Himmelstoss, Richlan, & 150 

Hutzler, 2020). Thus, effects of index were expected to differ in intact compared to scrambled 151 

sentences. Whereas index provided a correlate of predictability that encompassed the entire 152 

sentence context, surprisal and entropy were used to provide measures of local predictability 153 

(acquired from a trained tri-gram model). Specifically, surprisal quantifies how unexpected the 154 

current word is, and entropy represents the uncertainty of the upcoming word. Effects of surprisal 155 

and entropy were compared across intact and scrambled sentence conditions, in order to identify 156 

effects related to higher level predictive processes, which were only possible in the sentence 157 

condition. We investigated the interaction between lexical frequency and each variable quantifying 158 
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different degrees of predictability (index, surprisal and entropy). Lexical frequency (rather than 159 

lemma frequency) was chosen to quantify word frequency effects, in order to remain consistent 160 

with most previous reports (Alday et al., 2017; Dambacher et al., 2006; Payne et al., 2015; Sereno 161 

et al., 2019; Van Petten & Kutas, 1990). As effects of lexical frequency and predictability on the 162 

electrophysiological response have been shown to interact with word length (Penolazzi, Hauk, & 163 

Pulvermuller, 2007), word length was added as a control predictor to all models. Due to 164 

fundamental differences in the properties of content words (nouns, adjectives, verbs) and function 165 

words (determiners, prepositions, pronouns, conjunctions), for example in their frequency, length 166 

and semantic richness, they were analysed separately (see Matchin, Brodbeck, Hammerly, & Lau, 167 

2019 for a similar approach). Only content words were included in the analysis here. 168 

Although Fruchter et al. (2015) previously studied the spatiotemporal effects of a similar 169 

interaction using MEG, our study differed from theirs in a number of ways, providing additional 170 

contributions to the field. Firstly, in contrast to Fruchter et al. (2015), our stimuli were not designed 171 

to be highly predictable, and were not limited to measuring the response to adjective-noun pairs 172 

such as “stainless steel”, selected based on co-occurrence statistics. We therefore investigated the 173 

spatiotemporal dynamics of the interaction with a richer stimulus set, which is arguably closer to 174 

the linguistic content one would read in everyday situations, where sentences are not always highly 175 

predictable, and also depend upon integrating world knowledge. The prediction of frequently co-176 

occurring words would arguably depend on different processing mechanisms (e.g. priming) 177 

compared to forming predictions based on the build-up of context constraints (Huettig, 2015; 178 

Pickering & Gambi, 2018). Secondly, we investigated the effect of the interaction over time and 179 

space, rather than averaging over time windows or using single regions-of-interests (ROIs). 180 

Although Fruchter et al. (2015) also presented the spatiotemporal dynamics of the interaction, this 181 
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was in an exploratory analysis that requires replication. Their primary analyses averaged over 182 

longer time windows and were restricted to several ROIs. Furthermore, in their exploratory 183 

spatiotemporal analysis, the authors averaged over 100ms time windows. We here provide finer 184 

grained information about the spatiotemporal dynamics of the interaction between lexical 185 

frequency and context. Finally, we investigated whether such effects were observable on the level 186 

of word-by-word processing during sentence reading, without averaging over trials, by quantifying 187 

the improvement of MEG signal prediction in a comparative cross-validated model scheme. 188 

2. Methods 189 

2.1. Participants 190 

Participants were 99 right-handed native Dutch speakers (age range 18-33 years; mean age = 22; 191 

50 males) from a subset of 102 participants who completed a reading paradigm in the open-access 192 

MOUS dataset (Mother of all Unification Studies; Schoffelen et al., 2019). Three participants were 193 

excluded from analyses, due to technical issues during data acquisition making them unsuitable 194 

for the current analysis pipeline. All participants were right handed, had normal or corrected to 195 

normal vision, and reported no history of neurological, developmental or language impairments. 196 

All participants provided written informed consent and the study was approved by the local ethics 197 

committee, and complied with the declaration of Helsinki. 198 

2.2. Sentence stimuli 199 

The total stimulus set consisted of 360 Dutch sentences (9-15 words in length), which are described 200 

in detail in Schoffelen et al. (2019). Each participant read a selection of 240 sentences (2/3 of the 201 

entire stimulus set), where 50% were presented as intact sentences and 50% were presented as 202 

scrambled sentences. Specifically, three pairs of selections, referred to as scenario pairs, were 203 

created, such that the stimuli that occurred as normal sentences in one scenario from a pair were 204 
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presented in a scrambled fashion in the other scenario from that pair, and vice versa. Sentences 205 

were scrambled so that no more than three words in a scrambled sentence made up a coherent 206 

phrase. No participant read both the intact and scrambled version of a sentence. Consequently of 207 

this design was that the collection of words that subjects read was exactly counterbalanced across 208 

intact and scrambled sentence conditions, both across all participants and within the three sets of 209 

scenario pairs. 210 

2.3. Lexical characteristics  211 

Lexical characteristics of frequency, index, surprisal, entropy and length (i.e. number of 212 

characters) were obtained for each word in the sentence, to enter as predictors into regression 213 

models. Lexical frequency was defined as the frequencies of words occurring in the NLCOW2012 214 

corpus (Schäfer & Bildhauer, 2012) and were log10 transformed. The NLCOW2012 database is 215 

comprised of over 10 million Dutch sentences (71761868 words), and was also used to obtain 216 

estimates of surprisal and entropy (see below). Index was defined as the ordinal position of the 217 

word in the intact/scrambled sentence. Each word’s surprisal value was acquired from a trained 218 

tri-gram model, using WOPR (Van Den Bosch & Berck, 2009), trained on the NLCOW2012 219 

corpus. Surprisal was computed as the conditional probability of observing a word given the 220 

previous two words in the sentence. Formally, it was computed as:  221 

𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙(𝑤(𝑡))  =  −𝑙𝑜𝑔𝑃(𝑤(𝑡)|𝑤(𝑡 − 2), 𝑤(𝑡 − 1)) 222 

High surprisal values therefore signify low lexical predictability. Entropy was acquired from the 223 

same trained tri-gram model. Entropy reflects the probability distribution of possible 224 

continuations, given the constraints of the previous words. High entropy values signify a high 225 

number of possible continuations, i.e. low predictability of the upcoming word. Formally, it is 226 

defined as: 227 
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𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑤(𝑡)) = − ∑ 𝑃(𝑤(𝑡 + 1)|𝑤(1), . . . , 𝑤(𝑡))𝑙𝑜𝑔𝑃(𝑤(𝑡 + 1)|𝑤(1), . . . , 𝑤(𝑡))

𝑤(𝑡+1)∈𝑊

 228 

Using a trained tri-gram model here, the entropy at word w(t+1) reflects the summation across all 229 

possible endings given w(t) and w(t-1). 230 

All metrics were also computed for the first two words in a sentence. The statistical language 231 

model allowed for estimates of sentence onset words (and also the second word in the sequence), 232 

since sentences were prepended by special tokens, which allowed the first sentence word to be 233 

treated as a valid trigram. 234 

The distribution of the estimated surprisal values for both scrambled and intact sentences are 235 

presented in Fig 1. Here it can be seen that model-based surprisal and entropy are higher for 236 

scrambled than intact sentences. Although there were likely many trigrams in the current stimuli 237 

that were not present in the corpus on which the language model was trained, particularly in the 238 

scrambled sentence condition, N-gram based statistical language models account for this by 239 

estimating the conditional probabilities using a technique called smoothing (or discounting), 240 

returning non-zero probabilities for words, even if corresponding trigrams did not occur in the 241 

training set. In such cases, the returned conditional probabilities will be more closely related to the 242 

(unconditional) lexical frequency of the word. Fig 1 additionally highlights that measures of lexical 243 

frequency and surprisal, and lexical frequency and length were highly correlated. This is 244 

unsurprising, as both lexical frequency and surprisal were calculated from the frequency of 245 

occurrences in a corpus, either of the word itself, or the word given the prior two words. Such high 246 

correlations were not a concern for the current analysis, in which we used a model comparison 247 

procedure to quantify the additional variance explained by a model including the independent 248 
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variable compared to a reduced model that did not contain the independent variable. A detailed 249 

explanation of the model comparison procedure can be found in section 2.7.     250 

 251 

 252 

Figure 1. Correlation matrix for predictor variables lexical frequency (log10-transformed), 253 

surprisal (log10-transformed), entropy, index and word length (respectively) for the content words. 254 

Scatterplots between corresponding pairs of predictors are presented in the lower off-diagonal. 255 

Pearson’s correlation coefficients and corresponding p values are presented on the upper off-256 

diagonal. Histograms present the distribution of each predictor variable on the diagonal.  257 

 258 

2.4. Experimental procedure 259 

Sentence stimuli were presented in a random order in alternating intact and scrambled sentence 260 

blocks. There were 48 blocks in total, each containing five intact sentences or five scrambled 261 

sentences. The starting block condition (intact/scrambled) was randomised across participants. At 262 

the beginning of each block the block type was presented on the screen for 1500ms. Trials 263 

