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Abstract 

Microsatellite instability (MSI) or deficient mismatch repair (dMMR) is a clinically important 

genetic feature affecting 10-15% of colorectal cancer (CRC) patients. Patients with 

metastatic MSI/dMMR CRC are eligible for therapy with immune checkpoint inhibitors, 

making MSI/dMMR the most important immuno-oncological biomarker in CRC. Gold 

standard tests for detection of MSI/dMMR in CRC are based on wet laboratory tests such as 

immunohistochemistry (IHC) or DNA extraction with subsequent polymerase chain reaction 

(PCR). However, since 2019, advances in Deep Learning (DL), an Artificial Intelligence (AI) 

technology, have enabled the prediction of MSI/dMMR directly from digitized routine 

haematoxylin and eosin (H&E) histopathology slides with high accuracy. In addition to the 

initial proof-of-concept publication in 2019, twelve subsequent studies have refined, 

improved, and further validated this approach. At this moment, MSI/dMMR prediction using 

Deep Learning has become a widely used benchmark task for academic studies in the field 

of computational pathology. Beyond academic use, this assay has attracted commercial 

interest from companies with the possibility of approval as a diagnostic device in the near 

future. In this review, we summarize and quantitatively compare the existing evidence on 

Deep-Learning-based detection of MSI/dMMR in CRC and discuss the need for further 

improvement and potential for integration into routine pathological workflows. Ultimately, this 

DL-based method could facilitate the identification of patients eligible for treatment with 

immune checkpoint inhibitors by pre-screening or replacement of current methods. 

 

Introduction 

The application of AI technology in the field of histopathology has developed rapidly over the 

last three years. Supervised analysis of histopathological images by Deep Learning methods 

moved from studies reporting technical advances to real-world applications with a clinical 

focus.[1,2] Important factors contributing to this development are (1) the increasing use of 
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whole slide scanners in pathology departments generating an enormous number of 

histopathological images and (2) the evolving quality and availability of algorithms, 

computing power, and storage media.[3] In addition, advances in new technologies are often 

driven by the availability of specific benchmark tasks. A benchmark task is a clearly defined 

problem on which new algorithms can be tested and results can be compared to previous 

approaches. In the context of computational pathology, prediction of microsatellite instability 

(MSI) or mismatch repair deficiency (dMMR) from hematoxylin and eosin (H&E) stained 

histology slides of colorectal cancer (CRC) has become such a benchmark task and multiple 

studies have specifically addressed this question, suggesting new algorithms and comparing 

performance to the initial studies.[4–17] In this systematic literature review, we aimed to 

provide a critical review of studies performing MSI/dMMR prediction on H&E-stained CRC 

tissue sections with a brief comparison to DL based MSI/dMMR prediction in other cancer 

types. Differences in methodology and results as well as limitations and possible future work 

are discussed.  

 

Background: Microsatellite instability as a key biomarker to select patients for 

immunotherapy 

Microsatellites are short tandem repeat non-coding DNA sequences that are widely 

distributed throughout the human genome. [18] These sequences are vulnerable to 

spontaneous replication errors. In healthy cells, replication errors are constantly corrected by 

the so-called Mismatch Repair (MMR) system which consists of two major protein 

complexes. During CRC carcinogenesis, the MMR system can be compromised (become 

‘deficient’) due to the loss of expression of its proteins. [19] Tumor cells with a deficient MMR 

system are unable to correct replication errors which consequently leads to many mutations 

in coding DNA sequences. One of the reasons why Microsatellite instability (MSI) or deficient 

mismatch repair (dMMR) detection are widely studied is its immediate clinical relevance. 

Approximately 10-15% of colorectal cancer (CRC) display dMMR at protein level [20], and 

presence of dMMR is almost completely overlapping with presence of MSI at DNA level. [21] 

Medical guidelines recommend that all CRC patients should undergo screening for 

dMMR/MSI for a number of reasons.[21][22] First, dMMR/MSI in combination with other 

molecular alterations can be an indicator for the presence of Lynch syndrome, the most 

common cause of hereditary CRC.[21] Second, dMMR/MSI in intermediate stage CRC (pT3-

4, N0-2) has been associated with a reduced response to Fluorouracil-based chemotherapy 

as well as lower incidence of locoregional metastases.[23] Finally, the presence of 

dMMR/MSI is suggestive of potential efficacy of cancer immunotherapy with immune 

checkpoint inhibitors [24,25] as most dMMR/MSI tumors are highly immunogenic. [26] In 
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metastatic CRC, dMMR/MSI is currently the only biomarker which renders patients eligible 

for treatment with immune checkpoint inhibitors, as approved by the US Food and Drug 

Administration (FDA) and the European Medicines Agency (EMA). The EMA approval of 

immune checkpoint inhibitors in dMMR/MSI CRC includes the anti-PD1 antibody 

Pembrolizumab in first-line palliative therapy [27] and the combination of anti-CTLA4 

antibody Ipilimumab with the anti-PD1 antibody Nivolumab in second-line palliative therapy. 

