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ABSTRACT

Traditional hardware verification is a non-probabilistic process that verifies the adherence

of a design to a non-probabilistic performance specification. However, adaptive techniques

like voltage and frequency scaling, process variations due to shrinking chip geometries

and input variations for accommodating “better-than-worst-case” design contribute sig-

nificantly to the stochastic nature of contemporary chips. Therefore, it is desirable to

incorporate probabilistic reasoning in the verification paradigm. Moreover, if such proba-

bilistic verification can be applied at the register transfer level (RTL), it would facilitate

better choices early in the hardware design cycle.

In this thesis, we introduce the SHARPE (Statistical High-level Analysis and Rigorous

Performance Estimation) methodology. Our SHARPE methodology is a rigorous, sys-

tematic approach to verify design correctness in RTL in the presence of variations. We

construct macromodels to transfer low-level hardware information, such as timing, to the

higher RTL. We treat the RTL source code as a program and use static program anal-

ysis techniques to propagate signal probabilities. We combine the information obtained

from both static analysis and the macromodels and model the RTL design as a statistical

entity. We then employ formal probabilistic analysis on this probabilistic RTL model in

order to compute the required probabilistic metric. The use of formal analysis makes our

methodology high in confidence as opposed to simulation-based methods.

Our SHARPE methodology can be applied to both combinational and sequential de-

signs. In combinational designs, formal probabilistic analysis is performed by exhaustively

testing all possible input vectors. In sequential designs, we represent the probabilistic RTL

models as discrete time Markov chains (DTMCs) that are then checked formally for prob-

abilistic invariants using PRISM, a probabilistic model checker. When posed with a query,

PRISM performs formal probabilistic analysis by exploring all possible transitions of the

DTMC model.

Formal probabilistic analysis is known to be infeasible for large RTL designs. We im-

prove the scalability of our SHARPE methodology by using sound symmetry reductions,

automatic compositional reasoning and value-based interval abstractions in the design
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source code. For very large RTL designs, we employ statistical model checking, a scalable

simulation-based alternative to probabilistic model checking. Since simulation-based anal-

ysis is not exhaustive, verification by statistical model checking is inexact. However, the

statistical model checker guarantees the verification results to be within specified bounds

of error.

In this thesis, we demonstrate several applications of our SHARPE methodology. We

first show how our SHARPE methodology can provide statistical timing estimates in

RTL in the presence of either input variations or process variations. We then modify the

macromodels used by our methodology and use them to obtain RTL estimates of aging

resulting from negative bias temperature instability (NBTI) effects. We describe how our

methodology can be extended to compute bit error rates (BER) that are commonly-used

performance metrics for RTL designs of wireless communication systems. For RTL of large

multicore designs, we employ statistical model checking to provide guarantees regarding

the performance of dynamic power management schemes. We perform our experiments

on both benchmark RTL designs and real-world RTL designs.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

1.1.1 Electronics in daily life

With the advent of electronic devices in the twentieth century, the data processing power of

computing machinery has increased exponentially resulting in several significant advances

in the scientific community. Vacuum tubes were the electronic building blocks of the first

generation of computers in the 1930s. These computers were behemoths that occupied

entire rooms. Moreover, the costs of constructing and maintaining these computers were

astronomical. Therefore, access to such computing power was limited to small groups of

people and was beyond the reach of an average individual.

With the invention of transistors in 1947 and integrated circuits (ICs) in 1958, electronic

devices became faster, smaller and more efficient, and could be produced more reliably.

Advances in semiconductor manufacturing technology enabled mass production of such

devices which significantly brought down the production costs and gave rise to a diverse

range of affordable consumer electronic devices. Electronic computing devices ceased to

be items of luxury and became more commonplace in daily life.

Wireless internet is becoming ubiquitous and is rapidly replacing the need for a wired

internet connection. As a result, the electronics market is driven to produce powerful

computing devices that are portable. Fixed desktop workstations have given way to

portable personal computers such as laptops and tablets. With the increased bandwidth

afforded by 3G/4G mobile communication networks, a new generation of “smart” phones

is becoming increasingly popular. These smartphones also double as portable personal

computers, media players/recorders and GPS navigators.

In addition to supporting sophisticated functional features, portable electronics devices

are required to be compact and have a long battery life. Therefore, in addition to perfor-

mance, power, area and reliability are also important criteria in the design of present day
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electronic devices.

1.1.2 The hardware design cycle

The design of an electronic device typically starts with a complex document called a

specification. The specification document systematically outlines the high-level intent for

the design. This specification is then realized into physical hardware through a hardware

design process that has been refined over several decades. Figure 1.1 broadly outlines the

major steps in this process.

From the specification, a behavioral description of the design is generated. Currently

this process has to be done manually. Normally the behavioral description is captured

in a high-level language such as SystemVerilog or even C/C++. Once the behavioral de-

scription has been captured the designer has a formal unambiguous hardware description

that can be executed and therefore tested against the specification. This is an important

stage in the process because already at this early stage the design can be tested for mis-

conceptions. If a major conceptual error is discovered late in the design process, it would

result in significant time and cost over-runs. Therefore, in the modern design process, it

is critical to bring in verification as early as possible.

Figure 1.1: Block diagram depicting the various stages in the hardware design cycle.

Once the behavioral design is verified, the next step in the process is to construct the
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register transfer level (RTL) description. While RTL is still a level of abstraction above

the gate level, the design blocks, combinational logic and registers can be clearly identified.

In fact, 80% of a design’s structure is typically fixed at the RTL stage. Transforming a

design from a behavioral description into RTL is still a largely manual process. RTL

descriptions are captured in a hardware description language (HDL) such as Verilog or

VHDL.

RTL provides a bit-accurate and cycle-accurate description of the hardware design.

Therefore, most of the functional verification is done at the RTL stage. HDL simulation is

the most frequently used functional verification technique. The use of formal verification

techniques is limited due to their restricted scalability. Property checking can also be

performed to verify that the RTL implementation matches the specification.

After completing the RTL design, the next step is to transform this description into a

gate-level description in the target technology. This process is known as logic synthesis and

is now predominantly a fully automatic process, with several commercial software tools

available in the market today. The constraints of the design such as clock period/frequency

are listed in a file which is provided as input to the synthesis tool. The tool maps the RTL

design and optimizes the resulting gate-level netlist in order to satisfy these constraints.

Again the functionality of the system is verified using the gate-level netlist. This pro-

cess usually involves using timing data from the technology library. The purpose of the

functional verification at this stage is to determine that the system operates correctly

with the timing constraints of the physical hardware devices. Gate-level simulations take

significantly longer than RTL simulations. Formal verification is used to check the syn-

thesized netlist against the RTL design in order to ensure that synthesis has not altered

the functionality. This verification process is referred to as equivalence checking.

The other operation that is performed on the gate-level description is fault simulation.

The purpose of this is to create a set of tests which will be used to verify the actual

device is free from production defects once it has been manufactured. These tests can

bear little relationship to the functionality of the device. Fault simulations take much

greater simulation effort than normal functional simulations.

Since the design is now mapped to actual hardware elements, the electrical and physical

characteristics of the design can now be quantified. The synthesized netlist is analyzed

to check whether the requirements for area, power and timing are satisfied.

The synthesized gate-level netlist is input to a place-and-route tool. This tool first

determines the ideal physical locations for each hardware component on the device. The

tool then determines the optimal wiring pattern for interconnecting these components.

Typically, the delay and power consumption of these wires is non-negligible. Therefore,
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the netlist that is output by the place-and-route tool is once again analyzed to check that

the power/timing requirements are still satisfied.

The final stage in the process, once the physical layout has been completed, is to

manufacture the actual devices, after which the tests created by fault simulation can be

run to verify the manufacturing process.

1.1.3 Sources of variations in hardware

There are several sources of variations that contribute to the stochastic nature of contem-

porary hardware [1]. Some of the dominant sources of variations are as follows.

• Input variations: Hardware designs perform computations on data that is input to

it by the surrounding environment. Computation delay/timing in hardware is data-

dependant. Variations in input patterns introduce randomness in data computation

which in turn causes hardware behavior to vary statistically [2],[3],[4].

• Process variations: The manufacturing process introduces variations in feature

sizes and electrical properties of devices. These process variations manifest as ran-

domness in the timing of hardware computations. Aggressive scaling of technology

has resulted in rapid shrinkage of chip geometries. Correspondingly, the variations

introduced by the manufacturing process have grown significantly [5],[6],[7].

• Transient faults: Physical hardware is susceptible to impairments, commonly

referred to as faults, that can modify hardware behavior. A transient fault is a type

of fault temporarily injected in hardware due to exposure to cosmic radiation. The

location and duration of transient faults are statistically distributed. Therefore,

transient faults introduce randomness in hardware behavior [8],[9].

• Adaptive strategies: Several low-power designs use adaptive strategies for dynam-

ically managing the power consumed by hardware. Strategies for dynamic power

management (DPM) may involve either powering down idle blocks or scaling the

operating voltage and frequency adaptively. Such adaptive strategies often employ

statistical choices, and thereby introduce variations in hardware [10],[11],[12],[13].

1.1.4 Hardware performance in the presence of variations

Traditionally, hardware is designed to be error-free in the presence of timing variations.

This is achieved by tuning the design to the worst-case timing scenario. Typically, such

4



worst-case scenarios are distant from the statistical average-case scenario and occur with

very low probability. Therefore, such worst-case design methodologies are pessimistic and

are not sufficient to satisfy the performance, area and power requirements for present day

systems.

In order to meet the requirements of present day systems, a “better-than-worst-case”

[2],[3],[4],[6],[7] design methodology can be used. In this methodology, the design is tuned

to the statistical average-case scenario instead of the infrequent worst-case scenario. Such

methodologies allow for errors resulting from timing violations which can be corrected

later with some penalty. The performance of “better-than-worst-case” designs depends

on the probability of occurrence of these these errors.

In traditional error-free hardware designs, the performance is defined by the worst-case

timing scenario regardless of the probability with which it occurs. However, in better-

than-worst-case designs, the performance depends on the statistical distribution of timing

and is therefore, a statistical metric.

In contexts different from timing variations, the notion of performance as a statistical

metric is well known. In communication systems [14], the transmitted data bits are

not always correctly decoded by the hardware in the receiver. The performance of such

hardware, measured by a bit error rate (BER), is a statistical metric. In dynamic power

management, the schemes are designed to meet soft probabilistic constraints. Therefore,

the performance metrics for such schemes are also statistical in nature. In the presence

of transient faults, reliable systems are designed to tolerate errors that occur with low

probability. The reliability of such systems is commonly measured by a metric called soft

error rate (SER) [9]. SER is also a statistical metric.

With growing sources of variations in hardware, the notion of performance as a sta-

tistical quantity needs to be widely adopted. In order to complement methodologies

for design in the presence of variations, it is desirable to formulate a rigorous statistical

analysis methodology that can provide guarantees regarding hardware performance.

1.1.5 Guaranteeing statistical performance of hardware

A register transfer level (RTL) design provides a behavioral description of the hardware

components and is a common starting point for hardware designers. Later in the design

flow, these RTL descriptions are mapped to actual hardware elements (e.g., gates and

transistors) using a process called synthesis. With regard to performance estimation,

RTL designs provide a good tradeoff between the hardware-unaware algorithms and the

post-synthesis designs that provide an excess of detail. Designers iteratively analyze and
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revise the RTL designs in order to meet the performance requirements. However, this

process is both time- and resource-intensive since the hardware is typically required to

meet other criteria, such as area and power, as well. Therefore, it is desirable to have a

methodology where performance estimation of RTL can be performed quickly and with a

high degree of confidence.

Although there is variation-awareness in high-level synthesis techniques [7] as well as

architecture-level power and performance analysis [15], this is not observed in RTL design

verification methodologies. The behavioral levels of the design as in RTL lack awareness

of the underlying stochastic nature of the circuit. Although there are multiple techniques

for checking functional specifications, to the best of our knowledge, there are no well-

known methods to verify the adherence of a design to a given statistical performance

specification in RTL.

Traditional RTL verification is a non-probabilistic process that verifies design correct-

ness using purely non-probabilistic finite state machine (FSM) models to represent the

design. Such models are sufficient to express desired properties or invariants across the

design that answer non-probabilistic (Yes/No) questions of the type: “Does the delay at

an RTL block/ module signal ALWAYS meet a timing specification T ?” However, this

purely non-probabilistic model at the higher level does not address the multiple growing

sources of variation at the lower levels of design.

In order to develop an alternate notion of design correctness, we require probabilistic

verification of RTL designs that incorporate statistics from the lower levels. It is there-

fore necessary to establish probabilistic invariants [16] across the design. These invariants

would attest certain properties of the design that hold true in the presence of the underly-

ing variations. They can provide quantitative answers to questions of the type: “What is

the probability of an RTL block/module signal meeting a timing specification?” or “What

is the average delay of a signal in an RTL block/module?” This information, if available

in RTL, can provide quick and early estimates of delay distribution of different blocks,

thereby facilitating better design choices and reducing the overhead in post-synthesis

simulation methods [17].

1.2 Thesis contributions

In this thesis, our contributions (Figure 1.2) can be broadly classified into the following

categories.
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Figure 1.2: Block diagram depicting an outline of our contributions in this thesis. We
list the thesis chapters in which each contribution is described.

1. SHARPE methodology and applications: We introduce SHARPE (Statistical

High Level Analysis and Rigorous Performance Estimation), a methodology for

formally estimating performance of RTL designs. With the SHARPE methodology,
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we intend to introduce probabilistic reasoning in the RTL verification paradigm by

incorporating empirical statistical evidence from the lower levels of design. Our

SHARPE methodology provides a broad platform for rigorously analyzing various

performance metrics by modeling different sources of variations in RTL. We present a

detailed analysis of a set of applications of our SHARPE methodology (Section 1.3).

2. Improving scalability of the SHARPE methodology: Our SHARPE method-

ology employs formal probabilistic verification to provide rigorous statistical guar-

antees in RTL. Scalability issues of the formal engine restrict the feasibility of our

methodology to small RTL designs. In this thesis, we devise a slew of novel tech-

niques that we employ to mitigate the scalability issues faced by the SHARPE

methodology (Section 1.5).

3. Simulation-based statistical verification of RTL: Although we present sev-

eral scalability improvement techniques, large RTL designs such as those pertaining

to multicore systems are still beyond the feasibility of the SHARPE methodology.

For such massive RTL designs, we employ a simulation-based alternative to formal

probabilistic verification. Simulation-based techniques are known to be inefficient

for providing guarantees about low probability (infrequent) events. In such cases,

we also demonstrate a technique to accelerate simulation-based verification (Sec-

tion 1.6).

In the SHARPE methodology, we exhaustively analyze all possible probabilistic be-

havior of the RTL design. Therefore, the analysis is formal unlike in simulation-based

statistical verification. We employ simulation-based verification on designs for which for-

mal analysis using the SHARPE methodology is not feasible. In the rest of this thesis, we

consider the formal SHARPE methodology separately from simulation-based statistical

verification.

1.3 SHARPE methodology and applications

In this thesis, our primary contribution is the formulation of the SHARPE methodology.

We believe that the potential range of applications for our methodology is vast. In this

thesis, we analyze a few of these applications in depth.
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1.3.1 Our SHARPE methodology

The steps in our SHARPE methodology (Figure 1.2) are as follows. We determine the

correlations among the RTL signals by using static analysis of RTL source code. Such in-

formation can be used to propagate probability distributions throughout the RTL design.

We construct macromodels [18],[19] in order to map the relevant effects from the lower

physical levels (i.e., gates and transistors) to the higher RTL. We combine the information

obtained from both static analysis and the macromodels and then employ formal proba-

bilistic analysis in order to compute the required probabilistic invariant with respect to

performance.

RTL designs are abstract interpretations [20] of the lower levels of hardware implemen-

tation. Therefore, macromodeling can be viewed as an abstraction that maps a design

from a concrete lower-level description to an abstract RTL description. With the SHARPE

methodology, we estimate performance of hardware designs by restricting analysis to the

abstract domain. Typically, macromodeling involves a loss in lower-level information, and

therefore our analysis is not exact. However, with clever mapping, we can provide quick

estimates that are reasonably accurate (<10% error).

• Our SHARPE methodology is of immense value since the performance estimates are

obtained early in the design cycle, facilitating informed choices at the higher level

itself.

An important part of our methodology is the formal probabilistic analysis that we use to

compute probabilistic invariants. When posed with a query, our formal analysis technique

explores all possible statistical behaviors of the design.

• The use of formal probabilistic verification makes SHARPE analysis high in confi-

dence as opposed to simulation based methods for generating probability distributions.

1.3.2 Formal probabilistic analysis for RTL

In this thesis, we consider the two broad classes of RTL designs:

• Sequential designs: In these designs, the value of the output depends not only

on the present input values but also on the history of the input. Therefore, these

designs are said to have “memory” or state.

• Combinational designs: In these designs, the value of the output is a function of

only the present input values. In contrast to sequential designs, these are memoryless

designs.

9



In combinational designs, all the interesting statistical behavior can be derived directly

from the probability distribution of the input vectors. For such designs, formal proba-

bilistic analysis computes the required probabilistic invariant by exhaustively checking all

possible input vectors.

In sequential designs, the interesting behavior typically arises from sequences of states

that the hardware transitions through. In order to employ formal probabilistic analysis, it

is essential to model all such possible sequences of the design. In this thesis, we represent

the statistical behavior of sequential designs using discrete time Markov chain models

(DTMCs) [21].

• In sequential designs, each state in the corresponding DTMC is a concatenation of

the present input values and the internal state of the design.

We shall describe these DTMCs in more detail in Section 3.4.1.

In our SHARPE methodology, the steps for performing formal probabilistic analysis

on sequential designs are as follows. We convert a sequential RTL module into a DTMC

[21] with the transition probabilities derived from the signal probability distributions and

information obtained from the lower levels of implementation. We express the performance

metrics of our interest as properties in probabilistic computational tree logic (pCTL)

[22]. Finally, we use a probabilistic model checking engine, PRISM [23], to compute

the required probabilistic invariants. Probabilistic model checking explores all possible

DTMC sequences that are relevant to the property, and therefore the computation of the

probabilistic invariant is high in confidence.

1.4 Applications of our SHARPE methodology

The SHARPE methodology can be used to compute invariants with respect to a wide

range of statistical metrics. Our methodology would remain mostly the same, with the

major difference being in the construction of the macromodels. In this thesis, we analyze

a select few applications of the SHARPE methodology.

1.4.1 SHARPE for performance analysis of faulty MIMO RTL

Multiple-input multiple-output (MIMO) communication systems [24] are required to sat-

isfy stringent bit error rate (BER) [14] performance specifications. BER is an average

measure of the probability with which a transmitted data bit is decoded in error at the
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receiver. BER is inherently probabilistic in nature due to the randomness introduced

by corruption of the data signals that reach the receiver. The data is further corrupted

in the receiver blocks due to internal fixed-point quantization errors. BER estimates

that are reasonably accurate can be obtained by simulating the MIMO RTL designs [25]

over many cycles. However, this technique is time-consuming and incomplete. We use

our SHARPE methodology for quick performance estimation of MIMO RTL by using

probabilistic model checking over simulation-based techniques.

The hardware realizations (i.e., the post-synthesis designs) of RTL designs are subject to

several forms of impairments, such as physical faults [8], that distort the BER performance

of the system. We enhance the SHARPE analysis by including models for the occurrence of

physical faults and determine whether the BER is still within acceptable limits. Therefore,

we can use our SHARPE methodology to determine the reliability of MIMO RTL designs

in the presence of “real” physical impairments.

• To the best of our knowledge, ours is the first work that provides a unified frame-

work which incorporates the effects of physical faults while formally analyzing BER

performance from the RTL description.

1.4.2 SHARPE for probabilistic timing analysis in RTL

Timing speculation techniques [2],[3] achieve “better-than-worst-case” [4] performance by

tuning the circuits to meet the delay corresponding to the most frequently applied input

patterns. The performance of speculation-based designs depends on the probability with

which the timing constraint is satisfied. For such designs, it is not sufficient to determine

just the worst-case delay. Instead, in order to estimate performance, it is important to

determine the statistical distribution of delay.

We employ our SHARPE methodology and compute probabilistic delay distributions at

the outputs of RTL blocks/modules. There exist probabilistic timing analysis techniques

[26] that can be used to estimate these delay distributions. However, these techniques

are entirely at the gate level. With SHARPE, we define and construct macromodels

from the gate level in order to shift statistical timing information to the higher RTL. By

interpreting the steps in SHARPE in a slightly different manner, we also consider process

variations as the primary source of statistics.

• SHARPE analysis can be used to provide early estimates of performance as compared

to existing probabilistic timing analysis that is entirely at the gate level. To the best
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of our knowledge, our SHARPE methodology is the first approach for variation-

conscious timing verification in RTL.

1.4.3 Aging analysis in RTL using SHARPE

Negative bias temperature instability (NBTI) [27] in PMOS transistors has become a

significant aging concern in the design of reliable digital circuits. Circuit simulations

show that NBTI effects over a lifetime of 10 years can degrade delay by up to 10% which

may potentially violate timing constraints and hence result in a circuit failure [28],[29].

Therefore, it is important to have a methodology that can predict aging effects at the

time of design itself.

There are several timing analysis techniques at the transistor level and the gate level

[30],[31],[32],[33],[34] that predict delay degradation of a circuit by computing signal prob-

abilities of the circuit nodes. However, if such analyses are present at RTL, the signal prob-

abilities that are computed would be representative of the actual usage statistics/workload

of the design. As a consequence, RTL analysis provides a wider perspective of the effects

of NBTI since the delay degradation of a small block is estimated in the context of a

larger operating environment specified by the RTL.

We apply our SHARPE methodology to formally compute signal probability distribu-

tions in RTL. We use these distributions with appropriate macromodels derived from the

gate level in order to provide RTL estimates of NBTI-induced delay degradation. Since

the analysis is at the higher RTL, our SHARPE methodology is much faster compared to

existing aging analysis that is purely at the lower levels.

• We apply our SHARPE methodology to obtain early, RTL estimates of circuit aging.

To the best of our knowledge, there is no technique that estimates delay degradation

of designs in RTL.

1.5 Improving the scalability of the SHARPE methodology

Formal probabilistic analysis is known to be intractable for large designs. For large com-

binational designs, the number of input vectors that need to be analyzed becomes pro-

hibitively large. In the context of sequential designs, the probabilistic model checking

tools that we employ are known to encounter the problem of state-space explosion [35].

We find that such restrictions on formal probabilistic analysis typically limit the SHARPE

methodology to small hardware designs. In order to encourage the widespread adoption of
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our methodology, it is essential to have a set of techniques that can improve the scalability

of formal probabilistic analysis.

For sequential designs that exhibit structural symmetry, we employ well-known sym-

metry reduction techniques [35],[36] and obtain smaller equivalent DTMC models. In

this thesis, we also present a set of novel techniques that we employ in order to further

improve the scalability of the SHARPE methodology.

1.5.1 Automatic compositional reasoning

We wish to verify that a designM satisfies a performance property Φ, denoted byM |= Φ.

For large M , this can be achieved by decomposing the problem into a set of simpler sub-

problems, M1 |= Φ1 and M2 |= Φ2. This forms the basis for compositional reasoning.

We statically analyze the RTL source code and structurally decompose M into smaller

componentsM1 andM2. We employ an assume-guarantee form of reasoning [37] where we

guarantee thatM2 |= Φ2 under the assumption thatM1 |= Φ1. We model the dependence

between M1 and M2 by computing the conditional probability distribution of the shared

RTL variables between M1 and M2. We provide an argument for the correctness of our

technique. We demonstrate our technique on both combinational and sequential designs.

In the context of probabilistic model checking, several approaches for compositional

reasoning have been proposed [37],[38],[39],[40],[41],[42]. However, all these techniques

require a significant amount of manual effort to identify the separate components (M1

and M2) and their corresponding properties (Φ1 and Φ2).

• We present a sound algorithm for automatic decomposition that uses static analysis

of the RTL source code in order to obtain the smaller components and derive their

corresponding properties. To the best of our knowledge, there exists no technique

to automatically decompose hardware systems in order to make formal probabilistic

analysis feasible.

1.5.2 Abstractions in RTL source code

We are interested in performance properties Φ of the form P [fP (V ) < T ], where exp is

a real valued function that is defined over the set of RTL variables V and T is a user-

specified value. When we compute M |= Φ, we are actually computing the probability

of all input vectors where the valuation of fP (V ) is less than T . Therefore, the relevant

input vectors of M correspond to these states where the predicate fP (V ) < T evaluates

13



to a true value. Each input vector of M corresponds to a unique assignment of values to

the input variables in the RTL design. Instead of considering all possible input vectors

of M , it is sufficient to consider an abstract model MA that comprises only the relevant

input vectors of M .

We consider the relevant input vectors of M by constructing an abstraction whose

inputs will be restricted to the set of values that correspond to relevant vectors. We

perform our abstractions by deriving value-based intervals for the RTL input variables. In

order to do this, we symbolically propagate the constraint fP (V ) < T backwards through

the RTL source code description. The model that we generate using the restricted input

intervals is the abstract model MA. We verify MA |= Φ which is equivalent to verifying

M |= Φ. We demonstrate our approach on data-intensive RTL designs, which are mostly

combinational in nature.

Our property-specific abstraction works at the source code level description of hardware

designs, unlike most of the existing techniques for abstraction in probabilistic verification

[43]. In [44], RTL designs are verified by restricting data to intervals that are imposed by

the execution of the RTL program. Therefore, these intervals are not property-specific.

• To the best of our knowledge, our value-based interval abstraction is the first property-

specific abstraction for scaling formal probabilistic analysis of RTL designs. In the

context of RTL verification, our abstraction is novel since it is intended for proba-

bilistic verification. Moreover, our abstractions work at the source code level, unlike

traditional abstractions in probabilistic verification.

1.6 Simulation-based statistical verification of RTL

In sequential designs, probabilistic model checking uses numerical techniques to exhaus-

tively analyze the DTMC models and compute the exact values of probabilistic invari-

ants. However, these techniques require the state vector and the transition matrix of

the DTMC to be constructed. Therefore, their scalability is limited by memory require-

ments of the probabilistic model checking tool. Although we present several techniques

that considerably improve the scalability of formal probabilistic analysis for RTL designs,

these techniques are not sufficient to make the SHARPE methodology feasible for massive

designs such as RTL of multicore processors.

We provide statistical guarantees for large RTL designs by employing statistical model

checking [45], a simulation-based alternative to probabilistic model checking. Statistical

model checking tools operate on sample execution paths of the system that are drawn
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according to the statistics of the system. We extend the statistical model checking tool

to work with sample paths that are generated by a commercial RTL simulator. The

statistical model checking tool uses hypothesis testing [46] to infer whether these sample

paths provide statistical evidence to decide if M |= Φ is TRUE.

Statistical model checking avoids the explicit construction and analysis of the DTMC

transition matrix. Consequently, statistical model checking is highly scalable compared

to probabilistic model checking. On the downside, the sample paths utilized by statistical

model checking cover only a limited set of statistical behaviors. Therefore, unlike formal

probabilistic verification, verification by statistical model checking is inexact. However,

the statistical model checking tool utilized sufficient sample paths to guarantee that the

error in the verification result is within specified bounds.

• To the best of our knowledge, we are the first to apply statistical model checking to

verify statistical properties in RTL designs.

1.6.1 Verifying performance of dynamic power management schemes in
RTL

Dynamic power management (DPM) schemes such as clock gating, power gating, dynamic

voltage and frequency scaling (DVFS) are important strategies to save power in multicores

[10],[11],[12],[13]. The performance of a DPM scheme depends on runtime statistics of the

RTL design. For example, power gating is implemented by predicting the duration of an

upcoming idle period based on recent history of inactivity. Overestimation of the idle

period duration can affect the safety of a DPM scheme while underestimation can affect

the efficiency. Safety and efficiency of a DPM scheme then are statistical properties that

must be checked.

The probabilistic model checking engine used in the SHARPE methodology cannot be

made to scale for verifying safety/efficiency properties of power gating in multicore RTL

designs. Instead, we demonstrate that statistical model checking can be employed as a

scalable alternative to verify these properties within specified bounds of error.

• We demonstrate statistical model checking as a scalable technique to verify perfor-

mance of dynamic power management schemes in large multicore RTL designs.
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1.6.2 Accelerating statistical model checking

Simulation-based estimation techniques are known to be inefficient and time-consuming

in rare-event scenarios, i.e., scenarios that pertain to failures with very low probability

(<10−4). In such scenarios, a very large number of failing samples need to be generated

in order to gather the statistical evidence required to estimate the failure rate with high

confidence.

In rare-event scenarios, simulation-based estimation of the failure rate can be acceler-

ated by increasing the frequency with which failing samples are generated. Such tech-

niques are commonly referred to as importance sampling [47],[48],[49]. In importance

sampling, the statistical distribution of the design is modified to frequently sample the

region in which the failures are present. In order to preserve the correctness of the result,

this statistical modification must be factored in during the estimation of the failure rate.

An SRAM cell is designed to be highly reliable (i.e., low failure rate) in the presence of

process variations. In an SRAM cell, the effects of process variations are typically modeled

using Gaussian random variables [50],[51]. Handling rare-event scenarios is known to be

an importance challenge in the design and verification of reliable SRAM cells [50].

In this thesis, we describe an importance sampling approach for accelerating statistical

model checking in rare-event scenarios of SRAM cells. In our approach, we sample the

design by assuming uniform distributions for the variables in place of the original Gaussian

distributions. We show that this modification of the distribution enables us to estimate

the failure rate with high confidence using a relatively smaller number of samples.

• We describe a practical approach for accelerating statistical model checking in rare-

event scenarios of SRAM cells. We show, with empirical evidence and analytical

bounds, that our approach provides significant speedup over regular statistical model

checking.

1.7 Defining statistical properties for hardware

In this thesis, we verify properties based on two types of probabilistic invariants for RTL:

• Type A: Probability that a state satisfies some condition.

• Type B: Probability that some sequence of states satisfies some condition on that

sequence, such as “every state in a prefix subsequence starting from the initial state

satisfies some condition C until a state S is encountered”.
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For sequential designs, we consider both the types of properties described above. For

combinational designs, only the first type of property is meaningful. Since there is no

notion of state for combinational designs, we interpret the Type A invariant as the

“probability that input values satisfy some condition”.

We now list the various statistical properties that we verify in this thesis. We shall

later describe these properties in detail.

1.7.1 Performance analysis for MIMO RTL (sequential designs)

We verify performance properties related to the occurrence of bit errors in MIMO com-

munication systems. We consider sequential designs such as the Viterbi decoder.

We compute the following error related metrics:

• Probability that no decoding error occurs in a sequence of T data bits (Type B).

• Probability of being in a state where the decoded bit is in error (Type A).

• Probability that number of errors occurring in T data bits is greater than a pre-

determined value (Type B).

1.7.2 Probabilistic timing analysis (combinational designs)

In “better-than-worst-case” designs, the circuit is tuned to the average-case delay instead

of the worst-case delay. In such designs, computations that exceed the average-delay result

in a timing violation. This may result in a computation error which can be later corrected

with some penalty. Typically, in the control logic of hardware, timing violations are not

allowed since the ensuing computing error can have disastrous consequences. However, if

data computations are corrupted, the consequences are not so severe. Therefore, better-

than-worst-case design typically is applied to the datapath which predominantly comprises

of combinational logic.

In this thesis, we perform probabilistic timing analysis on combinational designs. We

wish to identify

• Probability of input values such that the delay is less than a specified timing con-

straint (Type A).
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1.7.3 Performance of dynamic power management schemes (sequential
designs)

We verify the following safety and efficiency properties of power gating, a dynamic power

management scheme:

• If a block is idle for KTO cycles, then it will become active within a further KBE

cycles with probability less than pS (Type B).

• If a block becomes idle, then it will become active again within KTO cycles with

probability less than (1− pE) (Type B).

• IF a block becomes idle AND is predicted to be idle for atleast KBE cycles THEN

it will become active within KBE cycles with probability less than pS (Type B).

• IF a block becomes idle AND is predicted to be idle for less than KBE cycles THEN

it will become active within KBE cycles with probability greater than pE (Type

B).

We verify these properties in the RTL of a large multicore processor design. The DTMC

model for the multicore is too large to be constructed. Therefore, we verify the safety

and efficiency properties using statistical model checking instead of probabilistic model

checking. In statistical model checking, the DTMC model is not constructed.

1.8 Thesis organization

The remainder of this thesis is organized as follows.

In Chapter 2, we we present some definitions and background on the techniques used

in the thesis.

In Chapter 3, we describe all the steps in our SHARPE methodology. We define the

statistical models that we consider for both combinational and sequential designs. We

also present the formal probabilistic analysis techniques that we employ for these designs.

In Chapter 4, we apply our SHARPE methodology in order to compute the BER

performance of MIMO RTL designs. We first consider fault-free designs where the bit

errors occur only due to data corruption resulting from external noise and quantization

effects. We illustrate our technique on seminal components of a MIMO system, using

a Viterbi decoder [52] and MIMO detector [25] as case studies. We enhance our BER

performance estimation framework by including models for the occurrence of physical
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hardware faults. We consider the Viterbi decoder as a case study and rigorously analyze

the vulnerability of BER performance to the presence of faults at various locations in the

design. We present an error profiling technique where we define a pCTL property that

can be used to systematically identify the broad reason for severe degradation in BER.

In Chapter 5, we apply our SHARPE methodology in order to compute probabilistic

delay distributions at the outputs of RTL modules. We consider variations in input

patterns as the primary source of statistics. We demonstrate that the RTL delay estimates

provided by our methodology are within 10% of those obtained by simulating the gate-

level designs over sufficiently large number of cycles. We also show how our methodology

can be modified to consider process variations as the primary source of statistics.

In Chapter 6, we apply our SHARPE methodology to provide RTL estimates of delay

degradation in the presence of aging effects. We use SHARPE to efficiently compute

probability distributions at RTL. We construct appropriate macromodels that use these

probability distributions to estimate the underlying delay degradation. We demonstrate

that the RTL estimates provided by our approach closely track those obtained by simu-

lating the gate-level designs over sufficiently large number of cycles.

In Chapter 7, we present an algorithm for automatic compositional reasoning for prob-

abilistic model checking of hardware designs. We demonstrate the effectiveness of our

approach by considering designs from Chapter 4 and Chapter 5 as case studies. For ex-

ample, we are able to compute delay invariants for a 64-bit adder with over 1040 possible

input vectors.

In Chapter 8, we present our technique for property-specific data abstraction that

employs static analysis of RTL source code. We show that our technique is sound with

respect to the properties of interest. We demonstrate the effectiveness of our technique

using benchmark RTL designs as well as several modules of the H.264 decoder.

In Chapter 9, we describe how statistical model checking can be used to verify per-

formance properties in large sequential RTL designs without constructing DTMC models

for them. We demonstrate this approach by verifying safety and efficiency properties of

a dynamic power management scheme, namely power gating. We consider the RTL of

OpenSPARC, an industry-strength multicore processor.

In Chapter 10, we describe an approach to accelerate statistical model checking in rare-

event scenarios for SRAM cells. We show that our approach provides up to around 10x

speedup over regular statistical model checking.

In Chapter 11, we present work that is closely related to our contributions in this thesis.

In Chapter 12, we present a summary of the work and conclude this thesis.
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CHAPTER 2

BACKGROUND

In this chapter, we present some definitions and background on the techniques used in

the thesis.

2.1 Statistics of hardware variables

An n-bit variable v can be assigned any one of 2n possible values with associated probabili-

ties. Collectively, these define the probability distribution (called PMF) of v. The expected

value of v is the probability-weighted sum of the possible values. The joint probability of

a set of variables is the probability with which a set of values are collectively assigned to

the variables. Two variables a and b are independent if the probability of an assignment

to a is not affected by the assignment to b. Variables that are not independent are called

correlated variables. Probability distributions that do not vary across time are said to be

stationary.

We assume knowledge of the distribution of primary input variables and that they are

independently distributed. We also assume stationary probability distributions for our

inputs, and therefore for all variables in the system. A function of stationary variables

is also stationary [21]. The values assigned to stationary variables in two different time

steps are independent of each other.

In order to find the PMFs of a set of variables O from the PMFs of a set of variables

I, we need to find the function f such that O = f(I). We also need the joint probability

distributions of the variables in I.

Definition 1. If the variables in I are independent, their joint PMF is simply a product

of their individual PMFs.
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2.2 Discrete time Markov chains

A DTMC is a state machine where each transition is associated with a probability. A

DTMC state is a unique assignment of values to a set of variables called state variables.

A DTMC is said to be finite if it has a finite number of states. A transition in a DTMC

is a movement from one state to another, i.e., an assignment of a different set of values

to the state variables. A detailed treatment of DTMCs can be found in [53].

A DTMC can be completely specified by using a triple (S, TP , µ0) where S is the set of

state variables, TP : S × S → [0, 1] is the probabilistic state transition relation and µ0 is

the initial state. Each state µ of the DTMC corresponds to a unique assignment of values

to the variables in S.

Definition 2. Next(µ) is the set of states reachable from µ in one transition.

A DTMC transition from one state µi to another state µj, denoted by µi → µj, corre-

sponds to a new assignment of values to the state variables. The probability of a transition

µ→ µ′, denoted by pij, is equal to the probability with which the corresponding new val-

ues of the state variables are assigned. All possible state transitions allowed by Next(),

along with their corresponding probabilities constitute TP for the DTMC M .