(intact/scrambled sentences) were separated with a 1200-2200 inter-trial interval, during which a 264 

blank screen was presented followed by a fixation cross. Stimuli were presented word-by-word, 265 
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with an inter-stimulus (word) interval of 300ms. To avoid the entrainment of neural oscillations to 266 

a rhythmic onset of visual stimuli, and to better match the pace of the equivalent spoken stimuli 267 

(Schoffelen et al., 2019), the presentation duration of each word was adjusted by the word duration 268 

when spoken (visual presentation duration = 300-1400ms, mean = 351ms). The calculation of 269 

single word durations has been described elsewhere (Lam, Schoffelen, Udden, Hulten, & Hagoort, 270 

2016; Schoffelen et al., 2019). To reiterate, for each intact/scrambled sentence, the duration of a 271 

single word was a function of four factors: (i) the duration of the spoken version of the 272 

intact/scrambled sentence in the matching auditory stimuli from Schoffelen et al. (2019) 273 

(audiodur), (ii) the total number of words in the sentence (nwords), (iii) the number of letters per 274 

word (nletters), and (iv) the total number of letters in the sentence (sumnletters). Single word 275 

duration was computed as:  276 

(nletters/sumnletters)*(audiodur+2000–150*nwords)  277 

The minimum presentation duration for short words was limited to 300ms, regardless of the 278 

outcome of the above formula. As the presentation rate of stimuli was partially determined by the 279 

refresh rate of the projector (60Hz), the actual presentation duration of words increased by 0-33ms 280 

from the value provided by the above formula. 281 

Participants were instructed to read the sentences. On 20% of trials participants answered a yes/no 282 

comprehension question to ensure they were engaged in the task. The positions of the 283 

comprehension questions relative to the stimuli were random. In intact sentence blocks, 50% of 284 

questions asked about the content of the sentence (e.g. “Did grandma give a cookie to the girl?”). 285 

Questions in the scrambled sentence blocks, and the remaining 50% of questions in the intact 286 

sentence blocks, asked about the presence of a content word (e.g. “Was the word grandma 287 
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mentioned?”). Participants responded to the questions by pressing a button with their left 288 

index/middle finger to answer yes/no, respectively.  289 

Stimuli were presented with Presentation software (Version 16.0, Neurobehavioral Systems, Inc) 290 

and back-projected with an LCD projector at a refresh rate of 60Hz. Words were presented in the 291 

centre of the screen in a black mono-spaced font (visual angle of 4 degrees) on a grey background. 292 

Before beginning the main experiment, participants completed practice trials to familiarise 293 

themselves with the procedure.  294 

2.5. MEG acquisition 295 

Participants were seated in a magnetically shielded room, while MEG was recorded with a 275 296 

axial gradiometer CTF system, at a sampling rate of 1200 Hz and with a 300 Hz analog low pass 297 

filter. Prior to the recording, the participant’s head shape was digitised with a Polhemus 3D-Space 298 

Fast-track digitiser. Digitised head shapes and fiducial points were later used to coregister subject-299 

specific anatomical MRIs with the MEG sensor space. The position of the participants’ head 300 

(relative to the MEG sensors) was monitored online throughout the recording via three head-301 

localiser coils, placed on the nasion and left and right pre-auricular points. 302 

2.6. MRI acquisition  303 

MRIs were recorded with a Siemens Trio 3T MRI scanner with a 32-channel head coil. A T1-304 

weighted magnetisation-prepared rapid acquisition gradient echo pulse sequence was used to 305 

obtain structural MRIs (volume TR = 2300ms; TE = 3.03ms; 8° flip angle; 1 slab; slice matrix size 306 

= 256 × 256; slice thickness = 1mm; field of view = 256mm; isotropic voxel size = 1.0 × 1.0 × 307 

1.0mm). A vitamin E capsule was placed behind the right ear as a fiducial marker to visually 308 

identify left/right. 309 
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2.7. Data analysis  310 

Pre-processing  311 

Data were band pass filtered between 0.5-20Hz and epoched time-locked to sentence onset. 312 

Segments of data that contained eye blinks, squid jumps and muscle artifacts were replaced with 313 

“Not a Number” (NaN) in order to preserve the original sentence onset related timing information. 314 

Data were downsampled to 120Hz. 315 

Source Reconstruction 316 

Single shell head models describing the inside of the skull were constructed from individual MRIs, 317 

which were used to create forward models according to (Nolte, 2003). Single trial covariance 318 

matrices were computed between sensor pairs. Sources were reconstructed using linearly 319 

constrained minimum variance (LCMV; Van Veen, van Drongelen, Yuchtman, & Suzuki, 1997) 320 

beamforming to obtain time courses of source activity at 8196 dipole locations. Data were 321 

parcellated using an anatomical atlas-based parcellation, consisting of 382 parcels (Schoffelen et 322 

al., 2017). For each parcel, principal component analysis was performed on the dipole time series 323 

belonging to a given parcel, and the top five components that explained the most variance in the 324 

parcel-specific signal were selected for further analysis.  325 

Spatiotemporal Alignment  326 

To boost the stimulus specific signal, and reduce intersubject variability, data were 327 

spatiotemporally aligned across subjects using multiset canonical correlation analysis (MCCA; 328 

Arana et al., 2020; de Cheveigné et al., 2019). MCCA was used to find linear combinations of the 329 

65 parcel time courses (canonical components) that maximised the correlation between all subject 330 
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pairs, while they were presented with exactly the same words, thereby increasing the similarities 331 

between the participants’ signals in response to those words.  332 

MCCA is a generalization of canonical correlation analysis (CCA), and aims to find linear 333 

combinations for multivariate observations in order to maximize the correlation between the 334 

combined time series. Here, each member of the set of multivariate observations consisted of a 335 

representation of a parcel-specific signal for a given subject. Linear combinations of these 336 

observations were estimated, which resulted in a single canonical component per subject such that 337 

the correlation across subjects was maximised. The linear weights were estimated with a 338 

generalized eigenvalue decomposition using two covariance matrices, consisting of the full 339 

covariance matrix of all subjects’ multivariate observations, and of a block-diagonal covariance 340 

matrix, containing only the within subject covariances of the multivariate observations. As 341 

mentioned, our aim was to boost the stimulus-specific brain signals, specifically accounting for 342 

some spatial and temporal variability across subjects. Hence, for each subject the input to MCCA 343 

decomposition consisted of a set of time-shifted time series, where the parcel’s 5 dominant 344 

principal components were shifted in time from -50-50ms in steps of single samples, resulting in 345 

65 time series per word per parcel and subject (i.e. 5 principal components × 13 time shifts). 346 

MCCA was performed separately for each pair of scenarios, which were fully matched in terms of 347 

the stimulus material that was used to derive the sentences and the word-lists (i.e. the subjects read 348 

exactly the same overall collection of individual words), based on combining data from sets of 32-349 

34 subjects. Next, the time series of the scrambled sentence trials were unscrambled such that the 350 

word order and onset times exactly matched the corresponding intact sentence’s word order and 351 

onset times. This resulted in 240 trials that were exactly matched across time in terms of the 352 

individual words presented. These trials were entered into a five-fold cross validated MCCA 353 
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procedure (Arana et al., 2020). To this end, we partitioned the data into 5 test folds of 48 trials 354 

each, and for each of the folds used the 192 remaining trials as a training set to estimate the MCCA 355 

weights. These weights were subsequently applied to the test fold data to obtain the subject-356 

specific canonical components. The cross validation was applied in order to avoid overfitting. To 357 

summarise, MCCA was used to find linear combinations of the 65 parcel time courses (canonical 358 

components) that maximised the correlation between all subject pairs, while they were presented 359 

with exactly the same words, thereby increasing the similarities between the participants’ signals 360 

in response to those words.  361 

Encoding Models 362 

Next, we fitted encoding models to the data, using five-fold cross-validated ridge regression. To 363 

this end, the subject-specific canonical components were re-epoched time-locked to word onset, 364 

selecting only content words (nouns, adjectives, and verbs). The content words made up 55% of 365 

all the words in the stimulus set, which resulted in an average of 763 (range: 755-774) words per 366 

scenario and main condition (intact versus scrambled sentences). The absolute number of analysed 367 

words per sentence varied as a function of sentence length. For the re-epoched data, subject-368 

specific encoding models were estimated for each time point and parcel-of-interest, separately for 369 

intact and scrambled sentence words. A ridge regression model is similar to a multiple regression 370 

model with a regularised design covariance matrix. The optimal regularisation parameter was 371 

estimated using nested cross-validation, and selected from a range of lambda values (0.002, 0.005, 372 

0.010, 0.020, 0.050, 0.100, 0.200, 0.500, 1.000, 2.000 and 5.000) for each model. The 373 

regularisation parameter applies a penalty to the model to avoid overfitting on the training data. A 374 

lambda value of 0 would result in no regularisation being applied, whereas selecting a lambda 375 
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value that is too high would result in under-fitting the model. The model derived from a “training” 376 

portion of the data was evaluated on its performance to predict a portion of unseen “test” data. 377 