[28] According to the FDA approval for anti-PD1 antibodies, dMMR/MSI is not only a 

biomarker for first-line immunotherapy in metastatic or locally advanced unresectable CRC 

but also for any unresectable or metastatic solid tumor that has progressed following initial 

treatment. [25] [29] The FDA approval of immune checkpoint inhibitors in dMMR/MSI patients 

currently allows the use of two diagnostic methods to detect this genetic alteration: (1) 

detection of loss of expression of one of the MMR proteins by immunohistochemistry (IHC) 

and/or (2) detection of the presence of MSI using extracted tumor DNA and a polymerase 

chain reaction (PCR) panel or next-generation sequencing (NGS). [30,31] Recently, a proof-

of-concept study suggested that dMMR/MSI can also be detected directly from routine 

pathology slides by using a Deep Learning-based diagnostic method. [4] It is currently 

envisaged that the DL-based assay could be used as a pre-screening tool reducing the 

number (and costs) of wet laboratory tests or as definitive diagnostic test. [4] [32] 

 

Histopathological features as predictors of MSI status on H&E slides 

The rationale why Deep Learning could detect dMMR/MSI from routine histology slides is 

that there are known morphological patterns of dMMR/MSI CRC. In other words, humans 

can see patterns which are associated with dMMR/MSI and so Deep Learning can also 

detect such patterns (Figure 1). As early as the 1990s, a relationship between MSI genotype 

and morphological tumor phenotype was demonstrated by several studies. [31,33–36] Lists 

of clinico-pathological features enriched in patients with Lynch syndrome, so-called 

Amsterdam and Bethesda criteria, were formally published in 1991 and 1996 respectively. 

[31,36] The aim of these criteria was the identification of patients with high likelihood of 

hereditary CRC, provide genetic counseling to the index patient and relatives and include 

patients and relatives in appropriate surveillance programs.  

 

In 2003, Greenson et al. were the first to investigate morphological phenotypic markers of 

MSI in CRC in a population-based study. By analyzing 528 CRCs they identified tumor 

infiltrating lymphocytes, poor differentiation, right-sided location, mucinous differentiation, 

Crohn’s like inflammatory reaction in the periphery of the tumor and a lack of so-called dirty 

necrosis as independent predictors of microsatellite instability. [35] Example histology 

images of MSI/dMMR and MSS/pMMR tumors are shown in Figure 1. Six years later, 
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Greenson et al. expanded their analysis by increasing the sample size and confirming tumor-

infiltrating lymphocytes, Crohn’s-like inflammatory reaction, lack of dirty necrosis within the 

tumor lumen, and mucinous differentiation as independent histological predictors of MSI 

presence together with the clinical characteristics of age <50 years and a right-sided location 

of the CRC. When combining all these features within a MSI scoring system, a pathologist 

looking at the histological slide was able to predict MSI status in 1649 CRC with an area 

under the receiver operating characteristic curve (AUROC) of 0.85.[34]  

 

In 2007, Jenkins et al. systematically quantified the association between CRC histological 

features in H&E slides, clinical parameters, and presence of MSI in a large population-based 

study of CRC patients. Their study confirmed clinical and pathological features such as age 

at diagnosis younger than 50 years, right-sided tumor location, presence of tumor-infiltrating 

lymphocytes, mucinous, (focal) signet ring cell differentiation, or undifferentiated histology 

and a Crohn’s-like inflammatory reaction as predictors for the presence of MSI.[33] This 

approach was validated in an independent patient cohort and obtained an AUROC of 

0.89.[33] 

 

In a more recent study in 2021, a much lower performance for pathologist-based MSI/dMMR 

detection was reported: Yamashita et al. evaluated the unassisted prediction of pathologists 

which reached an average AUROC of 0.605 with a low inter-rater agreement for the 

unassisted prediction of MSI from whole slide images (WSI).[10] However, in contrast to the 

two above mentioned pathologist-based studies, pathologists in this study were blinded to 

clinical information such as patient age or tumor location.  

 

These H&E based study results from human observers suggest that modern Deep Learning 

based methods should be able to predict MSI/dMMR status from analyzing H&E tissue 

sections. 

 

Methods 

To identify studies using Deep Learning-based methodology for the prediction of MSI or 

dMMR status in CRC histology images, we searched the Medline database using different 

queries including studies published between January 2017 to August 2021. This literature 

research was performed by AE and JNK independently.  

To be eligible for inclusion in the current review, studies had to be original research papers 

that used Machine Learning methods to investigate the detection of MSI/dMMR on CRC 

histology images and had to be published in English. We did not include studies that used 
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other imaging modalities than digitized histopathological images like Magnetic Resonance 

Imaging (MRI) or Computed Tomography (CT) scans. The initial search terms were “(deep 

learning) AND (microsatellite instability)”, which resulted in 18 studies including 6 reporting 

original methods for MSI prediction in CRC (based on review of title and abstract). Next, we 

used the terms “(machine learning) AND (microsatellite instability)” resulting in 35 studies, 

“(artificial intelligence) AND (microsatellite instability)” resulting in 26 studies and last 

“(convolutional neural networks) AND (microsatellite instability)” which led to one result. 

