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ABSTRACT

This thesis focuses on the feasibility of adding a new dimension to spatial

context referred to as orientation. Based on directional antennas and pre-

vious work in RSSI based radio distance estimation, this work shows that

using directional antennas alone, the angle between two devices can be ap-

proximated. Furthermore, this thesis shows the effect of distance estimation

error on angle estimation and how the number of samples affects the error in

angle estimation.
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CHAPTER 1

INTRODUCTION

As computing devices have become both ubiquitous and more mobile, the

opportunities for computers to augment human lives have increased. In order

for mobile devices to make decisions relevant to our current activity, they

require context. This area of work is known as context-based computing and

it focuses on having computing resources make intelligent decisions based on

our lives. Context can refer to many different variables in our lives such as

time, temperature, vital signs, or location. An operation which might be

acceptable in one context might be considered unacceptable in another such

as playing a loud email notification while you are asleep.

In the mobile space, location is the dynamic feature of context which we

would like to be tracked. The process by which a device discovers its spatial

context is known as localization. Knowing the location of our mobile device

allows for the screen to be turned off when the device is in our pocket or the

volume to be reduced when listening to a presentation. In practice, we would

like the context to be always available and require little to no user input.

Previous work on localization has focused on different types of spatial

context. Absolute geographical location, which can be represented with a

latitude and longitude, indicates the physical location of the user but does

not indicate anything about the user’s surroundings. Alternatively, relative

location focuses on the user’s location with respect to other points. This

allows for answers to questions such as, ”Are any of my friends nearby?” or

”Which exit will have the least congestion?”.

These solutions have one common assumption, that a user can be repre-

sented by a single point. This assumption ignores the fact that our orienta-

tion is often just as important as our location. Human interaction is defined

primarily by our orientation rather than our spatial proximity.

An example scenario might be at a professional conference where you meet

many people. You would like to share your contact information with anyone
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you talk to for more than 10 minutes. Without orientation your contact

information will be shared indiscriminately with anyone standing beside or

behind you. Clearly there is a gap between what can currently be expressed

and the true context of a situation caused by the lack of orientation infor-

mation.

This thesis focuses on the feasibility of adding a new dimension to spatial

context, orientation. Using directional antennas, the angle between two de-

vices can be inferred and delivered to higher layer applications, which take

advantage of the information. This work shows that using antennas alone,

the angle between two devices can be approximated within 40 degrees. Fur-

thermore, this thesis shows the effect of distance estimation error on angle

estimation and how the number of samples affects the error in angle estima-

tion.

The remainder of this thesis will discuss orientation estimation. Chapter

2 discusses previous techniques of location estimation and how they can be

applied to orientation estimation. Chapter 3 details the design of a system

offering orientation context which is then evaluated in Chapter 4. Finally,

Chapter 5 summarizes this thesis and presents future directions for orienta-

tion estimation.
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CHAPTER 2

RELATED WORK

Much of the existing work done in location estimation systems can be reused

when estimating orientation. Localization is comprised of several use cases

of which only some will be useful to orientation. The different use cases are

demonstrated by the following scenarios.

The most common application of localization is obtaining absolute geo-

graphic position. This type of localization is meant to answer the question,

”Where am I?”. This paradigm was made popular by GPS-enabled devices

used to deliver directions. Navigation requires the absolute geographic po-

sition of the device which it then overlays on static maps. This scenario is

interesting because navigation systems typically display orientation as well

as location. This orientation is commonly generated based on assumptions

about the mobility model and the availability of absolute position. The

orientation is generated by making a vector from the current position and

previous position. This works well for driving, but can be fooled by simple

tasks such as driving the car in reverse gear. These errors could be solved by

using a digital compass instead. Acquiring absolute locations from GPS has

energy costs and so this works well only when energy is not a concern, the

path avoids covered areas (tunnels, etc.) and the environment is relatively

static (store doesn’t move).

A new area of localization has recently become popular known as relative

positioning which answers the question, ”What’s around me?”. An example

scenario involves a firefighter rushing into a burning building in order to find

a victim trapped inside. Once the firefighter has the victim they want to

leave the building by the same path they entered. One solution would be for

the firefighter to drop beacons along their ingress path. When leaving, the

firefighter could then retrace their path using the beacons. In this scenario,

the location of a beacon is only important in relation to the next beacon.