In order to separate the unique variance explained by each variable of interest from that explained 378 

by all other variables, we applied a model comparison scheme. The model comparison procedure 379 

quantified the extent to which a model including a predictor of interest explained variance in the 380 

MEG signal, above and beyond a reduced model that did not include the given predictor. To this 381 

end we computed the coefficient of determination: 382 

𝑅2 = 1 −  
∑(𝑦 −  �̂�𝑓𝑢𝑙𝑙 𝑚𝑜𝑑𝑒𝑙)

2

∑(𝑦 − �̂�𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑚𝑜𝑑𝑒𝑙)2
 383 

Where the numerator and denominator in the right side of the equation were computed as the sum-384 

of-squares of the difference between the data and the modelled test data, for the full and reduced 385 

models, respectively.  386 

To test the contribution of individual predictors we used a full model that included, beyond a 387 

constant and word length, the following predictors of interest: lexical frequency (log transformed), 388 

surprisal, entropy and index. To test the interaction between lexical frequency and context – as 389 

quantified with index (similar to Alday et al., 2017; Payne et al., 2015; Van Petten & Kutas, 1990) 390 

– we used a full model that included only, beyond a constant, the individual predictors of lexical 391 

frequency (log transformed), index, length, and the interaction term, which was computed as an 392 

element wise product: lexical frequency (log10 transformed) × index. Similarly, we tested the 393 

interaction between lexical frequency and surprsial, and lexical frequency and entropy, where the 394 

full model included, beyond the constant, the individual predictors of lexical frequency (log 395 

transformed), surprisal (log transformed)/entropy, length, and the interaction term (lexical 396 

frequency × surprisal (log transformed)/lexical frequency × entropy). Epochs (content words) were 397 
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divided into five equal folds to avoid overfitting, and to allow for the generalisation across items. 398 

For each fold of the cross-validation procedure, the model was estimated using data from the four 399 

other folds, and tested on the remaining data.  400 

In order to be able to statistically compare the models for the individual intact and scrambled 401 

sentence conditions, that is to obtain an estimate of a possible bias in the coefficient of 402 

determination under the null hypothesis, we used a permutation approach, as follows: For each 403 

model, the design matrix was randomly permuted 50 times and, for each permutation, an additional 404 

model was trained and tested with the permuted variables, thereby removing any true association 405 

between the predictors and the data. 406 

Statistical Analysis  407 

We statistically evaluated the individual predictors in a selection of regions-of-interest (ROI), 408 

consisting of 184 parcels (92 left hemisphere parcels with their right hemisphere counterparts). 409 

This selection consisted of cortical regions that have consistently been described to be a part of a 410 

language network (Catani et al., 2007; Friederici, 2009; Glasser & Rilling, 2008; Schoffelen et al., 411 

2017) or to be involved in the processing of semantic relationships (Bunge, Helskog, & 412 

Wendelken, 2009; Frankland & Greene, 2020; Knowlton, Morrison, Hummel, & Holyoak, 2012; 413 

Ramnani & Owen, 2004). We further investigated the interaction between lexical frequency and 414 

index based on the resulting map including only the 33 parcels that significantly encoded index or 415 

lexical frequency. The interaction between lexical frequency and surprisal, and lexical frequency 416 

and entropy were investigate in the same 33 parcels, facilitating comparison across results.  417 

We used non-parametric permutation statistics, using the dependent samples T-statistic across 418 

subjects as a test statistic. We evaluated the individual coefficients of determination against the 419 
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corresponding average of their 50 random permutation counterparts (see Encoding Models section 420 

2.7), using an alpha-level of 0.05 for inference. The intact and scrambled sentence conditions were 421 

compared with each other using a two-sided test (which involves evaluating the test statistic 422 

against two randomisation distributions, using an alpha level of 0.025 for each of these 423 

randomisation distributions) for inference. For all comparisons, multiple comparisons (across time 424 

and space) were accounted for by using a max-statistic distribution from 5000 permutations. 425 

Note that we compared intact and sentence conditions only on the difference in the interaction 426 

between lexical frequency and index, and not in the interaction between lexical frequency and 427 

surprisal, nor lexical frequency and entropy. Index is well-controlled across intact/scrambled 428 

sentence conditions, in that it is well matched across both intact and scrambled sentences, and does 429 

not correlate with lexical frequency. In contrast, the distribution of surprisal and entropy both differ 430 

across intact and scrambled sentences, with higher surprisal and entropy values in scrambled 431 

compared to intact sentences (see Fig 1). Any observed difference between intact and scrambled 432 

sentences in the variance explained by the interaction between lexical frequency and 433 

surprisal/entropy could, therefore, be down to their different distributions of surprisal/entropy 434 

values.  435 

3. Results 436 

All participants achieved over 60% accuracy on the comprehension questions (mean = 81.19%; sd 437 

= 6.61%), confirming they were attending to the stimuli. No further analysis was conducted on the 438 

comprehension questions. 439 
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3.1. Spatiotemporal Alignment  440 

Fig 2 shows the effect of the alignment procedure, presenting the time-resolved intersubject 441 

correlation (Fisher Z-transformed correlation coefficient) after spatiotemporal alignment (solid 442 

green line), spatial alignment (dashed green line), temporal alignment (dotted red line) and no 443 

alignment (dashed purple line), for two example parcels (sub-regions of BA22 and BA44). Fig 2 444 

illustrates that spatiotemporal alignment increased the intersubject correlation, more so than 445 

temporal alignment alone or spatial alignment alone. The intersubject correlation peaked at around 446 

400ms (300-500ms), a time period in which electrophysiological brain signal is typically found to 447 

be influenced by the semantic characteristics of a word (N400/M400; Kutas & Federmeier, 2011). 448 

Spatiotemporal alignment thereby seems to have boosted the stimulus specific signal in the data.  449 

 450 

Figure 2. MCCA boosts intersubject consistency of single word responses. Time courses of Z-451 

transformed intersubject correlations after spatiotemporal alignment (solid green line), spatial 452 

alignment (dashed green line), temporal alignment (dotted red line) and no alignment (dashed 453 

purple line) in middle temporal gyrus (parcel in Brodmann Area (BA) 22; panel A) and inferior 454 

frontal gyrus (parcel in BA44; panel B). Shaded ribbons represent the interquartile range. 455 

 456 

3.2. Encoding Models 457 

For each measure of interest, our model comparison scheme quantified the extent that each 458 

regressor explained word-specific variance in the MEG signal, beyond the variance explained by 459 

all other regressors (see Methods section 2.7). Similarly, we quantified the variance explained by 460 
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the index × lexical frequency interaction, surprisal × lexical frequency interaction and entropy × 461 

lexical frequency interaction, beyond that explained by the main effects of lexical frequency and 462 

index/surprisal/entropy (respectively). The model comparisons were statistically evaluated 463 

separately for the intact (Figs 3-9 panel A) and scrambled (Figs 3-7 panel B) sentences against a 464 

permutation derived baseline, as well as compared against each other (Figs 3-7 panel C).  465 

Lexical Frequency 466 

Lexical frequency significantly predicted MEG signal in both intact and scrambled sentences 467 

throughout the 0-600ms analysis window (relative to word onset), spatially spreading from 468 

bilateral occipital and inferior temporal cortex to left posterior and middle temporal cortex at time 469 

points preceding 250ms, to left frontal and left anterior temporal cortex from 250ms onwards. In 470 

both intact and scrambled sentences, the effect of lexical frequency peaked at around 400ms in left 471 

temporal and frontal cortex (Fig 3 panels A and B). In the left superior temporal gyrus (STG) and 472 

middle temporal gyrus (MTG) this effect started earlier in intact compared to scrambled sentences, 473 

from 183ms, compared to 267ms in scrambled sentences.  474 

Despite the seemingly stronger effect in scrambled compared to intact sentences - apparent in the 475 

time courses in Fig 3 panel D - in a direct comparison of the coefficient of determination for lexical 476 

frequency across conditions (presented in Fig 3 panel C), only a very small spatiotemporal effect 477 

survived the multiple comparisons correction scheme. Specifically, significantly more variance 478 

was explained in intact compared to scrambled sentences at a single time point, at 267ms, in a 479 

single right hemisphere frontal parcel (BA46). There were no other significant differences between 480 

intact and scrambled sentences in the variance explained by lexical frequency (corrected p>.05).   481 

 482 
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 483 

Figure 3. Effects of lexical frequency in the response to content words: Surface plots of T-statistics 484 

(averaged over 50ms time windows centred at the indicated latencies, for visualisation) quantifying 485 

the difference in variance explained by lexical frequency (log10 transformed), beyond that 486 

explained by index, surprisal, entropy and length, in intact sentence compared to random 487 

permutation models (panel A; p<.05 one-sided, corrected), scrambled sentence compared to 488 

random permutation models (panel B; p<.05 one-sided, corrected), and intact compared to 489 

scrambled sentence models (panel C; p<.05 two-sided, corrected). Parcels for which no time point 490 

was significant during the 50ms time bin are masked. Panel D: Time courses of T-statistics for 491 

intact (solid green line) and scrambled (dashed red line) sentence models compared to random 492 

permutation models, and intact compared to scrambled sentence models (dotted purple line) for 493 

subparcels of BA22, BA47 and BA11 (highlighted in yellow on adjacent surface plots). ROIs 494 

entered into statistical analyses are illustrated as green shaded area on surface plots. 495 
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Index 496 