However, none of search terms listed in the previous sentence resulted in additional studies 

of original methods for dMMR/MSI detection in CRC being found. Most search results were 

either review articles or studies investigating images from other sources than histology such 

as from MRI or CT scans, other tumor types, other prediction targets or did not cover image 

related research but the analysis of RNA sequencing data. To include preprints or 

publications which are not yet listed in the Medline database, we queried the Google Scholar 

Database with the terms “deep learning” and “microsatellite instability” and “colorectal 

cancer”, which yielded 577 results. After manual review of titles, article previews and 

abstracts, we identified 7 additional studies reporting original methods. 

Thus, in total, we identified 13 studies published between July 2019 to April 2021, listed in 

Table 1. To compare the performance of study results, we used the AUROC values as this 

was the most commonly reported endpoint. As one of the studies did not report AUROC 

values, we report the F-score, a statistical measure of a test’s accuracy for a binary 

classifier.  

 

Deep Learning for MSI/dMMR detection in colorectal cancer 

Common methods 

The very first step in all Deep Learning (DL) studies is the collection of scanned whole slide 

images from H&E-stained tumor tissue sections and corresponding clinical information such 

as MSI/dMMR status as determined by a gold standard method. One important and widely 

used data source is the publicly available Cancer Genome Atlas (TCGA), from which almost 

all recent histopathological Deep Learning studies obtained data.[37] 

Before a histopathological image can be used to train a DL network, several preparatory 

steps are necessary. The H&E-stained tissue section needs to be digitized using a whole 

slide scanner, a process which may differ between institutions with respect to scanner 

model, scanning quality or magnification factor. As soon as images are digitally available for 

computational analysis, they need to undergo preprocessing steps that may vary slightly 

between different studies.[38] First, a decision needs to be made whether all available slides 

from one patient will be used for the DL-based study or whether a particular slide will be 
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selected based on predefined criteria. Second, a decision needs to be made whether the 

whole tissue on a given slide or only tumor tissue will be used for training purposes. If aiming 

for the latter, manual or automated tumor annotations will be necessary. Due to the potential 

large data size of a single scanned WSI and currently still technically limited input size for 

training neural networks, smaller image patches (tiles) need to be created. After creating 

image tiles of the whole tissue or from annotated regions of interest, image tiles can be 

color-normalized to account for variability of staining hue and intensity. Preprocessing 

methods between studies are summarized in Table 1. 

 

The first studies using Deep Learning for MSI/dMMR prediction (2019 and 2020) 

The first fully automated, end-to-end Deep-Learning-based detection of MSI/dMMR status in 

CRC was published in July 2019.[4] Kather et al. presented a supervised transfer learning 

approach in which a classifier based on a pretrained resnet18 network was trained on CRC 

H&E images from TCGA and evaluated on a second independent subset of CRCs from the 

DACHS trial, a large-scale multi-institutional cohort from southwest Germany. [39,40] This 

led to a reasonable performance with an AUROC of 0.84 within the TCGA cohort as well as 

in the DACHS cohort.[4] Building on these initial results, a slightly different technical pipeline 

using ShuffleNet, e.g. as a different neural network model, together with manually annotated 

tumor regions yielded a higher external prediction performance of MSI/dMMR status in 

DACHS with an AUROC of 0.89.[5]  

 

Validation by multiple research groups (2020) 

After these two initial studies, six subsequent studies published in 2020 confirmed the ability 

of DL to predict MSI/dMMR status in CRC H&E-stained digitized tissue sections (Figure 2) 

by further improving the existing methods as well as by developing new technical 

approaches: 

 

In August 2020, Schmauch et al. presented a method to infer gene expression profiles from 

CRC H&E images of the TCGA database using DL.[12] Compared to previous studies they 

investigated a new approach by first using a subset of patients to train a model to predict 

RNA-sequencing data and second applying transfer learning to this pre-trained model to 

train the MSI/dMMR status classifier. This method of DL-based MSI/dMMR status prediction 

resulted in an AUROC of 0.81 which was higher than the reported AUROC of 0.71 for 

prediction of MSI/dMMR status in the same subset of the TCGA data without using the pre-

trained gene expression model. These results suggest that pre-training a model on 

transcriptomic representation might help the model to detect biologically relevant patterns 
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and could therefore be useful to improve prediction performances of DL models. 

Furthermore, in an additional experiment, they performed a direct prediction of MSI/dMMR 

status from WSI without using a pre-trained gene expression model in the full TCGA CRC 

dataset and reported an AUROC of 0.82.[12] This study was primarily driven by a 

commercial entity (Owkin, Inc.; 12 Rue Martel, 75010 Paris, France) demonstrating the 

commercial interest in using DL to predict the presence of MSI/dMMR. Notably, another 

commercial entity (Tempus, Inc., 600 W Chicago Ave. Ste 510, Chicago, IL 60654, USA), 

has filed a US Patent application #20190347557 (retrieved from Google Patents on 1st April 

2021) for a DL based system to predict MSI/dMMR status from histopathology images. 

These two publicly available pieces of information demonstrate the early commercial interest 

in the use of this technology.  