Relative positioning produces an accurate map within a translation, where
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in the world we are, and a rotation, which direction is north. Previous

work [1, 2, 3, 4, 5] has shown how a relative positioning system can use

anchors to create an absolute geographic map. Relative positioning is or-

thogonal to the problem this thesis solves. A system could make use of both

kinds of context.

A specific instance of relative positioning which is only concerned with

single hop measurements is known as proximity detection. An example sce-

nario involves a child’s game where one child hides and the other seeks. The

twist is that there is an omniscient helper which gives a hot/cold reading

to the seeker. In this game the proximity of the seeker to the hider makes

the feedback change. The proximity of the two players can be measured by

the proximity of their two devices. This proximity measurement is known as

distance estimation [6, 7, 8]. This thesis will make use of distance estima-

tion, but will also present the direction of the hider in the game, a definite

advantage.

2.1 Techniques and Technologies

Localization has been studied extensively in the past. These systems share a

common subset of components, but tend to be optimized for specific problem

domains which disallows any one best protocol from existing. A comprehen-

sive overview of the area can be found in [9].

2.1.1 Distance Estimation

Underlying all localization is a distance estimate between the device and a

point of interest. These estimates are based on the sensors available to the

device. Each sensor has an energy cost, accuracy, and coverage associated

with it. For example, GPS has a high energy cost, better than 10m accuracy

when combined with static maps, and coverage most everywhere but indoors.

A summary of the available sensors for distance estimation is given in Table

2.1 along with citations for existing work which leverage the technology.
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Sensor Power (mW) Accuracy (m) Coverage (m)

Radio
WiFi [10, 11, 8] 1000 3 100
Bluetooth [12, 13, 14] 200 1 15
ZigBee [15, 16, 17] 500 2 25

Infrastructure
GPS [18] 1500 10 Outdoors
GSM [19, 20, 21] 30 1km Everywhere

Misc.
Ultrasound [22, 23, 24] 25 1 10
Infrared [25] 40 - Line of Sight
RFID [26, 27] 1 1 1
Accelerometer [28, 29] 50 10% -
Magnetometer [29] 60 Unique Points -

Table 2.1: Comparison of Positioning Sensors

2.1.2 Radio-based Distance Estimation Techniques

Within radio-based distance estimation, a variety of approaches have been

proposed by previous work. Time of arrival [30], time difference of arrival [31,

32, 33], and angle of arrival [34, 35, 36] all require the devices to be closely

synchronized or to have space for large arrays of antennas. Synchronization

can be solved using messaging between devices, but that can drain batteries

quickly. Angle of arrival requires an array of antennas to detect the direction

of reception. These antennas have to be spaced apart which makes the entire

array take up a great deal of space. Based on these issues, received signal

strength (RSSI) distance estimation is used.

2.1.3 RSSI-based Distance Estimation

Radio signal strength based distance estimation rests upon the underlying

radio layer’s characteristics. This work uses the popular two-ray ground re-

flection propagation model, where the signal strength decreases as the fourth

power of the distance. This can be modeled as prx = ptx
d4

, where prx is the

received power, ptx is the transmitted power, and d is the distance between

the devices. In all RSSI based distance estimation techniques, ptx is either

kept constant or transmitted to the receiver so the receiver can account for

it.
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Figure 2.1: Directional Antenna Pattern

2.1.4 (Omni)Directional Antennas

The signal strength of a radio is based on the gain of the antenna which can

be modeled as g(r, θ) in two-dimensional polar coordinates. Omnidirectional

antennas do not depend on the angle and can be modeled as g(r). The gra-

dient of the gain pattern for a directional antenna affects how accurate angle

measurements will be. Larger gradients are more easily detected, because

of the bigger difference in measurements between angles. Figure 2.1 shows

one such pattern. Ideally, we would like to see an ellipse like shape to give a

smooth decreasing function.