Index significantly predicted the MEG signal in both intact and scrambled sentences throughout 497 

the 0-600ms analysis window. In intact sentences the effect spread from bilateral occipital cortex 498 

throughout right posterior and inferior temporal cortex and left temporal and frontal cortex, and 499 

peaked at around 350ms in left anterior temporal and inferior frontal cortex (Fig 4 panel A). In 500 

contrast to intact sentences, in scrambled sentences the effect was predominantly constrained to 501 

bilateral occipital and inferior temporal cortex, peaked at around 300ms in left posterior and 502 

inferior temporal cortex (Fig 4 panel B), and after 492ms only two single time points were 503 

significant (542ms and 600ms).  504 

Significantly more variance in the MEG signal was predicted by index in intact compared to 505 

scrambled sentences from 275-417ms in anterior temporal (BA21/22/38), 283-375ms in inferior 506 

frontal (BA44/46/47), and 258-400ms in orbitofrontal and prefrontal cortex (PFC; BA10/11), as 507 

is evident in Fig 4 panel C.  508 
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 509 

Figure 4. Effects of index in the response to content words: Surface plots of T-statistics (averaged 510 

over 50ms time windows centred at the indicated latencies, for visualisation) quantifying the 511 

difference in variance explained by index, beyond that explained by lexical frequency (log10 512 

transformed), surprisal, entropy and length, in intact sentence compared to random permutation 513 

models (panel A; p<.05 one-sided, corrected), scrambled sentence compared to random 514 

permutation models (panel B; p<.05 one-sided, corrected), and intact compared to scrambled 515 

sentence models (panel C; p<.05 two-sided, corrected). Parcels for which no time point was 516 

significant during the 50ms time bin are masked. Panel D: Time courses of T-statistics for intact 517 

(solid green line) and scrambled (dashed red line) sentence models compared to random 518 

permutation models, and intact compared to scrambled sentence models (dotted purple line) for 519 

subparcels of BA11 and BA47 (highlighted in yellow on adjacent surface plots). ROIs entered into 520 

statistical analyses are illustrated as green shaded area on surface plots. 521 
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 522 

Surprisal 523 

In both intact and scrambled sentences, surprisal significantly predicted the MEG signal 524 

throughout most of the analysis window, peaking at 400ms in temporal and frontal cortex, and 525 

predicting additional right hemisphere variance in orbitofrontal and anterior temporal cortex (see 526 

Fig 5 panels A and B). In intact sentences, the effect spread from STG and the angular gyrus from 527 

0-100ms, throughout temporal and frontal cortex from 208-600ms (Fig 5 panel A). In scrambled 528 

sentences, the effect spread from left (later bilateral) occipital and inferior temporal cortex 529 

throughout primarily the left temporal and frontal cortex (Fig 5 panel B). However, the effect of 530 

surprisal in scrambled sentences was most robust from 200ms onwards. Preceding 200ms, only 531 

several individual time points were significant after multiple comparisons correction. 532 

Significantly more variance in the MEG signal was predicted by surprisal in intact compared to 533 

scrambled sentences 50-58ms and 458-475ms relative to word onset in left MTG (BA22), and 534 

392-442ms relative to word onset in bilateral orbitofrontal cortex (BA11), which is presented in 535 

Fig 5 panel C. The time courses in Fig 5 panel D illustrate that the significant difference in BA22 536 

results from a more sustained response in intact compared to scrambled sentences, whereas BA11 537 

results from a greater peak in intact compared to scrambled sentences.  538 
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539 
Figure 5. Effects of surprisal in the response to content words: Surface plots of T-statistics 540 

(averaged over 50ms time windows centred at the indicated latencies, for visualisation) quantifying 541 

the difference in variance explained by surprisal, beyond that explained by lexical frequency 542 

(log10 transformed), index, entropy and length, in intact sentence compared to random 543 

permutation models (panel A; p<.05 one-sided, corrected), scrambled sentence compared to 544 

random permutation models (panel B; p<.05 one-sided, corrected), and intact compared to 545 

scrambled sentence models (panel C; p<.05 two-sided, corrected). Parcels for which no time point 546 

was significant during the 50ms time bin are masked. Ventral and dorsal views are indicated with 547 

adjacent “v” and “d” labels, respectively. Panel D: Time courses of T-statistics for intact (solid 548 

green line) and scrambled (dashed red line) sentence models compared to random permutation 549 

models, and intact compared to scrambled sentence models (dotted purple line) for subparcels of 550 

BA22, BA47 and BA11 (highlighted in yellow on adjacent surface plots). ROIs entered into 551 

statistical analyses are illustrated as green shaded area on surface plots.  552 
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 553 

Entropy 554 

Entropy significantly predicted the MEG signal in both intact and scrambled sentences, however 555 

to a lesser extent than the aforementioned predictors. In intact sentences (see Fig 6 panel A), 556 

entropy predicted variance in bilateral occipital, left inferior temporal and frontal parcels, and in 557 

the posterior MTG, from 0-242ms, 292-367ms, and at individual time points of 433ms and 525ms 558 

(relative to word onset). In scrambled sentences (see Fig 6 panel B), entropy significantly predicted 559 

variance in bilateral occipital and inferior temporal cortex from 0-83ms. Significantly more 560 

variance was explained by entropy in intact compared to scrambled sentences in a single left 561 

inferior temporal parcel (BA37) 450-458ms after word onset (see Fig 6 panel C).   562 

  563 
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 564 

Figure 6. Effects of entropy in the response to content words: Surface plots of T-statistics (averaged 565 

over 50ms time windows centred at the indicated latencies, for visualisation) quantifying the 566 

difference in variance explained by entropy, beyond that explained by lexical frequency (log10 567 

transformed), index, surprisal and length, in intact sentence compared to random permutation 568 

models (panel A; p<.05 one-sided, corrected), scrambled sentence compared to random 569 

permutation models (panel B; p<.05 one-sided, corrected), and intact compared to scrambled 570 

sentence models (panel C; p<.05 two-sided, corrected). Parcels for which no time point was 571 

significant during the 50ms time bin are masked. Ventral, dorsal, and posterior views are indicated 572 

with adjacent “v”, “d” and “p” labels, respectively. Panel D: Time courses of T-statistics for intact 573 

(solid green line) and scrambled (dashed red line) sentence models compared to random 574 

permutation models, and intact compared to scrambled sentence models (dotted purple line) for 575 

subparcels of BA11, BA19 and BA37 (highlighted in yellow on adjacent surface plots). ROIs 576 

entered into statistical analyses are illustrated as green shaded area on surface plots.  577 
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Condition specific interactions between lexical frequency and predictability 578 

The above findings show how our model comparison approach identified brain activity patterns 579 

that were aligned with word-by-word fluctuations of various quantities that relate to lexical 580 

predictability. Considering that the interaction between lexical frequency and context (often 581 

quantified with word position in the sentence) has been consistently reported in previous 582 

electrophysiological studies (Alday et al., 2017; Dambacher et al., 2006; Payne et al., 2015; Sereno 583 

et al., 2019; Van Petten & Kutas, 1990), we conducted an analysis of this interaction in our data – 584 

in parcels that showed conditional differences in effects of either lexical frequency or index (see 585 

Figs 3-4) – specifically focussing on the spatial and temporal dynamics of this effect.  586 

The interaction between lexical frequency and increased word position in the sentence is thought 587 

to occur through the increasingly constraining context facilitating predictability as the sentence 588 

progresses (Dambacher et al., 2006; Payne et al., 2015; Van Petten & Kutas, 1990). Indeed, as 589 

outlined in the Introduction, effects of lexical frequency and word predictability have been found 590 

to interact (Dambacher et al., 2012; Dambacher et al., 2006; Kretzschmar et al., 2015; Sereno et 591 

al., 2003; Sereno et al., 2019). Hence, in addition to investigating the interaction between lexical 592 

frequency and index, we conducted an analysis of the interaction between lexical frequency and 593 

measures of local predictability, surprisal and entropy. Given that there were only sparse 594 

differences between intact and scrambled sentences in the effects of surprisal and entropy, 595 

suggesting that surprisal and entropy quantify similar processing mechanisms regardless of the 596 

level of sentential context, these interactions were investigated in sentences only, and in the same 597 

parcels in which the lexical frequency × index interaction was investigated, in order to remain 598 

consistent across analyses.   599 
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Only effects of the interaction between lexical frequency and surprisal survived the stringent 600 

multiple comparisons correction (p<.05 corrected), and not the interactions with index and entropy. 601 

Fig 8 presents the spatiotemporal distributions, along with example time courses, of T-statistics 602 

for parcels and time points that were significant while correcting for multiple comparisons (p<.05 603 

corrected), whereas Figs 7 and 9 present those that were significant without correcting for multiple 604 

comparisons (uncorrected p<.05).  605 

Lexical frequency × Index 606 

Beyond the variance explained by the main effects of index, lexical frequency, and length the index 607 