 

Also in 2020, Cao et al. developed an MSI/DMMR status using the TCGA CRC image 

dataset in a similar way as previously described by Kather et al. (based on a pretrained 

resnet18 network). This approach resulted in a comparable AUROC of 0.885 in the TCGA 

dataset, but performance dropped to an AUROC of 0.649 in an external validation set. By 

using 10% of cases from the external validation cohort for fine-tuning the model, prediction 

performance increased to an AUROC of 0.85 for the external validation set.[6] This study 

demonstrated the challenges and difficulties of training a DL-based MSI/dMMR status 

classifier that is robust and shows a similar performance in unseen data of external 

validation cohorts. In addition, Cao et al. compared methods to generate the needed 

prediction on WSI level from the predictions of single tiles resulting in a new model for this 

task that combines different methods of Multiple Instance Learning.[6] 

 

Zhu et al. repeated MSI/dMMR status prediction in the CRC TCGA dataset using the already 

preprocessed images provided by Kather et al. [41] achieving the same AUROC of 0.84. In 

addition, they performed a feature-level analysis and identified texture characteristics and 

color features of H&E images as important for the prediction of MSI/dMMR status as they 

contributed the most to the MSI/dMMR predictions.[13] 

 

The strategies provide interpretability in two aspects. On the one hand, the image-level 

interpretability is achieved by generating localization heat maps of important regions based 

on the deep learning network; on the other hand, the feature-level interpretability is attained 

through feature importance and pathological feature interaction analysis. More interestingly, 

both from the image-level and feature-level interpretability, color features and texture 

characteristics are shown to contribute the most to the MSI predictions.[13] 
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In October 2020, results from a study with the largest and most heterogeneous CRC patient 

cohort so far was published by Echle et al. [7] Images from more than 8500 CRC patients 

collected within the academic MSIDETECT consortium (www.msidetect.eu) from different 

countries and institutions were used for the development of a DL based MSI/dMMR status 

classifier. This classifier obtained an AUROC of 0.96 in an additional external validation 

cohort,[7] which was the best performing DL classifier for MSI/dMMR status prediction from 

H&E images at that point. The sensitivity of this classifier is similar to that of the gold 

standard immunohistochemical and PCR based tests.[30] The most relevant difference in 

this approach compared to the previous ones was the number of histopathological images 

available for the DL study, which appears to be the main reason for the good performance 

as this study demonstrated an increasing MSI/dMMR status prediction performance with 

increasing number of patients.[7] 

 

At the end of 2020, results from two smaller studies using only one patient cohort were 

published. One of them by Ke et al. yielded an AUROC of 0.802 using the CRC TCGA 

data[14]. Their study focused on the potential problem of mislabeling image tiles in the data. 

Mislabeling, or noisy labels, possibly occurs when all image tiles inherit the label of the WSI, 

which is the method used in all previous studies. Their aim was to develop a robust and 

mislabel-aware classifier by cleaning the data before training the DL network. Therefore, the 

authors built a model to mark image tiles as high or low fidelity and pathologists tagged the 

most representative samples for noise-robust training.[14] However, this approach seems to 

rely primarily on human performance and with an AUROC of 0.802 did not improve MSI 

prediction performance in the TCGA CRC dataset when compared to previous studies. 

 

Lee et al. used a dataset of just 45 patients from the “Pathology Artificial Intelligence 

Platform (PAIP) - Challenge”.[42] This study proposed a two-stage classification method. 

First, the regions with tumor tissue are detected and second, the MSI/dMMR status DL 

model trains on the detected tumor tissue, a method that was also used by Kather et al in 

2019. The authors reported a good performance by this two-stage classification model but 

did not report the AUROC, limiting the quantitative comparison to other studies. The F-score 

was 0.83 in this case.[15] 

 

Recent advances resulting in further performance boost (2021) 

Contributions to the field continued at the beginning of 2021 with a publication by Yamashita 

et al. using a proprietary cohort from Stanford University for training, reaching a high intra-

cohort AUROC of 0.93. However, performance of the MSI/dMMR status prediction models 

dropped to an AUROC of 0.78 for external validation in the TCGA CRC dataset. This study 
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thus confirmed the challenges of training an MSI/dMMR status classifier which maintains its 

good performance in unseen data of external validation cohorts. Whilst MSI/dMMR status 

prediction in CRC histology images was similar to previous studies, a new two-step method 

was introduced: first a tissue-type classifier was used to select tumor-epithelial and mucin 

containing tiles which were then used for training of the MS/dMMR status DL classifier in a 

second step.[10] This more complex methodical pipeline is an example for ever-growing 

complexity of DL workflows on the MSI/dMMR status benchmark task. While hand-crafting 

complex image processing pipelines can improve performance, such an approach might also 

have weaknesses when compared to simple, off-the-shelf approaches: the more processing 

steps any pipeline has, the more potential breakpoints are present – if there are more steps 

in an image processing pipeline this could make the analysis more error-prone and more 

difficult to reproduce.  