2.2 Radios

For orientation we are interested in radio-based signal strength techniques so

we look specifically at WiFi, Bluetooth and Zigbee. Signal strength readings

are based on the energy received in the signal of a packet. Many proto-

cols have variable power transmission protocols to help with hidden-terminal

problems so it is important to fix the transmission power. In general this

can be done using discovery mechanisms which use the highest power broad-

casts possible and small packet sizes. Figures 2.2, 2.3 and 2.4 show signal

strength measurements at various distances for the different radios. Tighter

distribution bars allow for better estimates.
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Figure 2.2: WiFi Distance Estimation

2.2.1 WiFi

WiFi is one of the most commercially successful wireless standards which

also means that it is one of the most prolific. Its discovery mechanism is

based on a probe request/response combination sent at a fixed bit rate and

power. Because the probe responses are sent at a fixed power, the RSSI from

a probe request is more reliable than from an established association. WiFi

was designed to operate at up to 100 meters, but requires a great deal of

energy to stay awake at all times.

2.2.2 Bluetooth

Bluetooth is a standard designed for short-range (<10m) low bandwidth

applications. The MAC layer employs a frequency hopping sequence which

allows for collision avoidance since the standard operates in the same ISM

band as WiFi. This frequency hopping scheme makes the discovery process

a bit more difficult as a given device could be on any of the 32 channels.

Bluetooth’s inquiry must search multiple sets of channels which can take up

to 12 seconds. For Bluetooth it is important to use the discovery process to

avoid the security involved with establishing a connection.

2.2.3 ZigBee

ZigBee is a low power, low bandwidth radio designed for embedded devices

such as sensor motes. Cost and memory space necessitate a simple MAC

layer which gives ZigBee the shortest discovery process of all the radios. The

discovery process is defined by higher layer protocols, but for the purposes
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Figure 2.3: Bluetooth Distance Estimation
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Figure 2.4: ZigBee Distance Estimation

of this thesis, each device sends a broadcast beacon periodically at a fixed

power level to announce its presence.

2.3 Multiple Radios

Recently, work has been done to overcome the shortcomings of single sensor

platforms by combining multiple sensors [37]. Virtual Compass [38] intelli-

gently selects between using Bluetooth and WiFi for distance estimates which

incorporate error margins. By including the error estimates, [38] is able to

take the union of the two radio’s coverage and the better accuracy. This

work uses the simpler one radio approach due to physical device constraints,

but could take advantage of such an approach for both distance and angle

estimation.
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CHAPTER 3

DESIGN AND IMPLEMENTATION

This thesis presents an angle estimation system that is based on directional

antennas and received signal strength. Underneath, the estimation is com-

puted in two stages. The first stage uses a standard unidirectional antennae

to discover the relative distance between two devices. The second stage takes

the distance estimate and combines it with a signal strength measurement

from a directional antenna. Together, these combine to form an angle mea-

surement based on the expected signal strength for a given distance.

3.1 Distance Estimation

The design of the distance estimation system is based on previous work as

described in Section 2.1.3.

3.2 Orientation Estimation

Determining the orientation of a device relies upon accurate angle measure-

ments which are presently not available on commodity hardware.

3.2.1 Orientation Aliasing

Digital compasses alone are insufficient to compute the relative orientation

of two devices. Consider two devices shown in Figure 3.1a, one facing north

and one facing south. The devices might be facing each other or facing away

from each other. Absolute location would solve this problem but has high

energy costs and is generally unavailable indoors. Radios acting as sensors

to determine the direction can be used in conjunction with digital compasses
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Figure 3.1: Orientation Figures

to produce accurate orientation estimates.

Figure 3.1b describes the measurements available from directional anten-

nas, θ2 θ3 and a compass, θ1. The equation θ1 + θ3 − θ2 = 180 deg defines

a linear relationship between the three measurements. The equation over-

constrains the system and can be used to reduce the error or to solve for one

of the measurements instead of measuring it.

Presented in this thesis is the accuracy of a single measurement, θ2 or θ3.

Note that each device is designed to have a directional and omnidirectional

antenna so measurements are taken between A’s directional antenna and B’s

omnidirectional antenna. Presently, no off-the-shelf device has a directional

antenna capability so the experiments are simulated using a makeshift an-

tenna reflector external to the device.