Definition 3. Given a initial state µ0, an execution path Λ of M is a sequence of transi-

tions

Λ = µ0 → µ1 → µ2 . . .

where µi are the states of M . In a discrete-time system, these transitions occur in fixed

discrete time steps.

Definition 4. The length of an execution path Λ, denoted by length(Λ), is the number

of transitions taken by Λ.

The probability of path Λ, denoted by D(Λ), is the product of all the transition prob-

abilities in Λ.

A DTMC is said to have attained a steady state when the probability of being in a state

at any time step is independent of the both the time step and the initial state. All finite,

irreducible, aperiodic DTMCs are guaranteed to reach a steady state [53].

Definition 5. A state reward is defined as a cost associated with being in a state of the

DTMC.
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2.3 Register transfer level (RTL) designs

Register transfer level (RTL) designs provide a behavioral description of hardware func-

tionality. We consider RTL designs written in Verilog HDL. We view the RTL design as

a Verilog program [54] on which we can perform static analysis techniques. In this thesis,

we use RTL design interchangeably with Verilog program; similarly we use signal and

variable interchangeably.

We consider the synthesizable subset of Verilog for our analysis. A Verilog program

statement is a conditional (if-else, case) statement or an assignment.

Definition 6. If a variable is on the right-hand side (RHS) of an assignment to a variable

v, it is an operand. The set of all the operands is called RHS(v).

An example RTL code fragment is shown below:

module (I1,I2,I3,I4,O1,O2,O3)

input [9:0] I1,I2,I3,I4;

wire [9:0] Z1,Z2,Z3,Z4;

output [9:0] O1,O2,O3;

always @(posedge clk)

begin

Z1 <= I1; Z2 <= I2 - I3;

Z3 <= I3 + I4; Z4 <= I3 & I4;

O1 <= Z1 | Z2; O2 <= ~Z3; O3 <= Z4;

end

endmodule

A module in RTL corresponds to a hardware block that performs an independent func-

tion and has inputs and outputs defined. In the example RTL module shown above, I1,

I2, I3 and I4 are the RTL inputs. O1, O2 and O3 are the RTL outputs and Z1, Z2, Z3

and Z4 can be viewed as temporary variables in the hardware system. All variables are

of 10 bits and can therefore be assigned 1024 different numeric values.

The always @(posedge clk) blocks can be thought of as processes that are executed

in parallel at every rising edge of the hardware clock signal which is considered as a time

step. At any time step t, the <= operator evaluates the right-hand side (RHS) value and

assigns it to the left-hand side (LHS) variable in the next step t + 1. The &, |, and ~

operators perform logical disjunction, conjunction and negation, respectively, in a bitwise

manner on the operands.

22



An RTL variable v that can be assigned N values is defined to have size N , denoted

by |v|=N . We refer to the probability distribution of v as the PMF of v. We define a

set of RTL variables V to be independent if all the variables in V are mutually indepen-

dent (Definition 1). The joint PMF of an independent set V is simply a product of the

individual PMFs of the variables v ∈ V .

Let V be the set of all RTL variables in the source code and I ⊂ V be the set of RTL

input variables. It is reasonable to expect that all variables v ∈ V are functions of some

of the input variables i ∈ I. Moreover, the value of a sequential variable in any clock

cycle may depend on its value from some previous clock cycle.

Definition 7. The support of v, denoted by Sup(v), is the set of all input variables and

sequential variables that can affect the value of v. For combinational designs Sup(v) is

simply a subset of I, i.e., Sup(v) ⊆ I. The support of a signal is independent if all the

variables in the support are independent.

Definition 8. For a signal v, the signal function f(Sup(v)) is the symbolic expression

that includes the variables Sup(v), or the “formula” that corresponds to its evaluation.

f(I) may comprise Boolean or arithmetic operators that are allowed in the system.

In order to find the PMFs of a variable v ∈ V from the PMFs of I, we need to find the

signal function f(Sup(v)).

Definition 9. For a set of inputs I, an input vector to the design is a unique assignment

of values to the variables I.

Two variables v1 and v2 are structurally independent if they do not share any common

variables between their respective supports, i.e., Sup(v1) ∩ Sup(v2) = 0. If v1 and v2

are structurally independent, their values are assigned by disjoint sets of input variables.

Therefore, v1 and v2 are also statistically independent. In the rest of this thesis, we use

the term “independence” to refer to both statistical and structural independence.

2.4 Statistical verification of DTMCs

Statistical systems such as cyber-physical systems (CPS), computer networks and even

some hardware circuits [55] require probabilistic verification for properties pertaining to

metrics such as reliability, safety, stability and performance. Probabilistic model checking

[23] employs numerical analyses to provide statistical guarantees for such systems. Al-

though exact, such analyses may become computationally intensive for very large systems.
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Statistical model checking [45],[56],[57] is an inexact alternative strategy that provides

guarantees by simulating several sample paths of the system. Statistical model checking

is highly scalable and can be used to rigourously analyze massive systems that cannot be

verified exactly using probabilistic model checking.

We wish to verify that a DTMC M satisfies probabilistic properties φ of the form

φ = P≥θ(ρ)
† (2.1)

where θ is a user-specified constraint on the probability that ρ is TRUE in M . Let p

denote the actual probability that ρ is TRUE in the execution paths of M (Definition 3).

If p ≥ θ, then M satisfies φ, denoted by M |= φ.

Since p is unknown, the crux of probabilistic verification is in checking p ≥ θ efficiently.

2.4.1 Statistical model checking

We now present a brief background on statistical model checking [45] in the context of

DTMCs.

Conventional probabilistic model checking [23] uses numerical techniques to compute

the exact value of p and then compares it against θ. However, these techniques require

the DTMC model to be constructed, and therefore their scalability is limited by memory

requirements.

Statistical model checking tools operate on sample execution paths (Definition 3) of

the system that are drawn according to the statistics of the system. Statistical model

checking uses hypothesis testing to infer whether these sample paths provide statistical

evidence to decide if M |= φ is TRUE.

LetH0 represent the hypothesis that p ≥ θ, i.e.,M |= φ. LetH1 represent the alternate

hypothesis, i.e., M 2 φ. The statistical model checking algorithm checks whether ρ (in

Equation 2.1) is TRUE or FALSE in each sample path. Since the sample paths are

generated based on the statistical distribution of the system, the fraction of sample paths

in which ρ is TRUE can then be used to determine whether H0 orH1 should be “accepted”

as the valid hypothesis for the system. We refer the reader to [45] for further details of

the hypothesis testing algorithm.

Typically, an indifference region of width 2.δ is specified. If p lies within the range

[θ − δ, θ + δ], then it is correct to accept either H0 or H1 as the valid hypothesis.

Therefore, H0 is redefined as p ≥ θ + δ and H1 is redefined as p ≤ θ − δ.

†In place of ≥, other relational operators can be used as well.
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Since all possible execution paths of M are not analyzed, the verification results pro-

vided by statistical model checking are not exact. However, with a sufficient number of

sample paths, the likelihood of error from hypothesis testing is bounded as

P [(M |= φ) | (M 2 φ) is claimed based on sample paths] ≤ α

P [(M 2 φ) | (M |= φ) is claimed based on sample paths] ≤ β (2.2)

α and β are bounds for the likelihood of error in the verification result, and therefore

represent the verification accuracy. α is guaranteed to be the maximum probability that

statistical model checking verifies the property to be FALSE based on the sample paths

when in fact the property is TRUE in the system. Similarly, β bounds the probability

that a property is incorrectly verified to be TRUE. Tight error bounds (small α, β and

δ) can be provided by using a sufficiently large number of sample paths [45].

Ymer [58], a statistical model checking tool, implements the sequential probability

ratio test (SPRT) [45] algorithm for hypothesis testing. In SPRT, hypothesis testing is

performed sequentially on each sample path. The SPRT algorithm terminates as soon

as it discovers sufficient evidence to accept (or reject) a hypothesis within the specified

error bounds. In [59], Ymer is shown to be significantly faster than statistical model

checking tools that use other hypothesis testing algorithms. Therefore, we use Ymer as

the statistical model checking tool for our experiments (Chapter 9).
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CHAPTER 3

OUR SHARPE METHODOLOGY

3.1 Introduction

SHARPE is a CAD methodology for formally verifying statistical properties in RTL.

SHARPE is an acronym for Statistical High-level Analysis and Rigorous Performance

Estimation. We introduce with the SHARPE methodology, the notion of “variation-

aware” design verification in RTL.

Our SHARPE methodology is broad in scope and can be applied to estimate a diverse

range of statistical metrics by considering different sources of variations in hardware. In

this chapter, we describe all the steps in our methodology by considering variations in

input patterns to be the primary source of statistics.

3.1.1 Steps in our SHARPE methodology

A summary of the steps in the SHARPE methodology (Figure 3.1) are as follows.

• Macromodeling: We obtain macromodels [17],[18] to incorporate empirical sta-

tistical evidence from the lower levels of design into the higher RTL. We use these

macromodels to restrict probabilistic analysis entirely to RTL. The macromodels

that we derive depend on the statistical metric of interest as well as the source of

variations. Macromodeling is typically a one-time characterization effort for a given

technology library.

• Source code static analysis: We employ static analysis to traverse the RTL

source code and determine the correlations among the RTL signals. We use these

correlations to tie the statistics of an RTL signal to the PMFs of the primary inputs.

• Formal probabilistic analysis: In order to formally verify a statistical perfor-

mance property, we exhaustively analyze all possible statistical behaviors in RTL.

In combinational designs, we achieve this by checking all possible values that can
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be assigned to the inputs. In sequential designs, we perform formal statistical ver-

ification by first representing an RTL module as a DTMC (Section 2.2) with the

transition probabilities derived from input PMFs. We input these DTMCs into a

probabilistic model checking engine, PRISM [23] to compute probabilistic invariants

with respect to the performance property of interest.

Macromodels are but plugins that can be used with the SHARPE methodology. In

this thesis, we apply our methodology to a diverse range of applications by using appro-

priate macromodels in each case. We derive macromodels for modeling hardware faults

(Chapter 4), delay (Chapter 5) and aging effects (Chapter 6) in RTL. We shall later de-

scribe these macromodels in detail in the context of the corresponding application for the

SHARPE methodology. In this chapter, we describe the remaining components of the

SHARPE flow.

3.1.2 Chapter organization

The rest of this chapter is organized as follows. In Section 3.2, we describe our algorithm

for statically analyzing the RTL source code. In Section 3.3, we describe the steps in the

SHARPE methodology for verifying statistical properties of combinational designs. In

Section 3.4, we describe the steps in our methodology for verifying statistical properties of

sequential designs. We describe the DTMC models that we use for representing sequential

designs. In Section 3.5, we outline how the probabilistic invariants computed by our

methodology can be used to revise a hardware design at the early RTL stage.

3.2 Source code static analysis

We consider input variations as the primary source of statistics in hardware. Statistical

properties for RTL are typically expressed in terms of a set of RTL variables V . In order

to verify these properties, we must relate each variable v ∈ V to the source of statistics

Sup(v) (Definition 7). We can achieve this by determining the signal function f(Sup(v))

(Definition 8).

We statically analyze the Verilog program [54] to determine the support Sup(v) and

signal function f(Sup(v)) for each variable v that is of interest with respect to the sta-

tistical property. Through static analysis, we can also identify correlated variables and

propagate the PMFs from the input variables to other variables in the slice and the RTL

module outputs.
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Figure 3.1: Block diagram depicting the steps in the SHARPE methodology for both
combinational and sequential designs.

We statically traverse the source code for computing Sup(v) and f(Sup(v)). For a

Verilog statement where a value of v is assigned, RHS(v) gives the set of variables that

are included in the right-hand side of the assignment statement. These variables are

annotated with a value t− 1 to denote that we step the design backwards by a step. In

programs, this “stepping back” refers to moving in the space of the program source code.

The hardware interpretation of this is that the “previous cycle” values of variables are

being obtained. This is a temporal step back, as opposed to the purely spatial one in

software.

If all the variables in RHS(v) are either primary inputs or sequential variables, we define

RHS(v) to be Sup(v) and the analysis is complete. If not, we step the circuit backwards

by one more step. Now each variable in RHS(RHS(v)) is annotated by t − 2. If the

union over the set of all variables tagged with t− 2 comprises only either primary inputs

or sequential variables, we define the union to be Sup(v) and obtain the corresponding

f(Sup(v)). The algorithm terminates when the support is obtained. If the support is

independent, the joint PMF can be calculated as in Definition 1 and this can be used to

compute the PMF of v.

The value of a sequential variable at time t will depend on its value at some time

t − j. With static analysis, we identify such dependencies in order to identify all the

28



sequential variables in the RTL source code. We also compute the signal functions for

these sequential variables.

In order to be able to use PMFs of variables assigned in one time step over future time

steps, we need to assume that these PMFs are stationary, i.e., they do not change over

time (Section 2.1).

module (A,B,C,D,E,F)

input A,B,C;output D,E,F;

always @(posedge clk)

begin

D <= A ;E <= B & C;F <= D + E;

end

endmodule

In the code fragment shown above, let F be the variable of interest. Here, A,B and C

are the primary inputs. D and E are the elements of RHS(F ). Since D and E are not

primary inputs, we step back once more and determine that A, B and C are the elements

of the union of RHS(D) and RHS(E). Therefore, we obtain Sup(F )={A,B,C} with

F=f(A,B,C)=A+ (B&C).

3.3 Formal probabilistic analysis for combinational designs

In combinational designs, all the properties of interest are broadly of the same type. This

type of properties can be verified by computing the following probability.

• Probability that an expression fP (V ) defined over RTL variables V satisfies some

condition.

Here fP (V ) may contain both arithmetic and Boolean operators. fP (V ) and the con-

dition it needs to satisfy are related to the statistical property and the macromodel that

we consider. For example, Delay < T is the condition that is specified in probabilistic

timing analysis (Chapter 5), where Delay is a real-valued function of RTL variables and

T is a user-specified time constraint.

From static analysis, we obtain the signal function f(Sup(v)) for each variable v ∈
V . Let fP (f(Sup(V )) be the expression obtained by substituting each occurrence of

v in fP (V ) with f(Sup(v)). The required probability is equal to the probability that

fP (f(Sup(V )) satisfies the condition specified in the property.
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We compute the required probability as follows. We exhaustively analyze all possible

input vectors (Definition 9) for the set of inputs Sup(v). We use the PMFs of the inputs

to compute the probability of occurrence of each input vector. We use the expression

fP (f(Sup(V )) to check whether an input vector satisfies the specified condition or not.

We compute the required probability by summing the probabilities of all input vectors

that satisfy the condition.

We use the above approach to propagate PMFs from the inputs to other RTL variables.

Let v be the variable whose PMF we wish to compute. We use the above approach to

compute the probability that the signal function f(Sup(v) is equal to i, where i is a

possible value that can be assigned to v. We repeat this for all i and obtain the PMF of

v.

Definition 10. With respect to a property defined over variables V , the size of a combi-

national design is the number of possible input vectors for the set of inputs Sup(V ). We

use the size of a combinational design as a metric for estimating the complexity of formal

probability analysis.

3.4 Formal probabilistic analysis for sequential designs

Sequential designs are hardware designs that contain memory elements. Typically, mem-

ory elements are represented in RTL using register variables. The values stored in the

memory elements determine the “state” of a sequential RTL design.

Formal probabilistic analysis for sequential RTL designs typically involves computing

either one of the two following types of probabilistic invariants.

• Type A: Probability of being in an RTL state in which the expression fP (V )

satisfies some condition.

• Type B: Probability that some sequence of RTL states satisfies some condition

on that sequence, such as “every state in a prefix subsequence starting from the

initial state satisfies some condition C1 until a state that satisfies condition C2 is

encountered”.

Sequential RTL designs can be modeled as finite state machines (FSMs) that transition

from one state to another. Due to the sources of variations in hardware, each state tran-

sition is associated with a probability. Traditionally, FSMs that have been used to model

all the non-probabilistic functionality of the RTL design. Although these FSM models are
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Figure 3.2: Block diagram depicting our SHARPE methodology for sequential designs.
In this case, formal probabilistic analysis is performed by modeling the sequential design
as a DTMC and then employing probabilistic model checking on the DTMC model.

sufficient for employing non-probabilistic formal verification in RTL, they cannot be used

to provide any statistical guarantees. In order to employ formal probabilistic verification

on sequential RTL designs, the states and their probabilistic transitions must first be

represented.

In our SHARPE methodology, we use DTMCs (Section 2.2) to represent the statistical

behavior of sequential RTL designs. DTMCs are FSMs in which each state transition

is labeled with the corresponding probability. We perform formal probabilistic analysis

of a sequential design (Figure 3.2) by employing probabilistic model checking on the

corresponding DTMC model.

3.4.1 Modeling sequential RTL designs as DTMCs

We consider input variations to be the primary source of statistics. Therefore, the PMFs

of the input variables determine the probability with which the hardware transitions from

one state to another. We now describe the process of converting an RTL hardware system

into a finite-state probabilistic system with respect to input variations.

We represent the sequential RTL design formally as a DTMC model, which we call an
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RTL DTMC. Each state in the DTMC should model the state information of the sequen-

tial RTL design. Additionally, we require each DTMC state to also carry information

regarding the values assigned to the input variables.

Definition 11. A state in an RTL DTMC is a concatenation of the present input values

and the internal state of the sequential RTL design.

We construct the RTL DTMC model M for a variable v, with the support of v (Def-

inition 7) being the state variables, denoted by S (Section 2.2). Therefore, S = Sup(v).

We define the initial state by setting the value of all state variables to 0.

In each hardware clock cycle, we assume that new values are assigned to the RTL

inputs. Therefore, each hardware clock cycle corresponds to a time step in which new

values may be assigned to all the RTL variables based on their respective signal functions

(Definition 8). Each such time step corresponds to a DTMC transition from one state µ

to another state µ′ that corresponds to the new assignment of values to Sup(v).

Let SI ⊂ S denote the set of input variables in Sup(v). The probability of a transition

to a new state µ′ is equal to the probability with which the corresponding new values are

assigned to SI . Since all the input variables are assumed to be independent, we obtain

the state transition probabilities by taking the product of the individual probabilities of

all variables (Definition 1). If we do not assume independence for the inputs, we would

use the specified joint PMF of the inputs. All such possible state transitions labeled with

the corresponding probabilities constitute TP for the DTMC M .

3.4.2 Generating RTL-DTMCs

Let V be the set of RTL variables over which the statistical properties are defined. The

probabilistic behavior of V can be completely represented in terms of the PMFs of the

support of each variable v ∈ V . We construct the RTL DTMC M using state variables S

given by

S = ∪
v∈V

Sup(v) (3.1)

Definition 12. With respect to a property defined over variables V , the size of a sequen-

tial design is the number of states in the RTL DTMC model for V . We use the size of a

sequential design as a metric for estimating the complexity of formal probability analysis.

In every state (Definition 11) of the RTL DTMC M , the value assigned to v can

be determined by the signal function f(Sup(v)), which we obtain using static analysis

(Section 3.2).
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We compute the PMF of v as follows. The probability of v=i is the probability of being

in a state where f(Sup(v))=i, where i is one of the possible values that v can be assigned.

We tag every state in the model where f(Sup(v))=i is satisfied. In doing so, we create

a state-based reward model (Definition 5) for the RTL-DTMC. We assign a reward of 1

to the states we want to tag, and 0 otherwise. The expected value of the reward at any

time step thus translates to the probability that a tagged state is reached in that step.

Repeating this for all i gives the complete PMF of v.

More generally, let fP (V ) be an expression that is defined over variables V , as described

in Section 3.3. We wish to compute the probability of being in a state where fP (V ) satisfies

some condition specified in the Type A property. We tag (i.e., set reward=1) all states

where fP (V ) satisfies the condition. Therefore, the expected reward at any time step

represents the probability of being in a tagged state in that time step. This is equivalent

to the probability that we wish to compute.

• In principle, we could generate an RTL DTMC M by discarding the input variables

SI in Sup(V ) and using only the sequential variables in Sup(v) as the state variables

for M . This reduction in the set of state variables will result in a more compact

state-space representation for M . However, since input values are now absent from

the DTMC state, we would need to define a complex, statistical reward model.

3.4.3 Probabilistic model checking of the RTL-DTMCs

The next step in our flow is to compute the probabilistic invariant in order to verify

whether the RTL design satisfies the given statistical property. We achieve this by em-

ploying probabilistic model checking on the RTL DTMC M .

Probabilistic model checking is a formal verification technique for the analysis of stochas-

tic systems. We use PRISM [60], a symbolic model checking tool that uses efficient algo-

rithms and data structures based on binary decision diagrams (BDDs). BDDs allow for

compact representation and efficient manipulation of DTMCs, increasing the scalability

of this tool considerably.

In order to verify a Type A property, we would like to find the probability of being

in a tagged state (reward=1), at the end of N transitions. This is equivalent to finding

the expected value of the reward at the N th time step. PRISM computes the expected

value of a reward at the N th time step by performing an exhaustive exploration of all the

possible paths of length N . In contrast, simulation-based techniques typically explore a

limited number of paths of length N , providing only an incomplete analysis.
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Definition 13. The FSM model of a sequential design is said to be strongly connected if

for any pair of FSM states µi and µj, there exists a sequence of input values that takes

the design from µi to µj . In other words, any state µj of the FSM is “reachable” from

any another state µi.

For a sequential design, the RTL DTMC model is just the FSM model with probabilities

assigned to the state transitions (Section 3.4.1). If the FSM is strongly connected, the

RTL DTMC is irreducible and may converge to a steady-state distribution (Section 2.2).

Therefore, if the FSM of a sequential design is strongly connected, the PMFs of the all

the variables in the design may converge to an equilibrium probability distribution.

A Type A property typically refers to the equilibrium PMFs of variables in an RTL

design. We start the RTL DTMC model from a known initial state that we specify. For

our experiments, we set N large enough such that the RTL DTMC reaches a steady state

by the N th time step. We find that the computed PMFs do not change significantly

beyond this time step.

• In this thesis, we employ our SHARPE methodology to verify a Type A property

(steady-state) on a sequential design only if the design has a strongly connected

FSM. We do not guarantee that our SHARPE methodology can compute steady-

state probabilities for other types of sequential designs.

3.5 Revising the design choice

The probabilistic timing invariants computed by the SHARPE methodology are provided

as feedback to the RTL designer. These invariants are utilized to revise and if neces-

sary, modify the RTL design. This process can be iterative until the statistical design

requirement are satisfied. The use of macromodels precludes the need to synthesize the

RTL design in each iteration. Therefore, our methodology avoids all the overheads (in

resource and time) that are associated with synthesis. Additionally, the performance of

different gate-level implementations of an RTL function can be explored by comparing

the invariants obtained. Such information can be passed down to facilitate lower-level

design.
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3.6 Chapter summary

In this chapter, we have described SHARPE, a comprehensive methodology for rigorously

analyzing statistical performance at the higher levels of hardware design, namely RTL.

The SHARPE methodology can be viewed as an integrated solution for formal statistical

verification in RTL by considering different sources of statistics in hardware. The use of

formal probabilistic analysis make our analysis rigorous as compared to simulation-based

techniques that analyze only a limited set of possible behaviors.
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CHAPTER 4

SHARPE FOR PERFORMANCE ANALYSIS OF
FAULTY MIMO RTL

4.1 Introduction

In this chapter, we describe how our SHARPE methodology (Section 3.4) can be applied

to obtain RTL estimates of performance for multiple-input multiple-output (MIMO) com-

munication systems [24]. The designs and properties that we consider are sequential in

nature.

Figure 4.1: Block diagram showing several components of a MIMO system.

4.1.1 Performance of MIMO communication systems

There is an ever growing demand to design reliable communication links that operate

at high data rates. The communication and digital signal processing (DSP) systems

in the physical layers of these links are required to be area and power efficient. Bit

error rate (BER) is a commonly used performance metric for these systems. BER is an

average measure of the probability with which a transmitted data bit is decoded in error.

In wireless communication systems, BER requirements can be as low as 10−7. MIMO

systems [24] are designed to meet these requirements.

MIMO systems are complex and comprise a large number of digital components imple-

mented in RTL. The process of making MIMO RTL designs meet the BER requirements
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is both time- and resource-intensive. This is due to other criteria, such as area and power,

that also need to be met. Therefore, it is desirable to have a methodology where per-

formance estimation of MIMO RTL can be performed quickly and with a high degree of

confidence.

Performance metrics are inherently probabilistic in nature due to the randomness in-

troduced by corruption of the data signals that reach the receiver. The data is further

corrupted in the receiver blocks due to internal fixed-point quantization errors. Conven-

tionally, performance estimation is done by performing Monte Carlo simulations [61] of

MIMO RTL using random input vectors. Estimates that are reasonably accurate can

be obtained by simulating the MIMO systems [25] over many cycles. However, such

simulation-based techniques are time-consuming and incomplete.

4.1.2 Using SHARPE for formal performance analysis of MIMO RTL

MIMO RTL designs are typically sequential designs. Therefore, in order to apply our

SHARPE methodology (Section 3.4), we represent RTL designs of MIMO systems as RTL

DTMCs (Section 3.4.1). We define BER-like performance metrics that can be expressed as

properties in pCTL [22]. We then use PRISM to verify the pCTL properties on the DTMC

models. This formally guarantees the statistical performance of MIMO RTL designs.

In [62], we apply our methodology to evaluate performance when bit errors result only

due to algorithmic choices or RTL design choices made by the designer. We wish to

analyze the performance of the “real” hardware implementation. Therefore, we need to

consider the bit errors that can also arise due to physical impairments at the lower levels

of implementation(i.e., gates, transistors).

The hardware realizations (i.e., the post-synthesis designs) of RTL designs are subject

to several forms of impairments [1],[8],[33],[63] which we model as physical faults. In order

to provide performance estimates for MIMO RTL designs that are faithful to reality, the

presence of faults must be modeled. Such estimates can then be used to verify whether the

performance of the MIMO RTL design is within an acceptable range even in the presence

of physical follies.

We enhance the RTL DTMCs in order to represent the occurrence of faults. We then

employ the BER performance properties to formally compute performance metrics for

these “faulty” DTMC models and check if the deviation is within acceptable limits. We

use this approach to rigorously analyze the vulnerability of MIMO RTL performance to

faults that are present at different locations in the design.

When the BER performance property fails, it implies that the design does not meet
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a specified BER requirement. We present an error profiling technique where we define

a pCTL property that can be used to distinguish between the different causes for the

occurrence of bit errors. We then use this technique in order to devise a mechanism to

systematically identify the broad reason for the severe degradation in BER. Since our

identification mechanism can be performed entirely in software, hardware components

are not required. This results in savings in both area and power in the post-synthesis

designs.

We illustrate our technique on seminal components of a MIMO system (Figure 4.1),

using a Viterbi decoder [52] and MIMO detector [25] as case studies.

4.1.3 Chapter organization

The rest of this chapter is organized as follows. In Section 4.2 through Section 4.5, we

describe our methodology for formal performance analysis in the absence of physical faults.

In Section 4.2, we describe the modeling of bit errors in the absence of physical faults.

In Section 4.3, we describe all the steps in our methodology. In Section 4.4, we illustrate

our methodology on several fault-free MIMO components. We present the corresponding

experimental results in Section 4.5. In Section 4.6, we describe how we enhance the

methodology in order to analyze the vulnerability of performance to hardware faults. In

Section 4.7, we present a technique that can be used to identify the broad cause for BER

degradation.

4.2 Macromodels for bit errors in fault-free designs

In a communication system with digital blocks in the receiver, an analog to digital Con-

verter (ADC) first translates the received analog signals into bits by discretizing it in

time (sampling). Digital blocks can represent data only using finite precision, i.e., a finite

number of bits. Therefore, the received samples are discretized in value (quantization) as

well. The digital blocks in the receiver then process these quantized samples to decode

the transmitted bit. A bit error is said to occur if the decoded bit does not match the

actual transmitted data bit. In this work, we confine our analysis to the digital blocks by

assuming knowledge of the statistical performance of analog blocks

However, imperfections such as thermal fluctuations in current and voltage, and timing

errors of the ADC sampler, are present in the circuitry preceding the receiver. Collec-

tively, these imperfections constitute a noise that corrupts the received sample. The
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Figure 4.2: Quantization of noisy samples.

corrupted sample may be mapped to a quantization level that deviates from the correct

level depending on the value of noise, as shown in Figure 4.2. For a sufficiently high

value of noise, the decoded bit computed using the corrupted quantization level may be

in error. Such bit errors occur due to the corruption of the data before it is processed by

the receiver and are called external data corruption errors. These type of bit errors are

not caused due to data corruption within the digital blocks of the receiver.

Data processed by the receiver is represented internally using a finite number of bits.

The area and power consumed by digital blocks is proportional to the number of such bits.

Therefore, it is advantageous to reduce the total number of bits that are used. However,

the reduction of bits results in a loss of precision of data. For example, consider that 0.55

and 0.95 are the outputs of two adders in the receiver structure. Due to insufficient number

of bits, both these values may be represented as 0.75. If these outputs are compared at a

later stage in the receiver, the loss in precision can result in a bit error. These bit errors

constitute a second class of errors and are called internal data corruption errors. Since

we use a bit-accurate RTL description, we are able to capture these internal errors in

addition to the external errors.

Noise is commonly represented as a single random variable, with a zero-mean Gaussian

distribution [14], that is added to an uncorrupted received sample. This is called an

additive white Gaussian noise (AWGN) model. Signal-to-noise Ratio (SNR) represents

the level of the uncorrupted signal relative to that of the noise. For high values of SNR,

the noise is insignificant compared to the signal, resulting in a low BER. Given the SNR,

the shape of the Gaussian distribution can be determined. The area of the shaded region

in Figure 4.2 can be computed. This is equal to the probability that the corresponding

quantization level is processed by the receiver.

In this work, we assume that the analog blocks exhibit ideal behavior. We also assume

an AWGN model and a binary phase shift key (BPSK) signaling scheme [14]. However,
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our methodology is not limited to these assumptions.

In Section 4.6, we shall define hardware faults as another potential cause for bit errors.

In the rest of this work, we use the term “errors” exclusively to refer to bit errors in the

communication system.

4.3 Formal performance analysis using our SHARPE

methodology

The steps involved in our formal performance analysis methodology (Section 3.4) are:

• RTL DTMC modeling: We represent the target MIMO RTL design as an RTL

DTMC (Section 3.4.1). We assume that every transition of the DTMC model cor-

responds to a single time step (modeled by an explicit clock in RTL). For a given

SNR, we obtain the variance of the Gaussian distribution of noise. We use this to

calculate the probability of a received sample being mapped to a particular quanti-

zation level which in turn can be used to label the transitions of the RTL DTMC

model.

• Property specification: We define a set of BER-like performance metrics to rigor-

ously analyze the error-related performance of a system. We write pCTL properties

corresponding to these metrics, as functions of the state variables in the RTL DTMC.

• Property-preserving reduction: We determine property-preserving reductions

by analyzing certain components of a MIMO system. We show that our reductions

are sound with respect to the pCTL properties. We identify that these reductions

can be extended to a large class of designs for checking the same properties.

• Probabilistic model checking: We use PRISM to verify the specified properties

by rigorously analyzing the RTL DTMC model. We explore the transitions of the

RTL DTMC until it reaches a steady state (Section 3.4.3).

4.4 Case studies: MIMO systems

A MIMO system with NR receiver antennas and NT transmit antennas can be modeled

as

y = Hx+ n (4.1)

40



where y = [y1, .., yNR
]T is the vector of received signals and x = [x1, .., xNT

]T is the vector

of transmitted signals. [ ]T denotes the transpose of a vector. H represents the NRxNT

channel matrix and n is an AWGN noise vector. We assume a commonly used flat fading

Rayleigh channel model [24] and obtain the probability distribution of the elements of H.

In this chapter, we present the following case studies.

• Estimation of error properties of a Viterbi decoder

• Estimation of error properties of a MIMO detector

A case study for estimation of convergence properties of a Viterbi decoder is presented in

[62].

4.4.1 Estimation of error properties of a Viterbi decoder

In some channels, the received sample at any time step contains components from signals

transmitted in adjacent steps. This interference can be mitigated using digital blocks,

such as Viterbi decoders, in the receiver. We briefly describe the Viterbi algorithm [52].

In this case study, we consider a transmitter whose output at time step n is obtained by

adding the data bit from the current time step, x[n], with the data bit from the previous

time step (i.e., x[n− 1]). This system is defined to have a memory (m) equal to 1.

q[n] is the quantized sample at the receiver in time step n. By itself, q[n] is insufficient

to determine the value of the actual data bit with a low probability of error. Therefore, the

Viterbi decoder waits for the samples received in the next L-1 time steps before decoding

the value of the data bit. Heuristically, selecting L greater than 5m is assumed to be

sufficient for decoding the data bit with high confidence. In this example, we consider

L=6.

The Viterbi decoder maintains two internal states (0 and 1) corresponding to the pos-

sible data bits (0 and 1, respectively) in each time step. We associate the variables prev0

and prev1 with the internal states 0 and 1, respectively. Since the data bit in each time

step can be a 0 or a 1, a transition can occur from any one of the two internal states

to another. Each transition is associated with a probability that is a function of q[n].

By comparing the transition probabilities, the decoder assigns values to prev0 and prev1

that point to the corresponding most-probable previous internal state. For example, if

internal state 0 is reached with a higher probability by a transition from internal state 1

than from internal state 0, the decoder assigns a value of 1 to prev0.

A trellis stage comprises the variables prev0 and prev1 corresponding to a single time

step. In each time step, the Viterbi decoder stores the variables corresponding to the
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previous L-1 trellis stages as well. Starting at one of the internal states, the decoder

can traverse a path of length L through a sequence of previous internal states using the

variables in the L trellis stages. This operation is called traceback. A path metric is the

cost associated with a traceback path. We use pm0 and pm1 to store the path metrics

associated with internal states 0 and 1, respectively.

In each time step, the Viterbi decoder uses q[n] to compute the internal state transition

probabilities and then assign values to prev0 and prev1 of the corresponding trellis stage.

The decoder then increments pm0 and pm1 as a function of the the computed transition

probabilities. The decoder chooses the internal state with the least corresponding path

metric, as the starting point for traceback.

At the end of the traceback operation, the Viterbi decoder decodes the data bit. How-

ever, there is a decoding latency of L-1 time steps. Therefore, to verify the correctness

of the decoded bit in each time step, we need to keep track of the actual data bits corre-

sponding to the previous L-1 time steps.

We now describe, in detail, all the steps involved in our methodology.

DTMC modeling

We represent the Viterbi decoder as a DTMCmodelM with the following state variables

(Section 2.2):

• pm0 and pm1: 7-bit variables to store pathmetrics

• prev0i and prev1i: Variables used to store values of prev0 and prev1 in the ith trellis

stage, where 0 ≤ i ≤ L− 1. i=0 corresponds to the trellis stage in the current time

step.

• xi: Data bit in the ith trellis stage.

• flag: Variable that is set to 1 if the decoded bit is in error.

We define the initial state µ0 of M by assigning an initial value (typically, equal to

0) to each state variable. In each time step (i.e., each clock cycle in RTL), the state

variables of M are assigned new values. For each variable, the set of possible values is

finite. Therefore, M is a finite DTMC model. The assignment of new values denotes a

transition from state µ to another state µ′. The following assignments collectively define

TP .

• Data bit and path metrics: x0 is assigned a value of 0 or 1 with equal probabilities

(equal to 0.5). Based on the SNR, a quantization level q0 is probabilistically chosen.

The probability distribution of q0 for a given SNR can be computed by determining
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the areas of the shaded regions, as shown in Figure 4.2. q0 is used to obtain values

of pm0 and pm1, given by

(pm0′, pm1′, x′0) = Γp(pm0, pm1, x0) (4.2)

where Γp is a probabilistic function with the combined probabilities of x0 and q0. The

probability of a transition from state µ to another state µ′ is equal to the probability that

x0 and q0 are assigned their new values x′0 and q
′
0, respectively. Since q0 is an intermediate

variable that we discard, we do not store it as a state variable. However, the required

probability information of q0 can be recovered from pm0, pm1 and Γp.

The remaining state variables are then assigned with non-probabilistic functions that

do not affect the state transition probabilities.

• Transmitter: FS computes the new values of prev0 and prev1 in the current trellis

stage, as functions of the new path metrics pm0′ and pm1′. This is given by

(prev0′0, prev1
′
0) = FS(pm0′, pm1′) (4.3)

• Writeback : Values of variables denoting stage i of the trellis are written to those in

stage i+1. This action represents the entire trellis structure being advanced by one

time step.

(prev0′i+1, prev1
′
i+1, x

′
i+1) = (prev0i, prev1i, xi) (4.4)

• Traceback : FE determines the decoded bit as a function of the values of prev0 and

prev1 across L trellis stages. FE sets flag to 1, if the decoded bit is not equal to

the corresponding actual data bit xL−1.

flag′ = FE(prev0
′
i, prev1

′
i, xL−1) (4.5)

States where the decoded bit is in error are of interest to us. To tag the states of

interest, we use flag to define a reward model on the DTMC. A reward is defined as a

cost associated with being in various states of the DTMC. For each state, we assign a

reward equal to the value of flag in that state.

Property specification

We define the following BER-like metrics for T time steps and write the corresponding

pCTL properties that we use in PRISM.

• P1 (Best case error): P=? [G ≤ T (!flag)]: Probability that no error occurs in any
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of the T steps.

• P2 (Average case error): R=? [I = T]: Probability that an error occurs at exactly

the T th step.