× lexical frequency interaction explained additional variance in intact sentences from 150ms after 608 

word onset in frontal parcels (BA10/BA11/BA44/BA47), spreading to MTG and posterior STG 609 

(BA22/BA38) from 342ms onwards, where effects peaked at around 400ms (see Fig 7 panel A; 610 

uncorrected p<.05).    611 

In scrambled sentences, the index × lexical frequency interaction explained additional variance in 612 

several time windows throughout the 0-600ms analysis window, predominantly from 300ms 613 

onwards, but also at earlier time points. The effect spread from frontal (BA10/BA11) to temporal 614 

(BA22/BA38) and inferior frontal (BA44/BA46) parcels, peaking at around 450ms in frontal 615 

parcels (see Fig 7 panel B; uncorrected p<.05).  616 

On inspection of Fig 7 panel C, the comparison of the coefficient of determination for the 617 

interaction in intact and scrambled sentence models revealed an interesting spatiotemporal pattern 618 

of results. During an earlier time window (100-300ms), more variance was explained by the index 619 

× lexical frequency interaction in intact compared to scrambled sentences in frontal parcels 620 

(BA10/BA11; warm colours Fig 7 panel C), yet more variance was explained by the index × lexical 621 

frequency interaction in scrambled compared to intact sentences in temporal parcels 622 
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(BA21/BA22/BA38; cool colours Fig 7 panel C). However, in a later time window (350-500ms) 623 

a reverse pattern was observed, where more variance was explained by the interaction in scrambled 624 

compared to intact sentences in frontal parcels, and more variance was explained in intact 625 

compared to scrambled sentences in temporal parcels. This pattern is also evident in the time 626 

courses of T-statistics presented in Fig 7 panel D.  627 

  628 
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629 
Figure 7. Effects of the lexical frequency × index interaction in the response to content words: 630 

Surface plots of T-statistics (averaged over 50ms time windows centred at the indicated latencies, 631 

for visualisation) quantifying the difference in variance explained by lexical frequency × index 632 

interaction, beyond that explained by lexical frequency (log10 transformed), index, and length in 633 

intact sentence compared to random permutation models (panel A; p<.05 one-sided, uncorrected), 634 

scrambled sentence compared to random permutation models (panel B; p<.05 one-sided, 635 

uncorrected), and intact compared to scrambled sentence models (panel C; p<.05 two-sided, 636 

uncorrected). Parcels for which no time point was significant during the 50ms time bin are masked. 637 

Panel D: Time courses of T-statistics for intact (solid green line) and scrambled (dashed red line) 638 

sentence models compared to random permutation models, and intact compared to scrambled 639 

sentence models (dotted purple line) for subparcels of BA10, BA11, BA22 and BA46 (highlighted 640 

in yellow on adjacent surface plots). ROIs entered into statistical analyses are illustrated as green 641 

shaded areas on surface plots. 642 
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Lexical frequency × Surprisal   643 

The interaction between lexical frequency and surprisal significantly predicted MEG signal 644 

variance, beyond the main effects of lexical frequency, surprisal and word length, from 275-645 

392ms, starting in a frontal parcel (BA11), and spreading to anterior temporal parcels from 283ms 646 

(BA38), and further throughout temporal (BA21/BA22) and frontal (BA44/BA46) parcels, from 647 

292ms and 308ms respectively. Effects peaked at around 350ms (see Fig 8 panel A-B; corrected 648 

p<.05). 649 

  650 
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 651 

 652 

Figure 8. Effects of the lexical frequency × surprisal interaction in the response to content words: 653 

Surface plots of T-statistics (averaged over 50ms time windows centred at the indicated latencies, 654 

for visualisation) quantifying the difference in variance explained by lexical frequency × surprisal 655 

interaction, beyond that explained by lexical frequency (log10 transformed), surprisal (log10 656 

transformed), and word length, in intact sentence compared to random permutation models (panel 657 

A; p<.05 one-sided, corrected). Parcels for which no time point was significant during the 50ms 658 

time bin are masked. Panel B: Time courses of T-statistics for intact sentence models compared to 659 

random permutation models, for subparcels of BA11 (left hemisphere), BA11 (right hemisphere), 660 

BA38 and BA22 (highlighted in yellow on adjacent surface plots). ROIs entered into statistical 661 

analyses are illustrated as green shaded areas on surface plots. 662 

  663 
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Lexical frequency x Entropy  664 

Beyond the variance explained by the main effects of entropy, lexical frequency, and length, the 665 

lexical frequency × entropy interaction explained additional variance from 200-600ms, starting in 666 

anterior temporal (BA38/BA21/BA22) and frontal (BA11) parcels, spreading further throughout 667 

frontal parcels (BA10/BA44) from 250ms/330ms (respectively) and posteriorly through middle 668 

and superior temporal cortex (see Fig 9; uncorrected p<.05). The effect of the interaction peaked 669 

at around 350ms, and again at approximately 500ms.  670 

 671 

Figure 9. Effects of the lexical frequency × entropy interaction in the response to content words: 672 

Surface plots of T-statistics (averaged over 50ms time windows centred at the indicated latencies, 673 

for visualisation) quantifying the difference in variance explained by lexical frequency × entropy 674 

interaction, beyond that explained by lexical frequency (log10 transformed), entropy, and word 675 

length, in intact sentence compared to random permutation models (panel A; p<.05 one-sided, 676 

uncorrected). Parcels for which no time point was significant during the 50ms time bin are masked. 677 

Panel B: Time courses of T-statistics for intact sentences models compared to random permutation 678 

models, for subparcels of BA44, BA11, BA38 and BA22 (highlighted in yellow on adjacent 679 

surface plots). ROIs entered into statistical analyses are illustrated as green shaded areas on surface 680 

plots. 681 

 682 
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4. Discussion  683 

During sentence reading, the brain processes individual words at a remarkable speed. Such fast 684 

processing is not only facilitated and affected by the word’s frequency of occurrence within a given 685 

language (Calvo & Meseguer, 2002; Inhoff & Rayner, 1986; Rayner & Duffy, 1986; Rubenstein 686 

et al., 1970), but also by the word’s context, brought about by semantic and syntactic constraints 687 

imposed by preceding words (Calvo & Meseguer, 2002; Staub et al., 2015; Van Petten & Kutas, 688 

1990). There is a well-documented discrepancy between the electrophysiological and eye-tracking 689 

literature as to whether frequency and context have additive or interactive effects on processing 690 

(Kretzschmar et al., 2015). It is unclear whether word frequency influences processing when the 691 

input is predictable. The current work aimed to better define the spatiotemporal dynamics of the 692 

effects of lexical frequency and predictability on word processing, establish to what extent lexical 693 

frequency and predictability independently influence word processing, and to what extent they 694 

interact. To this end, we performed state-of-the-art analysis of a large and well-balanced MEG 695 

dataset, combining spatiotemporal hyperalignment with cross-validated encoding model 696 

comparisons. This allowed us to go beyond the more traditional approaches that use event-related 697 

averaging or generalized linear models, thus being able to infer effects based on the brain’s 698 

response to individual words. 699 

We found that the MEG signal reflects the lexical frequency of individual words (here content 700 

words) throughout the analysis time window beyond effects of predictability, in a network 701 

expanding from occipital cortex throughout the left temporal and inferior frontal regions of the 702 

language network. Index, surprisal, and entropy additionally each significantly predicted the MEG 703 

signal. All comparisons were made while controlling for each alternative predictor, and word 704 

length. There were significant but focal differences between intact and scrambled sentences in the 705 
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effects of lexical frequency, surprisal and entropy. In contrast to these focal differences, the effect 706 

of index differed extensively in intact compared to scrambled sentences. Thus, out of the analysed 707 

predictors, only the effect of index was greatly influenced by the sentential context in which words 708 

were presented (i.e. intact/scrambled sentences). These findings highlight that the word processing 709 

mechanisms reflected by index are dependent on the preceding context, whereas the processing 710 

mechanisms underlying lexical frequency and surprisal remain largely the same regardless of the 711 

degree of sentential context. Finally, only the interaction between lexical frequency and surprisal 712 

survived multiple comparisons correction (in ventromedial PFC and anterior temporal lobe), and 713 

not the interaction between lexical frequency and entropy, nor between lexical frequency and 714 

index. Although the index × lexical frequency interaction effect was not significant under a 715 

conservative multiple comparisons correction scheme, an inspection of the uncorrected results 716 

uncovered an interesting pattern. Namely, both left temporal and frontal cortical activity seemed 717 

to be influenced by the interaction, yet the latency at which this occurred was flipped across 718 

conditions. While, in intact sentences, the interaction was expressed more strongly at early time 719 

points in frontal areas and only later in temporal areas, this pattern was reversed for scrambled 720 

sentences. Importantly, on inspection of both the corrected and uncorrected results, the interactions 721 

between lexical frequency and our metrics quantifying predictability show an initial peak between 722 