In reality, signal strength measurements tend to be very noisy and often

don’t follow analytical models very closely due to multi-path fading and other

environmental effects. Using a makeshift reflector with no known model only

compounds the unpredictability of the signal strength measurements. In

order to make accurate estimates, models based on approximations of reality

are used.

3.2.2 Lookup Tables

The simplest approach to approximation requires storing lookup tables to

convert between (omnidirectional RSSI, directional RSSI) and (distance, an-

gle) pairs. The values to fill in this lookup table are generated by using

polynomial regression on the measured samples. Lookup tables represent
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Figure 3.2: Relative Angle Measurements

the inverse function in d = f−1prx. By storing values, the function does not

have to be continuous and can more closely match the observed distribution.

3.2.3 Relative Estimation

On devices with limited memory, it might not be desirable to hold the lookup

table in memory. In this case, the system can monitor the difference between

the directional and omnidirectional measurements to determine the angle

at which the device resides. Figure 3.2 shows the difference in means for

different distances and angles. Because the difference between the directional

and omnidirectional readings does not have a constant difference for different

distances, this estimation approach will incur additional error.

3.3 Implementation

The goal of implementing the system was to support monitoring of short

range social interactions. The performance of the system is highly dependent

on the selection of radio interface. ZigBee, being ultra low power, suffers

from high variability in measurements at larger distances [39]. WiFi is too

high power where short ranges show very little variation in signal strength.
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Contacts Latency (s)
hcitool scan 1 10

custom hci listener 3-8 1

Table 3.1: Comparison of Bluetooth Inquiry

Because we are only concerned with 15ft and less, Bluetooth is the ideal

radio.

In order to get the most accurate signal strength estimator, the Bluetooth

inquiry with RSSI HCI command is used, which was first defined in Bluetooth

2.1. In general, several contacts are made between two devices during the

discovery process. The default Linux Bluetooth stack Bluez reports the last

of all of these contacts. In order to collect samples faster, a direct HCI call

and listener were used, which allowed for an 8-10x gain in reported contacts.

By reporting contact events immediately rather than accumulating them,

latency is reduced from eight seconds to less than one second.
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CHAPTER 4

EVALUATION

The goal of the evaluation is to decide if the angle of a target device can be

detected by the source with enough precision to determine social interaction.

In the worst case, we would like to be able to say whether the device is facing

or not facing the target device. The performance of the system is based on

the following metrics:

• The mean error in distance estimation.

• The mean error in angle estimation at a fixed distance.

• The mean error in angle estimation based on an estimated distance.

We are not concerned with the performance of the distance estimation system

except for how it affects the combined angle estimation system. By looking at

the angle estimation for a fixed distance, we can see the best angle estimation

possible given perfect distance estimation. Perfect estimation is not practical,

so we show how the error in distance estimation affects the angle estimation

system. In conjunction with the three metrics, we explore how the number

of samples affects the quality of the measurement.

4.1 Methodology

All experiments shown were conducted indoors in an apartment hallway us-

ing Nokia N900 phone’s [40] Bluetooth radio. The N900 phones run a Linux

based operating system presenting the same interface as a laptop running

Debian Linux. Tests were also run with Google Nexus S phones [41] in an of-

fice environment with similar results. In order to automate collecting a large

number of samples at different angles and distances, a Create Roomba [42]

with serial interface was used to move one device. The static device was
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placed on a table approximately three feet above the ground while the mo-

bile device was placed on a tripod on top of the Roomba. For tests requiring

a directional antenna, an empty lined chips can was used as the reflector.

4.2 Measurements

All estimation and evaluation was done on a set of 12,152 data points taken

at 2 foot intervals from 1 to 15 feet and angle intervals of 15 degrees from 0

to 180 degrees. This is approximately 120 measurements per position.