 

Also, in 2021, Bilal et al. presented the highest classification performance for MSI/dMMR 

status prediction in CRC so far. They used CRC TCGA data to train a DL system which led 

to an intra-cohort AUROC of 0.86. When applying the MSI/dMMR status classifier to the 

small PAIP challenge dataset of 47 patients as external validation cohort, the DL classifier 

yielded an AUROC of 0.98.[8] Their DL framework involved three models, first a tumor 

detection model, second the MSI/dMMR prediction model and third a segmentation model to 

analyze cellular composition of image parts ranked highly predictive of MSI/dMMR status by 

the DL classifier. Furthermore, they used DL for the detection of other molecular alterations 

such as CpG island methylator phenotype and chromosomal instability as well as for BRAF 

and TP53 mutation prediction.[8] Certainly, such high performance for MSI/dMMR status 

prediction in CRC histopathological images is very encouraging but needs to be interpreted 

with caution as the validation cohort comprises only 47 images which were manually chosen 

by the PAIP challenge committee. Therefore, the validation cohort might potentially not be 

representative of real-world CRC patient cohorts.  

 

In a study from February 2021, Yamashita et al. used the same Stanford and TCGA dataset 

as in their above-mentioned study to investigate the improvement of a DL classifier when 

trained on H&E images that underwent medically-irrelevant style augmentation, a method 

that was not investigated in any of the previous studies. This means that the style of a 

random artistic painting replaces the style of the histopathology image (including texture, 

color, and contrast) with an uninformative style while preserving global object shapes.[9] 

This led to an AUROC of 0.876 in the TCGA cohort used as an external validation set 

showing a pronounced improvement to their findings as well as those of other groups in the 
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TCGA CRC dataset and also outperforming other normalization and augmentation methods 

in a systematic comparison.[9] 

 

In April 2021, Lee et al. developed a DL based image analysis pipeline that first uses a 

classifier to exclude artifacts, second a tumor detection network and in the last step a 

MSI/dMMR status prediction network. They used the TCGA CRC dataset for training and 

validated their classifier in a cohort from Seoul reaching an AUROC of 0.78. Compared to 

the previous study, a new aspect investigated in this work is the prediction of MSI on distant 

metastasis of CRC. Applying the TCGA based primary CRC classifier to metastatic CRC in 

the liver or lung led to an initial AUROC of only 0.484. However, retraining and testing a DL 

network within the metastasized tumors only yielded much better results with an AUROC of 

0.801.[16] 

 

In the most recent study from July 2021, Schirris et al. used the TCGA-based dataset 

provided by Kather et al. [41] to use a two-step approach for MSI/dMMR detection. First, a 

simple framework for contrastive learning of visual representations (SimCLR, [43]) was used 

to pre-train a feature extractor. Second, a Multiple Instance Learning (MIL) approach was 

extended by a feature variability module to generate the MSI/dMMR prediction. By that 

combination of methods, the authors achieved an AUC of 0.903 within the TCGA dataset 

and outperformed previous approaches for that dataset. [17] 

 

All methodological approaches and detailed results of all mentioned studies are summarized 

in Table 1 and Figure 2. While the study inclusion for this article ended in April 2021, it can 

be assumed that further studies will increase the performance even more: in non-medical 

domains, image classification accuracy on complex tasks has continuously increased from 

2012 to 2021.[44] By applying these improved non-medical DL models to medical tasks, the 

performance on medical benchmark tasks, such as MSI/dMMR status prediction in CRC, will 

conceivably increase in the future. In the next section, we will point out limitations and 

potential routes for further development. 

 

Visualization methods and limitations 

Deep Learning detects histological patterns with known link to MSI/dMMR status 

More than a decade ago, Greenson et al. presented and validated visual features in H&E-

stained tissue sections from CRC which were correlated with MSI/dMMR status.[34] An 

important plausibility check of studies using Deep Learning to predict MSI/dMMR status is 

whether the automatic approach learns these known visual features or whether the unbiased 
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nature of training Deep Learning networks on image data allows the networks to identify 

additional, previously unknown visual features. Various methods have been proposed to 

provide explainability and visualization of such classifiers.[45–47] Applying visualization 

methods also raises the awareness towards potential biases such as batch effects due to 

different staining or scanning techniques which can arise when samples are derived from 

different institutions.[48] One widely-used method is to visualize and analyze image parts 

which are classified as highly predictive by the Deep Learning network (Figure 3a-b). In this 

visualization of “highly predictive image tiles'', known histopathological predictors of 

MSI/dMMR status such as lymphocytic infiltration and poor tumor differentiation have been 

shown to be present in MSI/dMMR tiles[7,8] as for example shown in Figure 3a. Although 

these image tiles are only a few out of several million tiles processed by such models, and 

the size of these tiles is much smaller than tissue regions which are usually assessed by 

pathologists, the ability of deep learning models to rank tiles and let the user interactively 

explore the content of these tiles provides a potentially useful tool for pathology research in 

the context of MSI/dMMR and beyond. Related to such a collection of highly scoring image 

tiles, tile-level predictions have been visualized as heat maps by multiple studies [4,5,12,47]. 

These landscapes can illustrate the spatial context of highly scoring tiles, potentially 

providing additional possibilities to discover visual features (Figure 3d).  