150-250ms. Given that the average fixation duration lasts ~200ms, any processing related to eye 723 

movement decisions must occur prior to this time window (Sereno & Rayner, 2003). Our findings 724 

tentatively support that lexical frequency and predictability do not interact robustly until around 725 

150ms or later, which could explain why eye movement studies display a purely additive effect of 726 

these variables, in contrast to the robust interaction observed across electrophysiological studies. 727 

In the following paragraphs we discuss the results in more detail.  728 
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4.1. Lexical frequency  729 

Overall, lexical frequency was encoded in the MEG signal to a similar extent in intact and 730 

scrambled sentences. This effect was widespread, both in space and time, and thus suggests that 731 

lexical frequency generically affects the brain response, likely reflecting less effortful processing 732 

of high compared to low frequency words. These findings help to close the gap between the 733 

electrophysiological and eye tracking literature, by providing evidence that frequency indeed 734 

influences word processing independently of prediction. In contrast to the eye tracking literature, 735 

electrophysiological studies have previously found that, during word processing, effects of lexical 736 

frequency disappear with increased context (Dambacher et al., 2006; Payne et al., 2015; Sereno et 737 

al., 2019; Van Petten & Kutas, 1990).  738 

Although our findings differ from Fruchter et al. (2015), who found that word frequency explained 739 

no additional variance in the MEG signal after word onset beyond that explained by predictability, 740 

our results are consistent with the overall findings from the paper. Specifically, the authors 741 

presented evidence that, rather than reflecting a baseline level of predictability, lexical frequency 742 

influenced lexical access itself, as the frequency of the predicted word affected the 743 

electrophysiological response in the MTG prior to seeing the word (i.e. in response to the highly 744 

constraining word).  745 

In the current data, effects of lexical frequency were observed after controlling for predictability 746 

prior to 100ms in occipital cortex. Such an early response in visual processing regions likely 747 

reflects an influence of word frequency on identification of the word form. To measure the extent 748 

that these early effects could be explained by the frequency of lower level sublexical properties of 749 

the word form, rather than the frequency of the lexeme, we conducted an additional analysis of 750 

lexical frequency while controlling for bigram and trigram letter frequency, as well as all other 751 
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predictors (see Methods section 2.7). The results of this analysis are presented in the 752 

supplementary material (Fig SM1). Here it can be seen that the overall effect of word frequency 753 

remained the same as compared to when these variables were not controlled for (see Fig 3). 754 

Although lexical frequency explained variance in a reduced number of occipital and occipito-755 

temporal parcels while controlling for the words’ lower level visual characteristics, compared to 756 

the results presented in Fig 3, an effect of lexical frequency was still observed in visual cortex at 757 

around 100ms. Lexical frequency therefore seems to influence early visual processing, beyond 758 

effects of the frequency of lower level properties of the word form. 759 

The effect of lexical frequency progressively moved anteriorly through temporal and frontal cortex 760 

throughout word processing, supporting that lexical frequency influences multiple stages of word 761 

processing, such as lexical access and integration with the sentential context. These findings are 762 

in line with the EZ model of word reading (Reichle, Pollatsek, & Rayner, 2012), which proposes 763 

that word frequency and predictability independently affect both early (word form recognition) 764 

and late (lexical access/integration/compositional) stages of processing. Comparing intact and 765 

scrambled sentences, frequency was encoded in the MEG signal earlier in intact than scrambled 766 

sentences in the STG and MTG. Given the association of the MTG with lexical–semantic 767 

processing (Friederici, 2012; Hagoort, 2017) and the location of the primary auditory cortex and 768 

auditory association areas on the STG, the current results suggest that lexical frequency facilitates 769 

aspects of semantic and phonological processing earlier when the word is presented in a coherent 770 

sentence than when presented in a scrambled sentence. Moreover, significantly more variance was 771 

explained in intact compared to scrambled sentences at 267ms in a single dorsolateral PFC parcel 772 

(BA46), an area thought to be involved in executive control during language processing (Hagoort, 773 

2003, 2013, 2017).  774 
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4.2. Sentential context and predictability 775 

In line with previous literature (Armeni, Willems, van den Bosch, & Schoffelen, 2019; Hultén, 776 

Schoffelen, Uddén, Lam, & Hagoort, 2019; Schuster et al., 2020), the word-by-word association 777 

between the MEG signals and the increasingly constrained context (i.e. index), and metrics 778 

quantifying (the results of) prediction, presented itself with different spatiotemporal dynamics. 779 

These will be discussed in the following paragraphs.  780 

Index 781 

Index explained a significant portion of variance in the MEG signal during the entire critical 782 

window in both intact and scrambled sentences. Moreover, index predicted the MEG signal 783 

significantly more in intact than scrambled sentences, predominantly in anterior temporal and 784 

frontal cortex. This latter finding illustrates that it is the progressing sentential context that affects 785 

word processing in these regions, rather than more domain-general properties that correlate with 786 

index, such as working memory demands. The anterior temporal lobe has been associated with 787 

conceptual representations (Peelen & Caramazza, 2012; Pylkkänen, 2019; Ralph, Jefferies, 788 

Patterson, & Rogers, 2017; Rice, Lambon Ralph, & Hoffman, 2015) and syntactic structure 789 

building (Brennan et al., 2012; Brennan & Pylkkänen, 2017), the latter of which is engaged more 790 

when words are presented in intact compared to scrambled sentences. The greater influence of 791 

index in intact compared to scrambled sentences in the inferior frontal gyrus is consistent with the 792 

notion of unification, the integration of lexical items within the wider semantic and syntactic 793 

context as the sentence unfolds (Hagoort, 2005, 2013). 794 

In line with earlier work (Schuster et al., 2020), index was encoded in the MTG and angular gyrus 795 

in intact sentences. No such effect was observed in these regions for scrambled sentences, although 796 

the latter qualitative difference was not significant when directly contrasting conditions. Given the 797 
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association between MTG activity and lexical-semantic processing (Friederici, 2012; Hagoort, 798 

2017), the effect in MTG could reflect the build-up of richer semantic representations as coherent 799 

sentences progress, more so than during the progression of scrambled sentences. The absence of 800 

an effect of index in scrambled sentences in the angular gyrus may be consistent with the view that 801 

this region is a hub to integrate different types of information extracted by various parts of the 802 

language network (Binder & Desai, 2011; Hagoort, 2003, 2019). Although, the precise roles of the 803 

angular gyrus and the anterior temporal lobe in integrating conceptual information are still 804 

currently debated (Binder & Desai, 2011; Hagoort, 2019; Matchin, Liao, Gaston, & Lau, 2019; 805 

Pylkkänen, 2019; Ralph et al., 2017). In contrast to unfolding well-formed sentences, scrambled 806 

sentences lack syntactic structure, and therefore do not permit for a meaningful integration of 807 

structural cues with, for instance, lexico-semantic information.  808 

Surprisal 809 

We estimated surprisal and entropy using corpus-based statistics, using a tri-gram model on the 810 

individual intact and scrambled sentences. Consistent with our expectations, surprisal was overall 811 

larger in scrambled sentence words (see Fig 1). Yet, aside from subtle differences between intact 812 

and scrambled sentences, as discussed below, the overall spatiotemporal characteristics of MEG 813 

signal variance explained by surprisal, on top of the other predictors, was similar between 814 

conditions. One tentative explanation for this could be that the inclusion of the index predictor in 815 

the ‘baseline model’ already accounted for a large part of signal variance (albeit to different 816 

degrees across conditions), causing the additional information provided by surprisal values to be 817 

less distinctive across conditions. The word-by-word fluctuations in surprisal explained 818 

widespread, predominantly left-lateralized, brain signals, irrespective of condition. This suggests 819 

a relation between our operationalisation of surprisal on the one hand, and more automatic ease-820 
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of-integration related processes on the other hand. Although care was taken to scramble sentences 821 

in a way so as no more than three consecutive words could be syntactically combined, there is 822 

evidence that combinatorial processes are robust to local word swaps (Mollica et al., 2020). In the 823 

current data, surprisal seems to reflect the same underlying combinatorial processes in scrambled 824 

and intact sentences, reflecting the ease-of-integration.  825 

A direct statistical comparison across conditions showed some very focal and short-lived 826 

differences. Apart from a very early time window, at around 50ms in the MTG, there was a 827 

difference around 400-450ms in orbitofrontal and MTG parcels. It is often difficult to determine 828 

whether observed effects of surprisal result from participants predicting the upcoming linguistic 829 

input, or from more probable words being easier to integrate (Pickering & Gambi, 2018; Willems, 830 

Frank, Nijhof, Hagoort, & van den Bosch, 2016). While the early effect of surprisal that we observe 831 

here is likely related to predictive mechanisms, the later MEG signatures might equally be caused 832 

by hindered integration. Surprisal was encoded in the MEG signal in temporal cortex prior to 833 

100ms (in the sentence condition only), which has previously been argued to imply that some 834 

linguistic information about a word has been pre-activated – here constrained by the previous two 835 

words – given that bottom-up lexical retrieval could not yet have taken place (Pickering & Gambi, 836 