• P3 (Worst case error): P=? [F ≤ T (flag>1)]: Probability that number of errors

occurring in T steps is greater than a pre-determined value (value equal to 1, in this

case).

Simulation-based techniques employ a counting process to estimate BER. Over T time

steps, BER is computed as

BER =
Number of bit errors

T
(4.6)

For sufficiently large T , BER converges to a fixed value. Therefore, BER is not a time-

bounded metric. BER can then be interpreted as the probability of a bit error occurring

at any time step.

We define P2 as a reward property that computes the expected instantaneous value

of flag after exactly T transitions (time steps) of the DTMC model. Therefore, P2 is

equal to the probability of being in a state with flag=1 (i.e., a bit error) in time step T .

However, once the DTMC model attains a steady state, P2 is independent of the value

of T .

In Section 4.5, we demonstrate that our systems do attain a steady state, and therefore

P2 computed using our methodology corresponds to the BER of the system. Since we

use a simple reward model that assigns rewards of 0 or 1, we do not need to express P2

using the reward-based extension of pCTL [64].

BER (and P2) is a measure of the average number of errors in a system in steady state.

For example, a BER of 10−3 implies that on an average, 1 bit is in error in a transition

path (i.e., sequence of transitions) that is 1000 time steps long. However, there may be

transient paths of length 1000 that have either 0 errors (best case) or 10 errors (worst

case). BER does not provide any information about the frequency with which these paths

occur. Therefore, we define P1 and P3.

In addition to average case (P2), we analyze best and worst case error scenarios. This

enables us to make stronger claims regarding the error-related performance of MIMO RTL.

The properties are checked by performing an exhaustive exploration of all the possible

paths of length T .

Property-preserving reduction

For error properties, it is sufficient to determine whether a bit is in error or not. Reductions
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can be defined for checking error properties, that compute bit errors without actually

determining the values of the decoded bits. In such cases there is no comparison of values

with the transmitted bits. Therefore, in designs with decoding latency, variables storing

past values of transmitted bits can be discarded from the model.

Figure 4.3: Reduction from M to MR.

We obtain the reduced Viterbi decoder model MR by replacing the variables prev0i,

prev1i and xi (excluding x0) with the variables ci and wi (Figure 4.3). We need the

variables ci and wi to indicate whether prev0i and prev1i point to the previous internal

state corresponding to the actual data bit xi. This information is sufficient to check the

correctness of the traceback operation, and thereby check the correctness of the decoded

bit. We construct an abstraction function Fabs to assign values to ci and wi, given by

(c′i, w
′
i) = Fabs(prev0

′
i, prev1

′
i, x

′
i) (4.7)

Multiple states in M (µ1, µ2,..) are mapped to the same state µR in MR, by the

function Fabs. This illustrates how we achieve a reduction in the state-space. Variables

pm0, pm1 and x0 from model M , are retained in the reduced model MR. The values of

these variables are the same in states µ1, µ2 and µR. Therefore, the probabilistic function

Γp is also preserved by our reduction. The non-probabilistic state transition assignments

for MR are given by

(c′0, w
′
0) = Fcw(pm0′, pm1′, x′0) (4.8)

(c′i+1, w
′
i+1) = (ci, wi) (4.9)

flag′ = FER
(c′i, w

′
i, x

′
0) (4.10)

where FER
is a slightly modified version of FE from model M .

MR does not have information to obtain the values of the decoded bits. However, flag
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in MR indicates the correctness of the decoded bit, as in M . Through this reduction, the

variables x1 to xL−1 can be discarded. Therefore, the size of MR is smaller than that of

M .

Proof of correctness

We need to show that MR is a probabilistic bisimulation of M . We prove this in two

parts. In Part A, we establish that the variable based on which the error property is

defined (i.e., flag), is preserved by the reduction. In Part B, we show that MR also

preserves the probabilistic behavior of M . We then employ the strong lumping theorem

[65] to complete the proof.

All the states in M that are mapped to the same state in MR through the function

Fabs, constitute an equivalence class [36]. Two states are in the same equivalence class if

and only if they are equivalent under a given equivalence relation. Fabs is the equivalence

relation that establishes a one-to-one correspondence between such an equivalence class

in M and the corresponding state in MR (Figure 4.3). We use µR to refer to both a state

in MR and the corresponding equivalence class in M .

Part A: We need to prove that the value of flag assigned to a state in MR is the same

as in the corresponding equivalence class in M . We do this by verifying that Equations

4.5 and 4.10 are equivalent1.

Part B: We need to prove that the equivalence classes preserve the probabilistic be-

havior of the states of M . Consider a transition in M , from µ to a destination state µ′.

µ′ is mapped by Fabs to the corresponding state µ′
R in MR according to

(c′0, w
′
0) = Fabs(prev0

′
0, prev1

′
0, x

′
0) (4.11)

Combining Equations 4.4 and 4.7,

(c′i+1, w
′
i+1) = Fabs(prev0

′
i+1, prev1

′
i+1, x

′
i+1)

= Fabs(prev0i, prev1i, xi)

= (ci, wi) (4.12)

We verify that Equation 4.8 and 4.11 are logically equivalent. This implies that if two

states (µ1, µ2) belong to the same equivalence class in M , their respective destination

states (µ′
1, µ

′
2) are also equivalent under Fabs.

Any state transition (µ→ µ′) in M corresponds to a transition between the respective

equivalence classes (µR → µ′
R). In our example, for each equivalence class µ′

R, µ
′ ∈ µ′

R

1Since our functions are Boolean, we use an equivalence checker [66].
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is a unique destination state that µ ∈ µR can transition to. We write the transition

probability as

P (µR → µ′
R) = P (µ→ µ′)

=
∑

µ′∈µ′

R

P (µR → µ′) (4.13)

States in equivalent classes related by Fabs transition to the same set of equivalence

classes related by Fabs and with the same probability distribution. According to the

strong lumping theorem, any quotient DTMC that comprises these equivalence classes as

its states, is a probabilistic bisimulation of M . In fact, MR is such a DTMC. Since Γp

is preserved by our abstraction, the associated probabilities in Equation 4.13 also hold

true for state transitions in MR. Therefore, MR is a probabilistic bisimulation of M for

checking error properties.

Probabilistic model checking

We use PRISM (Section 3.4.3) to verify the properties P1, P2 and P3 on the reduced

DTMC model MR.

4.4.2 Estimation of error properties of a MIMO detector

For the MIMO system in Equation 4.1, detectors estimate the most likely x, given the

received vector y. This maximum likelihood (ML) MIMO detection algorithm can be

expressed as

x̂ = argmin |y −Hs| (4.14)

where x̂ is the detected vector and s is a possible value of x.

We consider a 2x2 MIMO sytem with BPSK signals. Therefore, each vector element xi

can be a 0 or a 1. The ML algorithm can be implemented as in [25],

x̂ = argmin(|y1 − h11s1 − h12s2|
+ |y2 − h21s1 − h22s2|) (4.15)

where both s1 and s2 are elements of s and can have values of 0 and 1. We split Equation
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4.15 further into real and imaginary parts,

x̂ = argmin(|y1,R − h11,Rs1 − h12,Rs2|
+ |y1,I − h11,Is1 − h12,Is2|
+ |y2,R − h21,Rs1 − h22,Rs2|
+ |y2,I − h21,Is1 − h22,Is2|)
= argmin(M1,R +M1,I +M2,R +M2,I) (4.16)

where the metrics M1,R..M2,I are computed for each of the four possible values of the

vector s. The argmin function determines that the most likely transmitted vector, x̂, is

the vector s that corresponds to the least sum of metrics as in Equation 4.16.

We construct the DTMC model for the MIMO detector, as in Section 3.4.1. We use the

transmitted bit vector x and the real and imaginary parts of the elements of both y and

H, as DTMC state variables. We determine x̂ using Equation 4.16 and compare it with x

to assign the value of flag. We assume knowledge of the probability distributions of the

elements of H and n (based on SNR). We combine this with Equation 4.1 and compute

the probability distributions of the state variables. In our MIMO detector model, the

values of the states variables in a time step are independent of their values in the previous

time step. Therefore, the probability of a transition from state µ to µ′ is equal to the

joint probability with which the state variables are assigned their values in µ′. We use

the state variable flag to define the DTMC reward model.

Figure 4.4: Symmetry in MIMO detector.

Consider a state µ1 of the DTMC model of the MIMO detector. The variables y1,R,

h11,R and h12,R constitute the block that computes M1,R (Figure 4.4). Let us interchange

the values of these variables with those of the corresponding variables from the block

that computes M1,I (i.e., y1,I , h11,I and h12,I respectively). This new assignment of values

corresponds to another state µ2 of the DTMC.

From Equation 4.16, we observe that the computation of x̂ (and flag) is unaffected by
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the interchange operation between states µ1 and µ2. We also observe that the probabilistic

assignments to the corresponding variables in the two blocks, are symmetrical. Therefore,

the states µ1 and µ2 exhibit symmetrical probabilistic transitions. This proves that the

blocks for the metrics M1,R and M1,I are symmetric with respect to error properties that

are defined based on flag. In fact, this is true across all the four blocks in the detector.

In general, for any NRxNT MIMO detector, there are 2xNR symmetric blocks.

We employ symmetry reduction [36] to reduce the size of the DTMC model, as seen in

Table 4.2. MIMO designs that exhibit such symmetries, constitute a large class of systems

where symmetry reduction can be applied. In this case study, we check only the average

case property P2.

Table 4.1: Error properties for a Viterbi decoder.

States States Time Result
(Original model) (Reduced model) (sec)

P1 53, 558, 744 8, 505, 363 90.80 3x10−15

P2 53, 558, 744 8, 505, 363 184.13 0.2394
P3 107, 504, 890 16, 435, 490 365.68 ≈ 1

4.5 Experimental results: Fault-free performance

We perform our experiments on a 3 GHz, 3.25 GB machine. In all our experiments, we

assume that the system variables are equal to 0 at the start of operation. We represent

this by initializing all DTMC state variables to 0.

For an SNR of 5dB, we check the error properties for the Viterbi model over T=300

time steps (Table 4.1). The times listed account for both model construction and model

checking. P2 indicates that the system has a high BER, equal to 0.2394. P1 and P3

provide measures over a window of 300 consecutive bit tranmissions at the start of system

operation. P1 shows that the fraction of error-free paths in this window is only 3x10−15.

P3 shows that almost all paths in this window have strictly more than 1 bit error. We

can assign the initial state of the system to measure P1 and P3 over any window of

operation. P1, P2 and P3 together confirm the poor error-related performance of the

system for the given SNR.

Table 4.2 shows the reduction factors achieved in the MIMO detector. We consider 1x2

(SNR=8dB) and 1x4 (SNR=12dB) MIMO ML detectors. In the 1x4 detector, PRISM

discards states that are reached with a probability less than 10−15.
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Table 4.2: Symmetry reduction of MIMO detector.

MIMO States States Reduction
(Original model M) (Reduced model MR) factor

1x2 569,480 32,088 18
1x4 524,288 1,320 400

PRISM performs a reachability analysis first and a fixpoint is achieved. The fixpoint is

referred to as reachability iterations (RI). After this fixpoint, no new states are reached in

further iterations. Tables 4.3 and 4.4 show the computations of P2 for different values

of T . We observe that for values of T much greater than RI, the computed values do not

change significantly. Once steady state is attained, we consider P2 as the BER of the

system.

The SS columns in Tables 4.3 and 4.4 show the exact values of P2 computed using the

steady-state solver in PRISM. We compare the computation times for the steady-state

solver with the model checking times of our time-bounded approach. For the 1x4 MIMO

detector, our time-bounded model checking completes in less than 0.5 sec for all values of

T while the steady-state solver takes 53.27 sec. In all experiments, we observe that our

approach is faster than using the steady-state solver. Moreover, our results deviate only

negligibly from the steady-state solutions. For applications where performance evaluation

is offline and not time-critical, either approach can be used.

We observe that the DTMC model for the Viterbi decoder is finite, irreducible and

aperiodic. Therefore, the model is guaranteed to converge to a steady-state probability

distribution (Section 2.2). Although at a slower rate than for the MIMO detector, the

computations for the Viterbi decoder converge reasonably quickly. To check error proper-

ties, all MIMO RTL designs will be represented as DTMC models of a similar structure.

Therefore, a steady-state solution is guaranteed, although the exact time steps required

to attain this may vary.

The values computed in our approach closely match those obtained by performing

simulations over a large number of time steps. We simulate 107 time steps to estimate

a BER of 1.07x10−5 for the 1x4 MIMO system in Table 4.4. We observe zero bit errors

in 105 time steps. This clearly illustrates the efficiency of our approach as compared to

simulation-based techniques, particularly for very low BER requirements.
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Table 4.3: P2 for the Viterbi decoder (RI=263).

Viterbi T=100 T=300 T=600 T=1000 SS

P2 0.2373 0.2394 0.2397 0.2398 0.2398
Time

23.72 27.66 28.28 29.13 901.02
(sec)

Table 4.4: P2 for MIMO detectors (RI=3).

MIMO T=5 T=10 T=20 SS

1x2 0.277 0.291 0.296 0.296
1x4 1.08x10−5 1.08x10−5 1.08x10−5 1.08x10−5

4.6 Analyzing the effects of faults on BER performance

We now describe an approach to enhance our formal RTL performance analysis framework

[62] in order to include the effects of physical hardware faults. Permanent physical faults

[67] are hardware defects that arise during the manufacturing process. Transient physical

faults [8] in hardware are radiation-induced and arise due to neutrons from cosmic rays

and alpha particles from packaging material.

For RTL designs of communication systems, we wish to measure BER which is an

application-specific statistical metric. Therefore, the average effect of faults on BER

performance is of interest to us. In particular, we wish to verify that the BER performance

remains within acceptable limits even in the presence of faults. Since faults can potentially

degrade the BER by several orders of magnitude, we measure the deviation from fault-free

BER as a multiplicative factor given by

Deviation Factor =
BER of faulty RTL design

Fault-free BER
(4.17)

For example, a deviation factor of 1.20 corresponds to a deviation of 20% from fault-free

performance. We define the BER property (P2) to have failed in the presence of faults if

the deviation factor exceeds a value specified by the designer.

We illustrate our approach by computing the BER performance (property P2) of a

Viterbi decoder in the presence of physical faults.

4.6.1 Fault macromodeling

We use the well-known single stuck-at fault model to represent permanent physical faults.

In this model, we assume that a fault corrupts the value of only a single bit in the entire
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RTL design and we define this as the fault location. The bit where the fault is assumed

to occur is tied to a constant logical 1 or 0 value. For example, a bit with a stuck-at-1

fault denoted by s-a-1 is modeled to have a constant logical value of 1 throughout the

execution of the system regardless of the values other signals may try to assign to it. In

RTL designs, stuck-at faults can be modeled by setting the bits of RTL variables to be

either a constant 1 or 0.

Transient faults are typically modeled as single event upsets (SEUs) where only one bit

in the RTL design is assumed to be flipped (inverted) in a given clock cycle. These bit

flips do not occur in every clock cycle. Instead, they are associated with a probability of

occurrence pSEU that depend on electrical and timing parameters at the lower levels of

implementation [68]. For example, a value of pSEU equal to 10−3 implies that the bit flip

occurs approximately once in every 1000 clock cycles. We assume that the bit remains

flipped until it is overwritten by a new assignment of values to the corresponding RTL

variable.

The inputs and outputs of all gates in both combinational and sequential logic are

potentially locations for occurrence of permanent and transient faults. However, the

effects of faults in combinational logic elements are of consequence only if they propagate

to memory elements in sequential logic (latches and flip-flops) which in turn affects the

state of the system [8]. In RTL designs, the register variables are the memory elements,

and therefore we consider only bits of these RTL register variables as potential fault

locations. The state variables that we define for the unreduced DTMC model are in fact

the register variables in the RTL design (Section 5.4.1). Additionally, in each experiment

we only consider the occurrence of either a permanent fault or a transient fault but never

both simultaneously.

4.6.2 Effect of permanent faults on BER

We analyze the effects of permanent faults by injecting them into one fault location bit

at a time. We select the state variable from DTMC M that corresponds to the RTL

variable where we wish to inject the stuck-at fault. We then define the value of the fault

location bit in the state variable to be a constant 1 or 0. The modified DTMC MPF now

represents the RTL design with the single stuck-at fault.

We wish to compute the BER performance using MPF . Therefore, the variable flag

(Section 3.4.1) is still of our interest and we retain the DTMC reward model that we use

for computing performance in the fault-free scenario. We model check property P2 on

MPF in order to formally compute the BER performance of the faulty RTL design.
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Table 4.5: BER of the Viterbi decoder in the presence of permanent faults(SNR 12dB).

Fault Location Fault Type BER Deviation Factor

prev04 s-a-1 0.4401 43231.8
prev10 s-a-0 0.4844 47583.5

LSB of pm0 s-a-1 1.191x10−5 1.17
sign bit of pm0 s-a-1 0.4744 46601.2
LSB of q[n] s-a-0 0.07046 6921.4

sign bit of q[n] s-a-0 0.5 49115.9

Table 4.5 shows the effects on BER of a Viterbi decoder due to the introduction of single

stuck-at faults at different locations in the RTL design. We consider that the decoder is

operating at an SNR of 12dB. The deviation factors are calculated with respect to the

fault-free BER which we formally compute to be equal to 1.018x10−5.

prev04 and prev10 (Section 3.4.1) are Boolean variables that control the direction of

the traceback operation. Therefore, stuck-at faults at these locations permanently point

traceback to the same previous state irrespective of the value of the actual transmitted

bit. Therefore, we observe that the BER is degraded by several orders of magnitude as

indicated by the large deviation factors.

q[n] is the quantized sample at the input of the Viterbi decoder (Section 3.4.1). For the

Viterbi decoder design that we consider, q[n] can have seven possible values. Although,

q[n] is not used as a DTMC state variable in Section 3.4.1, we shall consider it as a

potential fault location. A fault in the least significant bit (LSB) of q[n] offsets the value

of q[n] by 1. This translates to the decoder incorrectly using an adjacent quantization

level in place of the actual level indicated by the fault-free value of q[n]. Since there are

only seven quantization levels in total, the resulting effect is quite significant. However,

the same value of q[n] is used to update the values of both the pathmetrics pm0 and pm1.

Therefore, a change in value of q[n] is nullified to a small extent and the BER degradation

is not as severe as compared to faults in prev04 and prev10.

q[n] is a signed variable that can be assigned both positive and negative integer values.

The most significant bit represents the sign and is called the sign bit. A fault at the sign

bit of q[n] can result in a positive value being incorrectly interpreted as a negative one (or

vice versa) resulting in severe worsening of the BER performance. Similar performance

degradation can be observed for a fault at the sign bit of pm0 which is also a signed

variable.

The least significant bit (LSB) of pm0 does not affect the value of pm0 significantly since

it is a 7-bit variable (Section 3.4.1). Consequently, a fault at the LSB of pm0 (or pm1, by

symmetry) does not affect BER performance significantly as indicated by the low deviation
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factor (equal to 1.17). If a deviation factor of up to 1.20 is acceptable, then the faulty

design falls within the tolerance range that is specified for BER performance (Equation

4.17). Therefore, the designer can choose not to employ fault-tolerance techniques in

order to protect the LSB of pm0, and thereby avoid the associated hardware overheads.

4.6.3 Effect of transient faults on BER

We now analyze the effects of transient faults on BER performance. We wish to modify

the DTMC model M that corresponds to the fault-free RTL design in order to model the

occurrence of transient faults. As in the case of permanent faults, we consider only one

transient fault location bit at a time.

We modify the DTMC M by defining a new Boolean state variable seu event which

we set to 1 with probability pSEU and to 0 with probability 1-pSEU . In all DTMC states

where seu event=0, we assign all the DTMC state variables their corresponding fault-free

values. In states where seu event=1, we flip the bit of the state variable at which we wish

to model the occurrence of the transient fault. When the DTMC reverts to a state where

seu event=0, we retain the bit flip unless a new value is assigned to the state variable.

Figure 4.5 represents the state transition diagram corresponding to our model for the

injection of transient faults. The modified DTMC, which we call MTF , now represents

the RTL design with the SEU fault. We then model check property P2 on MTF in order

to formally compute the BER performance of the faulty RTL design.

Figure 4.5: State transition diagram depicting injection of transient faults.

Table 4.6 shows the change in BER of the Viterbi decoder (SNR=12dB) for different

locations of transient faults. In this analysis, we do not use an exact value of pSEU that

is derived using empirical data from the lower levels of design. Instead, we show that our

analysis can easily be applied for any value of pSEU .

For pSEU=10−2, the transient fault occurrence is quite frequent and degrades the BER

of the system significantly. As pSEU decreases, the system is more frequently in a fault-free

state of operation, and therefore the degradation of BER performance reduces in severity.
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We observe that the LSB of pm0 is resilient to transient faults as well as permanent faults.

For pSEU=10−6, the deviation factors are approximately equal to 1 regardless of the fault

location. The occurrence of faults is not statistically significant, and therefore the BER

performance of the faulty system is hardly discernable from that of the fault-free system.

Table 4.6: BER of the Viterbi decoder in the presence of transient faults(SNR 12dB).
We use DF to denote the deviation factor.

pSEU = 10−2 pSEU = 10−3 pSEU = 10−6

Fault BER DF BER DF BER DF
Location

prev04 2.135x10−2 2097.25 1.824x10−3 179.18 1.020x10−5 1.002
prev10 3.174x10−2 3117.87 2.347x10−3 230.55 1.021x10−5 1.003

LSB of pm0 1.018x10−5 1.00 1.018x10−5 1.00 1.018x10−5 1.00
sign bit of pm0 2.819x10−2 2769.16 2.258x10−3 221.81 1.020x10−5 1.002
LSB of q[n] 5.426x10−3 533.01 4.813x10−4 472.79 1.018x10−5 1.00

sign bit of q[n] 3.981x10−2 3910.61 3.568x10−3 350.49 1.024x10−5 1.005

4.7 Identifying the cause for BER degradation

We now outline an mechanism to systematically identify the cause for degraded BER

performance. The causes for bit errors in MIMO RTL designs can be broadly classified

as follows:

A) External data corruption (Section 3.2)

B) Internal data corruption (Section 3.2)

C) Physical hardware faults (Section 3.6.1)

Our compositional reasoning approach (Chapter 4) can be used to analyze BER perfor-

mance for each component of a large MIMO RTL design. We can then reason individually

with components for which we observe a degraded BER performance. Therefore, the scal-

ability of our mechanism can significantly be improved. However, in this work, we shall

illustrate our mechanism in the context of computing BER performance for the Viterbi

decoder component (Section 3.4.1).

The input to the Viterbi decoder (q[n]) is quantized to seven levels which we label

using integers from -3 to +3. Therefore, the q[n] can be assigned one of seven integer

values {−3,−2,−1, 0, 1, 2, 3} with the corresponding probabilities computed as shown in
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Figure 4.6: Probability distribution of input to Viterbi decoder (SNR = 5dB).

Figure 4.2. Figure 4.6 shows the probability distribution of q[n] at an SNR of 5dB when

a data bit equal to 1 is sent by the transmitter. With respect to decoding accuracy, the

+3 quantization level is ideal since it is the least corrupted, and therefore the least likely

to be misinterpreted as a data bit equal to 0. Similarly, the -3 level is the ideal level when

a data bit equal to 0 is transmitted. In the rest of this section, we shall illustrate our

mechanism by assuming that the transmitted data bit is equal to 1. By symmetry, our

approach also applies to the case where the transmitted bit is 0.

In the absence of internal data corruption and faults, bit errors occur only due to

external data corruption. In this case, an ideal quantization level at the input will result

in an incorrect decoded bit with negligibly low probability. Therefore, if we are able

to determine that an ideal quantization level contributes to a bit error with a non-zero

probability, we can infer that the data has been corrupted while being processed internally

in the hardware component. In this case, we can characterize all bit errors as errors due to

either internal data corruption or physical faults. This forms the basis of our identification

mechanism.

4.7.1 Diagnostic properties for BER degradation

We compute a probabilistic measure of the contribution of each quantization level j,

j ∈ {−3,−2,−1, 0, 1, 2, 3}, to the occurrence of bit errors. We call this an error charac-

terization profile for q[n], i.e., the input. These profiles can be used to distinguish between

the causes of bit errors since they provide the probability with which an ideal level (and

levels close to the ideal level) at the input results in a bit error at the output. We now

describe how these profiles can be obtained using probabilistic model checking.

56



We introduce a new Boolean state variable dataflag into the DTMC model M of the

Viterbi decoder. We set dataflag to 1 for all states in which q[n] ≥ j and to 0 otherwise.

We shall refer to this modified DTMC model as M j .

We define the following pCTL property EDj that we use in PRISM

EDj: P=? [(dataflag=0) U (flag=1)]

where U represents the Until pCTL operator. EDj is the probability of the occurrence

of a DTMC transition path where a state with flag=1 is encountered before a state with

dataflag=1. In other words, EDj is a measure of the fraction of paths where a bit error

occurs before any quantization level less than j is obtained at the receiver. For example,

ED+3 is the probability of occurrence of a path in which the decoded bit is in error despite

the fact that only ideal quantization levels are received until at that point.
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Figure 4.7: Error characterization profile for Viterbi decoder with only external data
corruption (SNR = 5dB).

We use PRISM to verify the diagnostic property EDj on the DTMC M j . We repeat

this for all values of j and obtain the error characterization profile for q[n]. Since there

is a decoding latency in Viterbi decoders, the reception of a quantization level does not

coincide with the decoded bit in the same time step. Hence, we use the Until operator in

our diagnostic property.

4.7.2 Profiles for the different causes of bit errors

We now show the distinct error characterization profiles that we obtain by isolating the

different causes for bit errors.
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Table 4.7: BER for Viterbi decoder for different number of bits assigned to pathmetric
state variables (SNR 12dB).

Number of bits BER

4 0.0653
5 0.00131
6 3.08x10−3

7 1.018x10−5

8 1.021x10−5
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Figure 4.8: Error characterization profile for Viterbi decoder with only internal data
corruption (SNR = 12dB).

We start by considering a fault-free Viterbi decoder. We first obtain the error charac-

terization profiles when there is only external data corruption. In order to achieve this,

we remove the effects of internal data corruption by using a sufficiently high number of

bits for data representation.

Figure 4.7 shows the error characterization profile for input of the Viterbi decoder

operating at 5dB SNR. We observe that the value of ED+3 is equal to 2.828x10−9 which

is negligibly small compared to the BER. An ideal quantization level results in a bit error

only with negligibly low probability. Therefore, we can use the profile to attribute the

poor BER performance of the Viterbi decoder (Table 4.3) to external data corruption

that results due to low SNR. We change the operating point to 12dB SNR and recompute

the BER of the system. We observe that the BER now reduces to 1.018x10−5.

We now compute the error characterization profile for the fault-free Viterbi decoder op-

erating at 12dB SNR. Since external data corruption is negligibly low due to the increased

SNR, internal data corruption is the only cause for bit errors.

58



Table 4.7 presents the change in BER of the Viterbi decoder resulting from a change

in the number of bits used to represent pm0 and pm1. The use of more than seven bits

for representing pm0 and pm1 does not significantly improve the BER of the system. We

observe that the BER performance degrades noticeably even when using 6-bit variables.

Figure 4.8 shows the error characterization profile for the Viterbi decoder that uses 5-bit

variables for pm0 and pm1. The value of ED+3 is equal to 1.32x10−3 which is significantly

high compared to the BER (equal to 1.018x10−5). Therefore, the error characterization

profile indicates that bit errors occur with high probability even when an ideal quantiza-

tion level is received. From this, we can infer internal data corruption to be the cause of

BER degradation.
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Figure 4.9: Error characterization profile for Viterbi decoder (SNR = 12dB) with s-a-1
fault at prev04.

We now consider the Viterbi decoder that is injected with physical faults. We assume

that 7-bit variables are used for the path metrics and that the decoder is operating at

12dB SNR. Therefore, we remove both internal and external data corruption as causes

for bit errors.

Figure 4.9 shows the error characterization profile for the Viterbi decoder with a s-a-1

fault at prev04. The ED
+3 value equal to 0.5 clearly indicates the presence of data being

corrupted by the hardware. Figure 4.10 shows the error characterization profile for the

Viterbi decoder with a transient fault at prev04 that occurs with probability pSEU=10−3.

Although the value of ED+3 is only 2.25x10−3, it is significant compared to the BER of

the fault-free system. Therefore, the error characterization profile indicates that bit errors

occur with high probability even when an ideal quantization level is received. From this,

we can infer that faults are the cause of BER degradation.
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The profile for faults may appear similar to that for severe internal data corruption.

We distinguish between these two causes of bit errors by considering faulty and fault-free

designs independently.
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Figure 4.10: Error characterization profile for Viterbi decoder (SNR = 12dB) with a
transient fault at prev04 .

4.7.3 Removing the causes of bit errors

We briefly outline a sequence of steps that can be used to remove the causes of BER

degradation in order to make an RTL design satisfy the BER performance property, i.e.,

the BER requirement.

Step 1: Remove internal data corruption

We start with the fault-free RTL design. We use the error characterization profiles to

check for presence of internal data corruption. If internal data corruption is present,

structural changes, such as assigning more bits for RTL data representation, can be made

to reduce the occurrence of bit errors.

Step 2: Remove errors due to physical faults

We now consider the faulty RTL design and use the error characterization profiles to

check for presence of physical faults. The designer can choose from several existing fault-

tolerance techniques [69],[70] in order to design systems that are resilient to permanent

and transient faults. The bit errors that remain are all due to external data corruption.

Step 3: Remove external data corruption

Algorithmic changes can be made to improve the performance of the system at the given
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operating SNR. For example, more complex Viterbi decoders and higher order MIMO

detector algorithms can be used.

4.8 Chapter summary

In this chapter, we have applied our SHARPE methodology in order to formally analyze

the performance of MIMO RTL designs both in the the absence and presence of low-

level hardware faults. We present sound property-preserving reductions that can be used

to improve the scalability of our approach. When the BER performance requirement is

not met, we obtain error characterization profiles that can distinguish between the broad

causes of BER degradation.
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CHAPTER 5

SHARPE FOR PROBABILISTIC TIMING
ANALYSIS IN RTL

5.1 Introduction

In this chapter, we apply our SHARPE methodology to perform probabilistic timing

analysis in RTL. We describe how delay macromodels can be used to shift timing analysis

from the lower gate level to the higher RTL.

Timing cannot be compromised in microprocessor control logic. It is only in the dat-

apaths that probabilistic timing is acceptable. Therefore, in this chapter, we apply our

SHARPE methodology primarily to combinational designs (Section 3.3).

5.1.1 Probabilistic timing analysis

Traditional design methodologies guarantee error-free performance by tuning the circuit

to the worst-case delay regardless of how infrequently it may occur. In recent designs,

the skew between the worst-case delay and the average-case (nominal) delay has be-

come significantly high. For example, process variations can cause an adder delay to

vary by up to 27% of its nominal delay [71]. In such cases, worst-case design strate-

gies can result in pessimistic circuits which are over-designed for the most part. Instead,

significant power/area/performance benefits can be obtained by “better-than-worst-case-

design” strategies that tune the circuit to its average-case delay [72].

In the case of process variations, the fraction of chips that violate the timing con-

straint are discarded. With respect to input variations, recent design methodologies

[2],[3],[73],[74] allow long computations to make errors which are corrected later with

small performance penalty. In both cases, if the timing violations occur infrequently then

the resulting loss in chips (or the penalty) may be tolerable since they provide an average

gain in overall performance. Therefore, it is desirable to couple such design strategies

with a methodology that can evaluate them by quickly and accurately estimating the

probability of timing violations.

In the context of better-than-worst-case design, timing verification must account for
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the underlying variations in delay. At present, this stochastic nature is addressed only at

the lower gate-level of the hardware design cycle [5],[72],[75],[76],[77] where appropriate

circuit design measures are taken to allow for variation-dependence in timing. However,

such gate-level techniques do not offer a scalable solution for statistical timing analysis at

the higher levels of design. Although there is variation-awareness in high level synthesis

techniques [7],[78],[79] as well as architecture level power and performance analysis [15],

this is not observed in RTL design verification methodologies.

5.1.2 The SHARPE methodology for probabilistic timing analysis in

RTL

SHARPE is a methodology for formally computing probabilistic distributions of statistical

metrics in RTL. In this chapter, we compute probabilistic delay invariants with variations

in input patterns being the primary source of statistics [80]. We also show how the

SHARPE methodology can be extended to consider process variations as the primary

source of statistics. In this context, we interpret the steps in our methodology in a

different manner.

In order to restrict timing analysis to RTL, we obtain delay macromodels [17], [18] from

the gate level. With these macromodels, we introduce awareness in RTL regarding the un-

derlying statistics in timing. We use these macromodels with our SHARPE methodology

and compute probabilistic invariants with respect to timing in RTL.

We illustrate our SHARPE methodology on a variety of data-intensive RTL designs

such as the ALU of an OR1200 processor, some non-trivial components of communication

systems and a few high-level synthesis benchmark designs.

5.1.3 Chapter organization

The rest of this chapter is organized as follows. In Section 5.2, we describe the macro-

models that we obtain for modeling delay in RTL. We consider input pattern variations

as the source of statistics in timing. In Section 5.3, we present the experimental results

demonstrating the accuracy and scalability of our SHARPE methodology. In Section 5.4,

we describe how our methodology can be used to compute the probabilistic distribution of

RTL path delays. In Section 5.5, we show how our approach can be used to estimate the

performance of better-than-worst-case-design strategies such as timing speculation. In

Section 5.6, we illustrate how the SHARPE methodology can be extended for performing

statistical timing analysis in the context of process variations.
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5.2 Delay macromodeling

In this chapter, we consider a “floating” delay model in which delay depends only on

present input values [26]. With a minor modification in the SHARPE methodology (Chap-

ter 3), delay models that depend on both present and previous input values can also be

used.

We construct delay macromodels in order to propagate the notion of delay from the

lower levels to the higher RTL. We consider RTL blocks/modules (Section 2.3) as the

basic units for delay computation. A module usually performs one or more independent

functions and has inputs and outputs defined. Every statement in a module uses RTL

operators (addition, subtraction, bitwise operators etc).

To restrict the timing analysis to RTL, we define delay in terms of the RTL statements

of interest. In order to find delay of a Verilog module (RTL block), we need a delay

characterization of all the statements that appear in the module. The delay of a statement

depends on the operation that it performs and the values of the operands (Definition 6).

For every RTL operator, we determine a function that computes the delay as a function

of the values of its operands. We refer to this function as a delay macromodel for that

operator.

Constructing a library of macromodels

In order to obtain delay macromodels, we first synthesize each RTL operator into logic

gates and find delay of this implementation for various input transition patterns by gate-

level simulation. We tabulate the delays per input pattern of this implementation. In

order to abstract this tabular information into a higher level, we need to find a function

that estimates the delay of the operator as a function of operand transitions. We arrive

at polynomial functions that predict the delay of an output with small average error for

each RTL operator.

For instance, for a ripple-carry adder implementation of the RTL add operator, we

determine a Boolean function to reflect the number of bits that “ripple” through to the

most significant bit (MSB). A 5th order polynomial function predicts delay at the MSB

as a function of the ripples, with very small average error. This is the delay macromodel

of the ripple carry implementation of the add operator. We consider only MSB for this

function definition since it has most impact. In Section 5.3, we obtain such functions for

other operators as well.

We obtain the delay for multiple gate-level implementations for every operator. In order

to model the effects of synthesis optimizations, we consider three scenarios: Optimization

in 1) logic only (technology independent), 2) delay only (technology dependent) and 3)

64



both logic and delay. For each scenario, we perform the the corresponding type of opti-

mization on the gate-level circuit of the RTL operator. We then extract the macromodel,

which we refer to as the optimized macromodel, from this optimized gate-level circuit. If

more scenarios are considered, a richer library of macromodels can be constructed.

This macromodeling and delay characterization is a one-time effort and can be done

offline for a given technology library. We use the NANGATE 45nm Open Cell Library

for obtaining the delays for the gate-level implementations.

Although we present simplistic delay macromodels in this paper, we demonstrate that

they provide RTL estimates that are within 20% of the gate-level estimates. However, the

SHARPE methodology is not restricted to these macromodels. Rigorous regression-based

techniques [81] can be employed to obtain more complex macromodels that can be used

in our methodology.

Delay of an RTL block

We model the delay of a Verilog statement that assigns the output to a block. We

consider blocking as well as non-blocking assignments. Blocking assignments assign the

value in RHS in the current cycle to the LHS, in the same cycle. Non-blocking assignments

postpone this assignment to the next cycle.

The delay of an RTL assignment statement is the time taken from the (rising) clock

edge for the effect of the statement execution to be observed. We consider the rising

edge of clock as the reference point for measuring delay. In the following code segment,

the non-blocking assignment to F is performed with the values of D and E evaluated

synchronously at the rising edge of clock.

always @(posedge clk)

B <= A;D <= C & B;F <= D + E;

Consider the following set of blocking assignments

always @(posedge clk)

B = ;D = C & B;F = D + E;

The assignment to F is “blocked” till the assignment to D is completed. The AND

gate skews the arrival time of operand D with respect to E. In this work, we make an

approximation used by high-level SSTA [7],[78],[79] to deal with this situation. If there is

a transition at the gate output, we assume that the signal arrival time Tout at the output

is Tout = Top+max(Tin1, Tin2) where Top is the operator delay and Tin1,Tin2 are the arrival

times of the operand signals. The max() function is a coarse approximation to determine
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signal arrival time. More sophisticated functions are used at the gate-level and can easily

be used with our technique too.