 

The importance of common standards for Deep Learning classifiers 

Because of the known presence of histopathological features and the rapidly evolving DL 

techniques as well as the growing interest in their possible clinical utility, it is not surprising 

that more and more research groups started working on MSI/dMMR status prediction from 

scanned histopathological slides since 2019. However, studies so far vary markedly 

regarding the number of patients and cohorts. Moreover, not all classifiers were evaluated in 

external cohorts, which is considered helpful to prove generalizability to unseen data as 

needed in a possible diagnostic setting. In particular, all studies listed in Table 1 used slightly 

different methods pipelines. Therefore, no conclusion can be made from existing studies 

which DL model or preprocessing pipeline is universally optimal. Recently Kleppe et al. 

posited that predefined analysis protocols for Deep Learning studies are needed to prevent 

selection biases.[49] Generally, consented quality attributes will be crucial for the further 

development of this research field and should be taken into account by every person 

contributing to the evolution. Minimal criteria for artificial-intelligence-based diagnostic 

accuracy studies are currently being developed by the STARD diagnostic guidelines 

group.[50] Furthermore, MI-CLAIM checklist may serve as a potential documentation 

standard.[51] However, these checklists are not yet widely adopted in the field and none of 

the above-mentioned studies explicitly declared adherence to all relevant guidelines. As 
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suggested by those guidelines most of the authors give public access to their trained models 

at the time of publication, which is a very positive trend allowing other research groups to 

reproduce experiment results and directly compare their own work. For example, the publicly 

available image data and programming codes from the first DL model for MSI prediction by 

Kather et al. from 2019[4] were re-used by three of the studies presented in this review. 

[6,9,13]  

 

Future directions - how will the field evolve? 

Technological improvements 

Over time, due to the increased computational power of computers, it became possible to 

train deep learning models with a larger amount of available open-source datasets [52–54] 

and use transfer learning and achieve relatively high performance even in smaller patient 

cohorts with less than 300 patients. Based on the focus of non-medical fields on developing 

new deep learning models, development of newer model architectures and more efficient 

classifiers are expected to continue. As an example of recently developed models, multi-

instance learning, a weakly supervised approach, and completely new artificial intelligence 

models such as vision transformers [55] were proposed, but have not been applied to the 

problem of MSI/dMMR status prediction yet. In other benchmark tasks, these models can 

result in better performances and higher explainability of the trained models [56,57]. 

Therefore, application of these new approaches to the task of MSI/dMMR status prediction in 

large cohorts is still awaited. The increasing accessibility of Deep Learning technologies - for 

example, through initiatives like FastAI (www.fast.ai) decreases the obstacles for biological 

and medical researchers to enter the field of computational pathology. This increasing 

accessibility of such easily usable programming libraries could conceivably further boost 

innovation and thus improve the performance of MSI/dMMR status classifiers. Ultimately, but 

on a longer time scale, further improvements in computer hardware - in particular, graphics 

processing units with larger memory - will conceivably enable larger models to be trained on 

histopathological gigapixel images, thereby facilitating approaches that work directly on 

whole slide images without extensive image preprocessing. 

 

Other biomarkers, tumor types other than CRC, additional imaging modalities 

Beyond the detection of MSI/dMMR status in CRC, an increasing number of studies used 

similar methods for other molecular markers, in different tumor types and with additional 

imaging modalities. A detailed review of such approaches can be found elsewhere.[38] 

However, it is of relevance to note that MSI/dMMR status prediction has also been applied to 

gastric and endometrial cancer, in which the clinical utility of MSI/dMMR status prediction is 
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comparable to CRC. [58,59]. However, for those tumor types the performance for detection 

of MSI/dMMR is not as high as in CRC.[60] A study from April 2020 presented a decent 

performance with an AUROC of 0.73 in the TCGA cohort of endometrial carcinoma.[61] In 

gastric cancer, the number of DL studies for MSI/dMMR status prediction is higher than for 

endometrial cancer, which might be due to the larger patient numbers and therefore more 

easily accessible patient cohorts. DL used for MSI/dMMR status prediction in gastric cancer 

yielded AUROCs between 0.66 and 0.879[4,12–14] which is lower than the performance of 

DL classifiers in CRC. Besides MSI/dMMR status, other molecular alterations are relevant 

for diagnosis, classification, or treatment of CRC such as mutations in BRAF, KRAS, NRAS 

or TP53. Several studies have shown that these genetic alterations are also to a certain 

degree detectable by DL from routine H&E histology images.[5,8,62] Additionally, Wang et 

al. showed that DL can predict tumor mutational burden as a quantitative biomarker from 

histology slides.[11] High tumor mutational burden (TMB) has been correlated with 

MSI/dMMR status in CRC[23], but future studies need to identify which visual features are 

specific to high TMB and which are specific to MSI/dMMR status. Similar to histopathology, 

other imaging modalities have been used to infer genetic information in CRC. It is 

remarkable that the prediction of MSI/dMMR status in colorectal cancer by DL is not limited 

to histological information but works also directly from Magnetic Resonance Imaging and 

computed tomography scans with AUROCs up to 0.811 as shown by two small-scale 

studies[63,64] However large-scale validation in radiological imaging modalities is currently 

not available.  