2018). Although the precise timing of lexical access of written words is currently debated, it is 837 

thought that  sub-lexical characteristics and the word form have been processed by ~100ms and 838 

morphemic processing and lexical access of the lemma occurs between 150-170ms (Grainger & 839 

Holcomb, 2009; Hauk et al., 2006; Lewis, Solomyak, & Marantz, 2011; Pulvermüller, Shtyrov, & 840 

Hauk, 2009; Sereno & Rayner, 2003; Woollams, 2015). Such timings speak to a pre-activation 841 

account of the early effects of surprisal in the temporal cortex here. Sentence context may influence 842 

the timing of lexical retrieval through prediction mechanisms (Fruchter et al., 2015). In contrast, 843 
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the later effects of surprisal at 400-450ms in orbitofrontal and MTG parcels could result from 844 

either integrative or predictive processes. Although the orbitofrontal cortex (situated in the 845 

ventromedial PFC) has previously been sensitive to predictability of both linguistic information 846 

(Hofmann et al., 2014) and more generally (Nobre, Coull, Frith, & Mesulam, 1999), the 847 

ventromedial PFC has also been associated with higher level combinatorial processes (Brennan & 848 

Pylkkänen, 2008, 2010; Pylkkänen, 2008, 2019, 2020; Pylkkänen, Martin, McElree, & Smart, 849 

2009; Pylkkänen & McElree, 2007), in line with an integrative account of the later effect of 850 

surprisal here.   851 

Entropy 852 

Entropy quantifies the uncertainty of the upcoming linguistic content (Pickering & Gambi, 2018; 853 

Willems et al., 2016). Entropy significantly predicted the MEG signal in both intact and scrambled 854 

sentences. Notably, the spatial and temporal extent of significant effects were much smaller than 855 

those of the other predictors. Here, entropy was encoded in early occipital cortical activity, both 856 

in intact and scrambled sentences. Additionally, in sentences, entropy effects were observed in left 857 

frontal cortex around 300ms, and in inferior temporal cortex around 450ms. Effects of prediction 858 

in occipital parcels during early time points have previously been used as evidence to support the 859 

notion that an active prediction of word form is employed by the brain (Dikker, Rabagliati, Farmer, 860 

& Pylkkänen, 2010; Pickering & Gambi, 2018). Rather than directly reflecting prediction, entropy 861 

quantifies the uncertainty about upcoming words (here based on the prior two words). Prediction 862 

of upcoming words was not possible in the scrambled sentence condition. Participants have been 863 

shown to quickly adapt their predictive behaviour to the predictability of the linguistic content of 864 

the current context (Bosker, van Os, Does, & van Bergen, 2019; Heyselaar, Peeters, & Hagoort, 865 

2020; Thacker, Chambers, & Graham, 2018). It therefore seems unlikely that, when reading 866 
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scrambled sentences, participants still pre-activated word forms that would usually be likely 867 

candidates to follow in a sentence. An alternative explanation for the early occipital cortical 868 

activity here is that, under uncertainty of upcoming linguistic input, more weight is placed on 869 

bottom-up (as opposed to top-down) signal, and more resources are allocated to visual processing. 870 

In contrast to the more generic interpretation of early entropy effects in visual cortical areas, the 871 

later sentence-specific effect in inferior temporal cortex could indeed reflect predictive processing 872 

of the word form. This region, often referred to as the visual word form area, is likely to receive 873 

top-down signals containing linguistic information about a word (Price & Devlin, 2011; Sharoh et 874 

al., 2019). 875 

Entropy presented with a markedly different pattern of results compared to the other prediction 876 

metrics, in that only several focal groups of parcels during narrow time points survived multiple 877 

comparisons correction. It is evident from the time courses in Fig 6 that the encoding of the MEG 878 

signal was temporally less consistent for the entropy models compared to the models presented in 879 

Figs 3-5. Similarly, Schuster et al. (2020) found no effect of predictability (entropy) in the 880 

haemodynamic response when conducting a whole-brain analysis, and effects were found only in 881 

an ROI analysis.  882 

4.3. Interactions between lexical frequency and predictability 883 

In line with previous work (Alday et al., 2017; Dambacher et al., 2006; Fruchter et al., 2015; Payne 884 

et al., 2015; Sereno et al., 2019; Van Petten & Kutas, 1990), we investigated the interaction 885 

between lexical frequency and metrics quantifying prediction, including index (both within and 886 

across individual conditions), surprisal and entropy (in sentences only). Here we add to the 887 

previous literature by investigating the spatiotemporal dynamics of the interaction in more detail 888 

in comparison to previous reports (Fruchter et al., 2015). Using a strict multiple comparisons 889 
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correction scheme, we found evidence of an interaction only between lexical frequency and 890 

surprisal, and not between lexical frequency and index, nor lexical frequency and entropy. The 891 

latter two findings seem to concur with the eye-tracking literature, which has found an additive 892 

effect of lexical frequency and predictability on fixation durations (Kennedy et al., 2013; 893 

Kretzschmar et al., 2015; Staub, 2015; Staub & Benatar, 2013). Yet, the lexical frequency × 894 

surprisal interaction results are in line with the electrophysiological literature, in which effects of 895 

lexical frequency on word processing are reduced with increased predictability (Dambacher et al., 896 

2012; Dambacher et al., 2006; Kretzschmar et al., 2015; Sereno et al., 2003; Sereno et al., 2019). 897 

Furthermore, partially supporting the aforementioned electrophysiological literature, an analysis 898 

of the nominally thresholded data revealed a spatially similar pattern of results of the entropy 899 

interaction as compared to the significant interaction with surprisal (corrected p<.05), in addition 900 

to some interesting condition-specific dynamics of the lexical frequency × index interaction. 901 

Finally, all three interactions first peaked between 150-250ms, suggesting that these variables 902 

could additively influence early stages of word processing prior to 150ms, but interact during later, 903 

post-lexical stages of word processing. Such findings help to explain why, in contrast to the 904 

electrophysiological literature, only an additive effect of these variables has been observed in the 905 

eye tracking literature. Given that an average fixation duration lasts ~200ms (Rayner, 1986), eye 906 

movement decisions should only be influenced by information obtained in early stages of word 907 

processing (Sereno & Rayner, 2003).   908 

Firstly, lexical frequency interacted with surprisal and entropy in frontal (predominantly in BA11) 909 

and anterior temporal parcels, the interaction being strongest at around 350ms. Both the anterior 910 

temporal lobe and BA11 have been proposed to be involved in combinatorial processes during 911 

sentence comprehension, the former in semantic (Binder & Desai, 2011; Brennan & Pylkkänen, 912 
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2017; Hagoort, 2019; Matchin, Liao, et al., 2019; Pylkkänen, 2019; Ralph et al., 2017) or syntactic 913 

(Brennan et al., 2012; Brennan & Pylkkänen, 2017) integration, and the latter in higher level 914 

compositional processing and inferring implicit meanings (Brennan & Pylkkänen, 2008, 2010; 915 

Pylkkänen, 2008, 2019, 2020; Pylkkänen et al., 2009; Pylkkänen & McElree, 2007). The frequency 916 

of a word may therefore become less relevant to its integration within the higher level sentential 917 

meaning when the same word is highly predictable. Although we do not report the direction of the 918 

interaction here (see Section 4.4. Limitations and future work), previous reports have consistently 919 

shown that the effect of frequency on word processing diminishes with increased predictability, 920 

and the benefits of predictability on word processing are enhanced for low compared to high 921 

frequency words (Dambacher et al., 2012; Dambacher et al., 2006; Fruchter et al., 2015; Hofmann 922 

et al., 2014; Kretzschmar et al., 2015; Sereno et al., 2003; Sereno et al., 2019). For example, similar 923 

to the current results, an interaction between lexical frequency and predictability was found in 924 

orbitofrontal cortex (encompassed in BA11) by Hofmann et al. (2014), who found stronger brain 925 

responses to disconfirmed predictions for only low and not high frequency words.  926 

The interaction between lexical frequency and index displayed some intriguing dynamics in time 927 

and space across conditions (despite not surviving multiple comparisons corrections). In left 928 

temporal parcels (BA21/BA22/BA38), including the MTG, the interaction explained more 929 

variance in scrambled than intact sentences at early time points, and in intact compared to 930 

scrambled sentences in a later time window. The later (350-500ms) temporal cortex effect is 931 

consistent with previous electrophysiological literature that has averaged over central-parietal 932 

sensors in an N400 time window, as the interaction explained more variance in coherent sentences 933 

than in scrambled sentences. Specifically, earlier work has shown that the effect of frequency on 934 

the N400 diminishes with increased word position, in intact sentences but not scrambled sentences 935 
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(Payne et al., 2015), eliciting the conclusion that lexical frequency no longer influences word 936 

processing when there is increased context. An interaction between word frequency and 937 

predictability in the left MTG is also consistent with the findings of Fruchter et al. (2015), who 938 

found an effect of frequency here only for words of low and not high predictability. One 939 

mechanism through which this could occur is through the pre-activation of semantic features 940 

associated with the lexical item, or pre-activation of the lexical item itself, so that processing low 941 

frequency words is no longer as difficult compared to high frequency words.  942 

In frontal parcels (BA10/BA11), more variance was explained by the interaction in intact 943 

compared to scrambled sentences in an early time window, and in scrambled compared to intact 944 

sentences in a later time window. Greater ventromedial PFC (BA11) recruitment has previously 945 

been observed in sentences compared to word-lists more generally (Brennan & Pylkkänen, 2012) 946 

and, as discussed above, is thought to be involved in interpreting higher level sentence meanings 947 