Let T be a timing constraint at the output of a design. We use the library functions

obtained using delay macromodeling to express delay at the output as a function fP (V )

defined over RTL variables V . We wish to compute the probability of input vectors that

satisfy fP (V ) < T .

Definition 14. In the presence of input variations, the probability that the delay at an

output signal meets a specified timing constraint is defined as critical probability. Critical

probability is the timing related invariant that we are interested in.

Probabilistic timing analysis is most meaningful for datapath where timing violations

can be tolerated. The PMFs of control signals (combinational and sequential) play a

role in determining the delay of the datapath. Therefore, we compute PMFs for both

combinational (Section 3.3) as well as sequential signals (Section 3.4). However, we confine

statistical timing analysis to combinational, datapath signals.

5.3 Experimental results: With input pattern variations

We perform all our experiments on a 3 GHz, 3.25 GB machine.

5.3.1 Comparing techniques for formal probabilistic analysis of

combinational designs

For designs that are purely combinational, formal probabilistic analysis can be performed

by exhaustively analyzing all possible input vectors (Section 3.3). However, as an alter-

native to this exhaustive input vector analysis approach, we can manipulate PRISM to

perform this analysis by modeling combinational designs as RTL DTMCs (Section 3.4.1).

We shall refer to this as the DTMC + PRISM approach.

• For combinational designs, a state in the RTL DTMC model is just the present input

vector (Definition 9).

Once the RTL DTMC is defined for a combinational design, the DTMC + PRISM

approach is the same as that described for sequential designs (Section 3.4). For combina-

tional designs, it takes two time steps to detect convergence of the RTL DTMC.
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PRISM exhaustively analyzes all possible states of the DTMC model. Therefore, the

probability computed by PRISM is exactly equal to that computed by exhaustively ana-

lyzing all input vectors.

We compare both the approaches by considering an N -bit adder design as a case study.

Let A and B represent the N -bit inputs to the adder. Each input can be assigned one

of 2N integer values in the range 0 to 2N -1 (Section 2.3). Therefore, there are a total

of 22N possible input vectors. Since each input vector is mapped to a unique state, the

corresponding RTL DTMC model has 22N states.

We assume a uniform probability distribution on the inputs A and B. Therefore, each

of the 22N possible input vectors occurs with a probability equal to 1
22N

.

We wish to compute the probability that A+B= 22N -2. We know that there is exactly

one input vector (A=2N -1, B=2N -1) that satisfies this condition. Therefore, the required

probability is equal to 1
22N

. We use this analytical estimate to verify the accuracy of our

probabilistic analysis approaches.

Table 5.1: Comparing formal probabilistic analysis approaches for a combinational
adder design. We consider two approaches: 1) Exhaustive input vector analysis and 2)
DTMC modeling followed by PRISM.

Exhaustive input vector analysis DTMC + PRISM
Adder size Number of Time Computed Number of Time Computed

(N) input (sec) probability DTMC (sec) probability
vectors states

8-bit 216 < 0.01 1.53x10−5 216 0.56 1.53x10−5

10-bit 220 < 0.01 9.54x10−7 220 12.75 9.54x10−7

12-bit 224 0.07 5.96x10−8 224 298.06 5.96x10−8

14-bit 228 0.82 3.72x10−9 228 6274.38 3.72x10−9

16-bit 232 11.72 2.33x10−10 232 - -
18-bit 236 186.20 1.46x10−11 236 - -
20-bit 240 3800.00 9.09x10−13 240 - -

In Table 5.1, we compare the performance of the two approaches for adders of different

sizes. For large adder designs (>14-bit), PRISM runs out of memory while constructing

the RTL DTMC model. Since exhaustive input vector analysis does not require any state

vector to be constructed, such memory bottlenecks can be avoided. Therefore, exhaustive

input vector analysis scales better than the DTMC+PRISM approach. The probability

computed by both approaches (when both are feasible) are same and exactly equal to 1
22N

.

The runtime for the DTMC+PRISM approach is dominated by the time PRISM takes

to build the state space of the RTL DTMC. Once the state space is constructed, the actual

model checking times for the 8-bit, 10-bit and 12-bit adders are only 0.01 sec, 0.7 sec and
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7.54 sec, respectively. If there are several invariants that need to be computed using

the same RTL DTMC, the model construction overhead can be amortized over them.

Therefore, for the smaller adders, both approaches can be viewed to have comparable

runtimes.

For very large designs (N > 20), the exhaustive analysis also becomes impractical due

to large runtimes. The exhaustive input vector analysis is implemented as a software loop

that iterates through all possible input vectors. This loop can be trivially parallelized

resulting in up to a linear speedup with respect to the number of parallel computing

units.

5.3.2 Validating the SHARPE results for an OR1200 processor

We apply our SHARPE methodology to the datapath of the OR1200, an embedded RISC

processor. We refer to this RTL design as RTL 1.

We first analyze the accuracy of the probability distributions computed through static

analysis. For this, we consider both datapath and a few sequential control signals. We

consider a set of signals to serve as primary inputs whose probability distributions we

define. We do not explicitly model the 32-bit instruction registers. All signals that are

directly driven by the values stored in these registers are included in the set of primary

inputs. We assume that primary input signals like rst andmac stall take on their atypical

values (equal to 1) once in 100 million clock cycles. Therefore, we assume that in each

clock cycle, these signals are assigned a value of 1 with a probability of 10−8. In the

datapath, we consider the output signal (result) of the ALU. The data signals a and b,

that serve as synchronously arriving inputs to the ALU are modeled as primary inputs

with uniform probability distribution.

Table 5.2: Accuracy of PMFs computed using our SHARPE methodology.

Simulation Length
Signals 102 105 108

if freeze, ex freeze
lsu unstall,flushpipe 100% 100% 12.8%

extend flush , wb freeze

result 43.2% 11.6% 4.5%

We compute the PMFs of both sequential signals and combinational signals using our

methodologies described in Section 3.3 and Section 3.4, respectively. We determine that

the control signals in Row 1 of Table 5.2 are assigned one of their infrequent values with
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Table 5.3: SHARPE analysis of 6-bit ALU (RTL 1).

Critical Probabilities
Constraint SHARPE Gate-level Percentage
(% of WCT) simulations Error(%)

100% 1.0 1.0 0
90% 0.9992 0.9929 0.63%
80% 0.9990 0.9748 2.50%
70% 0.9772 0.9180 6.45%
60% 0.9531 0.8993 5.98%

a probability of 10−8. We find that the RTL-DTMC models for these sequential signals

converge to a steady-state distribution in 10 time steps. We find that the datapath signal

result is assigned all its 64 possible values with equal probability. Table 5.2 compares the

percentage of error between the probability distributions estimated using our SHARPE

methodology, against the values obtained through RTL simulations for different lengths.

As we increased the simulation length, the percentage error reduces significantly for

both control and datapath signals, implying that our analytical estimation is of high-

confidence. With simulation lengths less than 108, we find the control signals are not

assigned their infrequent value (rare event) even once and hence we record an error of

100% as compared to estimates obtained using the SHARPE methodology.

For timing estimation, we obtain the delay macromodels for shifters (shift-rotators)

and 2K :1 MUX as functions of the delay of basic 2:1 MUX blocks. For bitwise operators,

we use the delay models of the corresponding basic blocks (AND, XOR or OR). For a

6-bit ripple carry adder (subtractor), we obtain the macromodel as described in Section

IV.A.1. We fit a curve, shown in Figure 5.1, to the simulated delay measurements at the

MSB, as a function of the ripples. The mean error between the delay predicted by this

analytical model and the measured delay is less than 1% of the worst-case timing for the
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Figure 5.1: Delay macromodel for ripple carry adder.
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adder.

We use our SHARPE methodology (Section 3.3) to estimate the timing invariants for the

MSB of the 6-bit ALU output signal, result. We set the maximum timing delay observed

through simulations as the worst-case time (WCT). For different timing constraints, we

compare our results (Table 5.3) with the critical probabilities (Definition 14) obtained by

gate-level simulations that utilize delay values from the NANGATE 45nm standard cell

library. The estimates obtained through both approaches differ only by a maximum of

6.45%. The 6-bit ALU has 3.5x106 possible input vectors and the total runtime for our

methodology is 0.43 sec. We find that formal probabilistic analysis, without compositional

reasoning, is infeasible for ALUs with larger bitwidth.

We now illustrate our technique for input signals with different arrival times as in

Section 5.2. We modify the ALU module by introducing a 2:1 MUX after each of the

inputs. This introduces independent timing offsets to their arrival times to the original

ALU module (RTL 1) and we shall call this modified design, RTL 2. The calculated

critical probabilities are listed in the Table 5.4. Even in this case, the SHARPE estimates

deviates from simulation-based estimates by less than 6.07%.

Let RTL 2P be a pipelined version of RTL 2, where registers are introduced after both

the MUXes that offset the inputs. By definition, we consider only the delay from the

register outputs triggered at the rising edge of clock. Therefore, the delay distribution

curve of interest in RTL 2P is exactly the same as that of RTL 1 (Table 5.3). This

demonstrates how an RTL designer can make use of the probabilistic timing invariants to

modify the RTL (introduce pipelining, for example) and obtain a better delay distribution

curve.

We consider an alternate gate-level implementation of RTL 1, which has a carry look-

ahead adder, with 2 3-bit ripple carry adder blocks. In this case, we reuse the signal PMFs

computed for RTL 1 since they are unaffected by the gate-level implementation. We

plug in the required delay macromodel and determine the new critical probabilities. It is

Table 5.4: SHARPE analysis of 6-bit ALU (RTL 2).

Critical Probabilities
Constraint SHARPE Gate-level Percentage
(% of WCT) simulations Error(%)

100% 1.0 1.0 0
90% 0.9990 0.9810 1.83%
80% 0.9890 0.9562 3.43%
70% 0.9531 0.9122 4.48%
60% 0.9529 0.8985 6.07%
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observed that only 93.2% of the inputs satisfy the 90% WCT constraint. This information

prompts the gate-level designer to choose a ripple carry adder implementation. The use

of macromodels in the SHARPE methodology avoids the need to synthesize the design to

the gate-level, and thereby eliminates all the associated overheads.

5.3.3 Demonstrating the scalability of our SHARPE methodology

In Chapter 7, we demonstrate that a compositional reasoning approach can be used to

scale formal probabilistic timing analysis for a ripple carry adder. We now briefly outline

the results of applying this approach. We present a more detailed analysis in Section 7.6.

We use our SHARPE methodology (Section 3.3) to compute delay invariants at the

MSB of a ripple carry adder for 90% WCT constraint. The 32-bit adder has 264 possible

input vectors and is too large (Definition 10) for efficient, exhaustive analysis. For a

64-bit adder, the number of input vectors can be as high as 2128 (approximately 1040).

We employ compositional reasoning by splitting the adder design into a set of smaller

adders. For example, we can compute the delay invariant for the 64-bit adder in 3.70 sec

by decomposing the design into eight 8-bit adders each of which corresponds to a design

with only 65,536 possible input vectors.

With the improved scalability afforded by compositional reasoning, we use our SHARPE

methodology to analyze a 32-bit ALU corresponding to RTL 1. We present a comparison

of the estimated critical probabilities in Table 5.5. SHARPE estimates deviate by a

maximum of 7.42% from the simulation-based estimates. The 32-bit ALU has over 1020

possible input vectors. Without compositional reasoning, exhaustive input vector analysis

is infeasible for this design. However, with decomposition, our SHARPE methodology

computes the delay invariants in less than 2 minutes.

Table 5.5: SHARPE analysis of 32-bit ALU (RTL 1).

Critical Probabilities
Constraint SHARPE Gate-level Percentage
(% of WCT) simulations Error(%)

100% 1.0 1.0 0
90% 0.9763 0.9649 1.17%
80% 0.9652 0.9448 2.11%
70% 0.9434 0.8735 7.41%
60% 0.9248 0.8562 7.42%

In ongoing work, we are incorporating into our SHARPE methodology, several property-

preserving reduction techniques [36],[82]. We believe that the scalability of our SHARPE

71



methodology can be further improved through these approaches.

5.3.4 Applying the SHARPE methodology to other types of designs

In Table 5.6, we show that our SHARPE methodology can be applied to the datapath

in circuits that are seen in communication systems (Chapter 4). In a Viterbi decoder,

V D Path Compute and V D Path Compare are the path metric computation and com-

parison units respectively. We also analyze a MIMO detector and the adder output of a

pipelined FIR filter. The input to these designs is data that is corrupted over a commu-

nication channel. Therefore, we assume a Gaussian probability distribution [14] for the

inputs which is a common model used in communication systems.

We perform timing analysis only for the combinational logic in the datapath. If there

are sequential variables at the inputs of this combinational logic, we compute their PMFs

using our formal methodology described in Section 3.4. Once the PMFs of the sequential

variables are determined, the combinational logic can be analyzed separately using our

methodology described in Section 3.3.

5.3.5 Demonstrating robustness to synthesis optimizations

We compare our RTL estimates against those obtained using the synthesized gate-level

netlists that have undergone heavy optimizations. We consider three optimization scenar-

ios: Optimization for 1) logic only (technology independent), 2) delay only (technology

dependent) and 3) both logic and delay. For each scenario, we obtain our RTL estimates

by choosing the corresponding optimized macromodels (Section 5.2).

We derive the optimized macromodels by considering synthesis optimizations on an

operator-by-operator basis. Although this does not model global optimizations, a large

Table 5.6: SHARPE methodology for probabilistic timing analysis in communication
systems.

Critical Probabilities
90% 80% 70%

Circuit WCT WCT WCT

V D Path Compute 0.9690 0.8005 0.6150
V D Path Compare 0.8447 0.7975 0.6749
MIMO Detector 0.9378 0.8514 0.8019
FIR pipelined 0.9448 0.8734 0.7637
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number of local optimizations are captured by this approach. Therefore, as shown in

Table 5.7, our RTL estimates for critical probabilities faithfully follow the gate-level esti-

mates even in the presence of synthesis optimizations.

When delay minimization is performed during synthesis, the path delays of a design

are grouped together tightly. Therefore, even a small reduction in the timing constraint

can cause timing violations for several paths. For the 32-bit OR1200 ALU with any de-

lay optimization, the critical probabilities (Columns 5 and 7, Table 5.7) degrade sharply

as compared to those without optimization (Column 3, Table 5.5). Correspondingly,

SHARPE estimates using the optimized macromodels (Columns 4 and 6, Table 5.7) in-

dicate a sharper degradation compared to SHARPE estimates using the unoptimized

macromodels (Column 2, Table 5.5).

Table 5.7: SHARPE methodology for 32-bit ALU while considering three gate-level
optimization scenarios. SHARPE estimates for critical probabilities (Columns 2,4,6),
obtained using optimized versions of the macromodels, closely agree with those obtained
by simulating the optimized gate-level netlists (Columns 3,5,7).

Logic Delay Logic
optimization optimization + Delay

only only optimization
Constraint SHARPE Gate-level SHARPE Gate-level SHARPE Gate-level
(% of WCT)

90% 0.9458 0.9322 0.9441 0.9263 0.9347 0.9198
80% 0.9239 0.9054 0.8741 0.8562 0.8689 0.8523
70% 0.8754 0.8336 0.7972 0.7638 0.7866 0.7457
60% 0.8246 0.7721 0.7305 0.6852 0.7152 0.6634

We consider the communication systems (from Table 5.6) that have been optimized for

delay. Table 5.8 demonstrates that SHARPE estimates closely agree with the gate-level

estimates for these designs.

Table 5.8: SHARPE estimates (at 90% WCT) for communication systems with delay
minimization.

Critical Probabilities
Circuit SHARPE Gate-level Percentage

(% of WCT) simulations Error(%)

V D Path Compute 0.9010 0.8781 2.54%
V D Path Compare 0.8224 0.7832 4.77%
MIMO Detector 0.9245 0.8943 3.27%
FIR pipelined 0.9176 0.8725 4.91%
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The use of optimized macromodels is a significant step towards helping our SHARPE

methodology achieve a better correlation with downstream estimates. In future work, we

could further refine these macromodels and plug them into our methodology to improve

the accuracy of the timing estimates.

5.4 Probability distributions of RTL path delays

An RTL design may comprise several paths corresponding to the assignment of a value

to a variable. In any given clock cycle, the assignment to a variable is determined by only

one path that is selected based on the values assigned to the control variables.

Consider the following RTL fragment:

if(select==0)

F <= D + E;

else

F <= D & E;

The variable F is assigned a value by one of two possible paths. If the control variable

select is equal to 0, then the value of D+E is evaluated and assigned to F . In the other

path (select == 1), F is assigned the value of D&E.

The delay at the variable depends on the delay of the assignments statements in that

path. The probabilities with which each path is selected/excited is determined by the

PMFs of the control variables. When the statistical distribution of delay at a variable is

computed, it is desirable to also document the probability with which each path delay

is excited. This can in turn be used to estimate the probability with which each path

contributes to a timing violation, as we shall see in Section 5.5. Such path delay distribu-

tions can be passed down to gate-level designers to optimize the timing of blocks in only

those RTL paths that are “important”. In the RTL example, if select == 0 occurs with a

very low probability, then optimizing the adder design is not of high priority. For better-

than-worst-case designs, such selective optimizations can potentially result in significant

power/area savings.

Since the PMFs of control variables are computed by the SHARPE methodology, the

critical probabilities inherently account for the path excitation probabilities. However,

the critical probability is a single value that does not provide any insight regarding the

statistical distribution of delays corresponding to different paths. In this work, we use our

SHARPE methodology to determine the path delay distributions, and thereby provide a

more comprehensive analysis of probabilistic timing behavior in RTL.
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As an artifact of our macromodeling technique (Section 5.2), each RTL block has a

discrete (and finite) set of possible delays. For example, the delay of a ripple carry adder

is a function of the value of the finite variable, ripples, which in turn is a function of the

values of the adder inputs. Therefore, the SHARPE methodology can use the PMFs of

input variables and compute the probabilities (PMFs) with which different delay paths,

within such RTL blocks, are excited.

Figure 5.2 shows the path delay distribution of a 6-bit OR1200 ALU (Table 5.3). With

the exception of the shortest path delay, all the other path delays occur with negligibly

low probabilities. Therefore, the critical probability of this design does not significantly

change when the timing constraint is reduced. However, if the ALU is heavily optimized

during synthesis, the path delays will be grouped together. As a result, the critical

probabilities decrease sharply when the timing constraint is reduced.

Figure 5.3 shows the path delay distribution of V D Path Compute (Table 5.6). In this

design, some of the longer path delays occur with greater probability than the shorter path

delays. Therefore, the critical probability of this design significantly reduces when the

timing constraint is reduced even by a little. The Gaussian distribution that we assume

for the RTL inputs is the main factor that contributes to this behavior.

Figure 5.4 shows the probability delay distribution of an FIR pipelined (Table 5.6).

The distribution is similar to that of an OR1200 ALU. However, the decrease in probability

with increase in delay value is more gradual than for OR1200 ALU. Therefore, the critical

probability of this design decreases gracefully when the timing constraint is reduced.

Figure 5.2: Probability distributions for path delays in OR1200 ALU.
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Figure 5.3: Probability distributions for path delays in V D Path Compute .

Figure 5.4: Probability distributions for path delays in FIR pipelined.

5.5 Performance of better-than-worst-case designs

Traditional worst-case design methodologies are insufficient to meet the tight performance

constraints of the present day. In these methodologies, circuits are guaranteed to provide

error-free operation for all input patterns. However, in circuits where the worst-case input

patterns are infrequently applied, the designs are severely under-utilized. In such cases,

the circuits can be tuned to a common-case delay and can be allowed to make the timing

errors for longer computations. These errors can then be corrected using circuit-level or

microarchitecture-level techniques. The average performance of the design may improve

or degrade depending on the probability of occurrence of timing errors. This approach

for better-than-worst-case design is referred to as timing speculation [2],[3].

We now describe how our SHARPE methodology can be used to estimate the gain in

average performance for better-than-worst-case designs.
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5.5.1 Timing speculation

In the microarchitecture domain, Razor [2] and Paceline [3] employ timing speculation

techniques. In these techniques, additional latches and checker modules are used to detect

timing errors. Error correction takes place with a penalty that can range from a few

additional clock cycles (Razor) to several hundred cycles (Paceline).

At the circuit level, speculation techniques are employed in speculative completion [83]

and telescopic units [74] to produce variable-latency designs. In these designs, the clock

rate is sped-up to match the common case delay, i.e., the delay corresponding to the most

frequently occurring input patterns. Longer computations are split over multiple clock

cycles.

Circuits designed using speculation techniques have high single-cycle clock frequencies.

However, this speed-up is achieved at the expense of extra clock cycles for input patterns

that result in a delay longer than the time constraint. If these input patterns occur with

a high probability, the average throughput of the system is significantly reduced. An

optimal time constraint needs to be found so that the speculation techniques result in an

improved throughput for the system.

If the rate of occurrence of the worst-case conditions is known, the performance of such

speculation-based designs can be quantified. In other words, the average throughput of

the design can be computed if we know the critical probability (Definition 14), i.e., the

probability of occurrence of input patterns that finish execution within the specified time

constraint. Such estimates can facilitate the selection of an optimal time constraint that

maximizes design throughput.

The critical probability of a speculation-based circuit can be estimated by using tech-

niques such as [26]. However, such techniques operate at the gate level and do not scale

for large RTL designs. The SHARPE methodology computes critical probabilities in RTL

which can then be used to provide early estimates of throughput gain for speculation-based

designs.

5.5.2 Estimating performance of speculation-based designs

The gain in average throughput of a design due to speculation-based techniques can be

computed as

Throughput Gain =

1
TB
clk

∗ (pcrit +K ∗ (1− pcrit))

1
Tclk

(5.1)
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where Tclk is the worst-case timing constraint, TB
clk is the better-than-worst-case constraint

(TB
clk < Tclk), pcrit is the critical probability and K is the extra number of clock cycles

required to correct an error resulting from a timing violation.

Figure 5.5: Throughput gains for speculation-based designs with an error-correction
penalty of K=1 clock cycle.

Figure 5.6: Throughput gains for speculation-based designs with an error-correction
penalty of K=5 clock cycles.

Figure 5.5 shows the throughput gains for different RTL designs when K=1. For the

OR1200 ALU, the gain increases when the timing constraint is reduced. For FIR pipelined,

the gain first increases with a decrease in timing constraint, reaches a maximum and then

starts to decrease. Figure 5.6 shows the scenario where K=5. For the range of timing

constraints that we observe, the behavior of V D Path Compute is significantly different

from that when K=1 since the gains now decrease when the timing constraint is reduced.
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After a point, the throughput of the speculation-based design is even worse (gain < 1)

than the worst-case design.

The observed behavior can be explained using the probability distributions in Fig-

ures 5.2, 5.3 and 5.4. These figures can be analyzed to determine the set of paths that

violate a given timing constraint. Since the figures contain information regarding the

excitation probabilities of these paths, we can also estimate the critical probability. The

profile (i.e., shape of the curve) of the path delay distributions indicates how sensitive

the critical probability is to a decrease in the timing constraint. For example, in the

the OR1200 ALU, a small reduction in timing constraint excludes only the longer paths

which occur with low probability. Therefore, this design is relatively insensitive to small

changes in the timing constraint.

5.6 SHARPE methodology for process variations

We have described our SHARPE methodology by considering input variations as the

source of randomness. We now describe how this methodology can be employed for per-

forming statistical static timing analysis (SSTA) in RTL by considering process variations

as the primary source of statistics. Although the key steps in our SHARPE methodology

(Section 3.3) remain the same, we interpret them differently in the context of process

variations.

Our methodology is analogous to the high-level SSTA presented in [7]. We reuse the

terminology and delay models described in [7]. However, unlike [7], we apply our method-

ology to RTL.

5.6.1 Randomness due to process variations

Aggressive technology scaling has drastically reduced the feature size of present day tran-

sistors. The corresponding fabrication processes have become significantly complex and

introduce significant variations into transistor parameters such as channel length and

width [84]. Process variations manifest as variations in delay and must necessarily be

considered while performing timing analysis of designs. For example, the delay of an

adder can vary by up to 27% of its nominal value [71].

Process variations are commonly classified as inter-die variations and intra-die varia-

tions. Inter-die variations are die to die variations and affect all the devices on the same

chip similarly. Intra-die variations correspond to variations within the chip and affect
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different devices differently on the same chip. However, if two devices are located in close

physical proximity on the chip, their variations are highly correlated. In modern day

designs, such spatial correlations are significant and cannot be neglected [7].

5.6.2 Delay macromodeling in the presence process variations

We reuse the notion of RTL delay, as defined in Section 5.2. We consider delay of an RTL

block by modeling the delay of Verilog statements that assign the output to the block. In

Section 5.2, we considered delay variations due to changes in input patterns. Therefore,

we obtained delay macromodels that estimate delay of an RTL operator as a function of

operand values. However, we now consider variation in delay due to process variations.

Therefore, we require a new library of delay macromodels for the RTL operators.

LetDi represent the delay of an RTL operator i, corresponding to one possible gate-level

implementation. Since we no longer wish to model variations with inputs, we consider the

worst-case delay with respect to input patterns. However, we still model Di as a random

variable with respect to process variations.

We use a Gaussian model for Di, which is a widely used model in SSTA. Each Gaus-

sian delay variable can be specified by using the parameters, mean µi and variance σ2
i .

However, these parameters model only the individual statistics of the delay of each RTL

operator. Due to proximity of physical placement on the chip, the delays of RTL operators

may be correlated. Therefore, we must also specify the correlation between the delays of

the RTL operators.

We use static analysis to determine a list of all the operators that are used in the RTL

source code. Let there be K uses of RTL operators, which may include multiple instances

of the same type of operator. We construct a K × K covariance matrix C where each

element cij specifies the pairwise correlation between variables Di and Dj, given by

cij = { σ2
i if i = j

ρijσ1σ2 otherwise
(5.2)

For example, let D1 and D2 be two jointly Gaussian [21] random variables with means

µ1 and µ2 and variances σ2
1 and σ2

2 , respectively. Let ρ12 represent the correlation fac-

tor between the two variables. The correlation is completely specified by using the 2x2

covariance matrix C given by

C =

[
σ2
1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

]
(5.3)
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In order to construct a delay macromodel Di, the corresponding RTL operator needs

to be first synthesized to obtain a gate-level netlist. Monte Carlo simulations can then

be performed on the gate-level netlist to plot a histogram of the set of varying (due to

process variations) worst-case delay values at the output. Finally, a Gaussian model can

be fit to this histogram and the corresponding values of µi and σ
2
i can be determined.

Realistic estimates of correlation are difficult to obtain. Static analysis of the RTL

source code can be used to obtain information regarding the connectivity between the RTL

blocks. This information can be used in conjunction with a commercial RTL floorplanning

tool in order to estimate the relative physical locations of the RTL blocks on the chip.

The correlations factors ρij between different RTL operators i and j can then be modeled

as a function of the distance between them on the chip [7].

For a given technology, we can construct a library of macromodels for all RTL operators

by considering different possible gate-level implementations and synthesis optimizations,

as in the case of input variations (Section 5.2). This is a one-time effort and can be done

offline.

5.6.3 Decorrelating the delay variables

The set of delay variables Di are jointly Gaussian [21] and are typically correlated with

each other (non-diagonal matrix C). However, for simplicity of probabilistic analysis, we

wish to obtain a set of uncorrelated Gaussian random variables. We achieve this by using

principal component analysis (PCA), as described in [7].

In PCA, a set of K jointly Gaussian random variables Di can be expressed in terms of

another set of K independent Gaussian random variables, denoted by D′
j . Each variable

Di can be expressed as a linear sum of the variables D′
j given by

Di =
K∑

j=1

αijD
′
j (5.4)

where αij is a real-valued coefficient. The values of each αij , along with the mean and

variance of the variables D′
j , can be determined by using PCA .

5.6.4 Discretizing the Gaussian random variables

In order to employ our SHARPE methodology (Section 3.3), we require the random

variables to be discrete. We “discretize” each delay variable D′
j by considering only a

finite set of possible values, as shown in Figure 5.7. We first truncate the Gaussian
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model to the µ − 3σ, µ + 3σ limits. We then determine a set of equally-spaced values

in this interval. The probability that a value occurs can be computed from the Gaussian

distribution curve. In Figure 5.7, the area of the shaded region under the Gaussian curve

represents the probability with which the corresponding discrete value is selected.

In the context of input variations, each input vector (Definition 9) corresponds to a

unique set of values assigned to the inputs. For process variations, the discretized variables

D′
j are the random variables of interest. Therefore, in this context, the assignment of

values to D′
j can be interpreted as the random “input” vector for statistical analysis.

Each vector can now be viewed as a unique instantiation of the chip corresponding to a

unique set of delay values for the RTL operators.

With increase in the number of RTL operators and the number of discretized values

per delay variable, the number of possible random vectors also increases. We mitigate

this problem by using a compositional reasoning approach that we present in Chapter 7.

Equation 5.4 shows an additive expression which, according to Chapter 7, facilitates

an effective employment of our compositional reasoning approach. Such an approach

can significantly improve the scalability of our methodology in the context of process

variations. However, in this work, we do not further explore this approach in the context

of process variations.

We use a simple optimization, similar to the one described in [75], in order to reduce

the number of vectors that need to be considered. Consider the delay variables Di and Dj

corresponding to two different RTL operators. If µi+3σi is less than µj−3σj , the variable

Di is highly unlikely to violate the timing constraint when Dj does not. Therefore, Dj

dominates Di and Di can be discarded from the set of state variables without significantly

affecting the accuracy of SHARPE estimates. As a result of this optimization, the total

number of vectors can be reduced.

5.6.5 Computing the yield using our SHARPE methodology

We wish to compute the fraction of chips in which the better-than-worst-case timing

constraint TB
clk is always satisfied. This is commonly referred to as the yield of the design.

We describe our approach by considering the scenario where the RTL contains only non-

blocking assignment statements. In this scenario, each assignment operation must be

completed within one clock cycle. Therefore, we can express the required invariant, yield,

formally as

Yield = Probability[Di ≤ TB
clk] ∀i (5.5)
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Since there is no notion of memory associated with process variations, we treat this

analogous to a combinational design. Therefore, we employ formal probabilistic analysis

(Section 3.3) which exhaustively analyzes all the random vectors and computes the yield

of the design.

Figure 5.7: Discretizing the Gaussian distribution of a delay variable.

Our methodology can be applied with blocking assignment statements as well. In this

case, the Di in Equation 5.5 is substituted with the composite delay expression (i.e., using

max()) that is obtained according to the semantics described in Section 5.2. Although an

approximation, such delay composition is used in all existing high-level SSTA techniques

[7],[78],[79].

5.6.6 Experimental results: With process variations

In [7],[78],[79], the experiments are not intended to demonstrate the accuracy of early

statistical estimates in comparison to those obtained at the lower levels. Instead, the

authors show that the introduction of variation-awareness at the higher levels can facili-

tate system exploration. If more accurate macromodels are used, they can provide more

accurate timing estimates. In this work, we adopt a similar approach and show that our

SHARPE methodology (Section 3.3) can be used to provide statistical timing estimates

in RTL.

We wish to use experiments to demonstrate that our methodology can be extended to

the context of process variations. For this purpose, we use the values of mean (µ) and

variance (σ2) for adders and multipliers that are given in [78]. We assume a constant value

for all pairwise correlation factors (ρij). However, any other values of mean, variance and

correlation can easily be plugged into our methodology.

We apply our methodology to fft, filter and Kalman, which are RTL designs from the

suite of high-level synthesis benchmarks [85]. For each design, we compute the yield for
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three better-than-worst-case timing specifications: T95, T90 and T85. T95, T90 and T85

are estimates of timing constraints for which the yield of the design is 95%, 90% and

85%, respectively, when spatial correlation is neglected. We estimate these constraints

by analytically solving the closed-form expressions for a set of independent Gaussian

variables. We consider 25 discrete values for each delay variable. In this work, we assume

a constant correlation factor ρ between all pairs of RTL operators in a design.

Table 5.9: SHARPE estimates of yield for HLS95 benchmarks.

Yield
Circuit Correlation T95 T90 T85

fft
ρ=0 93.45% 88.38% 84.74%
ρ=0.1 95.18% 89.64% 86.23%
ρ=0.5 95.84% 91.52% 87.65%

filter
ρ=0 96.54% 93.45% 88.39%
ρ=0.1 96.07% 92.14% 86.63%
ρ=0.5 96.60% 93.39% 89.19%

Kalman
ρ=0 95.70% 91.88% 85.70%
ρ=0.1 95.13% 91.74% 85.07%
ρ=0.5 95.94% 92.90% 88.27%

Table 5.9 shows the values of yield that we estimate using our SHARPE methodology.

For each design, we compute the yield for three values of correlation factors: ρ=0 (no

spatial correlation), ρ=0.1 and ρ=0.5. For ρ=0, we see that the SHARPE estimates

of yield are close to 95%, 90% and 85%, which are the values that we assumed while

setting the corresponding timing constraints. The slight deviation in the yield estimates

is due to the loss of accuracy resulting from discretization. This can be reduced by

considering a larger set of discrete values for the delay variables. However, this fine-

grained discretization results in a larger set of vectors that need to be analyzed. As ρ

increases, we observe that the change in yield is not negligible. This confirms that ignoring

the spatial correlation, as in [78], results in inaccurate estimates of yield.

5.6.7 Comparing the SHARPE methodology with existing high-level

SSTA

High-level SSTA, such as the one described in [7], that use continuous-valued Gaussian

variables can be applied to RTL by using the same notion of RTL delay that we define in

this work. In fact, we use such analyses to verify that the SHARPE estimates in Table 5.9

are reasonably accurate despite the discretization of the Gaussian variables. In terms of
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runtime and scalability, we do not intend our methodology to be a replacement for such

analytical techniques in the context of process variations. Instead, in this work, we aim to

illustrate the broad scope of our SHARPE methodology by showing that its core engine

can be utilized in the context of both process variations as well as input pattern variations.

Our SHARPE methodology for process variations broadly resembles the high-level tim-

ing analysis that is described in [7]. However, we use discrete-valued delay variables

instead of continuous-valued variables and the engine (probabilistic model checking) that

we use for computations is entirely different. Moreover, the technique in [7] is not defined

formally for RTL designs. The authors in [78] use discrete-valued variables to simplify the

computations involved in statistical timing analysis. However, they ignore the correlations

due to spatial proximity of blocks and assume, incorrectly, that the delays are indepen-

dent. Moreover, none of these high-level techniques can be extended for performing timing

verification in the presence of input variations.

5.7 Chapter summary

In this chapter, we have applied our SHARPE methodology for rigorously analyzing sta-

tistical timing at the higher levels of system design. The SHARPE methodology can be

viewed as an integrated solution for statistical static timing analysis RTL by considering

either input variations or process variations as the source of statistics in timing. We also

plan to derive more complex delay macromodels so that our methodology accurately es-

timates the effects on timing that arise in post-synthesis netlists, such as loading of RTL

blocks, wire delays and other parasitics.
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CHAPTER 6

SHARPE FOR AGING ANALYSIS IN RTL

6.1 Introduction

In this chapter, we apply our SHARPE methodology to estimate aging-induced delay

degradation in RTL. The key steps in our methodology, described in Chapter 3, remain

the same as in the case of probabilistic timing analysis (Chapter 5). The main difference

is in the macromodels that we derive and use with our methodology to shift aging analysis

from the lower levels to RTL.

Aging effects depend on the probability distributions of the hardware signals. We

have shown that our SHARPE methodology can effectively compute PMFs of variables

in both sequential (Chapter 4) and combinational designs (Chapter 5). Therefore, our

methodology can be applied to both control logic as well as datapath. However, our

methodology is most effective for data-intensive designs since the RTL datapath operators

abstract away the details of the complex gate-level implementations. In this chapter,

we employ our SHARPE methodology (Section 3.3) for aging analysis of combinational

designs.

6.1.1 Effect of signal statistics on aging

Negative bias temperature instability (NBTI) [27] in PMOS transistors has become a

significant concern in the design of reliable digital circuits. NBTI affects PMOS transistors

in a gate when a negative voltage (logic value 0) is applied at the gate input, causing an

increase in threshold voltage which in turn lowers speed of the gate. Circuit simulations

show that NBTI effects over a lifetime of 10 years can degrade delay by up to 10% which

may potentially violate timing constraints and hence result in a circuit failure [28],[29].

Typically, such failures are detected only while performing extensive pass/fail checks on

the circuit after most of the timing closure is achieved. However, at this stage, it is often

too late to revise circuit topology or architecture in order to improve circuit reliability

by mitigating these failures. Therefore, it is desirable to have a methodology that can
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provide estimates of delay degradation in earlier stages of the design flow.

The extent to which the delay of each PMOS transistor degrades is a function of the

duration for which the transistor is in “stress” mode, i.e., the input is held at a logic

value 0 [27]. There are several timing analysis techniques at the transistor level and the

gate level [30],[31],[32],[33],[34] that predict delay degradation of a circuit by computing

signal probabilities of the circuit nodes. However, if such analyses are present in RTL,

the signal probabilities that are computed would be representative of the actual usage

statistics/workload of the design. As a consequence, RTL analysis provides a wider per-

spective of the effects of NBTI since the delay degradation of a small block is estimated

in the context of a larger operating environment specified by the RTL. To the best of our

knowledge, there is no technique that estimates delay degradation of designs in RTL.

6.1.2 Using our SHARPE methodology to shift aging analysis to RTL

RTL estimation of delay degradation maps the effects of NBTI, an artifact of lower phys-

ical level elements, to higher level design choices. Typically, such mapping involves a

loss in lower-level information, and therefore RTL estimates are distant approximations.