 

Collecting large and diverse training cohort in computational pathology  

It is known that, up to some point, a DL network performs better the more training data is 

available and this aspect also applies to MSI/dMMR status prediction in CRC.[7] As 

computational pathology approaches rely on sensitive medical patient data, a sufficient 

number of training images is not always easy to collect. Until now, different strategies have 

evolved to address this challenge. Collaboration between different institutions, countries and 

disciplines is essential in the field of DL in medicine. The establishment of academic 

consortia across countries[65] can enable the collection of large and heterogeneous patient 

cohorts as well as their interdisciplinary exchange. Yet, transferring images and patient data 

from involved sites to the institution performing the DL study comes with different challenges 

regarding infrastructure, data protection, and ethical regulations, possibly slowing down the 

research progress. Therefore, another strategy to collaborate on DL studies with increasing 

patient numbers is the so-called federated learning approach, which relies on decentralized 

training of multiple small models which are subsequently merged. This federated learning 

approach is mainly promoted by Owkin, Inc.[66] while other commercial entities such as 
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Paige (11 Times Square, Fl 37 New York, NY, 10036, USA) have acquired commercial 

usage rights for a large number of archived patient samples.[2] Based on public information, 

other companies including Tempus Inc. (600 W Chicago Ave. Ste 510, Chicago, IL 60654, 

USA) and PathAI Inc. (120 Brookline Ave. Boston, Massachusetts 02215, USA) are active in 

this field of research, but have not launched any clinically approved products yet. The 

newest strategy to collect a sufficient amount of data is the use of generative adversarial 

networks that can be trained to create synthetic histological images based on real image 

data.[67] Recently it was shown that these synthetic images even contained sufficient 

information about MSI/dMMR status to enable the development of a Deep Learning classifier 

purely on synthetic images.[68] Thus, this technique holds the potential to create patient 

cohorts that do not face ethical regulations or privacy issues as the images do not belong to 

an actual patient. Together, it can be expected from these approaches that they will enable 

researchers to access larger amounts of data in the future, potentially giving rise to 

computational models with higher performance 

 

Adaption and advancement towards MSI/dMMR status prediction on diagnostic 

biopsy samples 

All presented DL studies focused on the prediction of MSI/dMMR status from histology slides 

from tissue obtained by surgery. However, before patients undergo surgery, all patients 

usually have a diagnostic endoscopic biopsy.[69] Consequently, the biopsy tissue is 

available at an earlier point in the patient pathway and can be the only available tumor tissue 

sample in patients having a complete pathological response after neoadjuvant treatment.[70] 

Therefore it is of particular importance that DL based MSI/dMMR status prediction systems 

are also applicable to digitized endoscopic biopsy samples of CRC. This task raises 

additional challenges as biopsy samples are much smaller, can contain technical artifacts 

and are usually fragmented. Furthermore, the biopsy-derived tissue represents the luminal 

portions of the tumor only. Echle et al. reported that a DL system trained on images from 

tumor resection specimens performs considerably worse when used to predict MSI/dMMR 

status from endoscopic biopsy tissue.[7] However, training and testing a DL system within 

biopsy samples improved performance markedly leading to the hypothesis that DL based 

MSI/dMMR status prediction on biopsy samples most likely needs a DL classifier trained on 

the same sample type. For future research in this area, key challenges will be to collect a 

sufficient number of biopsy data to investigate whether a robust, well-performing MSI/dMMR 

status DL-based detection system can be developed. This raises the additional question 

whether a minimum amount/region with cancer and a larger patient sample might be 

required for such a DL system to work well.  
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Implementation in routine workflows - how can this be achieved? 

Today, routine pathology workflows across the world are still predominantly based on 

examining physical glass slides under a microscope. However, it is expected that routine 

workflows will be ultimately digital, relying on digitized whole slide images evaluated by 

human observers with or without the aid of computer-based algorithms.[71] Currently, 

workflows in radiology departments are almost ubiquitously digital, with images being stored 

in a picture archiving and communication system (PACS) and expert observers interactively 

working with these images on computer workstations. Once the glass-slide based workflow 

in pathology departments has shifted to a similar, PACS-based approach [3], automatic 

computer-based image analysis methods could be more easily embedded in routine 

workflows. A pathology PACS could conceivably automatically trigger deep-learning-based 

testing of whole slide images in the background, potentially improving patient selection for 

molecular tests or directly providing definitive subtyping.[72] One important challenge that 

needs to be tackled before computer-based algorithms can be integrated in clinical 

workflows is the prospective validation of those methods in randomized patient trials to prove 

robustness and generate further evidence in real-world clinical settings which is also an 

important step towards regulatory approval. In addition to prospective validation, complex 

diagnostic procedures or devices need to be fine-tuned to local data and infrastructure. This 

is the case for diverse devices and methods such as computer tomographs, linear 

accelerators for radiation therapy and immunohistochemistry assays in pathology. In 

principle, such computer-based tests could be implemented in clinical routine by using 

commercially developed diagnostic algorithms or in-house in-vitro diagnostic test 

approaches. In this light, the developments around MSI/dMMR status prediction directly from 

routine histopathology images could serve as a blueprint for other biomarkers and provide a 

clear incentive for further digitization efforts of routine workflows in pathology.  