4.2.1 Angle Estimation

In order to translate between signal strength (RSSI) and angle, regression is

used on the collected samples for a given distance. Least squares polynomial

regression of order 4 is used to generate the translating function. Shown

in Figure 4.1 is the transfer function for a 1 foot distance. The solid line

represents the estimated transfer function from RSSI to angle and the hash

marks represent the underlying samples which are being approximated.
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Figure 4.1: Angle Estimation at 1ft
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4.2.2 Angle Error

The estimated transfer function contains a certain amount of error from

what the observed measurements were. The error in angle estimation is

calculated as Estimated Angle - Actual Angle. A positive error means that

the estimation was too high. The boxes in Figure 4.2 show the inner quartiles

and the whiskers represent points outside of the range. A dotted line showing

no error was added for clarity. As seen in Figure 4.2, the accuracy is better

for smaller angles. For angles less than 30 degrees, we can confidently state

that the devices are facing and for larger angles we can state that the devices

are not facing. The increased error in larger angles is an effect of directional

antennas having a sharp drop-off when unaligned with the target device (See

Figure 2.1). Directional antennas with a more linear angular dependency

might have better performance for larger angles. The angle approximation is

based on the assumption that the distance can be estimated perfectly. Next,

we will consider distance estimation and how it affects the angle estimation

error.
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Figure 4.2: Angle Error at 1ft
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4.2.3 Distance Estimation

Distance measurements tend to be noisier than angle measurements, as shown

in Figure 4.3, which causes rather large error bars in Figure 4.4. The mean

error from Figure 4.4 is 1.8 feet which is in line with previous work when the

smaller interval is considered. These distance estimates allow the system to

decide which angle transfer function to use by looking at previously collected

RSSI samples from the same distance, but will introduce more error into the

system.
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Figure 4.3: Distance Estimation

4.2.4 Combined Angle Error

In order to determine the effects of error in the distance estimation on the

accuracy in angle measurement, a combined error measurement is taken. This

is calculated by randomly selecting a omnidirectional measurement taken

at the same distance, estimating the distance based on the omnidirectional

reading, and then calculating the estimated angle transfer function at that

distance. Finally, the estimated angle is compared to the actual angle shown

in Figure 4.5. Due to poor distance estimation, the measurement shows a

great deal of error, up to 180 degrees in Figure 4.5c. Based on this, a single

sample alone would not suffice to say anything about the orientation of the
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Figure 4.4: Distance Error

two devices.

In order to reduce this error we took multiple RSSI samples, threw out the

max and min, and then found the mean of the remaining samples. Figure

4.6 shows improvement with just three samples, but some amount of error

still exists. Figure 4.7 shows a significant improvement with ten samples,

especially for the inner quartiles shown as the boxes. This figure shows that

in a real world scenario the angle can be detected within 30 degrees for almost

all distances. This accuracy is sufficient for applications such as monitoring

social interactions, but not good enough to direct a robot through a maze or

other fine grained tasks.

4.3 Summary

The goal of the system was to determine whether radio based techniques

could be used to approximate relative orientation of two devices. Based on

the collected samples, the answer is yes if enough samples are used. With a

mean error below 40 degrees for all distances, the system can give an accurate

reading as to whether two devices are facing each other or not even with a

sub par distance estimation system.
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(e) At 9ft

-180

-150

-120

-90

-60

-30

 0

 30

 60

 90

 120

 150

 180

-30  0  30  60  90  120  150  180  210

E
rr

o
r 

(d
eg

re
es

)

Angle (degrees)
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Figure 4.5: Combined Angle Error
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Figure 4.6: 3-Samples Combined Angle Error
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Figure 4.7: 10-Samples Combined Angle Error
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CHAPTER 5

CONCLUSION AND FUTURE
DIRECTIONS

This thesis seeks to shed light on a new dimension of context-based computing

enabled by angle estimation. The feasibility of using directional antennas as

a measurement sensor was shown through real world data collection. Finally,

the effect of distance error on angle measurements was shown to be minimal

if enough samples are taken.

Work remains to deliver this new context to off-the-shelf devices. The

lack of directional antennas remains the biggest hurdle to using radio-based

angle estimation. One possible direction might be to use the human body

as a reflector for a low powered radio, where a high powered radio might be

unaffected.

One reason the area of radio-based distance estimation has struggled to

reach deployment is the need for calibration. Using relative estimation is an

important step to avoiding this setup cost, but more work needs to be done

to make distance estimation calibration-free.

Finally, the application space for this technology has yet to be explored.

Just now applications are starting to use context and within contextual com-

puting it is the applications which drive the systems. Orientation estimation

needs the ”killer” application to drive its adaptation.
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