In this chapter, we employ our SHARPE methodology for analyzing aging in RTL. We

demonstrate that, with intelligent mapping, RTL analysis can be made up to 18.2x faster

(Section 6.4) than gate-level analysis while providing reasonably accurate estimates. Such

RTL analysis can be used as an upstream “triage” tool that trades off accuracy for speed

in order to provide early estimates of delay degradation. Analysis at the higher level

emphasizes on predictability over accuracy. The use of RTL aging analysis can avoid

“surprises” at the lower levels where it is too late to implement major revisions in the

design. This approach could detect major aging issues early on in the design cycle and

relegate finer tuning to lower levels of design.

With our methodology, we obtain RTL estimates of delay degradation based on the

RTL signal probabilities. We compute these probabilities entirely in RTL due to their

independence from the gate-level implementation. This is significantly faster than gate-

level aging analysis that propagates probabilities entirely at the gate-level.

In order to map NBTI effects to RTL within specified bounds of error, we construct

macromodels. Our macromodels are subcircuits of the gate-level implementations of RTL

operators. We estimate the delay degradation of an RTL operator by propagating the

computed RTL signal probabilities through all the gates in the corresponding macromodel.

We demonstrate the effectiveness of our methodology by computing accurate estimates

of delay degradation (<10% error) for several data-intensive RTL benchmark designs
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Figure 6.1: Block diagram depicting the application of our SHARPE methodology for
aging analysis in RTL.

with up to 18.2x runtime speedup as compared to estimation using gate-level simulations

(Section 6.4).

6.1.3 Chapter organization

The rest of this chapter is organized as follows. In Section 6.2, we describe the macromod-

els that we construct to shift aging analysis to RTL. We show how RTL signal statistics

can be used with these macromodels to obtain RTL estimates of delay degradation. In

Section 6.3, we describe a methodology to improve the scalability of SHARPE for aging

analysis. In Section 6.4, we demonstrate the effectiveness of our SHARPE methodology

by estimating the delay degradation for several RTL benchmark designs.

6.2 SHARPE methodology for aging analysis in RTL

We describe our methodology (Figure 6.1) by using the RTL code fragment in Figure 6.2

as a running example. We wish to compute the degraded delay at the output O1.

To restrict the aging analysis to RTL, we define degraded delays in terms of the RTL

statements of interest. The degraded delay of a statement depends on the operation that

it performs and the PMFs of the operands (elements of set RHS(v)). In order to find the

degraded delay of a RTL block/module, we need a characterization of delay degradation

88



Figure 6.2: An example RTL block where I1 to I5 are the RTL input signals and O1 is
the RTL output. X1 to X3 and Y1, Y2 are intermediate RTL signals. In general, the
RTL may also contain sequential variables. We consider sequential variables while
computing the signal probabilities. However, we estimate RTL delay degradation only
for the datapath.

for all the statements that appear in the module.

A summary of the steps in our methodology (Figure 6.1) is as follows.

• For every RTL operator, we construct a gate-level circuit that can be used to es-

timate the degraded delay based on the PMFs of the operands. We refer to this

circuit as a macromodel for that operator.

• We compute exact PMFs for RTL operands by employing formal probabilistic anal-

ysis (Chapter 3) on the RTL design.

• Finally, we compute the degraded delays of each RTL statement by using the PMFs

of the corresponding operands and the macromodel for the corresponding operator.

We now describe these steps in detail.

6.2.1 Modeling RTL delay in the presence of NBTI

We construct a macromodels for each RTL operator. A macromodel for an RTL operator is

a gate-level circuit with the RTL operands as inputs. We now define necessary terminology

and describe our technique for constructing macromodels.

Definition 15. A logic cone of a gate input node ig is the set of all gates and nodes of

circuit C that can affect the value of ig. A logic cone for a path P is the union of the

logic cones of all the gate input nodes in P .

Definition 16. A subcircuit of C contains the path P if all the gates and nodes in the

logic cone of P are present in the subcircuit.
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Definition 17. A subcircuit of C is minimal with respect to a set of paths Π if it contains

only those gates and nodes from C that are present in the logic cone of atleast one path

P ∈ Π.

Let circuit C be a possible gate-level implementation that is obtained by synthesizing

the RTL operator. The corresponding RTL operands are the inputs of C. Let Π be the

set of all simple paths of C. The delay of a circuit C is defined by the delay of its slowest

path Pcrit ∈ Π, i.e., the critical path. Therefore, Pcrit determines the delay of the RTL

operator.

The circuit C can be used to accurately estimate the degraded delay of the correspond-

ing RTL operator by computing the signal probabilities for all internal nodes [33]. The

complexity of accurate probability propagation is known to grow exponentially with the

size of the circuit. In order to obtain quick estimates, we consider only a smaller subcircuit

of C. We use this subcircuit as the macromodel M for the RTL operator.

In order to compute the delay degradation of a path P in circuit C, we need to propagate

signal probabilities from the circuit inputs to the inputs nodes of all the gates on the path

[33]. However, we can also achieve this by considering a subcircuit of C which contains

(Definition 16) the path P . We construct the macromodel M by extracting a subcircuit

that contains a set of relevant paths in C.

Let Pcrit ∈ Π be the critical path that determines the delay of C in the absence of NBTI.

Therefore, a macromodel M that contains Pcrit can be used to estimate the delay of C in

the absence of NBTI. However, in the presence of NBTI effects, the delay of all paths ∈ Π

degrade to different extents. Therefore, the new critical path P ′
crit ∈ Π of circuit C can

potentially be different from Pcrit. Since we intend our macromodels to provide reliable

estimates of degraded delay of C, M should ideally contain the path P ′
crit.

The delay degradation of paths depend on the signal probabilities of the internal nodes

which in turn depend on the signal probabilities of the circuit inputs. These input signal

probabilities are determined as a function of the design workload which is available only

during runtime. Therefore, it is difficult to identify P ′
crit apriori and include it in the

macromodel M .

Let M be a subcircuit of C that contains a subset of K paths from Π, where K is a

user-defined value. Consider that M does not contain P ′
crit for the given value of K. Let

Papprox ∈ Π be the critical path of M in the presence of NBTI effects. If the degraded

delay of Papprox ∈ Π closely approximates that of P ′
crit, we can still use M to obtain

reliable estimates of the degraded delay of C. This forms the basis of our macromodeling

technique.
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Figure 6.3: Structurally different macromodels obtained using different strategies.

Definition 18. For each gate-level implementation C of an RTL operator, the corre-

sponding macromodel is the smallest subcircuit that contains (Definition 16) the set of K

slowest paths in C.

NBTI effects may significantly alter the delay distribution of the paths in a circuit. We

present two strategies for constructing macromodels by selecting the K slowest paths in

C either 1) without NBTI effects or 2) with NBTI effects.

Selecting K slowest paths without NBTI effects

In this strategy, we select theK slowest paths in Π in the absence of NBTI-induced delay

degradation. Let ΠK denote this set of K paths. From Definition 18, our macromodel

M is a subcircuit of C that contains (Definition 16) all the paths in ΠK and is minimal

(Definition 17) with respect to ΠK .

In order to construct M , we first determine the paths in ΠK by performing gate-level

static timing analysis on C without considering NBTI effects. We then obtain M by

pruning C and removing all gates and nodes that are not in the logic cones of any path

in ΠK .

The delay degradation due to NBTI is typically less than 10%. Therefore, it is reason-

able to expect that P ′
crit is among the slowest paths of C even in the absence of NBTI

effects. For small values of K, only a small fraction of the paths in Π is present in ΠK .

Therefore,M may not contain the path P ′
crit, i.e., P

′
crit 6∈ ΠK . As the value of K increases,

the likelihood of P ′
crit ∈ ΠK increases. The likelihood of Papprox closely approximating P ′

crit

also increases with K. The accuracy of the degradation estimates provided by M depend

on how closely Papprox approximates the degradation of P ′
crit.

Since we wish to obtain only an estimate of the degraded delay by using M , it is not

necessary to choose K large enough such that M contains P ′
crit, i.e., P

′
crit ∈ ΠK . Instead,
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by setting a smaller value ofK, we can constructM that provides estimates (using Papprox)

within a specified range of error. In the limiting case, for very large values of K, M is

same as the original circuit C.

Selecting K slowest paths with NBTI effects

In this strategy, we obtain the set of slowest paths ΠK by using static timing analysis

on circuit C in the presence of NBTI effects. Since we do not know the actual signal

probabilities of the circuit inputs during macromodeling, we assume that they are all

equal to 0.5. The advantage of this approach is that the K slowest paths are selected

after incorporating some amount of degradation. In certain cases, this could improve the

likelihood of P ′
crit ∈ ΠK . Therefore, for the same value of K, the macromodel obtained by

using this approach may provide more reliable estimates than the macromodel obtained

without considering NBTI effects.

Figure 6.3 shows macromodels that are obtained for an example circuit by using both

the methods with K=1. Path P1 is critical in the absence of NBTI effects whereas path

P2 is the slowest path when NBTI degradation is considered. In this example, the two

strategies result in macromodels that are structurally different.

For including NBTI effects during macromodel construction, we assume the signal prob-

abilities to be equal to 0.5. However, the signal probabilities computed at runtime may

be significantly different. Since there is an uncertainty in both macromodeling strategies,

it is difficult to categorically state that one is better than the other. In Section 6.4, we

empirically compare the two strategies and show that both of them are effective.

We select a macromodeling strategy for every RTL operator and construct a library of

macromodels. For each macromodel, we specifyK (i.e., the size ofM) to trade off between

the accuracy of the estimates and the complexity of computation. This macromodeling

is a one-time effort and can be done offline for a given technology library. We obtain the

synthesized gate-level implementations by using a library that is constructed based on

the PTM 45nm model files [86].

We obtain a distinct macromodel corresponding to each possible gate-level implemen-

tation of an RTL operator. While estimating RTL delay degradation (Section 6.2.3), the

user can guide the selection of macromodels by specifying the gate-level implementation

for each RTL operator. In the absence of such guidance, our methodology will select the

default macromodel for each operator.
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6.2.2 Computing the PMFs of RTL signals

In order to compute the degraded delay of O1 = Y1 + Y2, we require the PMFs of Y 1 and

Y 2. We can symbolically express Y 1 and Y 2 in terms of the RTL inputs as I1+2∗I2+I3
and I4 + I5, respectively (Definition 8). Therefore, once the PMFs of the input signals

are given, we can derive the exact PMFs of Y 1 and Y 2 by using these expressions.

In Chapter 3, we described a systematic technique to derive the PMFs for all variables

of interest. We statically analyze (Section 3.2) the Verilog program in order to derive

the support (Definition 7) and signal function(Definition 8) of each variable v of interest.

We use this information and perform formal probabilistic analysis to exactly compute the

PMFs of all the variables of interest. The formal probabilistic analysis can be applied to

both combinational (Section 3.3) and sequential designs (Section 3.4).

In the combinational RTL example, RHS(Y 1)={X1, X2}. Since X1 and X2 are not

RTL inputs, we step the design backwards once more. We find that the supports of Y 1

and Y 2 are {I1, I2, I3} and {I4, I5}, respectively. The corresponding signal functions

for Y 1 and Y 2 are I1 + 2 ∗ I2 + I3 and I4 + I5, respectively. For any value i that can

be assigned to Y 1, the probability of Y 1 = i is equal to the probability of input vectors

(Definition 9) that satisfy the condition I1+2∗I2+I3 = i. We repeat this for all possible

i and obtain the PMF of Y 1.

6.2.3 Computing the degraded delays in RTL

We compute the degraded delays in RTL on a statement-by-statement basis. For each

RTL statement, we compute the degraded delay of the appropriate macromodel for the

corresponding RTL operator. We use the PMFs of the corresponding operands and prop-

agate them through the gates in the macromodel circuit. For each gate, the degraded

delay can be analytically computed as a function of the signal probabilities of the gate

inputs [33]. We then employ gate-level static timing analysis using these degraded gate

delays and compute the degraded delay of the macromodel.

While propagating the signal probabilities through the macromodel, we ignore the

correlations among the internal gate nodes. This approximation significantly reduces the

complexity of signal probability computation. For small gate-level circuits such as our

macromodels, the delay degradation estimates that are obtained with this approximation

are not far from the estimates obtained using exact probabilities.

The RTL signal probabilities that we compute are exact and account for all correlations

among RTL signals. We approximate the signal probabilities only at the nodes within

each macromodel. In our methodology, the computation of RTL signal probabilities is
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separated from the computation of the signal probabilities of the internal nodes of the

macromodels. Therefore, the approximation does not affect the exactness of the RTL

signal probabilities. As a result, we restrict the approximation errors to the small macro-

model circuits and prevent them from propagating throughout the RTL design. In other

words, we localize the approximate errors to within each macromodel. In Section 6.4, we

demonstrate that our methodology does not incur significant loss in estimation accuracy.

Once we obtain the degraded delays for all statements in the RTL block, we compose

them together and compute the degraded delay of the RTL block. We reuse the semantics,

described in Section 5.2, for composing delays of RTL statements.

The delay of an RTL assignment statement is the time taken from the (rising) clock

edge for the effect of the statement execution to be observed. We consider the rising edge

of clock as the reference point for measuring delay.

In the RTL example (Figure 6.2), the values of the inputs I1 to I5 are available syn-

chronously at the rising edge of clock. However, the assignment to O1 is stabilized

(completed) only when the assignments to both Y 1 and Y 2 are completed. The ar-

rival times for Y 1 and Y 2 may be skewed. In this work, we make an approximation to

deal with this situation. We assume that the signal arrival time TO1 at the output is

TO1 = Tadd+max(TY 1, TY 2) where Tadd is the operator delay and TY 1, TY 2 are the arrival

times of the operand signals.

6.2.4 Revising the design choice

The estimates of degraded delays computed are provided as feedback to the RTL designer

for revising the design. This process can be iterative until the reliability constraints are

satisfied. The use of macromodels avoids the need to synthesize the design to the gate-level

in each iteration.

6.3 Improving the scalability of our methodology

The use of formal probabilistic analysis can potentially restrict our analysis to smaller

designs. In Chapter 7, we present a compositional reasoning approach for probabilistic

verification of RTL designs. We now briefly outline a related strategy to significantly

improve the scalability of our methodology.

Definition 19. RTL signals v1 and v2 are independent if all the signals in the support

of v1 are independent of the signals in the support of v2. RTL blocks B1 and B2 are
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Figure 6.4: In the example RTL block B, Y 1 and Y 2 are independent signals.
Therefore, B can be decomposed into two independent blocks, B1 and B2.

independent of each other if there exists no signal in block B1 that is correlated with a

signal in block B2.

We wish to compute the PMF for the output signal v of an RTL block B. Consider

that B can be structurally decomposed into a into a set of independent blocks Bi (Defi-

nition 19). We first compute the PMFs for the output signals vi of these blocks by using

their corresponding RTL-DTMCs. We then “compose” the PMFs of all vi and compute

the PMF of v. Instead of performing formal probabilistic analysis on the entire block

B, we now verify only the smaller blocks Bi. This forms the basis of our compositional

reasoning strategy.

We modify our static analysis algorithm, described in Section 3.2, in order to determine

the set of independent RTL signals vi in RTL block B. These vi can be viewed as output

signals of a set of independent RTL block Bi. Therefore, the modified static analysis

algorithm decomposes the original RTL block B into a set of independent blocks Bi.

We illustrate the compositional reasoning approach by using the RTL example from

Figure 6.2. Figure 6.4 shows a block diagram that depicts the decomposition of the

example RTL block. We wish to compute the PMF of the output signal O1. Through

static analysis, we determine that O1=Y 1+Y 2=I1+2∗I2+I3+I4+I5. In the absence

of compositional reasoning, we compute the PMF of O1 by analyzing all input vectors

(Section 3.3) with respect to the support {I1, I2, I3, I4, I5}. Consider that all the signals
in the RTL example are of 10 bits each. Therefore, there are 250 possible input vectors

that need to be analyzed. With compositional reasoning, we first compute the PMFs

of Y 1 and Y 2. The number of input vectors that need to be analyzed for computing

the PMFs of Y 1 and Y 2 are 230 and 220, respectively. We then treat {Y 1, Y 2} as the

independent support for O1 and compute the PMF of O1 by using O1=Y 1 + Y 2. This
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computation now requires analysis of only 220 vectors (values of {Y 1, Y 2}).

6.4 Experimental results

We perform our experiments on a 3 GHz, 3.25 GB machine (Intel Core2 Duo CPU). We

obtain the synthesized gate-level implementations by using a library that is constructed

based on the PTM 45nm model files [86].

We perform the following experiments:

• We validate our macromodels by evaluating them across several gate-level bench-

mark circuits.

• We use our macromodels and obtain RTL estimates of degradation for several bench-

mark RTL designs. We demonstrate the effectiveness of our RTL analysis compared

to simulation-based gate-level analysis.

• We analyze the NBTI degradation of RTL blocks during ‘SLEEP’ mode.

Validating the macromodels

We constructed macromodels for several gate-level MCNC benchmark circuits. We es-

timated the degraded delay for five sets of input patterns. Each each of these patterns

corresponds to a different probability distribution. The confidence of validation can be

increased by using more input pattern sets. We determine the average error of our macro-

model estimates as compared to those obtained by simulating the full gate-level circuit

up to 105 cycles.

Figure 6.5 shows the accuracy of the macromodels that we obtain without including

NBTI effects. Our macromodels contain only a subset of the paths from the original

circuit. Moreover, we ignore internal correlations while propagating signal probabilities

through the macromodel (Section 6.2.3). Both these factors may contribute to the macro-

model estimation error. However, for large K (more paths included in the macromodel),

we observe that the estimation error can be removed almost completely. We thus con-

firm that estimation error due to ignoring internal correlations is negligible. Typically,

NBTI effects cause the delay to degrade by about 10%. Therefore, we wish to keep the

macromodel estimation error less than 2%, i.e., much smaller than 10%.

As K increases, more gates from the gate-level implementation are included in the

macromodel (Figure 6.6). Even with K=1, more than one path from the original circuit

is contained in the macromodel due to the inclusion of the corresponding logic cones. The

paths in Multiplier16 are highly correlated. Therefore, the macromodel retains almost
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Figure 6.5: Accuracy of the macromodels (without NBTI effects) as a function of K.
We select large K such that error in degradation estimates is less than 2%.

95% of the gates from the original circuit even for K=1. Even when K is increased to

40, the size of the macromodel does not increase since it already contains the 40 slowest

paths.

Figure 6.6: Size of macromodels (subcircuits) relative to the entire gate-level circuits, as
a function of K.

We ignore internal correlations while propagating signal probabilities through the macro-

model (Section 6.2.3). This approximation is a major component in the runtime speedup

shown in Figure 6.7. At K=1, Multiplier16 exhibits a speedup of almost 100x even

though the macromodel is not significantly smaller than the original circuit.

Table 6.1 compares the estimation errors for macromodels that are obtained 1) with

NBTI effects and 2) without NBTI effects. For b15, the critical path in the presence of

NBTI effects (P ′
crit) is not among the slowest paths in the absence of NBTI effects. This

is because of the high signal probabilities for the nodes in P ′
crit as compared to those in

other paths. Circuit b17 is a composition of three b15 circuits. Therefore, b17 exhibits

a skewing of signal probabilities (and delay degradation) across paths, similar to b15.
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Figure 6.7: Speedup obtained by using macromodels (subcircuits) instead of entire
gate-level circuits, as a function of K. The speedup factors reduces linearly with
increase in the size of the circuit (Figure 6.6).

For b15 and b17, we obtain more accurate estimates by considering NBTI effects during

macromodeling (Section 6.2.1). However, for all the other circuits (only Multiplier16

and Adder16 are shown), there is no observable difference between the two macromodeling

strategies. For all circuits, macromodeling without NBTI effects provides reasonably

accurate estimates and is therefore, a reliable strategy. The inclusion of NBTI effects can

be viewed as a strategy for fine-tuning the macromodel construction. The effectiveness of

such fine-tuning varies across circuits, as shown in Table 6.1.

Table 6.1: Comparing accuracy of degradation estimates using macromodels 1) with and
2) without NBTI effects. For b15 and b17, we observe that considering NBTI effects
during macromodeling reduces the estimation error for the same value of K.

Circuit K=1 K=10 K=40

Without NBTI effects

Multiplier16 2.76% 2.76% 2.76%
Adder16 18.11% 18.11% 9.09%

b15 4.84% 4.05% 4.05%
b17 3.41% 2.23% 2.23%

With NBTI effects

Multiplier16 2.76% 2.76% 2.76%
Adder16 18.11% 18.11% 9.09%

b15 2.80% 2.80% 2.80%
b17 1.00% 0.46% 0.46%

Demonstrating speedup and reliability of RTL estimation

We apply our methodology on several data-intensive RTL designs from the High-Level

Synthesis benchmarks suite (HLS95). We consider different gate-level implementations

for adders. We use the notations bk, mc and cla to denote designs implemented with

BrentKung, Manchester carry and carry look-ahead adders, respectively. For each macro-
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model, we choose K such that the estimation error is less than 2% (Figure 6.5).

We assume that the RTL inputs are uniformly distributed. We obtain the PMFs of all

variables in the RTL design. We start the DTMCs from a known initial state that we

specify and then employ probabilistic model checking to compute the PMFs. For N=10

(i.e., 10 DTMC transitions), we find that the PMFs of all variables converge to a steady

value.

We use our macromodels to estimate delay in RTL in the absence of NBTI effects

(DRTL) as well the average degraded delay (D′
RTL). We compute the the average degra-

dation of the design ∆DRTL=D
′
RTL−DRTL. In Table 6.2, we compare these RTL estimates

with those obtained by using gate-level simulations, denoted by ∆Dgate=D
′
gate−Dgate. We

simulate the gate-level netlist until the estimated signal probabilities converge to within

10% of their steady value (we use 105 simulation cycles).

Table 6.2: Accuracy of our RTL estimates for average degradation. Our estimates for %
degradation (Column 3) closely agree with those obtained from the gate level (Column
4).

RTL design Estimation error for ∆DRTL

DRTL

∆Dgate

Dgate

D′
RTL

filter cla 2.13% 5.56% 5.63%
kalman bk 4.89% 5.41% 6.31%
kalman mc 4.03% 5.68% 6.42%
fft bk 2.10% 5.12% 5.31%
fft cla 2.43% 5.24% 5.31%
ellipf bk 8.82% 4.58% 5.52%
ellipf mc 8.72% 4.75% 5.78%
ellipf cla 9.79% 5.10% 5.23%

In Column 2 of Table 6.2, we list the error in estimating D′
RTL (with respect to D′

gate).

Although we compute exact PMFs in RTL, we ignore the internal correlations while prop-

agating these PMFs through the macromodels at the gate-level (Section 6.2.3). However,

the analysis in [87] shows that the estimation error introduced by this approximation is

negligible. The error introduced by macromodeling is less than 2% (Figure 6.5) and can

be further be reduced by choosing a larger K. The estimation error that remains is due to

the sizing mismatch between the gates in the netlists that we use for constructing macro-

models and the actual netlists obtained by synthesizing the RTL designs. However, both

DRTL and ∆DRTL are affected to the same extent by this error. Therefore, we estimate

the % degradation ∆DRTL

DRTL
(Column 3) and find that it is in good agreement with ∆Dgate

Dgate

(Column 4).
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In Figure 6.8, we show that our runtimes are an order of magnitude lower (18.2x faster

for ellipf cla) than those for gate-level simulation. The time taken for computing the

PMFs of RTL variables dominates the runtimes for our RTL estimation. In practice,

the PMFs computed for ellipf bk can be reused for both ellipf mc and ellipf cla

since they are independent of the gate-level implementation. However, estimation at the

gate-level requires each implementation to be simulated separately in order to propagate

the probabilities.

The speedup afforded by our methodology (Figure 6.8) comes mainly from the ab-

straction of behavior of operators that correspond to large gate-level implementations.

Although our methodology can also be applied in the context of control-intensive RTL

designs, the speedup provided may be quite modest. For example, an if-else construct

maps to a MUX block which corresponds to a relatively few number of gates. In this case,

it may not be worthwhile to construct a macromodel of the MUX implementation.

Figure 6.8: Speedup provided by our methodology. Our RTL estimation is up to 18.2x
faster than gate-level estimation that uses simulations.

We also compute the estimates of worst-case RTL delay degradation (∆DRTL-wc). We

obtain worst-case macromodels where all the gate inputs are held constant at logic 0.

In Table 6.3, we observe that our estimates for % worst-case degradation (Column 3)

closely approximate those computed at the gate-level (Column 4). We do not report any

runtime speedup here since probability propagations are not required. Such worst-case

degradation does not usually occur since it is typically not possible to set all gate nodes

to 0 in any useful circuit. However, our estimates can be viewed as upper bounds on

degradation that can be used with conservative design methodologies.

Our RTL estimates of % degradation (Tables 6.2 and 6.3) of different gate-level imple-

mentations differ from each other at most by about 1%. Therefore, we do not conclude

that one gate-level implementation is better than the other. Instead, at the higher level,

our focus is on differentiating designs at a coarser level of granularity (differ by 5% or
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more).

Table 6.3: Accuracy of our RTL estimates for worst-case degradation.

RTL design Estimation error for ∆DRTL−wc
DRTL−wc

∆Dgate−wc
Dgate−wc

D′
RTL − wc

filter cla 2.21% 9.45% 9.68%
kalman bk 5.02% 9.35% 10.54%
kalman mc 4.76% 9.46% 10.72%
fft bk 2.17% 9.32% 9.98%
fft cla 2.44% 9.63% 10.15%
ellipf bk 8.70% 9.16% 10.04%
ellipf mc 8.96% 8.41% 10.74%
ellipf cla 9.41% 9.53% 9.79%

Analyzing degradation of RTL blocks in ‘SLEEP’ mode

RTL blocks that are are inactive for several clock cycles can be switched off. During

such SLEEP modes, the inputs to the block are held constant in order to reduce switching

activity. However, based on this constant input vector, NBTI effects could be exacerbated.

Recent work [88] attempt to determine the optimal input vector to be applied during

SLEEP mode in order to mitigate NBTI effects. We evaluate the effectiveness of holding

all inputs constant at logic 1 during SLEEP mode.

We consider the adder block in the 32-bit ALU of an OR1200 processor. The adder

output is used whenever the corresponding value of the select signal is assigned. We

assume that the adder is in SLEEP mode whenever it is not used. We introduce a 1-bit

RTL signal called SLEEP that can be asserted to switch off the adder when it is not in

use. We use RTL-DTMCs to compute the signal probability of SLEEP being asserted to

be equal to 0.1875. Our methodology estimates that the delay degrades by 3.23%, which

is an improvement from the 3.79% degradation if inputs are not held at 1. This conforms

to estimates from gate-level simulations which show that degradation reduces from 3.2%

to 2.72% if inputs are held at 1 during SLEEP mode.

Our methodology estimates that the degradation of ellipf bk and ellipf mc is 4.44%

and 2.88%, respectively, when the inputs are held at 1. Since these are lower than the

average-case degradation in Table 6.2, the application of all 1’s during SLEEP mode is

effective for these designs. However, this input pattern worsens the degradation of fft bk

and fft cla to 7.57% and 6.78%, respectively. We confirm all our estimates by using

gate-level simulations.
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6.5 Chapter summary

In this chapter, we have employed our SHARPE methodology for estimating NBTI-

induced delay degradation in RTL. We demonstrated that our methodology provides

quick and accurate estimates of delay degradation in RTL. In future work, we plan to an-

alyze NBTI effects in different operating conditions based on temperature, supply voltage

and process corners.
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CHAPTER 7

AUTOMATIC COMPOSITIONAL REASONING
FOR SCALING OUR SHARPE METHODOLOGY

7.1 Introduction

In our SHARPE methodology, we employ formal probabilistic analysis to verify that a

hardware design satisfies a statistical performance property. However, we found that the

feasibility of this approach is limited to small hardware designs. In order to be practically

useful, our methodology must be applicable to larger designs.

In this chapter, we present a sound approach for compositional reasoning that can be

used to improve the scalability of our SHARPE methodology. We present our approach

and the formal proof of its correctness in the context of combinational designs. However,

in our case studies, we demonstrate our approach on both combinational and sequential

designs.

7.1.1 Compositional reasoning for our SHARPE methodology

We wish to use SHARPE (Chapter 3) to verify a statistical property on a combinational

design. If the size of the design (Definition 10) is too large, then formal probabilistic anal-

ysis (Section 3.3) becomes inefficient. Instead, we can obtain an equivalent verification

result by decomposing the design into smaller designs and then employing formal prob-

abilistic analysis on each of them. This forms the basis of our compositional reasoning

approach.

Let M denote a combinational design and Φ denote the property of interest. Consider

that Φ is expressed over a set of RTL variables Π. We use the SHARPE methodology to

verify that M satisfies Φ, denoted by M |= Φ. The steps in our compositional reasoning

approach are as follows. We partition the set of variables Π into two smaller subsets

Π1 and Π2 and use them as a basis to structurally decompose M into smaller designs

M1 and M2. We employ an assume-guarantee form of reasoning [37] where we guarantee

that M2 |= Φ2 under the assumption that M1 |= Φ1. Therefore, M1 |= Φ1 serves as the

environmental constraint while verifying M2 |= Φ2. This environment constraint can be
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viewed as a channel over which the correlation betweenM1 andM2 can be communicated.

We analyze the space of environmental constraints using a value-based case splitting

approach. Each case in our case-splitting approach corresponds to a possible assignment

of numeric values to the variables in Π1. For each case, we also derive the properties

Φ1 and Φ2 for M1 and M2 respectively. We use formal probabilistic analysis to find if

M2 |= Φ2 using M1 |= Φ1 as the environment. We model the dependence of M2 on the

environmental constraint by computing the conditional probability distribution of the

shared variables between M1 and M2.

Finally, we compose the results obtained for all cases which is equivalent to verifying

M |= Φ. We provide an argument for the correctness of our technique. Our technique

spans a broad class of performance properties such as delay (Chapter 5) and BER (Chap-

ter 4).

In our technique, we need to perform several instances of verification of components

M1 and M2 instead of a single instance of verifying M . However, we keep the size of

components sufficiently small in order to ensure the feasibility of each verification instance.

We are primarily concerned with hardware systems where the variables Π can be assigned

a finite set of Boolean values. Therefore, the space of cases that are based on numeric

values is finite. We show using case studies that some amount of designer guidance during

case splitting can keep the number of cases reasonably small.

Several compositional reasoning approaches have been presented in the context of prob-

abilistic model checking [37],[39],[40],[41],[42]. However, unlike our technique, these ap-

proaches are not automatic.

We show that our technique is extremely effective in practice. We describe case studies

of estimating performance metrics like delay and BER of hardware designs such as ripple

carry adders (Chapter 5), FIR filters [89], MIMO systems (Chapter 4) and an OR1200

processor (Chapter 5). For example, we are able to determine the statistical delay of a

64-bit adder design with over 1040 possible input vectors.

7.1.2 Chapter organization

The rest of this chapter is organized as follows. In Section 7.2, we present a formal de-

scription of the properties for which we describe our compositional reasoning approach. In

Section 7.3, we describe the intuition for the effectiveness and soundness of our approach.

In Section 7.4, we detail each of the steps in our automatic compositional reasoning

technique. In Section 7.5, we describe an optimization that we perform to improve the ef-

ficiency of our approach. In Section 7.6, we demonstrate the effectiveness on our approach
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by considering several case studies.

7.2 Formal definition of performance properties

We now formally specify the statistical properties that we consider in this chapter.

Let V 1 and V 2 be the set of all variables in RTL designs M1 and M2 respectively. M1

and M2 are defined to be independent if they do not possess any variables in common,

i.e., V1 ∩ V2 = 0. Otherwise, M1 and M2 are correlated and the common shared variables

are called interface variables. The set of interface variables between M1 and M2 is given

by Ψ = V1 ∩ V2.
Hardware performance metrics like delay and BER are data-dependent, and therefore

we express them as functions of the variables of the hardware system. We use real-valued

analytical functions fP that are defined over a set of RTL variables Π ⊂ V in the design

M . We refer to Π as the set of observables of M .

We define probabilistic invariants Γ [16] based on the performance metrics of the hard-

ware design, given by

Γ , P [fP (Π) == c] (7.1)

where c is a real-valued constant. “==” is a logical operator that evaluates to TRUE

if the values of the operands are equal and FALSE otherwise. In place of the equality

operator “==”, we allow for the use of inequality operators as well. P [event] denotes the

probability of occurrence of an event. We consider events of two types:

1. Logical event: The evaluation of a logical comparison operation to TRUE. For

example, a logical event occurs if the function fP (Π) evaluates to a numeric value

equal to c and we denote this event by fP (Π) == c.

2. Substitution event: The assignment of a set of concrete numeric values C to a set

of symbolic variables Π, denoted by Π/.C.

We formally represent the computation of performance metrics by using the correspond-

ing invariants to define probabilistic properties Φ of the form

Φ , Γ ≤ p (7.2)

where p ∈[0,1] is a specification of the hardware system. We allow logical comparison

operators other than ≤ to be used for comparing the probabilistic invariant with p.

For sequential designs, we are interested in computing Γ for values of Π at some time

step t. For large values of t, the DTMC may reach a steady state (Section 2.2) where the
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probability of being in a state is independent of the time step. In Chapter 4, we have

shown that the DTMC models for sequential designs that are of interest to us do reach a

steady state in which Γ is independent of t.

The PMFs of the variables in Π are stationary, and therefore can also be viewed as

probabilistic invariants. In every state, the numeric value assigned to v ∈ Π is given

by the signal function f(Sup(v)) (Definition 8). Let Φk be the property that a numeric

value equal to k is assigned to v with probability pk. Since pk = P [v/.k] and P [v/.k] =

P [f(Sup(v)) == k], Φk can be defined as

Φk , P [f(Sup(v)) == k] = pk (7.3)

Therefore, the PMF of variable v of size N can be expressed as the property Φ given by

Φ = Φ1 ∧ Φ2 ∧ ... ∧ Φk ∧ ... ∧ ΦN (7.4)

where ∧ represents a logical conjunction.

We employ formal probabilistic analysis (Chapter 3) and verify M |= Φ. The verifica-

tion procedure for properties described in Equation 8.2 involves the computation of the

invariant Γ and comparing it with p. If p is not specified, verifying M |= Φ is equivalent

to the computation of Γ.

In order to verify M |= Φ, it is sufficient to determine the PMFs of the observables Π

specified in Φ. We can determine the PMFs of Π by using the support and the signal

functions of each variable in Π. In order to do this, it is sufficient to consider a slice of

the design that contains the logic cone of Π. Therefore, in the strict sense, M denotes

this slice of the design. The statistics of M come from the PMFs of the input variables

in the support.

7.3 Our compositional reasoning approach

In this section, we define and establish criteria for compositional verification of proba-

bilistic designs of our interest.

Compositional reasoning states that in order to verify M |= Φ, it is sufficient to achieve

two separate probabilistic verification subgoals, M1 |= Φ1 and M2 |= Φ2. However, if M1

and M2 are correlated, an assume-guarantee form of reasoning is required [37]. In this

form of reasoning we perform probabilistic verification of M2 to guarantee that M2 |= Φ2

under the assumption that M1 |= Φ1. Therefore, M1 |= Φ1 serves as the environmental
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Figure 7.1: Block diagram showing the stages of our assume-guarantee based
compositional reasoning approach. The labels on the arrows show the outputs of each
stage.

constraint while verifying M2 |= Φ2.

Let Π be the set of observable in Φ (Equation 8.2). Consider a partition of Π into

two disjoint subsets, Π1 and Π2. M1 and M2 are the minimal components/slices of M

that contain Sup(Π1) and Sup(Π2), respectively (Section 7.2). Therefore, Π1 and Π2 can

be expressed by using only the variables of M1 and M2, respectively. In other words, a

partitioning of the observable space into Π1 and Π2 can be used to induce a structural

decomposition of M into M1 and M2.

We analyze the space of environmental constraints using a value-based case splitting

approach. Since the observables are manipulatable entities, we divide the space of values

of all observables Π1 of component M1 into separate cases based on their numeric values.

Each case corresponds to a unique assignment of a set of numeric values C to the ob-

servables Π1, denoted by the substitution event Π1/.C. These cases are then propagated

to the interface variables Ψ between M1 and M2. In a non-probabilistic context, it is

sufficient for the constraints to be propagated only to the numeric values of the interface

variables. However, in a probabilistic context, the PMFs of the interface variables need

to be considered.

Every case Π1/.C corresponds to a separate constraint on M1 which in turn acts as

an environmental constraint for M2. For each case, the dependency of M2 on its envi-

ronmental constraints can be modeled using the conditional joint PMF of the interface

variables Ψ given the event Π1/.C. M
′
2 is the model obtained by augmenting M2 with the
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conditional PMF of Ψ. Therefore, the probabilistic behavior of M ′
2 tracks the occurrence

of the event Π1/.C. The non-probabilistic FSMs for M2 and M ′
2 are identical. However,

their corresponding variables do not exhibit identical probabilistic behavior.

For each case, the probability of occurrence of the corresponding substitution event

Π1/.C can be interpreted as Φ1 for M1. For each case, we project the numeric values of

Π1 onto the property Φ by replacing each observable in Π1 that appears in Φ with its

corresponding numeric value specified in C. As a result of this projection, we obtain the

second property Φ2.