 

Conclusions 

Microsatellite instability (MSI))/deficient mismatch repair (dMMR) is a clinically important 

genetic trait that affects a substantial portion of colorectal cancer (CRC) patients. It is 

currently the only clinically approved biomarker that allows CRC patients to be treated with 

immune checkpoint inhibitors in the USA and Europe. Since 2019, advances in Deep 

Learning (DL) have made it possible to predict MSI/dMMR status directly from digitized 

routine hematoxylin and eosin (H&E) histopathology slides with high accuracy, as shown by 

13 published studies to date. This is clinically relevant because DL could facilitate screening 

of CRC patients for dMMR/MSI. In the context of computational pathology, prediction of 
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MSI/dMMR status with DL is currently one of the most widely studied problems. It has 

become a de-facto benchmarking task on which new DL algorithms are routinely tested. The 

broad interest of academia and industry suggests that DL-based assays for MSI detection 

could come onto the market in the next few years, potentially making MSI/dMMR status 

prediction in CRC one of the first clinically implemented DL algorithms for molecular 

subtyping of cancer. 
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Figures and Tables 

 

 

Figure 1: Example histology slides for MSI/dMMR and MSS/pMMR colorectal 

tumors. (a) MSI/dMMR tumors display some typical morphological patterns such as 

a high number of tumor infiltrating lymphocytes, poor differentiation or the presence 

of mucin, which are known indicators of MSI/dMMR. [34] However, quantification of 

these features by human experts is not sufficiently accurate for a definitive diagnosis 

of MSI/dMMR in clinical routine. (b) MSS/pMMR tumors. This collection of 

histological images also highlights the variability in terms of color, size and presence 

of different non-tumor tissue types on histopathology slides.  
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Figure 2: Overview of Deep Learning studies for MSI/dMMR detection in 

colorectal cancer histology. Comparison of performances of Deep Learning 

studies that performed an external validation or only internal testing and studies 

using an MSI/dMMR scoring system. AUROC, area under the receiver-operator 

curve.  
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Figure 3: Visualization approaches for feature detection in histopathology. (a-

b) The ten image tiles (columns) with the highest prediction score (as predicted by a 

DL model) in the ten highest-scoring patients (rows) for microsatellite instable / 

deficient mismatch repair (MSI/dMMR) and microsatellite stable / proficient mismatch 

repair (MSS/pMMR). These tiles are based on predictions from a Deep Learning 

model of a previously published work [7]. (c) An original whole slide image of CRC 

from a patient with deficient MMR, (d) Corresponding visualization heatmap of tile-

level scores of MSI/dMMR status. 
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Paper Date of 

publicati

on 

# 

pati

ents 

Performanc

e 

Methods 

Tumor 

detecti

on 

Color 

norm. 

DL 

model 

other aspects 

Human performance 

Jenkins et 

al.[33] 

July 2007 1098 AUC = 0.89 N/A N/A N/A MSI scoring system (pathology WSIs + clinical parameters) 

Greenson et 

al. [34] 

January 

2009 

1649 AUC = 0.85 N/A N/A N/A 

Yamashita 

et al.[10] 

January 

2021 

40 AUC = 0.605 N/A N/A N/A Pathology WSI 

External validation 

Kather et 

al.[4] 

July 2019 738 AUC = 0.84 auto yes ResNet1

8 

N/A 

Kather et July 2020 805 AUC = 0.89 manual yes Shufflen N/A 

                  



22 

al.[5] et 

Cao et al.[6] September 

2020 

121 AUC = 0.649 manual yes ResNet1

8 

new method to generate slide-level predictions 

Echle et 

al.[7] 

October 

2020 

8836 AUC = 0.96 manual yes Shufflen

et 

N/A 

Bilal et al.[8] January 

2021 

~300 AUC = 0.98 auto 

(training)

,  

manual 

(ext. 

validatio

n) 

yes ResNet3

4 

analysis of cellular composition 

Yamashita 

et al.[10] 

January 

2021 

579 AUC = 0.78 auto yes MobileN

etV2 

Tissue classifier 

Yamashita 

et al.[9] 

February 

2021 

200 AUC = 0.876 no yes MobileN

etV2 

Medically-irrelevant random style augmentation 

Lee et 

al.[16] 

April 2021 484 AUC = 0.787 auto yes Inception 

V3 

additional analysis of metastasized CRC 
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Internal testing 

Schmauch 

et al.[12] 

August 

2020 

465 AUC = 0.82 no no ResNet1

8 

N/A 

Zhu et 

al.[13] 

October 

2020 

360 AUC = 0.81 manual yes ResNet1

8 

feature extraction highlights the importance of texture and color 

Ke et al.[14] December 

2020 

 

360 AUC = 0.802 no no not 

reported 

mislabel-aware classifier  

Lee et 

al.[15] 

December 

2020 

57 F-score = 0.83 manual yes Inception

-Resnet-

V2 

multiclass classification method (normal tissue vs. MSI vs. MSS) 

Schirris et 

al. [17] 

July 2021 360 AUC = 9.903 manual yes SimCLR 

+ 

VarMIL 

pre-trained feature extractor and Multiple Instance Learning with 

a feature variability module 

Table 1: Comparison of DL studies for MSI detection in CRC.  

Norm. Normalization, N/A not applicable, AUC Area under the curve, WSI whole-slide image, # number of.  
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