(Brennan & Pylkkänen, 2008, 2010; Pylkkänen, 2008, 2019, 2020; Pylkkänen et al., 2009; 948 

Pylkkänen & McElree, 2007). BA10, on the other hand, has been associated with encoding 949 

semantic relationships (Bunge et al., 2009; Frankland & Greene, 2020; Knowlton et al., 2012; 950 

Ramnani & Owen, 2004). Both higher level compositional processing and forming semantic 951 

relationships could be expected to occur earlier in intact compared to scrambled sentences. Overall, 952 

the difference between intact and scrambled sentences in the interaction between lexical frequency 953 

and index seems to occur in the time that these factors interact, rather than in the presence of an 954 

interaction. 955 

Current models of word reading do not yet account for the effects observed in the current data, 956 

together with the aforementioned eye tracking and electrophysiological literature. The EZ-Reader 957 

model (Reichle et al., 2012), and more recent Uber-Reader model (Veldre, Yu, Andrews, & 958 
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Reichle, 2020) of word reading, propose that lexical frequency and predictability independently 959 

influence both early (L1/identification of the word form) and late (L2/lexical access/semantic 960 

processing/integration) stages of word processing. While we provide confirmatory evidence that 961 

lexical frequency and predictability indeed influence both early and late stages of word processing 962 

independently, we also show that they interact during later stages of word processing. Models of 963 

word reading could therefore benefit from incorporating these additional findings. Although we 964 

do not quantify the direction of the interaction here, previous reports have robustly demonstrated 965 

that the effect of lexical frequency is reduced for highly predictable words (compared to 966 

unpredictable words), and the effect of predictability is greater for low than high frequency words 967 

(Dambacher et al., 2012; Dambacher et al., 2006; Fruchter et al., 2015; Hofmann et al., 2014; 968 

Kretzschmar et al., 2015; Sereno et al., 2003; Sereno et al., 2019).  969 

4.4. Limitations and future work 970 

A limitation of the current work is that words were presented word-by-word, causing the 971 

stimulation to be externally paced. Yet, it is well known that in more naturalistic settings the 972 

reading pace is determined by the reader, where eye movement and fixation behaviour is in part 973 

the result of prediction related processes (Rayner & Well, 1996). Indeed, there is evidence to 974 

suggest that predictability facilitates processing before a word is fixated, while the word is within 975 

parafoveal view (Balota, Pollatsek, & Rayner, 1985; Staub, 2015; Staub & Goddard, 2019). 976 

Furthermore, self-paced reading paradigms have demonstrated that fixation durations of the 977 

current word are influenced by the properties of the preceding word (Dambacher & Kliegl, 2007; 978 

Kliegl, Nuthmann, & Engbert, 2006). Predictive processes may be engaged at different latencies 979 

or to a different extent in natural reading compared to the current paradigm, due to their interaction 980 

with the executive control of eye movements. Future work should aim to investigate whether the 981 

D
ow

nloaded from
 http://direct.m

it.edu/nol/article-pdf/doi/10.1162/nol_a_00054/1962700/nol_a_00054.pdf by R
AD

BO
U

D
 U

N
IVER

SITEIT N
IJM

EG
EN

 user on 29 N
ovem

ber 2021



 

50 

 

observed spatiotemporal dynamics of the effects of lexical frequency and predictability on the 982 

MEG signal hold during naturalistic reading (see Brennan & Pylkkänen, 2017 for an investigation 983 

into naturalistic word reading with MEG).  984 

A further limitation of the current investigation is that we did not report the direction of the 985 

interaction between lexical frequency and our metrics quantifying predictability. As the variables 986 

in the models were highly correlated (see Fig 1), it is not possible to meaningfully interpret the 987 

beta weights from the models. Instead, we used a model comparison scheme to quantify the 988 

additional variance explained by each regressor, beyond that already explained by all other 989 

regressors (see Methods section 2.7 for details). Given that the direction of the interaction is robust 990 

across numerous previous reports, a lack of directionality in the current results does not greatly 991 

hinder the interpretation of our results. Moreover, by comparing intact and scrambled sentences, 992 

we were able to report the degree to which the strength of the interaction changed with and without 993 

sentential context. In doing so, we replicated previous findings of a stronger interaction in intact 994 

compared to scrambled sentences during a typical N400 time window in the temporal cortex. 995 

However, we additionally showed that the direction of this higher order interaction reversed in the 996 

frontal cortex during the same time window, and in the temporal cortex in an earlier time window. 997 

Future work with more carefully controlled stimuli could aim to replicate these results in a ROI 998 

analysis.  999 

 1000 

4.5. Conclusions 1001 

We provide evidence to support that frequency and contextual constraints have identifiable effects 1002 

on multiple stages of word-by-word processing, from early visual and lexical retrieval to later 1003 

integration and unification processes. Largely similar spatiotemporal effects across both intact and 1004 
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scrambled sentences suggest that lexical frequency generally affects how fast and effortful 1005 

processing is, independently from ongoing predictive processes.  1006 

Only the interaction between lexical frequency and surprisal survived our conservative multiple 1007 

comparisons corrections (in anterior temporal and frontal cortex), and not the interaction between 1008 

lexical frequency and entropy, nor between lexical frequency and index. Although we found no 1009 

significant effect of a lexical frequency × index interaction - consistent with the additive effects of 1010 

these variables typically observed in the eye-tracking literature - an uncorrected analysis revealed 1011 

some interesting spatiotemporal dynamics. Namely, the effect of the interaction was reversed in 1012 

time and space in intact sentences compared to scrambled sentences. In the MTG, which is 1013 

associated with lexical-semantic processing, the interaction explained more variance in scrambled 1014 

sentences than intact sentences in an early time window, and in intact sentences than scrambled 1015 

sentences in a later time window. The latter is consistent with the frequency × index interaction 1016 

that is typically observed in the N400 time window in intact sentences but not scrambled sentences 1017 

(Payne et al., 2015). In orbitofrontal and ventromedial PFC cortex, which have previously been 1018 

associated with forming higher level semantic relationships and inferring implicit meanings, the 1019 

interaction explained more variance in intact sentences than scrambled sentences at early time 1020 

points, but in scrambled sentences than intact sentences in a later time window. Finally, we provide 1021 

evidence to suggest that lexical frequency and predictability may independently influence early 1022 

and late stages of word processing, but also interact during later stages of word processing. Our 1023 

findings may contribute to improved models of word reading, which do not yet fully account for 1024 

effects of predictability in the current results, nor in previous work (Staub & Goddard, 2019). 1025 
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Lexical frequency and sentence context influence the brain’s response to single words 

Supplementary material 
Eleanor Huizeling, Sophie Arana, Peter Hagoort, Jan Mathijs Schoffelen 

 

 

Figure SM1. Effects of lexical frequency in the response to content words: Surface plots of T-

statistics (averaged over 50ms time windows centred at the indicated latencies, for visualisation) 

quantifying the difference in variance explained by lexical frequency (log10 transformed), beyond 

that explained by index, surprisal (log10 transformed), entropy, length, bigram letter frequency 

(log10 transformed) and trigram letter frequency (log10 transformed) in intact sentence compared 

to random permutation models (panel A; p<.05 one-sided, corrected) and scrambled sentence 

compared to random permutation models (panel B; p<.05 one-sided, corrected). Parcels for which 

no time point was significant during the 50ms time bin are masked. 
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Figure SM2. Effects of the lexical frequency × index interaction in the response to content words: 

Surface plots of T-statistics (averaged over 50ms time windows centred at the indicated latencies, 

for visualisation) quantifying the difference in variance explained by lexical frequency × index 

interaction, beyond that explained by lexical frequency (log10 transformed), index, length, bigram 

letter frequency (log10 transformed) and trigram letter frequency (log10 transformed) in intact 

sentence compared to random permutation models (panel A; p<.05 one-sided, uncorrected), 

scrambled sentence compared to random permutation models (panel B; p<.05 one-sided, 

uncorrected), and intact compared to scrambled sentence models (panel C; p<.05 two-sided, 

corrected). Parcels for which no time point was significant during the 50ms time bin are masked. 

Panel D: Time courses of T-statistics for intact (solid green line) and scrambled (dashed red line) 

sentence models compared to random permutation models, and intact compared to scrambled 

sentence models (dotted purple line) for subparcels of BA10, BA11 BA22 and BA46 (highlighted 

in yellow on adjacent surface plots). ROIs entered into statistical analyses are illustrated as green 

shaded areas on surface plots. 
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