We then verify M ′
2 |= Φ2 under every environmental constraint. We use the invariants

obtained as results of verifying M1 |= Φ1, M
′
2 |= Φ2 for all cases and compute a proba-

bilistic invariant which we call Γ12. We then verify Γ12 ≤ p which we shall later prove

(Section 7.4.6) is equivalent to verifying M |= Φ, denoted by

Γ12 ≤ p ≡M |= Φ (7.5)

We are primarily concerned with hardware systems where the observables can be as-

signed a finite set of Boolean values. Therefore, our space of constraints is finite. This is

a domain-specific advantage over generic systems where the numeric values of observables

may range over the entire space of integer/real numbers.

Typically, compositional reasoning of correlated components requires a circular assume-

guarantee technique where verifying M2 |= Φ2 by constraining M1 is supplemented with

verifying M1 |= Φ1 by constraining M2. In our approach, Φ1 represents the joint proba-

bility of the assignment of numeric values specified by C to the observables Π1. Since we

assume that all variables are stationary, the joint probabilities are constant. Therefore

the outcome of verifying M1 |= Φ1 does not depend on its environmental constraints and

it is sufficient to verify M1 |= Φ1 irrespective of any assumptions on the behavior of M2.

7.4 Algorithm for automatic decomposition of hardware systems

We present our algorithm for automatic decomposition of hardware systems in order to

perform compositional reasoning as described in Section 7.3. We describe in detail the

stages of our algorithm as shown in Figure 7.1.

We illustrate our technique using the example combinational RTL code fragment shown

below:

module (I1,I2,I3,I4,O1,O2,O3)

input [9:0] I1,I2,I3,I4;
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wire [9:0] Z1,Z2,Z3,Z4;

output [9:0] O1,O2,O3;

always @(posedge clk)

begin

Z1 <= I1; Z2 <= I2 - I3;

Z3 <= I3 + I4; Z4 <= I3 & I4;

O1 <= Z1 | Z2; O2 <= ~Z3; O3 <= Z4;

end

endmodule

In the example hardware system shown above, I1, I2, I3 and I4 are the system inputs.

O1, O2 andO3 are the system outputs and Z1, Z2, Z3 and Z4 can be viewed as temporary

variables in the hardware system. All variables are of 10 bits and can therefore be assigned

1024 different numeric values (Section 2.3).

We wish to compute the probability that the sum of the numeric values of the hardware

system outputs is equal to 100 (the decimal equivalent of a binary number). Therefore,

the required invariant Γ for the property Φ is defined as P [(O1 +O2 +O3) == 100].

7.4.1 Static analysis of source code

Let Π be the observable that we extract from the property Φ. We statically analyze the

RTL source code (Section 3.2) and determine the support and signal function for each

variable in Π. Given the PMFs of the input variables, the combinational designM models

the probabilistic behavior of Π using Sup(Π) and f(Sup(Π).

Figure 7.2 depicts the static analysis for the RTL example. We extract the observables

Π={O1, O2, O3}. Z1 and Z2 are the elements of RHS(O1). Since Z1 and Z2 are

not inputs, we step back once more and determine that I1, I2 and I3 are the elements

of the union of RHS(Z1) and RHS(Z2). Since all the variables reached are inputs,

Sup(O1)={I1, I2, I3}. Similarly, we obtain Sup(O2)={I3, I4} and Sup(O3)={I3, I4}.
The support of Π is given by Sup(Π)={I1, I2, I3, I4}.
We use the supports to identify the variables that are statistically independent. We

define two variables v1 and v2 to be independent if their supports are disjoint sets, i.e.,

Sup(v1)∩Sup(v2)=0. In Section 7.5, we shall describe an optimized version of our static

analysis technique that can be used to detect independent supports.
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Figure 7.2: Depiction of static analysis for an RTL example.

7.4.2 Structural decomposition of M

We partition the set of observables Π in property Φ into two disjoint subsets Π1 and Π2

such that Π1

⋃
Π2=Π. From static analysis, we know the support and signal functions for

the observables Π1 and Π2. We construct the modelsM1 andM2 by obtaining the minimal

slice of M that contains the logic cone of Π1 and Π2, respectively. Sup(Π1) and Sup(Π2)

are variables in M1 and M2, respectively. Therefore, Π1 and Π2 are the observables ofM1

and M2, respectively. Both M1 and M2 are structurally different from M . If M1 and M2

are correlated, we determine the set of interface variables Ψ=Sup(Π1) ∩ Sup(Π2).

For the RTL example, the partition of Π is Π1 = {O1} and Π2 = {O2, O3}. Therefore,
M is decomposed into M1 and M2 with Sup(Π1)={I1, I2, I3} and Sup(Π2)={I3, I4}.
The set of interface variables between M1 and M2 is Ψ = {I3}.
RTL designs are inherently modular in nature and [38] treats the modules in RTL as

the components that need to be composed together. However, our structural decomposi-

tion strategy is not restricted to this level of granularity and is therefore able to further

decompose such modules resulting in smaller components.

7.4.3 Value-based case splitting of property Φ

We split the property Φ into cases based on the numeric values of the set of observables

Π1. Let Π1/.C denote a case corresponding to an assignment of a set of values C to Π1.

For each case, we define the computation of the invariant P [Π1/.C] as Φ1 (Section

4.2.3). Let ΦC denote the joint PMF of Ψ given the substitution event Π1/.C. We call

this the conditional joint PMF of Ψ given that the event Π1/.C has already occurred.

We use the notation P [A|B] to represent the conditional probability of the occurrence of

the event A given that event B has already occurred. Joint PMF can be viewed as the
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invariant corresponding to a property as defined in Equation 7.4.

We update M2 by substituting the PMFs of the variables Ψ with the conditional joint

PMF ΦC . We call this statistical model M ′
2. However, the set of variables in M ′

2 is the

same as that in M2.

The property Φ in Equation 8.2 can be written as

Φ = P [fP (Π) == c] ≤ p

= P [fP (Π1,Π2) == c] ≤ p (7.6)

We modify the property Φ by substituting the values of Π1 as fixed by the constraint,

into the expression for fP . We define this as property Φ2 given by

Φ2 , P [fP (C,Π2) == c] ≤ p (7.7)

Our value-based case splitting technique can be considered similar to the approach

described in [38]. We do not make any assumptions regarding the function fP . Therefore,

our case splitting technique is applicable to a broad class of performance metrics.

For the RTL example, the constraints are of the form O1/.x where x is one of the 1024

numeric values that O1 can be assigned. Therefore, there are 1024 cases that need to

be considered. Consider the case O1/.5, where 5 is the decimal equivalent of the 10-bit

binary number 0000000101. We obtain the conditional PMF of the interface variable I3

given O1/.5. We construct M ′
2 fromM2 by replacing the PMF of I3 with this conditional

PMF. In this case, we define Φ1 with the invariant P [O1/.5]. We define Φ2 using the

invariant P [(5 +O2 +O3) == 100].

7.4.4 Assume-guarantee based probabilistic verification

For each case Π1/.C, we first verifyM1 |= Φ1 and compute the corresponding probabilistic

invariant Γ1 given by Γ1 = P [Π1/.C]. We then compute the conditional joint PMF ΦC of

the interface variables Ψ by verifying M1 |= ΦC under the constraint Π1/.C.

We then verify M ′
2 |= Φ2 and compute the corresponding probabilistic invariant Γ′

2. We

implicitly use a form of assume-guarantee reasoning here since verifying M ′
2 |= Φ2 can be

thought of as verifying M2 |= Φ2 under the assumption that M1 |= ΦC .

We compute the product of the invariants Γ1 and Γ′
2. We repeat this for all possible C

and obtain the sum of the product of invariants computed for each case Π1/.C. We call
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the resulting probabilistic invariant Γ12 which is given by

Γ12 =
∑

C

Γ′
2Γ1 (7.8)

Finally, we compare Γ12 with p and verify M |= Φ according to Equation 7.5

For the RTL example, we combine the 1024 numeric cases based on the values of x and

compute Γ12 as ∑

x

P [(x+O2 +O3 == 100)]P [O1/.x] (7.9)

Although our approach can be applied recursively, we have used just two components to

simplify the illustration of our technique. In our approach,M ′
2 can be further decomposed

into smaller models M3 and M4. We now define property cases by coupling each case on

M1 with a case based on the numeric values of observables of M3. We use this new

constraint to modify M4 and obtain M ′
4. We project the values of the observables of

both M1 and M3 onto Φ to construct property Φ4. We verify M ′
4 |= Φ4 for all cases and

then compute the required invariant Γ12. Our decomposition technique can be applied

recursively until the size (Definition 10) of the model verified falls below a user-specified

threshold.

7.4.5 Complexity analysis

We now analyze the complexity of our decomposition technique when M is decomposed

into N components M1 to MN . Each property case corresponds to a numeric value

assigned to the sets of observables Πi of the models Mi, i = 1 to N − 1. In order to

compute the invariant Γ12, we verify M ′
N |= Φ′

N for each case.

For large values of N , the size ofM ′
N can be made very small resulting in faster compu-

tation of verification results. However, all of the property cases need to be considered in

order to compute the invariant Γ12. For large values of N , only a small number of observ-

ables from the original set Π may appear in ΠN . Since case-splitting is performed based

on the numeric values assigned to the other N − 1 subsets, the number of verification

instances can potentially be very large.

The computation of the conditional joint PMF ΦC can be viewed as a verification

instance. The complexity of our approach increases with the space of numeric values

that can be assigned to the interface variables Ψ. Therefore, in future work, we plan to

investigate the use of Ψ as a criteria when structurally decomposing hardware systems

[90]. In Section 7.5, we describe an optimization that may reduce the number of cases
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which need to be considered for certain properties and designs.

7.4.6 Proof of correctness

We now show the correctness of our automated decomposition technique for combina-

tional designs. In order to achieve this, we prove that verifying M |= Φ is equivalent to

computing Γ12 and comparing it with p, as in Equation 7.5.

For properties of the type described in Equation 8.2, verifying M |= Φ is equivalent to

computing the probabilistic invariant Γ and comparing it with the specified probability

p. In our decomposition technique, the value of p is not modified. Therefore, we prove

the correctness of our technique by showing that Γ12 computed in Equation 7.8 is exactly

equal to Γ.

For each case Π1/.C, the invariant computed while checkingM2 |= Φ2 is P [(fP (C,Π2) ==

c)] which can be written as P [(fP (Π) == c)|(Π1/.C)]. However, this is not equal to the

invariant Γ′
2 computed by verifyingM ′

2 |= Φ2 sinceM
′
2 andM2 exhibit different probabilis-

tic behavior. Since the PMFs of the interface variables are replaced with the conditional

joint PMFs, the invariant Γ′
2 is given by

∑

K

P [(fP (C,Π2) == c)|(Ψ/.K)]P [(Ψ/.K)|(Π1/.C)] (7.10)

which in turn can be written as

∑

K

P [(fP (Π) == c)|(Π1/.C ∧Ψ/.K)]P [(Ψ/.K)|(Π1/.C)] (7.11)

where P [(Ψ/.K)|(Π1/.C)] is the conditional joint probability of Ψ/.K given the event

Π1/.C.

According to Equation 7.8, Γ12 is computed as
∑

C Γ′
2P [Π1/.C] which can be written

as

∑

C,K

P [(fP (Π) == c)|(Π1/.C ∧Ψ/.K)]P [(Ψ/.K) ∧ (Π1/.C)] (7.12)

From the law of total probability [21] for random variables with discrete values, we know

that the expression for Γ12 in Equation 7.12 can be reduced to P [fP (Π) == c] which is

exactly equal to Γ.
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7.5 Optimization

The complexity of our approach increases with the size of the component DTMCs and

the number of property cases (Section 7.4.3). In this section, we present optimization

strategies that we use to improve the efficiency of our compositional technique. First,

we describe an optimized static analysis technique that can be used to construct smaller

component models. We also outline a strategy for reducing the number of property cases

that need to be considered.

7.5.1 Reduction of size of components

For a variable v ∈ Π, static analysis of the RTL source code can be used to determine

the signal function f(Sup(v)) with respect to the support Sup(v). However, v can also

be expressed as a function of a set of independent variables that are not inputs. We call

this set the reduced support of v, denoted by RedSup(v). We define the corresponding

signal function fR, such that v = fR(RedSup(v)).

For each variable r ∈ RedSup(v), the PMF can be obtained as in Equation 7.4. A

reduced model MR corresponding to Π can then be constructed with only the variables

given by

RedSup(Π) = ∪
v∈Π

RedSup(v) (7.13)

In many hardware systems, we observe that the number of variables in RedSup(v) is less

than that in Sup(v) and that |RedSup(v)| is significantly less than |Sup(v)|. Therefore,

the size (Definition 10) of MR is smaller than that of M leading to faster probabilistic

verification.

For each ri ∈ RedSup(Π), letMi be a model containing Sup(ri) as input and sequential

variables. Therefore, ri is an observable for Mi. Since the variables in RedSup(Π) are

independent, the corresponding models Mi are also independent. The reduced model MR

can be viewed as a parallel composition of independent components Mi [37]. Therefore,

M and MR are probabilistically equivalent with respect to Φ.

Optimized static analysis:

We now describe an optimized version of the static analysis technique (Section 3.2) that

can be used to compute the independent, reduced support for the variables of interest.

We statically traverse the source code for computing RedSup(v) and fR(RedSup(v))

for a variable v of interest. The steps in our optimized static analysis are as follows. These

variables in RHS(v) are annotated with the time step value t− 1. If all the variables in

RHS(v) are independent, we define RHS(v) to be RedSup(v) and the analysis is com-
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plete. If not, we step the circuit backwards by one more time step. Now each variable in

RHS(RHS(v)) is annotated by t−2. If the union over the set of all variables tagged with

t−2 comprises only of variables that are independent of each other, we define the union to

be RedSup(v) and obtain the corresponding fR(RedSup(v)). The algorithm terminates

when the reduced support is obtained. In the worst case, the algorithm proceeds till the

primary inputs are reached and we obtain RedSup(v)=Sup(v). Since the reduced support

is independent, the joint PMF can be calculated as in Definition 1 and this can be used

to compute the PMF of v.

The static analysis methodology to establish independence of two variables x and y (as

in Section 2.1) is as follows. If x and y are inputs, they are independent by assumption. If

x and y are not inputs, they are recursively defined as independent if each variable in the

union of RHS(x) and RHS(y) is independent. Conversely, if x and y are correlated, there

is at least one common/shared variable among the variables with the same annotation

t− i.

In the RTL example, Z1 and Z2 are independent and form the reduced support of

O1. The model M corresponding to O1 has variables S=Sup(O1) that corresponds to

230 possible input vectors. However, the reduced model MR with RedSup(O1)={Z1, Z2}
has only 220 possible input vectors that need to analyzed. The PMFs of Z1 and Z2

itself can be computed using models with input variables {I1} and {I2, I3}, respectively.
Therefore, the use of a reduced support provides significant reduction in the size of the

models on which verification is performed.

7.5.2 Reduction of cases

A function fP (Π) is defined to be separable if it can be written in terms of two other

functions gP (Π1) and hP (Π2) such that Π1,Π2 are disjoint subsets of Π and Π1

⋃
Π2 = Π.

For example, an additively separable function can be expressed as fP (Π) = gP (Π1) +

hP (Π2).

If the functions fP (Π) defined in the invariant Γ are separable, we can perform a case

splitting of the property based on the numeric values of gP (Π1) rather than the numeric

values of Π1. Such an abstraction [91] can be used to significantly reduce the number of

cases that need to be considered.

In some systems, the probabilistic behavior of the components may be symmetric with

respect to the different property cases that we construct. All such symmetric cases can

be analyzed by performing assume-guarantee based probabilistic verification for just one

representative case. In the context of non-probabilistic hardware systems, a similar form
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of symmetric case reduction has been employed in [38].

We perform such abstractions and symmetry reductions in order to reduce the number

of property cases that need to be analyzed thereby reducing the time complexity of our

approach.

7.6 Case studies

We present the following case studies in order to highlight the different aspects of our

technique:

1. Ripple carry adder (Chapter 5)

2. MIMO Systems (Chapter 4)

3. FIR filter

4. OR1200 processor (Chapter 5)

With the exception of the ripple carry adder, the case studies that we consider are all

sequential designs. For these sequential designs, we wish to compute the steady-state

probabilities with respect to performance, i.e., we consider Type A properties described

in Section 3.4.

The results presented in our tables can be interpreted as follows. We terminate ex-

periments for which verification does not complete within 10 hours. In such cases, we

verify the accuracy of our computed invariants by comparing them with high-confidence

estimates that are obtained using a sufficiently large number of simulations. In the table

for each case study, we list both the number of states (or input vectors) in the largest

component model and the number of value-based cases (i.e., verification instances).

For sequential, we use our approach to trade off the complexity in space with that in

time. We are now able to compute probabilistic invariants for models that were previously

“uncheckable” since the model checking tool ran out of memory.

7.6.1 Ripple carry adder

We wish to compute the probability that the delay at the MSB of a ripple carry adder

output is less than a specified timing constraint (Definition 14). We model this delay

invariant approximately (Section 5.2) as a function of carry bits that ripple through the
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design, denoted by ripples, which in turn can be expressed as a function of adder inputs.

For a 32-bit adder, ripples can take a value between 0 and 31 depending on the inputs. The

32-bit adder will have 264 possible input vectors and is therefore, too large for efficient,

formal probabilistic analysis (Section 3.3). For a 64-bit adder, the number of possible

input vectors can be as high as 2128 (approximately 1040).

Since we model delay as a function of ripples, we can compute the delay invariant by

determining the probability distribution of ripples. We decompose the 32-bit adder into

four 8-bit blocks. While verifying Block 4 (corresponding to the higher bits), we will

have to consider all possible values of the lower 24 bits of the adder output. However,

Block 4 only requires information about the probability distribution of ripples through

the Blocks 1 to 3, i.e., the lower 24 bits. Since there are only 24 possible numeric values

for the ripples through Blocks 1 to 3, only 24 cases need to be considered. We apply

this approach recursively to compute the ripples through Blocks 1 and 2. At any point,

probabilistic verification is performed only on an 8-bit adder block.

Table 7.1: Delay invariants at the MSB of a ripple carry adder.

Without decomposition With decomposition
Input Time Invariant Split Input Cases Time Invariant
vectors (sec) vectors (sec)

16-bit 232 2.141 0.9990
2x8-bit 216 9 0.31 0.9990
4x4-bit 28 27 0.93 0.9990

32-bit 264 >10hrs -
2x16-bit 232 17 36.40 0.9688
4x8-bit 216 51 1.63 0.9688
8x4-bit 28 119 3.81 0.9688

64-bit
2128 >10hrs -

4x16-bit 232 99 211.96 0.8730
8x8-bit 216 231 3.70 0.8730
8x4-bit 28 495 7.92 0.8730

Table 7.1 shows the delay invariants that we compute using our technique for adders

of different sizes. We consider several possible splits of the adder designs into smaller

equally-sized blocks. We observe that there exists an optimum point for minimizing the

total runtime while trading off between the size of the component model (i.e., number of

input vectors) and the total number of verification instances.

7.6.2 FIR Filter

We consider a system where a bit x[n] transmitted over a channel [14] at time step n

can be corrupted by fractions of the bits transmitted in the three previous time steps.

Moreover, the channel can also introduce statistical variation, called noise, into the data.

117



Therefore the received data y[n], at time step n, can be modeled as

y[n] =

3∑

i=0

aix[n− i] + η[n] (7.14)

where ai represents the fractions of the previous bits that corrupt the data. The noise is

represented by η[n] which is commonly modeled as a Gaussian random variable and y[n]

is represented using a variable with N bits.

The received data is processed by a digital hardware block, called an equalizer [89]

which is a finite impulse response (FIR) filter whose output is represented as

z[n] =

Taps−1∑

i=0

ciy[n− i] (7.15)

where ci are called the tap coefficients and Taps is the total number of such coefficients.

The FIR output z[n] can then be used to compute x̂[n] which is an estimate of the

transmitted bit.

We wish to compute the BER that is defined as the probability that the transmitted bit,

x[n] is different from the decoded bit x̂[n]. We construct an RTL DTMC (Section 3.4.1)

with x[n − i] and y[n − i] as the state variables, denoted by xi and yi respectively. We

are interested in computing the following invariant:

Γ = P [x̂[n] 6= x[n]]

= P [f(y0, y1, ...yTaps−1) 6= x0] (7.16)

where f is the function defined in Equation 7.15. We observe that f is additively separable.

Therefore, we can rewrite Equation 7.16 as

Γ = P [f(f1(y0, .., yTaps/2−1), f2(yTaps/2, .., yTaps−1)) 6= x0] (7.17)

where f1 and f2 are given by

f1(y0, .., yTaps/2−1) =

Taps/2−1∑

i=0

ciy[n− i] (7.18)

f2(yTaps/2, .., yTaps−1) =

Taps−1∑

i=Taps/2

ciy[n− i] (7.19)
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We split the observables into two sets: {y0, .., yTaps/2−1} and {yTaps/2, .., yTaps−1}. We

need to consider all 2NTaps/2 numeric values of the observables in {yTaps/2, .., yTaps−1},
where each yi is represented using N bits. However, we are interested only in the values

of f2(yTaps/2, .., yTaps−1). We assume that the output of every addition in the filter is

truncated to N bits. Therefore, the number of cases we need to consider is reduced to

2N .

In Table 7.2, we show the BER invariants computed for FIR filters with different number

of data bits (N) and taps (Taps). We observe that the number of cases depends only on

the number of data bits and not on the number of taps.

Table 7.2: BER of an FIR Filter. We use O.o.M to denote Out of Memory.

Without decomposition With decomposition
N Taps DTMC Time Invariant Split DTMC Cases Time Invariant

(bits) states states
6 6 > 1012 >10hrs - 2x3-

tap
222 128 189.44s 5.02x10−3

6 8 O.o.M. - - 2x4-
tap

228 128 234.24s 9.67x10−4

8 6 O.o.M. - - 2x3-
tap

228 512 2713.6s 3.36x10−3

7.6.3 MIMO systems

We wish to obtain the BER performance of the combined operation of a 1x4 MIMO de-

tector and a Viterbi decoder (Chapter 4). Let x be the actual transmitted data bit. Let x′

and x′′ be the bits estimated by the MIMO detector and Viterbi decoder, respectively. We

express the BER invariant of the combined system as a function of x, x′ and x′′ which can

in turn be written as a function of the state variables of the individual components. This

function is fairly complex, and therefore we omit its description here. Direct application

of our SHARPE methodology (Section 3.4) on the combined system is infeasible due to

the large state space of the corresponding RTL DTMC model.

Table 7.3: Individual BER values for a MIMO detector and Viterbi decoder.

States States Time Invariant
(Original model) (Reduced model) (sec)

MIMO 1x4 524, 288 1, 320 53.27 1.08x10−5

Viterbi 53, 558, 744 8, 505, 363 184.13 0.2394
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We choose to perform case-splitting based on the numeric values of x and x′. In

other words, we model check the Viterbi decoder, by conditioning on whether the MIMO

detector output is correct or not. We need to consider four cases of the form (x = i, x′ = j),

where i,j ∈ {0, 1}. However, the occurrence of bit errors at the MIMO detector output

is independent on the values of the decoded and transmitted bits. Therefore, due to

symmetry, we only need to consider two cases: (x = 0, x′ = 0) and (x = 0, x′ = 1). In

Table 7.4, we show the BER invariant computed using our methodology.

Table 7.4: BER for a MIMO detector operating in conjunction with a Viterbi decoder.

Without decomposition With decomposition
States Time Invariant States Cases Time Invariant

(sec)

MIMO 1x4
O.o.M. - - 8, 505, 363 2 493.45 0.2437

+ Viterbi

7.6.4 OR1200 processor

In the control logic of processors, even single bit flips that occur due to soft errors [9] can

be catastrophic. Therefore, it is desirable to have an estimate of the soft error rate (SER)

which is defined to be the probability of occurrence of soft errors. In this case study, we

consider an OR1200 processor, an open-source embedded RISC processor. We wish to

compute the SER invariant for the RTL variable sel a that determines the address which

one set of data values are read from or written to.

Through static analysis, we determine that sel a depends on whether the address stored

in six bits of the fetched instruction if insn[21:16] is equal to the address stored in

rf addrw. It is reasonable to assume that SER depends on the values of the RTL variables

for stall (if stall), freeze (if freeze) and pipeline flush (flushpipe). Therefore, we define

the SER invariant as a function f(if stall, if freeze, f lushpipe, if insn[21:16], rf addrw).

Without decomposition, PRISM is unable to construct the required DTMC model.

Therefore, we perform case-splitting based on the numeric values of if insn[21:16] and

rf addrw. Each of these are 6-bit variables, and therefore we need to consider 212

cases. From static analysis we identify that the numeric values of if stall,if freeze and

flushpipe depend only on whether rf addrw is equal to 0 or not. Therefore, we model

rf addrw to have either value 0 or a value i (i 6= 0) that represents the remaining 63 non-

zero possibilities. We are only interested in checking whether if insn[21:16]=rf addrw.

Therefore, we consider only three values for if insn[21 : 16]: 0, i (i 6= 0) and j (j 6= 0,
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j 6= i). We consider 3x2=6 combinations of numeric values for if insn[21:16] and

rf addrw. A similar data abstraction technique has been used in [38]. Table 7.5 shows

the SER computed using our decomposition methodology.

Table 7.5: SER for the sel a variable in the control logic of an OR1200 processor

Without decomposition With decomposition
States Time Invariant States Cases Time Invariant

(sec)

sel a O.o.M. - - 3, 145, 729 6 16.48 1.0 x 10−8

In general, control logic of processors can depend on datapath variables . Considering

a case-splitting based on the values of such variables can potentially lead to a very large

number of cases. However, data-dependant control logic typically is concerned with only

a few possible data values for a particular case. Therefore, the number of cases to be

verified is small in practice.

7.7 Chapter summary

In this chapter, we have presented an automatic decomposition technique to scale proba-

bilistic verification for hardware designs. We have shown that our technique can be used

to significantly improve the scalability of our SHARPE methodology by demonstrating it

on several case studies.
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CHAPTER 8

ABSTRACTIONS IN RTL SOURCE CODE FOR
SCALING OUR SHARPE METHODOLOGY

8.1 Introduction

In this chapter, we describe another novel technique to improve the scalability of our

SHARPE methodology. We present a value-based interval abstraction technique to scale

formal probabilistic analysis in the SHARPE methodology. We intend our value-based

interval abstraction for datapath-intensive RTL designs which are often purely combina-

tional. However, in principle, our technique could be extended to work with sequential

designs as well.

For combinational designs, we wish to determine the probability that input vectors

satisfy a condition specified in the statistical property (Section 3.3). In our SHARPE

methodology, we compute this probability by analyzing every possible input vector of the

design. With our abstraction technique, we reduce the number of input vectors that need

to be considered while preserving the correctness of the verification result with respect

to the property. As in the case of non-probabilistic RTL verification [44],[92] we perform

our property-specific abstraction by using static analysis at the RTL design source code

level (Figure 8.1).

Figure 8.1: Our value-based interval abstractions are applied at design source code level,
leading to a smaller number of input vectors that need to be analyzed.
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8.1.1 Value-based interval abstraction

We are interested in properties Φ of the form P [fP (V ) < T ], where fP is a real valued

function that is defined over the set of RTL variables V and T is a user-specified value.

fP (V ) < T is a predicate that evaluates to TRUE or FALSE for an input vector depending

on the numeric values assigned to V in that input vector (for example, Delay < T ). When

we verifyM |= Φ, we are actually computing the probability of all input vectors where the

predicate is TRUE. Therefore, among all possible input vectors of M , only those vectors

where the predicate fP (V ) < T evaluates to TRUE are relevant. Each input vector of M

corresponds to a unique assignment of values to the input variables in the RTL design

(Definition 9). We restrict inputs to intervals of values (value-based intervals) such that

only the relevant input vectors of M are considered.

Value-based intervals for RTL inputs can be used to construct an abstract model MA

by discarding all the irrelevant input vectors. In order to derive these intervals, we first

consider the predicate fP (V ) < T as a symbolic constraint on the values of variables in

V . We rewrite such symbolic constraints as constraints that are expressed over the input

variables in the support Sup(V ) (Definition 7). We achieve this by performing symbolic

execution [93] on the RTL source code. We use an integer constraint solver to obtain lower

and upper bound values of the intervals for these inputs by maximizing (or minimizing)

the value of the input variable for which the predicate fP (V ) < T is satisfied. We use

these intervals and construct the smaller (Definition 10) abstract model MA from the

concrete model M . We then check if MA |= Φ which we show is equivalent to verifying

M |= Φ.

We demonstrate the application of our technique on multiple practically useful designs

that could not otherwise be formally verified due to their large sizes (Definition 10).

Datapath verification is notoriously hard [94] to get guarantees for. Our abstractions

are intended to verify probabilistic performance on the datapath of RTL designs. We

consider filters and FFT blocks that are widely used in communication/DSP systems, as

well as an H.264 decoder. We show consistent and significant reductions in size which

make probabilistic verification of these RTL designs feasible. For example, we are able to

verify a module in the H.264 decoder for which the concrete model corresponds to over

1080 possible input vectors. In the the abstract model, there are only approximately 109

input vectors that need to be analyzed.
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8.1.2 Chapter organization

The rest of this chapter is organized as follows. In Section 8.2, we present some back-

ground that describes the framework in which we perform our abstraction. In Section 8.3,

we describe the intuition for the effectiveness and soundness of our value-based interval

abstraction. In Section 8.4, we detail each of the steps in our abstraction technique. In

Section 8.5, we present experimental results that demonstrate the effectiveness of our

approach.

8.2 Framework for our value-based interval abstraction

We now present the framework in which we describe our abstraction technique for scaling

our SHARPE methodology.

8.2.1 Variables in RTL designs

We shall use the following example combinational RTL source code in order to illustrate

the steps of our abstraction technique (Section 8.4).

always @(posedge clk)

if (sel)

O1 <= I1 + I2;

else

O1 <= 4*I2 + I3;

end

where I1, I2, I3 are the inputs, sel is a Boolean control variable and O1 is the output.

All input and output variables are of 10 bits and can therefore be assigned 1024 different

numeric values (Section 2.3).

In RTL source code, a variable v can be assigned integer values in the range [l u] where

l and u denoted the lower and upper bounds, respectively. For an N -bit variable, we

assume the default range of values to be [0 2N -1].

The values assigned to the control variables activates/selects one among several possible

paths in the RTL design. Each path may result in a different assignment to the value of a

variable. Therefore, for each path i, a signal function fi (Definition 8) needs to be defined

for each variable v that is of interest. However, Sup(v) is computed by considering all
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possible paths. In the RTL example, there are two possible paths (sel=0 and sel=1) and

Sup(O1) = {I1, I2, I3}.

8.2.2 Statistical properties in RTL

For our abstraction technique, we consider the same types of properties described in

Section 7.2.

Let fP (Π) be a real-valued expression defined over a set of RTL variables Π. The

expression fP (Π) may contain arithmetic or Boolean operators. We define probabilistic

invariants Γ [16] based on some condition that fP (Π) must satisfy, given by

Γ , P [fP (Π) < T ] (8.1)

where T is a real-valued constant and fP (Π) < T is the predicate that is of interest to

us. P [predicate] denotes the probability that the predicate is satisfied (i.e., TRUE) by

an assignment of concrete numeric values to Π. Γ is the probability that an input vector

will satisfy fP (Π) < T . In place of <, we allow for the use of other relational operators

as well.

We formally define probabilistic performance properties Φ of the form

Φ , Γ ≤ p (8.2)

where p ∈[0,1] is a specification of the design. We allow logical comparison operators

other than ≤ to be used for comparing the probabilistic invariant with p.

We employ probabilistic verification to verify whether an RTLM satisfies a property Φ,

denoted by M |= Φ. The verification procedure for properties described in Equation 8.2

involves the computation of the invariant Γ and comparing it with p. If p is not specified,

verifying M |= Φ is equivalent to the computation of Γ.

We now describe an example of a property Φ. Let Φ be a statistical timing property

(Chapter 5). We wish to compute the probability that the RTL delay meets a timing

requirement T . The delay of an RTL block can be expressed as a combination of the

macromodels of all the operators in the block (Section 5.2). We consider delay in terms of

RTL assignment statements. The delay of an RTL assignment depends on the operator

and the values of the operands in the RHS. We consider real-valued analytical functions

fP , which we call macromodels, that estimate the delay of an operator based on the value

of the operands. For each RTL operator, we derive the macromodel fP by performing

extensive simulations of a gate-level implementation of the operator (Section 5.2). In the
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Figure 8.2: Block diagram showing the stages of our predicate-based data abstraction
technique. The labels on the arrows show the outputs of each stage.

RTL example, the delay of I1+ I2 can be computed by using the macromodel fP (I1, I2)

corresponding to the specified adder implementation. With a ripple carry adder imple-

mentation, fP is a polynomial function of the number of carry bits in the addition of I1

and I2.

8.3 Our abstraction using value-based intervals

In this section, we define and establish criteria for performing value-based interval ab-

stractions on probabilistic systems of our interest, namely RTL designs. We perform our

abstraction by statically analyzing the RTL source code.

Let Λ be the predicate that is specified in the property Φ. Let Π be the set of RTL

variables over which Λ is expressed. We wish to verify whether M |= Φ. In other words,

we wish to compute the probability of occurrence of input vectors where Λ is TRUE. This

can be achieved by considering a smaller model MA that contains all the input vectors

of M where Λ = TRUE. MA is the abstract model corresponding to the concrete model

M . Since each input vector ofM corresponds to a unique assignment of concrete numeric

values to the input variables Sup(Π), the construction of MA corresponds to retaining

only those values of inputs for which Λ = TRUE. All other values of the inputs are

inconsequential and can be lumped together by using a single representative value. As

a result, the abstract model MA is typically smaller (Definition 10) than the concrete

modelM . This forms the basis of our data abstraction technique.

Λ = TRUE imposes a constraint on the values that can be assigned to the variables in Π.
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Figure 8.3: a) Exact constraint for values of inputs x,y. b) Conservative value-based
intervals for inputs x,y.

In order to construct an abstract model MA, we wish to use this constraint to determine

the concrete values of the input variables Sup(Π) that need to be considered. We achieve

this by using RTL symbolic execution [93] to rewrite the constraint on variables Π as a

constraint on inputs Sup(Π). Symbolic execution statically explores all possible paths

through the RTL design and determines a constraint Ci on the values of Sup(Π), for each

path i.

Each constraint Ci specifies an exact bound on the values of Sup(Π) for which Λ =TRUE

on path i. However, in general, Ci is specified jointly over multiple input variables in

Sup(Π). Since we define assignments to input variables independently, we wish to ob-

tain constraints that are specified over individual input variables. Therefore, we use a

constraint solver (ILP) with Ci to derive value-based intervals for each input variable in

Sup(Π). Since we wish to compute the probability of Λ = TRUE for all paths through

the design, we construct an abstract interval ψabs for v that includes all the values from

the intervals computed using each Ci.

Finally, we use the abstract intervals for each v ∈ Sup(Π) in order to construct the

abstract model MA. We then verify M |= Φ by checking MA |= Φ

For each v ∈ Sup(Π), we consider all values of v such that there is a possible assignment

of values to the other input variables ∈ Sup(Π) \ {v} that would satisfy Λ =TRUE.

Therefore, the value-based intervals that we construct are conservative (Figure 8.3). MA

may contain input vectors from M in which Λ=FALSE. However, we do not discard any

state from M in which Λ= TRUE. Therefore, our abstraction is sound with respect to

the probabilistic property of interest.

127



Figure 8.4: a) Rules for linearizing constraints, b) ILP instance for computing upper
bound of v.

8.4 Algorithm for value-based interval abstraction

We wish to construct an abstract modelMA in order to determine P[(fP (Π) < T )], where

fP (Π) < T is the predicate of interest, Λ. Figure 8.2 shows the different steps in our

abstraction technique. We now describe each of these steps in detail.

We shall illustrate our technique using the RTL example in Section 8.2. Let P[O1 < 100]

be the invariant that we wish to compute.

8.4.1 Symbolic execution to generate constraints

We use symbolic execution to explore each possible path i in the RTL design and generate

a corresponding constraint Ci on the input variables. For each path i, let v=fi(Sup(v))

where fi is the signal function for variable v. Therefore, a predicate fP (v) < T can be

written as fP (fi(Sup(v))) < T which is a constraint Ci on the values of the input variables

Sup(v).

Symbolic execution refers to the execution of a single path with symbolic inputs. Sym-

bolic execution of a path generates symbolic expressions that are a logical conjunction

of the guards (conditional expression of branches) and assignments to the variables used

in guards along that path. Symbolic execution is well known in software [95]. In re-

cent work [93], symbolic execution has been introduced for RTL source code. The RTL

symbolic execution engine works on the CFG and expression tree structure of each RTL

“program” statement. For each single statement or conditional expression in the design,

the expression tree structure exactly records the corresponding assignment or expressions

and is linked to corresponding CFG node.

The RTL symbolic execution engine [93] considers exactly one path i of the CFG
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at any given time. At each CFG node in path i, the corresponding expression tree is

traversed and output as symbolic expression. When a variable v ∈ Π is encountered, the

corresponding signal function fi(Sup(v)) is output by the engine. Every occurrence of

v ∈ Π in fP (V ) < T is substituted with the corresponding signal function fi(Sup(v)).

We thus obtain the constraint Ci on Sup(v) corresponding to the path i. We repeat this

for all possible paths i in the RTL design and obtain the corresponding constraints on

the input variables. Further details of the RTL symbolic execution engine, along with an

optimization strategy for path exploration, can be found in [93].

In the RTL example (Section 8.2), we obtain the linear constraints I1+I2 <100 and

4 ∗ I2+I3 <100 corresponding to the paths sel=1 and sel=0, respectively.

8.4.2 Linearizing the constraints

A linear constraint will have terms on the left-hand side that are separated by +/- signs.

Each term can be a variable multiplied by a constant numeric value. Since datapaths of

RTL designs comprise mainly of arithmetic operators, each constraint Ci is typically a

linear constraint that is defined over the input variables. However, if the constraints are

not linear, we transform them into a set of linear constraints.

In Figure 8.4, we outline a set of rules for transforming non-linear operations into

linear constraints. All the rules that we have defined can be extended easily for relational

operators other than <. The terms (X >> m) and (X << m) represent shifting the

variable X by m bits towards the right and left, respectively. These operations are

equivalent to division and multiplication by 2m, respectively.

If there is a term corresponding to multiplication of non-constants, we split the term

into a set of linear constraints. Let X1 ∗X2 be the non-linear term in the constraint Ci.

We treat X1 ∗X2 as an input variable and compute its upper bound Ti. We then rewrite

this term as two linear constraints LC1 and LC2, as in Figure 8.4.

Concatenation of variables is supported in RTL designs. Let X1, X2 be n1-bit and n2-

bit variables, respectively. The variables can be treated as strings of bits and concatenated

to get a string of n1+n2 bits, represented by the term {X1, X2}. This algebraic operation
corresponding to this term can be rewritten as the linear expression X1 ∗ 2n2 +X2.

We apply the above rules recursively to each non-linear constraint and derive a set

of linear constraints LC1 to LCNumLC , where NumLC is the total number of linear

constraints. The rules that we have defined in Figure 8.4 are not complete, since there

RTL designs support several other operators. However, our rules are sufficient for the

large class of datapath RTL designs that are used in DSP systems.

129



In general, the predicate can be expressed as a polynomial function over variables Π.

In such cases, we can define rules to convert non-linear terms such as (Xq < Ti) into

corresponding linear terms (X < 1/q
√
T i) (for q > 1 and non-negative X). However, in

this chapter, we only consider predicates that are linear functions over Π.

8.4.3 Deriving value-based intervals for input variables

We consider a linear constraint LCi. For each input variable v that appears in the ex-

pression for LCi, we wish to compute the interval ψ(i) = [l(i) u(i)] of values that can be

assigned to it. We achieve this by formulating an instance of the ILP problem.

Figure 8.4 shows the ILP instance for computing upper bound of v. Each ILP instance

comprises one linear constraint LCi, and a set of constraints that force all variables vj

(including v) that appear in LCi to be non-negative integers. The objective of the the ILP

problem is to maximize the integer value of v such that all the constraints are satisfied.

If the ILP instance has an optimal solution, we set u(i) to be equal to that solution. If

the ILP instance is “unbounded”, it implies that all non-negative integer values for v will

satisfy the given set of constraints. In this case, we set u(i) to the default upper bound

(i.e., 2N -1, as in Section 8.2.1 and mark v as a free variable. Similarly, we compute l(i)

by changing the objective function to min v.

We perform this interval computation for all linear constraints. If a variable is marked

to be free, we do not compute its intervals for any of the subsequent linear constraints.

Finally, we compute the most conservative interval for each input variable v, by com-

puting the union of the intervals ψ(i) that are obtained using the linear constraints LCi.

We call this the abstraction interval ψabs for the variable v.

ψabs =

NumLC⋃

i=1

ψ(i) (8.3)

In the RTL example (Section 8.2), we compute the intervals [0 99] for both I1 and I2

based on the sel=1 path. Based on the constraint in the sel=0 path, we compute the

intervals [0 24] and [0 99] for the variables I2 and I3, respectively. After computing the

union of the two intervals for I2, we observe that ψabs for all I1, I2 and I3 is equal to [0

99].

If there is a “-” sign in the left-hand side of the constraint, all the variables that appear

in the constraint will be unbounded. For example, it is possible for each value of the

variable X1 (and X2) to satisfy the constraint X1−X2 < 100. However, it is possible to

compute a lower bound for X1 if the > operator is used in the constraint instead of <.
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In this work, we have considered unsigned arithmetic where RTL variables are inter-

preted to have non-negative integer values. However, the rules in Figure 8.4 can be easily

extended to the case of signed arithmetic, where negative integer values are also allowed.

In principle, we can derive value-based intervals of sequential variables as well. In this

case, we would need to “unroll” the design and compute the intervals for the sequential

variable in each time step. We would then choose the largest interval across the time

steps and define it to be the abstract interval for the sequential variable.

We use the abstraction intervals in order to describe the abstract model MA.

Table 8.1: Sizes of the ILP instances that we use to derive the intervals for input
variables. We also list the total abstraction time for each design.

Design Predicate No. of No. of No. of Time

name name inputs paths constraints

fir p8 6 (8-bit) 1 1 <10s

elliptic p9 12 (8-bit) 1 1 <10s

fft8 p10 8 (16-bit) 4 4 <10s

Inter pred LPE p1 5 (8-bit) 180 131 <10s

Inter pred LPE p2 5 (8-bit) 180 131 <10s

Inter pred LPE p3 5 (8-bit) 180 131 <10s

Inter pred pipeline p4 32 (8-bit) 1936 1932 <10s

Inter pred pipeline p5 3 (8-bit) 8 5 <10s

Inter pred sliding window p6 19 (8-bit) 29 21 <10s

Inter pred sliding window p7 16 (8-bit) 29 21 <10s

8.5 Experimental results

We implement the RTL symbolic execution algorithm using C++. We perform all our

experiments on an Intel i5 2.67GHz quad-core machine with 16GB of memory. We use

lpsolve [96], an open source ILP solver, in order to solve the set of integer linear constraints

and derive the value-based intervals for the inputs.

We demonstrate the effectiveness of our methodology by applying it on two sets of

data-intensive RTL designs. The first set of designs comprise fir, elliptic and fft8

all of which are high-level synthesis benchmarks [85] that are commonly used in com-

munication/DSP systems. Filter coefficients are fixed and stored in a ROM table. We

consider constant values for these coefficients. Inter pred LPE, Inter pred pipeline
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and Inter pred sliding window are different modules from a real-world H.264 decoder‡

and constitute our second set of designs. In this work, we analyze each of the H.264

modules independently.

In Table 8.1, Number of paths represents the total number of paths that needs to be

explored during symbolic execution. This number is with regard to the variables which

appear in the predicate (described in Table 8.2) of the specified property. Since our designs

do not contain multiplication of variables with each other, there should be exactly one

linear constraint per path (Section 8.4.2). However, in some paths, all variables are

assigned a constant value, and therefore the predicate is vacuously TRUE or FALSE.

We discard these paths and consider only the linear constraints (Number of constraints)

corresponding to the remaining paths while formulating the ILP instances.

In Table 8.1, Number of inputs represents the total number of input variables (and their

bitwidths) on which the variables in the predicate depend, i.e., Sup(Π). Therefore, each

of these input variables appear in at least one of the linear constraints. However, in each

linear constraint, at most a small subset of these input variables are present. Therefore,

each ILP instance is small and the corresponding runtime of lpsolve is also negligibly

small. The total abstraction time, which includes the time for both the generation of

linear constraints and the ILP solver, is less than 10 sec in all our experiments.

Table 8.2: Description of the predicates that we use to specify properties of our interest.
To verify these properties, we compute P [Predicate = TRUE].

Predicate name Predicate description
p1 bilinear0 A + bilinear0 B < 8
p2 bilinear0 A + bilinear0 B < 6
p3 bilinear0 A + bilinear0 B < 4
p4 8*Inter blk mvx + Inter blk mvy < 2
p5 Inter pred out0 < 200
p6 Inter pix copy0 < 2
p7 Inter H window 0 0 < 3
p8 y<30
p9 outp < 30
p10 s3r < 127

For each of the designs that we consider, we specify a property that is defined over

some internal data variables. Table 8.2 provides a description of all the predicates that

we define in order to specify the properties of interest. fir and elliptic are filter

designs in which it is common to check whether the output is less than a user-defined

threshold. Therefore, we define the predicates p8 and p9 over the output variables y and

‡www.opencores.org
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outp, respectively. Although not exact models, these predicates can be viewed as being

representative of certain performance properties of the design. For example, y can be an

input to an adder block for which the performance constraint requires that y < 30, as in

p8. For our experiments, we consider predicates that are linear functions over a set of

RTL variables and we use the “<” relational operator. For each of the H.264 modules,

we consider multiple predicates.

Table 8.3: Reductions in size of models that we achieve by using our abstraction.

Concrete model Abstract model

Design Predicate No. of No. of

name name input vectors input vectors

fir p8 256 228

elliptic p9 296 ≈ 229.73

fft8 p10 216 216

Inter pred LPE p1 240 ≈ 215.85

Inter pred LPE p2 240 ≈ 214.04

Inter pred LPE p3 240 ≈ 211.61

Inter pred pipeline p4 2256 228

Inter pred pipeline p5 224 ≈ 222.95

Inter pred sliding window p6 2152 ≈ 230.11

Inter pred sliding window p7 2128 228

Table 8.4: Demonstrating correctness of our abstractions using smaller, contrived
versions of benchmarks designs since the concrete models cannot be verified for the
actual sizes. The verification result is P [Predicate = TRUE].

Concrete model Abstract model

Design Predicate No. of Result No. of Result

name input vectors input vectors

fir (small) (y < 12) 224 4.65x10−4 ≈ 215.57 4.65x10−4

elliptic (small) (outp < 30) 230 9.65x10−7 ≈ 214.39 9.65x10−7

Table 8.3 demonstrates the reduction in model size Definition 10) provided by our

abstraction method. Formal probabilistic analysis (Section 3.3) times out while trying

to construct any of the concrete DTMC models, and therefore these designs can not be

verified. We estimate the number of input vectors in the concrete model based on the

total number of combinations of values that can be assigned to the corresponding input
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variables. There is no reason to believe that the RTL inputs, which are data variables, are

restricted and we use their full range of values to estimate the size of the concrete model.

In all the designs, with the exception of fft8, we are able to obtain significant reductions

in size by using our abstraction technique and formal probabilistic analysis successfully

verifies them. We approximately represent the number of input vectors in the abstract

model as powers of 2, in order to facilitate comparison with the concrete number of input

vectors.

p1, p2 and p3 are all the same predicates that differ only in the constraint values that are

specified in the RHS. We observe that as the constraint values get smaller, the number of

relevant data values (and hence states) also decrease. Our technique is extremely effective

when the predicate is true for only a small fraction of the possible data values. Although

our technique would still be sound for larger constraint values, the reduction that we

achieve may be far more modest.

Since verification could not be completed for the concrete models in Table 8.3, we do

not present a comparison of the verification results for these designs. Instead, as a proof of

concept, we construct smaller versions (smaller bitwidth for inputs) of fir and elliptic

and verify that the results computed using the concrete model and the abstract model

are exactly the same (Table 8.4). We choose the smaller bitwidths such that formal

probabilistic analysis is feasible for the concrete model. For example, we consider 3-bit

data for fir(small) and the runtime is <10s. We do not consider a smaller fft since our

abstraction does not provide any reductions for it (Table 8.3).

In fft8, we are not able to demonstrate any reduction in size using our abstraction.

This is due to “-” operator in the RTL design. As described in Section 8.4.2, a “-” sign on

the left hand side of a “less than” constraint will result in unconstrained values for all the

input variables. JPEG encoder is another design for which we cannot obtain reductions.

The module of the encoder design that we consider is control-intensive, and therefore

the number of paths that need to be explored by the symbolic execution algorithm is

huge (Section 8.4.1). For this design, we stopped the symbolic execution engine after 1hr

of exploring paths and generating the corresponding constraints. We could not use this

incomplete set of constraints since all possible paths in the design need to be considered

in order to guarantee correctness of our abstraction.

In all the designs mentioned above, we find that the control paths are independent

of the values of data. This is fairly common for a large class of data-intensive designs

that are commonly used in DSP systems. For example, typical control variables that

we observe are counters that are not data-dependent. Since control variables control the

selection of paths and since we wish to consider all possible paths, we cannot constrain

134



the values of such variables. In non-DSP designs, the control variables may depend on

input data variables, and therefore all such input variables must also be unconstrained.

In these cases, the overall reduction achieved by our abstraction technique may not be

very large.

In RTL designs, it is possible that arithmetic operations can result in an overflow (or

underflow) due to insufficient number of bits that are assigned to store the results. Ideally,

such incorrect computations should not be allowed. Our technique cannot detect such

overflow errors. Typically, overflows are prevented in DSP designs by assigning sufficient

number of bits to the different variables in the design. Our abstraction techniques can be

applied on such designs.

8.6 Chapter summary

In this chapter, we have presented a property-specific value-based interval abstraction

technique that is applied at the source code level. We intend our abstraction for scaling

probabilistic verification of hardware designs. In future work, we plan to broaden the

applicability of our abstraction technique by considering designs that use signed arith-

metic. We also plan to circumvent the path explosion problem faced by our approach

while handling control-intensive designs.
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CHAPTER 9

VERIFYING MASSIVE RTL DESIGNS USING
STATISTICAL MODEL CHECKING

9.1 Introduction

Our compositional reasoning approach (Chapter 7) and value-based interval abstraction

(Chapter 8) significantly improve the scalability of the SHARPE methodology. However,

these techniques are not sufficient to make the SHARPE methodology feasible for massive

RTL designs such as those pertaining to multicore systems which contain a large number

of both combinational and sequential elements.

In this chapter, we employ statistical model checking (Section 2.4.1) to verify proba-

bilistic properties in large RTL designs. Unlike probabilistic model checking that employs

numerical analysis on the DTMC model, statistical model checking performs verification

by simulating the design. Consequently, statistical model checking is highly scalable. We

illustrate our approach by verifying properties of dynamic power management schemes in

RTL.

9.1.1 Dynamic power management schemes

Dynamic power management (DPM) schemes such as clock gating, power gating, dynamic

voltage and frequency scaling (DVFS) are important strategies to save power in multi-

cores [10],[11],[12],[13]. Due to stringent power constraints of present day systems, DPM

schemes have becoming increasingly complex. Therefore, the implementation of DPM

schemes is a very challenging problem [97], particularly at the lower levels of design such

as RTL. In this work, we present an efficient methodology for verifying a DPM technique,

namely power gating, in RTL using statistical model checking [45].

The performance of a DPM scheme depends on runtime statistics of the RTL design.

Power gating incurs overheads in delay and power. As a result, power gating provides

savings in power only when applied to idle periods that exceed a certain duration [13].

The duration of a component’s idle period is statistically distributed based on the run-

time behavior of design which itself is based on the distribution of the input values.
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Since the exact duration of an idle period is not known apriori, power gating is imple-

mented by predicting the duration of an idle period based on recent history of inactivity.

Overestimation of the idle period duration can affect the safety of a DPM scheme while

underestimation can affect the efficiency. Safety and efficiency of a DPM scheme then are

statistical properties that must be checked.

In order to check the safety and efficiency of power gating, we need to determine the

statistical distribution of the duration of a component’s idle period. The statistics of

an RTL component depends on its interaction with all the other components in the

system. Therefore, the safety and efficiency properties must be checked by analyzing

the statistical behavior of the full system. Such system-level analysis can become very

complex for multicore RTL designs. For example, the RTL design of OpenSPARC [98]

contains over 4 millions lines of code and 250K flipflops. State-of-the-art DPM schemes

[11],[12] perform RTL simulations, which is the only practical approach, for performing

system-level analysis of such massive designs. However, existing simulation-based analysis

provides only average-case estimates of safety and efficiency. In this work, we employ

statistical model checking to provide a better quality of assurance while checking the

safety and efficiency properties of a DPM scheme.

9.1.2 Verifying properties of DPM schemes in RTL

In this work, we apply statistical model checking to verify power gating properties in

RTL. Statistical model checking is a scalable verification technique that provides sta-

tistical guarantees by simulating several sample execution paths of the full system. By

considering a sufficient number of sample paths, statistical model checking guarantees [45]

that the verification results are within tolerable bounds of error. Such guarantees cannot

be provided by ordinary simulation-based techniques that are currently used to evaluate

the performance of DPM schemes.

We specify the safety and efficiency requirements of power gating schemes as properties

in probabilistic computational tree logic (pCTL) [22]. We define these properties in terms

of relevant RTL signals that indicate the “idleness” (inactivity) of the RTL blocks of

interest. We use a commercial RTL simulator to simulate the entire RTL design and

observe the values of these relevant RTL signals in each hardware clock cycle. We then

employ statistical model checking which uses these observed simulation samples to verify

the specified pCTL properties on the RTL design.

We demonstrate our approach on the RTL design of OpenSPARC, a publicly available

industry-strength multicore processor [98]. We use the statistical model checking tool
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Ymer [58] for all our experiments. We verify the safety and efficiency properties of several

power gating schemes by considering several blocks in the floating-point graphics unit

(FGU) of the processor core. For example, we verify that timeout-based power gating

schemes [13] cannot be more than 50% efficient while having safety greater than 85%. For

the efficiency property, Ymer uses approximately 500 sample paths and guarantees that

the error in the verification result is less than 1%.

Probabilistic model checking [23] which is exact, unlike statistical model checking, has

been used to verify properties of multicore power management [97],[99]. However, these

techniques operate on the higher level models where scalability issues are not as severe as

in RTL. In RTL designs, probabilistic model checking is typically practical when applied

to individual RTL blocks [80]. However, for verifying properties of DPM schemes, we

need a scalable methodology that can perform a system-level statistical analysis of the

RTL design.

9.1.3 Chapter organization

The rest of the chapter is organized as follows. In Section 9.2, we present some prelim-

inaries on dynamic power management using power gating. We describe the statistical

properties pertaining to safety and efficiency of dynamic power management schemes. In

Section 9.3, we describe how we apply statistical model checking to verify power gating

properties in OpenSPARC RTL. In Section 9.4, we present the results from obtained from

verifying power gating properties on several RTL blocks of OpenSPARC.

9.2 Dynamic power management: Power gating

We now present some background on dynamic power management (DPM) schemes in

hardware, as discussed in [13]. In this work, we shall focus on power gating schemes that

are implemented in RTL. We also describe statistical performance requirements that must

be met by these schemes.

Power gating schemes are complex to implement due to the overheads associated with

switching the power on and off [13]. For idle periods of short duration, the power overheads

due to switching the power supply off and restoring it could outweigh the reduction

in power achieved by keeping the power off during the idle period. Therefore, power

gating must be judiciously used only for idle periods that are sufficiently long enough to

compensate for the power overheads.
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Definition 20. The breakeven period, denoted by KBE , is the minimum number of cycles

required in an idle period such that power gating results in a net reduction of power

consumption. Each idle period longer than KBE cycles is an opportunity for saving

power.

The duration of an RTL block’s idle period varies statistically according to the values

assigned to the RTL inputs. Since the idle periods are not known apriori, the best

practical approach is to predict the duration of an idle period based on the recent history

of idleness/inactivity (e.g., duration of previous idle periods). Power gating is applied

if the predicted duration is greater than KBE cycles. However, such approaches may

overpredict or underpredict the duration of the idle period which can potentially degrade

the performance of power gating.

An overprediction may predict the upcoming idle period to be longer than KBE cycles

(Definition 20) when it is actually shorter than KBE . If power gating is applied during

this idle period based on the incorrect prediction, it could result in a net increase in

power consumption compared to when power gating is not applied. Therefore, such

overpredictions are referred to as safety concerns for the performance of power gating

schemes. Similarly, an underprediction results in a block being kept on during a long idle

period (≥ KBE) where power gating could have reduced power consumption. Therefore,

underpredictions causes the power gating schemes to miss out on potential power saving

opportunities and are referred to as efficiency concerns for the performance of power

gating schemes.

Typically, overpredictions and underpredictions are tolerable in the system if they occur

with low probabilities. In [13], the upper bounds on these probabilities are referred to as

the safety and efficiency requirements of the power gating scheme. These requirements

can be broadly defined as:

Definition 21. The safety of a scheme is greater than (1-pS)x100% if the the probability

of mistaking an idle period to be a power saving opportunity is less than pS

Definition 22. The efficiency of a scheme is greater than (pE)x100% if the the probability

of missing out on a power saving opportunity is less than 1-pE

We now consider the safety and efficiency requirements for two power gating schemes

[13], namely 1) Timeout-based power gating and 2) Adaptive power gating.
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9.2.1 Timeout-based power gating

Timeout-based power gating waits for a fixed number of idle cycles KTO before switching

off the power supply. This is based on the idea that if an RTL block is idle for KTO cycles,

it is likely to remain idle for a further KBE cycles where power savings can be obtained

(Definition 20). With a sufficiently large value of KTO, the safety requirement can be

met. However, in such schemes, the first KTO cycles are unexploited for power savings.

Therefore, the safety and efficiency properties of the timeout-based scheme are given by

• P1 (Safety property for timeout-based scheme):

P [idle cnt < KBE +KTO | idle cnt ≥ KTO] < pS (9.1)

where idle cnt refers to the number of cycles in the current idle period. P [A|B] denotes

the probability of event A occurring, given that event B has already occurred.

• P2 (Efficiency property for timeout-based scheme):

P [idle cnt < KTO] < (1− pE) (9.2)

KTO is often pre-determined by statically analyzing the probability distributions of idle

period durations. Typically, KTO is selected by trading off safety for efficiency.

9.2.2 Adaptive power gating

Adaptive schemes predict the duration of the upcoming idle period based on the duration

of the preceding idle periods. As a result, unlike in timeout-based schemes, the first KTO

cycles in each idle period are not wasted. We consider an adaptive scheme that predicts

the number of idle cycles Kpre as an average of the durations of the previous two idle

periods [13], given by

Kpre =
(idle cnt2 + idle cnt1)

2
(9.3)

where idle cnt1 and idle cnt2 refer to the durations of the previous two idle periods.

IfKpre ≥ KBE , the RTL block is switched off as soon as the idle period begins. However,

the actual idle period idle cnt may be shorter than KBE (overprediction). Similarly,

idle cnt may be longer than KBE when Kpre < KBE (underprediction). Therefore, the

safety and efficiency properties of adaptive power gating is defined as follows.
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• P3 (Safety property for adaptive scheme):

P [(idle cnt < KBE) | (Kpre ≥ KBE)] < pS (9.4)

• P4 (Efficiency property for adaptive scheme):

P [(idle cnt < KBE) | (Kpre < KBE)] > pE (9.5)

9.3 Verifying power gating in OpenSPARC RTL

We now describe power gating schemes in the context of the OpenSPARC RTL. We also

describe how we formally represent and verify the safety and efficiency properties of these

schemes.

We consider the following power manageable RTL blocks in the floating-point graphics

unit (FGU) [98] of an OpenSPARC core: main, div, mul and vis.

1. main: This refers to the whole FGU RTL block itself. This block must be active

during any instruction requiring an FGU action.

2. div: This RTL block must be active during any SPARC V9 floating point or integer

divide or square root type instruction.

3. mul: This RTL block must be active during any SPARC V9 or VIS 2.0 floating

point or integer multiply type instruction.

4. vis: This RTL block must be active during any VIS 2.0 instruction executed in the

FGX subunit.

The OpenSPARC RTL design uses clock gating to manage the power of these RTL

blocks. Since clock gating has negligible overheads [13], safety and efficiency are not

statistical properties as in the case of power gating. Therefore, in this work, we do not

verify clock gating schemes.

At present, the OpenSPARC RTL does not use power gating for the FGU components.

However, we shall later see (Figure 9.1) that these blocks have several long idle periods

that are potential opportunities for saving power using power gating. Therefore, in this

work, we assume that power gating can be implemented for these blocks. We now describe

how these power gating schemes can be verified.
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9.3.1 Expressing properties of power gating in OpenSPARC RTL

We consider both timeout-based and adaptive power gating schemes (Section 9.2) for

the FGU components. We identify the RTL signals that indicate the idleness of these

blocks. We use these signals to formally express the properties corresponding to the safety

(Equations 9.1, 9.4) and efficiency (Equations 9.2, 9.5) requirements for these schemes.

For each RTL block of interest, we use the corresponding clock enable signal to define a

new RTL signal called idle. Due to the presence of clock gating in OpenSPARC RTL, the

clock enable signal is set to 0 in the cycle that the block becomes idle. Correspondingly,

we set idle equal to 1 to indicate the start of the idle period. Similarly, idle=0 indicates

the end of the current idle period (when the clock enable signal gets set to 1).

We introduce an RTL signal called idle cnt which counts the number of cycles the

block has spent in the current idle period (idle=1). We also introduce signals called

idle cnt1 and idle cnt2 to store the previous two values of idle cnt, i.e., the durations

of the previous two idle periods. We use the RTL signals idle, idle cnt, idle cnt1 and

idle cnt2 and define the safety and efficiency properties of timeout-based and adaptive

power gating (Equations 9.1 - 9.5).

Since we consider discrete-time transitions, we express the properties in pCTL [22]. We

now list these pCTL expressions and describe the properties that they are used to verify.

• P1 (Safety of timeout-based scheme):

(idle cnt = KTO) ⇒ P < pS[trueU≤KBE
(idle = 0)] (9.6)

IF a block is idle for KTO cycles THEN it will become active within a further KBE

cycles with probability less than pS.

• P2 (Efficiency of timeout-based scheme):

(idle = 1) ⇒ P < (1− pE)[trueU≤KTO
(idle = 0)] (9.7)

IF a block becomes idle THEN it will become active again within KTO cycles with

probability less than (1− pE).

• P3 (Safety of adaptive scheme):
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(Kpre ≥ KBE)&(idle = 1) ⇒ P < pS[trueU≤KBE
(idle = 0)] (9.8)

IF a block becomes idle AND is predicted to be idle for atleast KBE cycles THEN it

will become active within KBE cycles with probability less than pS.

• P4 (Efficiency of adaptive scheme):

(Kpre < KBE)&(idle = 1) ⇒ P > pE [trueU≤KBE
(idle = 0)] (9.9)

IF a block becomes idle AND is predicted to be idle for less than KBE cycles THEN

it will become active within KBE cycles with probability greater than pE.

9.3.2 Employing statistical model checking on OpenSPARC RTL

We verify the power gating properties in Equations 9.6 - 9.9 by employing statistical

model checking (Section 2.4.1) on the OpenSPARC RTL design. In this work, we use

Ymer as the statistical model checking tool.

Statistical model checkers such as Ymer require sample execution paths (Definition 3)

that are drawn based on the statistics of the design of interest (Section 2.4.1)). Typically,

the descriptions of the statistical models (such as DTMCs) for these designs are provided

as input to the statistical model checker. The statistical model checker then uses these

descriptions to perform Monte Carlo simulations of the design and generate the required

set of sample paths.

In order to generate sample paths, the statistical model checker requires descriptions

of DTMC models as input. Although we can describe DTMCs for RTL designs (Sec-

tion 3.4.1), this is not a feasible proposition for the OpenSparc RTL due to the following

reasons.

• Firstly, we cannot compute the exact state transition probabilities which are es-

sential for describing the DTMC models. For RTL DTMCs, these state transition

probabilities are based on the statistical distribution of the RTL input values. The

power profiling of the OpenSPARC depends on typical use cases of the processor.

Hence, in order to obtain the input value distributions, we require application runs

that simulate typical workloads on the processor. These input value distributions

cannot be computed without actually simulating the entire OpenSPARC RTL (i.e.,
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running an application). Hence, we cannot describe the corresponding DTMC mod-

els prior to statistical model checking.

• Secondly, even if we can determine the exact distribution of the RTL input values,

the DTMC description for OpenSPARC RTL may be prohibitively large [80].

Since we cannot provide the descriptions of the DTMCs for OpenSPARC RTL, the

statistical model checker cannot generate the required sample paths. We circumvent

this problem by generating the RTL sample paths externally using a commercial RTL

simulator such as VCS. We modify the statistical model checker to use these externally

generated RTL sample paths and verify the specified properties on OpenSPARC RTL.

We construct a database of RTL sample paths by simulating the entire OpenSPARC

RTL design and recording the values of the relevant RTL signals (such as idle) in each

clock cycle. We simulate the design using RTL input values corresponding to running an

application on OpenSPARC. In effect, we are performing Monte Carlo simulations of the

RTL DTMC M based on the statistical distribution of the RTL input values.

The desired verification accuracy is specified by the user in terms of α, β and δ (Equa-

tion 2.2). The statistical model checker obtains the required RTL samples paths from

the cycle-accurate RTL signal values in the database that we create. For RTL DTMCs,

each clock cycle corresponds to a DTMC state transition (Section 3.4.1). Therefore, each

RTL sample path corresponds to RTL signal values recorded from a sequence of contigu-

ous clock cycles (Definition 3). Statistical model checking uses these sample paths to

verify power gating properties (φ, listed in Equations 9.6 - 9.9) in the RTL design while

guaranteeing the desired verification accuracy.

Ymer is designed for use with continuous-time systems and properties. We make a

minor modification to Ymer in order to apply it to discrete-time systems (DTMCs) and

properties (pCTL) of our interest.

In future work, we plan to integrate the statistical model checking algorithm with the

RTL simulator. Each sample path can then be model checked in situ and need not be

recorded in a database. This can avoid any scalability issues that may arise from having

to maintain a database of a large number of samples for several RTL blocks.

9.4 Experimental results

We consider the blocksmain, div, mul and vis (Section 9.3). We build the cycle-accurate

database of RTL samples (Section 9.3.2) by simulating the OpenSPARC RTL using an
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Figure 9.1: Histogram depicting frequency of occurrence of idle periods for main, div,
mul and vis blocks. Each bin in the histogram corresponds to an interval of 5 idle clock
cycles. The x-axis depicts upper bound of these bin intervals. All idle periods exceeding
100 clock cycles are grouped together in the bin denoted “>100”. The div and mul
blocks have larger periods of inactivity compared to the main and vis blocks, and
therefore provide more opportunities for saving power.

assembly-language input pattern that is based on running a multi-threaded application

on OpenSPARC. We simulate the RTL for 105 clock cycles. The verification results

that we present here are specific to the statistics of this input pattern. However, our

approach can be used with other OpenSPARC applications/benchmarks by generating

the corresponding database of RTL samples.

We perform the following experiments:

• We analyze the statistical distribution of the idle periods present in the recorded

sample paths.

• We verify whether the power gating schemes satisfy safety/efficiency properties (P1

to P4 from Equations 9.6 - 9.9).

Typically, KTO (Section 9.2) depends on the manner in which power gating is imple-

mented [13] and pS and pE (Section 9.2) are based on design requirements. Therefore,

these values must be specified by the designer. In our experiments, we illustrate our

technique by considering several possible values for these parameters.
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In our experiments, we focus on demonstrating that statistical model checking adds

value to simulation-based analysis since it provides statistical guarantees (Equation 2.2)

regarding the verification result. Therefore, we do not report the runtime of the simulation

component in our approach, i.e., the time spent in building the database by simulating

the RTL. In all our experiments, statistical model checking on the simulation database

takes only less than 1s to complete. We perform our experiments on a 3 GHz, 3.25 GB

machine (Intel Core2 Duo CPU).

9.4.1 Statistical distribution of idle period durations

In Figure 9.1, we depict the frequencies with which idle periods of different durations

occur. We observe that most of the idle periods for the main and vis blocks are less

than 20 cycles long. In the mul block, the durations of the idle period are more evenly

distributed and there is a significant number of idle periods that exceed 100 clock cycles.

Table 9.1: Values of KTO, computed using property P2, such that 50% of the idle
periods are less than KTO cycles long. For each block in Column 1, 50% of the idle
periods exceed the number of clock cycles in Column 2.

RTL block Median of idle duration
(in clock cycles)

main 5
div 10
mul 20
vis 4

Property P2 can be used to verify whether an idle period less than KTO clock cycles

occurs with probability less than 1-pE. Therefore, verifying P2 can be interpreted as

verifying the probability distribution of the idle period durations. We wish to determine

the value of KTO such that 50% of the idle periods are less than KTO cycles long. In

order to do this, we set pE=0.5 and verify P2 for different values of KTO. We increment

the value of KTO until P2 is TRUE. Table 9.1 lists these “median” values of KTO for the

different blocks.

In Figure 9.2, we show the variation in the number of required sample paths when

property P2 is verified by using different error bounds. The low error tolerance spec-

ified by α=β=δ=0.01 requires an order of magnitude more sample paths compared to

α=β=δ=0.1. The specification α=β=0.1, δ=0.01 lies in between these two extremes and

trades off verification accuracy for the number of required sample paths. We consider

α=β=0.1,δ=0.01 for the rest of our experiments.
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Figure 9.2: Number of sample paths required for verifying property P2, as a function of
α, β and δ.

We represent all the properties (P1, P2, P3 and P4) as “bounded-until” pCTL expres-

sions (Equations 9.6 - 9.9). Therefore, the verification procedure is similar for all these

properties and in each case, the number of required samples exhibits the same trend as

in Figure 9.2.

9.4.2 Safety and efficiency of timeout-based power gating

We consider the breakeven idle period KBE to be 10 cycles. We verify whether the

timeout-based power gating scheme meets a safety (Definition 21) requirement of 85%.

For this requirement to be satisfied, the safety property P1must be TRUE when pS=0.15.

We wish to determine the least value of the timeout threshold KTO such that P1 is TRUE.

We start by setting KTO=5 and increment it in steps of 5 until P1 is verified to be TRUE.

Similarly, for a more stringent safety requirement of 95%, we verify P1 with pS=0.05.

In Table 9.2, Column 2 and Column 4 list the least values of the thresholdKTO such that

the timeout-based scheme meets safety requirements equal to 85% and 95%, respectively.

In main and vis, the majority of the idle periods are less than 25 cycles long. Therefore,

the stricter safety requirement of 95% can be met by increasing KTO by only 5 cycles.

However, in div and mul blocks, KTO must be increased significantly to meet the stricter

safety requirement.

In Table 9.2, Column 3 and Column 5 list the number of sample paths required for

verifying P1 corresponding to safety requirements of 85% and 95%, respectively. For vis,

the number of samples required by the statistical model checker to verify safety≥95%

is an order of magnitude higher than that required to verify safety≥85%. Typically, the

statistical model checker exhibits such behavior when the actual probability of the system

is close to the probability threshold specified in the property. In this case, this implies

that the probability with which the sample paths of vis violate safety is close to pS=0.05
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Table 9.2: Verifying property P1 to guarantee that timeout-based power gating meets
the specified safety requirements. We set α=β=0.1, δ=0.01 for the statistical model
checker.

Safety ≥ 85% Safety ≥ 95%
Timeout Number of Timeout Number of

RTL block threshold sample paths threshold sample paths
main 20 339 25 611
div 15 194 65 571
mul 30 161 60 368
vis 15 254 20 1401

specified in P1. Therefore, a large number of samples are required to ensure that the

verification is within the desired error bounds (α, β).

The timeout threshold KTO is the number of cycles that are “missed opportunities”

with respect to saving power (Section 9.2) . From Figure 9.1, we observe that most of

the idle periods are shorter than KTO listed in Table 9.2. In fact, P2 attests that atleast

50% (Table 9.1) of the idle periods are shorter than the values of KTO for safety≥85%

(Column 2, Table 9.2). Therefore, the efficiency (Definition 22) of the the timeout-based

scheme is less than 50% for all the blocks.

9.4.3 Safety and efficiency of adaptive power gating

We consider the breakeven idle period KBE to be 10 cycles. We wish to verify whether

adaptive power gating meets a specified safety requirement equal to 90%. In order to

do this, we set KBE=10 and pS=0.1 and verify whether property P4 is satisfied. We

find that adaptive power gating does not satisfy the 90% safety requirement for any of

the blocks (Table 9.3). However, if we relax the requirement to 80%, we find that P2 is

TRUE for the mul and vis blocks.

Table 9.3: Verifying property P3 to guarantee that adaptive power gating meets the
specified safety requirements. We set α=β=0.1, δ=0.01 for the statistical model checker.

Safety ≥ 90% Safety ≥ 80%
RTL block Verification Number of Verification Number of

Result sample paths Result sample paths
main FALSE 108 FALSE 587
div FALSE 80 FALSE 212
mul FALSE 195 TRUE 274
vis FALSE 106 TRUE 1334
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Similarly, we verify property P4 to guarantee that adaptive power gating meets the

specified efficiency requirements. We first check whether Efficiency≥90% by verifying P4

with pE=0.9 and KBE=10. From Table 9.4, we see that this requirement is met only for

the mul block. The div and vis blocks meet a more relaxed efficiency requirement equal

to 80% (pE=0.8). In the main block, property P4 is TRUE only when the requirement

is relaxed to 70% (pE=0.7).

Table 9.4: Verifying property P4 to guarantee that adaptive power gating meets the
specified efficiency requirements. We set α=β=0.1, δ=0.01 for the statistical model
checker.

Efficiency ≥ 90% Efficiency ≥ 80%
RTL block Verification Number of Verification Number of

Result sample paths Result sample paths
main FALSE 89 FALSE 161
div FALSE 502 TRUE 173
mul TRUE 220 TRUE n/a
vis FALSE 189 TRUE 444

9.5 Chapter summary

In this chapter, we apply statistical model checking to validate complex DPM schemes that

present known design challenges. We formally specify safety and efficiency requirements of

power gating schemes as properties in pCTL [22]. We extend Ymer and create a framework

for performing statistical model checking on RTL designs. Although we consider only

properties of DPM schemes in this work, this framework can potentially be used to provide

guarantees regarding any statistical metric in RTL designs.
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CHAPTER 10

ACCELERATING STATISTICAL MODEL
CHECKING IN RARE-EVENT SCENARIOS

10.1 Introduction

Simulation-based techniques are known to be inefficient and time-consuming in rare-event

scenarios, i.e., scenarios that pertain to events which occur with very low probability

(<10−4). In such scenarios, a very large number of samples need to be generated in order

to gather the statistical evidence required by the statistical model checking engine. For

example, while verifying whether failure rate <10−5, an average of 105 samples need to

be generated before even a single failure is witnessed.

Low failure rate requirements are typical in the design of reliable SRAM cells [50].

Therefore, conventional statistical model checking (Section 2.4.1) is inefficient for verifying

the reliability of an SRAM cell. In this chapter, we analyze a technique to accelerate

statistical model checking in rare-event scenarios for an SRAM cell.

10.1.1 Accelerating statistical model checking of an SRAM cell

Statistical model checking for rare-event scenarios can be accelerated by increasing the

frequency with which failures (i.e., the rare events in this work) are generated. This can

be achieved by carefully modifying the statistical distribution of the design to sample the

failure region more frequently. In probability estimation, this technique is referred to as

importance sampling [47],[48],[49].

In this chapter, we demonstrate an importance sampling approach for accelerating sta-

tistical model checking in rare-event scenarios for SRAM cells. Let M be an SRAM cell

design with random variables V that model the effect of process variations on the tran-

sistors. These variations are modeled as a Gaussian distribution D(V ) defined over the

space spanned by V . We wish to verify that M satisfies a reliability property Φ, where Φ

deals with a rare-event scenario. We modify the distribution D(V ) and construct a new

distribution D′(V ) that samples the failure region more frequently. We employ statistical

model checking by drawing samples according to the modified distribution D′(V ) instead
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of D(V ). In order to preserve the correctness of the verification result, we adjust for the

statistical bias that we introduce in each sample.

In rare-event scenarios, we find that our importance sampling approach reduces the

number of samples required for statistical model checking to arrive at the verification

result with the desired level of accuracy (Section 2.4.1). Therefore, our approach provides

significant performance benefits over regular statistical model checking.

In [51], the authors employ an importance sampling strategy for SRAM cells. The

authors use empirical evidence to validate the speedup provided by their approach. In

this chapter, we derive analytical upper bounds for estimation variance and present a

more rigorous analysis for the speedup provided by our approach over regular statistical

model checking.

10.1.2 Chapter organization

The rest of this chapter is organized as follows. In Section 10.2, we present preliminaries

regarding the SRAM cell design and the statistical model checking algorithm that we

use in this work. In Section 10.3, we present the broad intuition behind our importance

sampling approach to accelerate statistical model checking. In Section 10.4, we describe all

the steps of our approach in detail. In Section 10.5, we provide an analysis regarding the

correctness and speedup of our approach. In Section 10.6, we present empirical evidence

that demonstrates the correctness and speedup approach while verifying the reliability of

an SRAM cell.

10.2 Verifying reliability of an SRAM cell

We now present some preliminaries regarding the source of variations in an SRAM cell.

We describe the reliability property that we wish to verify on an SRAM cell in the presence

of these variations. We also provide a brief background for the statistical model checking

technique that we employ on the SRAM cell.

10.2.1 Variations in an SRAM cell

We consider an SRAM cell design that comprises six transistors [50]. Due to variations

arising from the manufacturing process, the threshold voltages of these six transistors are
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typically modeled as independent, Gaussian random variables [50]. Therefore, the SRAM

cell can be viewed as a statistical entity with six random variables.

Let V={v1, v2, v3, v4, v5, v6} be the set of six random variables that model the varying

threshold voltages of the transistors in the SRAM cell. Each variable vj is real-valued

and can be assigned a value in the range [vmin
j vmax

j ].

Definition 23. The sample space S of the SRAM cell is the 6-dimensional Euclidean

space [vmin
1 vmax

1 ] × [vmin
2 vmax

2 ] × [vmin
3 vmax

3 ] × [vmin
4 vmax

4 ] × [vmin
5 vmax

5 ] × [vmin
6 vmax

6 ]

spanned by the set of threshold voltages V .

Each point in the sample space S corresponds to a unique assignment of concrete, real

values to variables V . We use the 6-tuple {v1, v2, v3, v4, v5, v6} to denote a point in the

sample space of the SRAM cell.

Let gj(v) denote the Gaussian probability density function (pdf) for variable vj. The

mean and variance of the distribution gj(v) can be obtained from the specification of the

transistor in the process technology library [50].

Definition 24. The statistical distribution D(V ) of the SRAM cell is given by the joint

pdf of the threshold voltages V . Since the threshold voltages V are modeled to be sta-

tistically independent variables, the joint pdf of V can be computed as a product of the

individual pdfs gj(v) of the variables vj (j= 1 to 6).

Let V i={vi1, vi2, vi3, vi4, vi5, vi6} be a sample that is drawn from the space S (Definition 23)

of the SRAM cell. During Monte Carlo simulation of the SRAM cell according to the

distribution D(V ) , the probability density D(V i) of the sample V i is given by

D(V i) =
6∏

j=1

gj(v
i
j) (10.1)

10.2.2 Reliability of an SRAM cell

The delay of the SRAM cell depends on the threshold voltages of the transistors. An

SRAM cell is said to fail if its delay exceeds a pre-defined timing constraint. We wish to

verify that the probability with which an SRAM cell fails is less than a threshold θ. We

express this reliability requirement as a property

Φ = P≤θ[fail] (10.2)

where fail refers to the delay exceeding a timing constraint.
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If θ is very small, we consider that Φ deals with a rare-event scenario. In reliable

hardware designs, the failure rate P [fail] of an SRAM cell is required to be very low.

Therefore, the reliability property of an SRAM cell deals with a rare-event scenario.

Definition 25. A failing sample of an SRAM cell is a sample where the cell delay exceeds

a user-specified timing constraint.

For each sample V i drawn from the space S, the delay of the SRAM cell can be mea-

sured by simulating the SRAM circuit using the corresponding values vij assigned to the

threshold voltages vj (j= 1 to 6). The measured delay can be compared against the timing

constraint in order to check whether the sample is failing or not.

Definition 26. The set of all failing samples in S constitute the failure region SF (SF ⊆
S) of the SRAM cell.

For a given timing constraint, the SRAM cell fails when the threshold voltages exceed

a certain value. Let vFj ∈ [vmin
j vmax

j ] be the smallest value of vj for which an SRAM cell

fails for a given timing constraint. Therefore, in all failing samples of the SRAM cell, the

value of vj lies in the range [vFj vmax
j ].

Definition 27. For a given timing constraint, RF (RF ⊆ S) is the smallest 6-dimensional

hyper-rectangle in which the failure region SF of the SRAM cell is completely contained.

RF can be viewed as a “box” that bounds the failure region SF and is given by [vF1 vmax
1 ]×

[vF2 vmax
2 ]× [vF3 vmax

3 ]× [vF4 vmax
4 ]× [vF5 vmax

5 ]× [vF6 vmax
6 ].

Definition 28. For a given timing constraint, CF (CF ⊆ S) is the smallest 6-dimensional

hyper-cube in which the failure region SF of the SRAM cell is completely contained.

CF is a box with equal-sized edges and is given by [vmax
1 -c vmax

1 ] × [vF2 -c v
max
2 ] × [vF3 -

c vmax
3 ] × [vmax

4 -c vmax
4 ] × [vmax

5 -c vmax
5 ] × [vmax

6 -c vmax
6 ], where c is the size of each edge.

The hyper-rectangle RF (Definition 27) is contained in the hyper-cube CF , i.e., RF ⊆ CF .

10.2.3 Statistical model checking of an SRAM cell

We wish to verify that an SRAM cell design M verifies a reliability property Φ (Equa-

tion 10.2), denoted by M |= Φ. We briefly describe the statistical model checking tech-

nique that we employ in order to verify M |= Φ.

Let pF denote the actual failure rate of M . If pF is less than the threshold θ specified

in Φ, then M |= Φ. Statistical model checking obtains an estimate of the failure rate by

performing Monte Carlo simulations ofM . M |= Φ is verified by comparing this estimated

failure rate against θ.
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Let V i denote the ith sample drawn according to the statistical distribution D(V )

(Definition 24) of M . We define I(V i) to be an indicator function [21] that is equal to 1

if the sample V i is failing (Definition 25) and 0 otherwise.

I(V i) =




1, if V i is a failing sample

0, if V i is not failing
(10.3)

After NS samples have been generated, the expected (average) failure rate can be

estimated as

p̂F =
1

NS

NS∑

i=1

I(V i) (10.4)

However, in a different sampling run, another set of NS samples could be used instead

to estimate the failure rate. Therefore, the estimate is itself a random variable. For large

NS, the estimate is typically modeled as a Gaussian random variable (Figure 10.1) with

mean p̂F . The variance σ2
pF

of the estimate is given by

σ2
pF

=

NS∑
i=1

[I(V i)− p̂F ]
2

NS(NS − 1)
(10.5)

The Gaussian distribution represents how well p̂F estimates the actual failure rate pF . pF

is more likely to be near the mean p̂F of the distribution and less likely to be in the tail

regions.

Statistical model checking verifies M |= Φ by comparing p̂F against the threshold θ.

Since p̂F is only an estimate obtained using a limited set of simulations, the verification

result may be inaccurate. Statistical model checking draws sufficient samples until the

verification results are within the specified bounds of error α and β (Equation 2.2).

Figure 10.1 depicts the scenario where p̂F < θ. In this scenario, the verification result

is incorrect if the actual failure rate pF is greater than θ. Therefore, the probability of

error is equal to the area of the shaded region in the figure. We require this probability to

be less than the bound α (Equation 2.2). Similarly, if p̂F > θ, we require the probability

of error to be less than β.

Verification errors arise when the actual failure rate pF and the estimate p̂F lie on

different sides of the threshold θ. As the number of samples NS increases, the variance of

the estimate (Equation 10.5) reduces and the Gaussian curve becomes “narrower”. As a
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Figure 10.1: Gaussian distribution of failure rate estimates, with mean p̂F and variance
σ2
pF
. The area of the shaded region is the probability of error in the verification result.

result, the probability of occurrence of a verification error also reduces.

10.3 Speeding up statistical model checking for rare-event

scenarios of an SRAM cell

In this section, we define and establish the criteria for accelerating statistical model check-

ing in rare-event scenarios of an SRAM cell. We consider M to be the SRAM cell model

with the Gaussian distribution D(V ) (Definition 24). Let Φ (Equation 10.2) denote the

reliability property of our interest.

We wish to verify whether M |= Φ. The conventional statistical model checking engine

(Section 10.2.3) infers whether M |= Φ by performing Monte Carlo simulations according

to the Gaussian distribution D(V ) (Definition 24) on the space S (Definition 23). In rare-

event scenarios, the failure region SF lies in the tail region of the Gaussian distribution

D(V ). Therefore, the failing samples (Definition 25) are generated with very low proba-

bility (Equation 10.1). As a result, a very large number of samples need to be generated

in order to estimate the failure rate with high confidence (i.e., low estimation variance).

This makes statistical model checking extremely time-consuming for rare-event scenarios.

In this chapter, we analyze an importance sampling [47] approach to reduce the number

of samples that need to be generated by statistical model checking in rare-event scenarios

for SRAM cells. We achieve this by modifying the distribution over the space S to generate

more failing samples and reduce the variance of the failure rate estimate. Let D′(V ) be

the modified joint distribution of the variables V . We replace the statistical distribution

D(V ) ofM (Definition 24) with the distribution D′(V ). We verify M |= Φ by performing

Monte Carlo simulations according to the distribution D′(V ) instead of D(V ). We show

that a low-variance failure rate estimate can now be obtained by generating fewer samples
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thereby accelerating statistical model checking. This forms the basis of our importance

sampling approach.

Our modified distribution D′(V ) introduces a statistical “bias” towards the failure

region SF (Definition 26). Therefore, in effect, we artificially increase the probability

densities of failing samples. In order to account for the increased failure rate, we will need

to adjust for the statistical bias while verifying M |= Φ using samples drawn from D′(V ).

Since we know the closed-form analytical expressions for both D(V ) and D(V ′), we can

compute the exact extent to which each generated sample is biased. While verifying

whether M |= Φ, we exactly adjust for the statistical bias that we introduce in D′(V ).

Therefore, verifyingM |= Φ using samples based on the distributionD′(V ) is now provably

equivalent to regular statistical model checking (Section 10.2.3) that uses samples based

on D(V ).

The crux of importance sampling lies in the choice of the modified distribution D′(V ).

We wish to chooseD′(V ) such that, for a fixed number of samples, the failure rate estimate

that we obtain using D′(V ) has a lower variance compared to that of the estimate obtained

using D(V ). In this chapter, we choose D′(V ) to be a uniform distribution over the space

S. We show that our choice, although simple, results in reduction of the estimation

variance which in turn accelerates statistical model checking.

10.4 Our importance sampling approach for statistical model

checking of an SRAM cell

We wish to check whether an SRAM cell M satisfies a reliability property Φ (Equa-

tion 10.2). We focus on the case where Φ deals with a rare-event scenario (Section 10.2.2).

We now describe all the steps in our importance sampling approach (Figure 10.2).

10.4.1 Modifying the distribution on the sample space

In order to increase the frequency of failing samples during Monte Carlo simulation, the

failure region SF (Definition 26) needs to be sampled more frequently. We achieve this

by modifying the distribution D(V ) of the SRAM cell (Definition 24) and creating a new

distribution D′(V ) over the sample space S.
We create a modified distribution D′(V ) that uniformly samples the space S. We

achieve this by treating the set of threshold voltages V (Section 10.2.1) as a set of in-

dependent, uniformly distributed random variables. Let uj(v) denote the uniform pdf of
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Figure 10.2: Block diagram comparing the steps in our importance sampling approach
(left branch) with those in regular statistical model checking (right branch).

the threshold voltage vj in the range [vmin
j vmax

j ]. The pdf uj(v) is given as

uj(v) =
1

(vmax
j − vmin

j )
(10.6)

The modified distribution D′(V ) is the joint distribution of the variables vj with the

uniform pdfs uj(v).

In Equation 10.1, we describe the probability density of a sample V i={vi1, vi2, vi3, vi4, vi5, vi6}
according to the distribution D(V ). If samples are drawn according to the distribution

D′(V ) instead of D(V ), the probability density of the sample V i is given by

D′(V i) =

6∏

j=1

uj(v
i
j)

=
6∏

j=1

1

(vmax
j − vmin

j )
(10.7)

We modifyM by substituting the original Gaussian distribution D(V ) with the uniform

distribution D′(V ). If Monte Carlo simulation is performed using the distribution D′(V ),

a larger number of failing samples are generated in comparison to using the original

distribution D(V ) (Figure 10.2).
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10.4.2 Statistical model checking with bias adjustment

We now perform Monte Carlo simulations and uniformly sample the space S of the SRAM

cell M based on its modified distribution D′(V ) (Equation 10.7). We use the generated

samples to perform statistical model checking and verify whether M |= Φ. In order to

maintain the accuracy of the statistical model checking results, we adjust for the statistical

bias in each sample.

Let L(V i) denote the extent to which a sample V i is biased. We define L(V i) as

L(V i) =
D(V i)

D′(V i)

=

6∏

j=1

gj(v
i
j)

uj(vij)
(10.8)

where D(V i) is the probability density of V i according to the original distribution D(V )

(Equation 10.1). Similarly, D′(V i) is the probability density of V i based on the modified

distribution D′(V ) (Equation 10.7). In importance sampling, L(V i) is typically referred

to as the inverse likelihood ratio [47].

After N ′
S biased samples have been generated, the estimate p̂F

′ of the actual failure

rate can be computed [47] as

p̂F
′ =

N ′

S∑
i=1

L(V i)I(V i)

N ′
S

(10.9)

where I(V i) is the indicator function described in Equation 10.3. The use of L(V i) adjusts

the estimate for the statistical bias in each sample. The variance σ′2
pF

of the estimate, in

the presence of importance sampling, is given by

σ′2
pF

=

N ′

S∑
i=1

[L(V i)I(V i)− p̂F
′]2

N ′
S(N

′
S − 1)

(10.10)

As described in Section 10.2.3, the statistical model checking engine draws samples

based on the modified distribution D′(V ) until the error bounds specified by α and β

(Equation 2.2) are satisfied. We find that the number of samples N ′
S required to meet the

error bounds using our approach is much smaller than the number of samples NS required
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while using regular statistical model checking (Section 10.2.3).

10.5 Analysis of our importance sampling approach

We now briefly outline the correctness and speedup of our approach. We also derive

analytical upper bounds for the variance of our failure rate estimates.

10.5.1 Correctness and speedup

In order to verify whether an SRAM cell M satisfies a reliability property Φ, statistical

model checking estimates the probability of failure pF and checks whether it is less than

the specified probability threshold θ (Section 10.2.3). In our approach, we estimate the

probability of failure by drawing samples according to the uniform distribution D′(V )

instead of the original Gaussian distribution D(V ). If the estimation accuracy is preserved

in the presence of importance sampling, the verification result would remain the same.

For probability estimation, the use of Equation 10.9 has been proven to be correct

[47] when modifying a distribution to frequently generate rare events. Therefore, the

verification result that we obtain with our importance sampling approach is consistent

with what we obtain with regular statistical model checking.

A metric for speedup in statistical model checking is the reduction in the number of

samples required to provide the verification result. Statistical model checking terminates

when the estimation error is low enough to meet error bounds specified by α and β

(Section 10.2.3). If the error bounds can be met with fewer samples, statistical model

checking can be sped up.

From Figure 10.1, we observe that the error in verification can be decreased by reducing

the variance of the failure rate estimate (Section 10.2.3). In other words, with variance

reduction, a given error bound can be met with fewer samples. Importance sampling, with

a careful choice of the modified distribution, is known to reduce estimation variance. As

a result, importance sampling can result in a speedup for statistical model checking. As

the failure rate pF becomes smaller, the extent of such speedup typically becomes larger.

In Section 10.5.2, we derive analytical upper bounds for variance and show that our

importance sampling approach guarantees a reduction in variance over regular statistical

model checking. In Section 10.6, we also present empirical evidence for the variance

reduction provided by our approach in comparison to regular statistical model checking.
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10.5.2 Analytical bounds for variance of the estimates

In [47], the authors present analytical equations for computing the asymptotic variance

of the failure rate estimates that are obtained with or without importance sampling. We

now use these equations to derive upper bounds for the estimation variance.

In regular statistical model checking (Section 10.2.3), without importance sampling,

the asymptotic variance AVar of the failure rate estimate (Equation 10.4) is given as

AVar =

∫

S

[I(V )]2D(V )dV − pF
2 (10.11)

where the integration is performed over the sample space S of the SRAM cell (Defini-

tion 23). In other words, S is the domain of the 6-D integration variable V .

Since I(V ) is equal to 1 inside the failure region SF and 0 elsewhere (Equation 10.3),

the above equation for AVar can be written as

AVar =

∫

SF

D(V )dV − pF
2 (10.12)

In an SRAM cell, we know that SF is contained in the 6-D hyper-rectangle RF (Defi-

nition 27). Therefore, in geometric terms, the volume of RF is greater than or equal to

the volume of SF . Since the integrand in Equation 10.12 is strictly positive everywhere

in S, AVar can be bounded as

AVar ≤
∫

RF

D(V )dV − pF
2

≤
∫

RF

D(V )dV (10.13)

The tightness of the upper bound described in Equation 10.13 depend on the tightness

with which RF bounds the failure region SF . We approximate the upper bound for AVar

as

AVarUB =
Volume(SF )

Volume(RF )
×

∫

RF

D(V )dV (10.14)

where Volume(SF )
Volume(RF )

denotes the fraction of RF occupied by SF .
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In terms of the individual variables vj , we express the upper bound AVarUB as

AVarUB =
Volume(SF )

Volume(RF )
×

6∏

j=1

vmax
j∫

vFj

gj(v)dv (10.15)

In the presence of importance sampling, the asymptotic variance AVar’ of the failure

rate estimate is given as

AVar’ =

∫

S

[L(V )I(V )]2D′(V )dV − pF
2 (10.16)

where L(V )= D(V )
D′(V )

as described in Equation 10.8.

We employ the same line of reasoning described above and derive the upper bound of

AVar’ as

AVar’ =

∫

SF

L(V )2D′(V )dV − pF
2

=

∫

SF

D(V )2

D′(V )
dV − pF

2

≤
∫

RF

D(V )2

D′(V )
dV (10.17)

As in Equation 10.15, we approximate the upper bound AVar’UB as

AVar’UB =
Volume(SF )

Volume(RF )
×

∫

RF

D(V )2

D′(V )
dV

=
Volume(SF )

Volume(RF )
×

6∏

j=1

vmax
j∫

vFj

(gj(v))
2

uj(v)
dv (10.18)

If AVar’UB (Equation 10.18) is less than AVarUB (Equation 10.15), our importance

sampling approach can provide a speedup over regular statistical model checking. We
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define the variance reduction factor as

AVarUB

AVar’UB

=
6∏

j=1

vmax
j∫
vFj

gj(v)dv

vmax
j∫
vFj

(gj(v))2

uj(v)
dv

(10.19)

which, due to the approximation that we make for the upper bounds, is independent of

the fraction Volume(SF )
Volume(RF )

.

In Figure 10.3, we plot the variance reduction factor as a function of the size of the

hyper-rectangle that bounds the failure region SF . For ease of illustration, we consider

the hyper-cube CF (Definition 28) instead of the hyper-rectangle RF since the size of

CF can be controlled by varying a single parameter c (the size of each edge of CF ). A

small hyper-cube implies a small failure region SF which in turn implies a small failure

rate pF . We observe that the variance reduction factor increases with decrease in size of

the hyper-cube. Therefore, the speedup provided by our importance sampling approach

increases with decrease in pF .
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Figure 10.3: A plot depicting the variance reduction achieved by importance sampling
as a function of the size of the hyper-cube CF that bounds the failure region of the
SRAM cell. On the x-axis, the size of the hyper-cube edge is expressed in terms of the
standard deviation σ of the Gaussian distribution of the threshold voltage values.
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10.6 Experimental results

In Table 10.1, we provide empirical evidence for the variance reduction provided by our

importance sampling approach (Column 5) over regular statistical model checking. We

choose three different timing constraints for the SRAM cell. For each timing constraint,

statistical model checking estimates the corresponding failure rate (Column 1) of the

SRAM cell. For a fixed number of samples (=105), the variance in the estimate computed

using our approach (Column 4) is significantly less than that when importance sampling

is not employed (Column 3).

We consider the failing samples that we generate using importance sampling and ap-

proximately determine the boundary of the 6-D hyper-rectangle RF (Definition 27) in

each of the six dimensions. We estimate the boundary vFj in the jth dimension (j = 1 to

6) of the hyper-rectangle by computing the minimum value of the jth variable vj among

all the failing samples that we generate. In Table 10.2, we list the variance reduction fac-

tors that we compute using Equation 10.19. Although the boundaries that we estimate

only coarsely approximate the actual hyper-rectangle RF , the reduction factors that we

compute in both Table 10.1 and Table 10.2 are comparable in magnitude.

In Table 10.3, we provide evidence for the correctness and speedup provided by our

approach. For the three different failure rates that we consider in Table 10.1, we verify

Φ (Equation 10.2) for low values of θ. The variance reduction provided by our approach

results in a significant reduction in the number of samples required by the statistical model

checking engine to arrive at a result within the specified error bounds (Section 10.2.3).

Therefore, our approach provides considerable speedup (Column 8) over regular statistical

model checking. Moreover, our verification results (Column 7) are consistent with those

obtained using regular statistical model checking (Column 4).

Table 10.1: Demonstrating variance reduction using our importance sampling approach
on an SRAM cell. We use 105 samples for both approaches.

Regular SMC Our approach
Failure rate Variance Failure rate Variance Variance

estimate σ2
pF

estimate σ′2
pF

reduction

p̂F p̂F
′ σ2

pF

σ′2
pF

2.20x10−3 2.20x10−8 2.29x10−3 1.21x10−8 1.81x
5.22x10−4 5.22x10−9 5.14x10−4 1.51x10−9 3.46x
8.76x10−5 8.76x10−10 6.57x10−5 9.61x10−11 9.12x
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Table 10.2: Demonstrating that our importance sampling approach provides a reduction
in the analytical upper bound of the estimation variance.

Failure rate Variance reduction factor
estimate AVarUB

AVar’UB

2.20x10−3 2.14x
5.22x10−4 5.38x
8.76x10−5 16.45x

Table 10.3: Demonstrating speedup of our importance sampling approach on an SRAM
cell. We set the error bounds α=β=0.01.

Regular SMC Our approach
Failure rate Threshold Number of Result Number of Result Speedup
estimate θ samples samples
2.20x10−3 2.5x10−3 44254 TRUE 11928 TRUE 3.71x
5.22x10−4 5x10−4 181720 FALSE 26881 FALSE 6.76x
8.76x10−5 10−4 322556 TRUE 31044 TRUE 10.39x

10.7 Chapter summary

In this chapter, we analyzed an importance sampling based approach for accelerating sta-

tistical model checking in rare-event scenarios for SRAM cells. We achieve this modifying

the distribution of the design such that the failure region is sampled more frequently. We

demonstrate that our approach is sound and provides significant speedup while verifying

the reliability of SRAM cells.
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CHAPTER 11

RELATED WORK

We briefly describe our contributions in this thesis in the context of related work.

11.1 Formal probabilistic analysis of hardware

For hardware designs, Markov chains have frequently been used to compute high level

system performance and power [60]. These models do not represent details of the hardware

implementation that are required to compute bit error-related performance. Markov

chains have also been used at a circuit level, to design circuits with high error tolerance

[100] and to analyze stability [101]. However, these models provide an excess of detail.

Therefore, they restrict the size of the systems that can be analyzed.

In [102], the authors use the probabilistic model checking tool PRISM to evaluate the

reliability of defect-tolerant systems. However, the evaluation is restricted to gate-level

descriptions of the systems. The defects in gate functionality are considered to be stochas-

tic in nature. The authors illustrate their technique using a NAND multiplexing example.

The state-space of the DTMCs that are used to represent the gate-level descriptions de-

pends on the number of gates in the system. RTL designs map to gate-level descriptions

that may have hundreds of thousands of gates. Therefore, it is infeasible to use such

gate-level analysis techniques to evaluate reliability of RTL designs.

The authors in [103] obtain analytical expressions for the errors introduced in RTL

due to internal quantization of data. However, this approach is intractable for complex

MIMO designs. Moreover, the analytical expressions do not model the probabilistic nature

of errors that are caused by external data corruption.

The Mobius tool [104] provides a flexible formalism that can be used to model and

formally analyze probabilistic systems. However, we find that several extraneous variables

need to be introduced into the model to represent correct RTL functionality. Therefore,

the scalability afforded by this tool is limited.
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11.2 Macromodeling

Macromodels [18],[19],[105] propagate information from the lower levels of hardware to the

higher levels of design. High-level analyses use macromodels as plugins to provide perfor-

mance (e.g., timing and power) estimates early in the design flow. Typically, macromodels

provide estimates in RTL that are within 20% of the actual measurements obtained at

the gate level.

Statistical timing estimates in RTL can be obtained with commercial CAD tools that

use delay macromodels [18],[19]. However, such variation-aware RTL timing analysis tools

almost exclusively consider only process variations and cannot be used in the context

of input variations. In this work, we consider RTL delay macromodels for both input

variations and for process variations.

To the best of our knowledge, ours is the first delay macromodeling strategy in the

context of input variations. Our macromodels are constructed offline and can be made

more accurate by including more features from the later stages of the design flow. For

example, optimizations during logic synthesis can modify the design delay significantly.

In this work, we show that our macromodels can faithfully capture delay changes re-

sulting due to downstream synthesis optimizations. In future work, we could refine our

macromodels to model other downstream features such as parasitics, interconnect de-

lay and crosstalk. These refined macromodels can then be plugged into our SHARPE

methodology to achieve the desired level of estimation accuracy. Since the macromodels

are but plugins, refining them will not require departure from the fundamental SHARPE

methodology that we propose in this thesis.

11.3 Performance analysis of MIMO systems

Conventionally, performance estimation is done by performing Monte Carlo simulations

[61] of MIMO RTL using random input vectors. Estimates that are reasonably accurate

can be obtained by simulating the MIMO systems [25] over many cycles. This technique is

time-consuming and incomplete. FPGA implementations [106] and ASIC prototypes [107]

provide accelerated simulations, thereby speeding up performance estimation. However,

both these methods involve significant overheads in terms of cost.

The performance of high level systems can be computed formally using probabilistic

model checking [108] and Markov chains [60]. Markov chains have also been used at a

circuit level, to design circuits with high error tolerance [100] and to analyze stability [101].

In [62], we present a novel methodology that uses probabilistic model checking at RTL
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in order to estimate error-related performance. However, none of the above techniques

model faults that may be present in the physical hardware implementation. Therefore,

they cannot be used to formally analyze the vulnerability of performance to physical

faults.

Several simulation-based techniques exist that study the effects of physical faults by

injecting them into RTL designs [8],[67]. In [70], the authors propose a formal verification

methodology in order to determine whether a fault that is present in the interior of an RTL

design can propagate to an output of interest. However, we are interested in computing

the average probability with which such propagations can occur rather than checking for

a single instance of their occurrence.

Although several techniques exist that perform a probabilistic analysis of the effects

of hardware faults [9],[109],[110] they are mostly simulation-based, and therefore not rig-

orous. In [102], the authors use probabilistic model checking to formally evaluate the

reliability of defect-tolerant systems. However, the evaluation is restricted to gate-level

descriptions of the systems. An exact probabilistic analysis of faults for RTL designs is

presented in [111]. However, each bit of an RTL variable needs to be represented indi-

vidually. Therefore, it is infeasible to use the techniques in [102],[111] for complex RTL

designs.

To the best of our knowledge, ours is the first work that provides a unified framework

which incorporates the effects of physical faults while formally analyzing BER performance

from the RTL description.

11.4 Probabilistic timing analysis

At the lower levels of design (e.g., gate-level), statistical static timing analysis (SSTA)

is expected to provide highly accurate estimates. Gate-level SSTA is a well-established

research topic that has matured over the past few decades. During this time period,

SSTA has evolved to use sophisticated delay models in order to provide statistical timing

estimates that are highly accurate. At the gate-level, timing verification methods include

SSTA techniques such as [5],[75],[76],[77]. Some circuit design techniques like [72] use

such gate-level timing analyses to enable better design goals than pessimistic worst case

design in the presence of process variations. For input-dependent timing variations, the

performance of better-than-worst-case designs [2],[3],[73],[74] can be verified using gate-

level probabilistic timing analysis described in [26]. However, such gate-level techniques

do not offer a scalable solution for statistical timing analysis at the higher levels of design.
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In recent work, SSTA has been adapted to be employed early in the design flow, during

high-level synthesis [7],[78],[79]. These high-level SSTA techniques use relatively sim-

ple delay macromodels to introduce variation-awareness early in the design flow. The

authors demonstrate that such variation-awareness can improve high-level design explo-

ration. Such high-level approaches emphasize on predictability and are not intended to

be highly accurate in comparison to downstream analysis.

Unlike existing high-level SSTA, our SHARPE methodology is applied to RTL. More-

over, our methodology can be applied in the context of both input variations and process

variations. Therefore, a direct comparison of our SHARPE methodology with existing

high-level SSTA is not possible.

11.5 Aging analysis in hardware

Commercial tools like RelXpert [112] perform extensive simulations at the transistor-

level in order to estimate the delay degradation of the circuit. In [30],[31],[32],[33],[34]

aging effects are analyzed at the gate-level. Our methodology is more scalable than these

techniques since we perform analysis at a higher level of abstraction. In [32], the delay

degradation of microarchitectural components is estimated by synthesizing them into

gate-level netlists. Our methodology operates at a finer granularity since the degradation

is estimated for each RTL statement.

11.6 Compositional reasoning for formal verification

Compositional techniques have been used before to improve the scalability of formal

hardware verification [38]. A form of circular assume-guarantee reasoning is used while

model checking the individual components. Additionally, a case-splitting technique is used

while verifying properties of a component over a set of different data values. However, the

decomposition strategy is not automatic and is specifically intended for non-probabilistic

model checking.

Automatic decomposition has been proposed for systems with Boolean variables [90].

The dependence between components is expressed through relations that are obtained

through learning-based techniques [90],[113]. However, this approach considers only non-

probabilistic systems, and therefore cannot be extended to probabilistic model checking

of hardware designs.
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Several compositional reasoning approaches have been presented in the context of prob-

abilistic model checking [37],[39],[40],[41],[42]. However, these approaches rely on the

ability of the designer to identify each Mi and the corresponding φi. These approaches

do not describe any automatic methodology to derive the components and their corre-

sponding properties. Therefore, a large amount of manual intervention is demanded while

employing such techniques. Moreover, these approaches are not intended specifically for

hardware designs, and therefore cannot exploit the characteristics of hardware systems.

11.7 Abstraction for formal verification

In the realm of software verification, there exist several techniques [114],[115] for predicate

abstraction. Properties regarding program correctness/safety can be expressed using a

set of predicates, that are either specified or automatically inferred. These predicates

can be used to abstract a program and convert it into a Boolean program on which the

properties can be easily verified. More generally, abstract interpretation [20] is the theory

of reasoning with the approximate semantics of a large program rather than the set of all

possible concrete behaviors. However, unlike predicate abstraction, all such abstractions

are not necessarily property-specific. In all these abstractions, the concrete numeric values

of data can either be completely abstracted out of the program or can be restricted to

finite intervals [116].

Data abstraction techniques have been applied even in the context of hardware ver-

ification [92]. These techniques employ predicate abstraction in order to focus on the

verification of Boolean control logic for which the exact numeric values of datapath vari-

ables are inconsequential. In [44], RTL designs are verified by restricting data values

to intervals that are imposed by the execution of the RTL program. Therefore, these

intervals are not property-specific.

Abstraction techniques have been employed in the context of probabilistic systems as

well [42],[43],[117],[118]. In [118], the abstraction is performed on the source code itself.

However, this technique is intended for probabilistic software and cannot be extended to

RTL designs.
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CHAPTER 12

CONCLUSION

We have presented SHARPE, a methodology for formally estimating statistical invariants

regarding RTL performance. The key advantages of our SHARPE methodology is two-

fold. Firstly, the use of formal probabilistic analysis makes SHARPE analysis rigorous

compared to conventional simulated-based techniques for statistical analysis. Secondly,

with the use of macromodels, our SHARPE methodology provides estimates of perfor-

mance as early as the RTL stage. Therefore, our SHARPE methodology is an effective

CAD technique that provides quick, accurate RTL estimates of performance which a

designer can use to efficiently explore the RTL design space.

Formal verification has most success stories in the hardware domain. Traditionally,

hardware verification has been limited to checking functional correctness. In order to

facilitate widespread adoption of formal verification, it must remain relevant and practical

even in new contexts such as variation-aware timing verification. Our work represents a

strategic step in this direction. With the SHARPE methodology, we define a probabilistic

notion of hardware correctness into the RTL verification paradigm.

We have demonstrated the breadth of the scope of the SHARPE methodology by ap-

plying it to estimate a diverse range of statistical performance metrics in the presence

of different sources of variations. We apply our methodology to verify statistical proper-

ties of both combinational and sequential designs. In Chapter 4, we apply our SHARPE

methodology in order to compute the BER performance of MIMO RTL designs. We

show that our methodology can also provide realistic estimates of BER by modeling the

presence of physical hardware faults. In Chapter 5, we apply our methodology in order

to compute probabilistic delay distributions at the outputs of RTL modules. We show

that our SHARPE methodology can consider either input variations or process variations

as the primary source of statistics in delay. In Chapter 6, we apply our techniques to

provide RTL estimates of delay degradation in the presence of aging effects. In both

applications, we show that the RTL estimates provided by our methodology closely track

those obtained from the gate level.

The scalability of our methodology is limited by the feasibility of the formal probabilistic
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analysis at the core of the SHARPE methodology. In this thesis, we have explored a slew

of approaches to significantly improve the scalability of our methodology. In Chapter 4,

we scale our SHARPE methodology by exploiting the symmetry inherently exhibited by

large classes of MIMO designs. In Chapter 7, we present a novel approach for automatic

compositional reasoning for probabilistic verification of hardware designs. In Chapter 8,

we present our technique for property-specific data abstraction that employs static analy-

sis of RTL source code. We demonstrate the soundness and effectiveness of our approaches

by considering several case studies.

We find that, even with our techniques for scalability improvement, the SHARPE

methodology is still not feasible for large RTL designs such as those pertaining to mul-

ticore systems. For such massive RTL designs, we employ statistical model checking, a

simulation-based, scalable alternative to probabilistic model checking. We demonstrate

this scalable framework by verifying the performance of dynamic power management

schemes in OpenSPARC, an industry-strength, eight-core processor. In this thesis, we

also demonstrate an importance sampling approach to accelerate the statistical model

checking engine in rare-event scenarios of SRAM cell.

With growing sources of variations in hardware, we expect statistical design techniques

such as “better-than-worst-case” design to become more widespread. In such a scenario,

the notion of hardware correctness being a statistical metric will become the norm rather

than the exception. Therefore, the groundwork laid by our SHARPE methodology and the

other approaches presented in this thesis will be essential for developing more sophisticated

statistical analyses to provide performance guarantees for hardware.
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