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The field of structural dynamics has relied for decades on
a particular decoupling technology. The method of modal
analysis (Ewins [1984], Avitable [2018]), was developed
in the 1960s and ’70s as an experimental methodology
with a mathematical basis which allowed a multi-degree-
of-freedom (MDOF) system to be decomposed into a set
of single-degree-of-freedom (SDOF) oscillators. The new
variables in the transformed domain were termed modal
coordinates and in machine learning terms were essentially
latent variables which also offered the potential benefit of
dimension reduction, in that the system could ofttimes be
accurately described using fewer modal coordinates than
the original physical ones. The theory was a fundamentally
linear one, and provided – via the principle of superposition
– a means of reconstructing the physical behaviour from
the modal variables (Worden and Tomlinson [2001]). In
fact, under certain circumstances, modal analysis proved
to be exactly equivalent to the Principle Orthogonal De-
composition (POD) (Han and Feeny [2005]), which is in
turn equivalent to the statistical technique of Principal
Component Analysis (PCA) (Sharma [1995]).

Unfortunately, not all of the structures of interest to
engineers prove to be linear, or allow a good approximation
by linear dynamics. This issue has driven a long-standing
programme of research with the aim of developing a fully-
nonlinear variant of modal analysis. Sadly, it has not
so far proved possible to create modal transformations
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1. INTRODUCTION for nonlinear systems which possess all of the desirable
properties held in the linear theory. This situation has
led to the development of different forms of nonlinear
modal analysis, distinguished by the subset of properties
which they preserve from the linear theory. The matter
is discussed in more detail in Worden and Green [2017],
where it is argued that the methods fall mainly into
the coherent motion class, originating in the work of
Rosenberg [1962], or the decomposition class exemplified
by the invariant manifold approach of Shaw and Pierre
[1993].

The main objective of the paper by Worden and Green
[2017], was to propose a new definition of nonlinear nor-
mal mode, based on the geometrical ideas of Shaw and
Pierre, but founded in ideas from machine learning. In fact,
it proved possible to construct an (approximate) modal
transformation using evolutionary optimisation in which
the transformation was a multinomial expansion in the
physical variables. Once the forward transformation was
established, it then proved possible to learn the inverse
transformation by supervised learning; the Gaussian pro-
cess algorithm was used for the latter. The new method
was demonstrated on a number of numerical case studies
and one set of experimental data and proved to be very
successful; however, it was not completely without prob-
lems.

The main idea of the new method in Worden and Green
[2017] was to define the nonlinear modes in terms of their
statistical independence; this is a natural idea, equivalent
to the orthogonality concept in the original linear modal
analysis. The problem was framed in terms of optimisa-
tion, whereby the free parameters in a multinomial map
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Abstract: In the context of dynamic decoupling problems, engineering dynamics has long
held modal analysis as an exemplar. The method allows the exact decomposition of linear
multi-degree-of-freedom (MDOF) systems into single-degree-of-freedom (SDOF) oscillators, thus
simplifying complex dynamic problems considerably. However, modal analysis is very much
a linear theory; if applied to nonlinear systems, the decoupling property (among others) is
lost. This unfortunate situation has led to numerous attempts to formulate workable nonlinear
versions of the theory. The current paper extends previous work by the authors in using
machine learning methods to learn nonlinear modal transformations on measured data, based
on the premise that any latent modal variables should be statistically independent. Unlike
previous work, the transformation here exploits the recent development of normalising flows in
constructing the required transformations. The new approach is shown to overcome a number
of the problems in the original approach when demonstrated on a simulated nonlinear system.
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were tuned in order to maximise a measure of indepen-
dence. At the time, the available measures of complete
independence were too computationally expensive to form
a feasible objective, so the problem was restricted to the
minimisation of correlations up to third order; this was the
first approximation. The second approximation enforced in
the original paper was to truncate the multinomial forward
transform at third order. Despite these approximations,
the method worked very well on the benchmarks. However,
the second approximation had a negative consequence; the
multinomial forward transformation gave rise to a multi-
valued inverse which gave problems in the ‘superposition’
of the nonlinear modes; i.e. the reconstruction of the orig-
inal physical coordinates.

The objective of the current paper is to provide an alterna-
tive machine learning formulation of nonlinear modal anal-
ysis which overcomes the problems encountered in Worden
and Green [2017]. The approach taken here is radically
different and makes use of the concept of a normalising
flow (NF) (Rezende and Mohamed [2015], Kobyzev et al.
[2020]). The NF approach overcomes both of the main
problems encountered in Worden and Green [2017]; in the
first place, the forward transformation is constructed as
a sequence of invertible mappings. The individual maps
are learnt using neural networks which, unlike a truncated
multinomial, are universal approximators; because each
map is invertible, the inverse – the ‘superposition’ map
– is single valued. Secondly, the objective of the NF is
to map to variables with a prescribed probability density;
the density in question here is a spherical (uncorrelated)
Gaussian, and this is sufficient to enforce complete inde-
pendence of the latent variables.

The layout of the paper is as follows: in the following
section, a brief overview is given of the method proposed
in Worden and Green [2017], and the problems with the
approach are highlighted. In Section 3, the normalising
flows are defined and in Section 4 they are demonstrated
on a simulated benchmark two-DOF nonlinear system.
The paper ends with a short section of conclusions.

2. NONLINEAR MODAL ANALYSIS

The basic principles of the approach in Worden and Green
[2017], will be illustrated here via the two-DOF system
presented there. The actual equation of motion will follow
later as equation (19); for the moment, it suffices to say
that there are two coupled physical variables of interest
(y1, y2) = y, which represent displacement responses from
a highly-nonlinear system. The object of the analysis was
to learn a transformation 1

z = f(y) into latent variables
(z1, z2) = z, which are uncoupled in some sense. The
idea was that the transformation would be specified as
a multinomial in the yi with tunable coefficients aij and
bij as follows,

1 To avoid too much emphasis in the equations, transformations like

f will not be emboldened, although they are vector valued.

(

z1
z2

)

=

(

a11 a12
a21 a22

)(

y1
y2

)

+

(

b11 b12 b13 b14
b21 b22 b23 b24

)









y3
1

y2
1
y2

y1y
2

2

y3
2









(1)
where, in the linear case, the first matrix A on the RHS
would be the ‘modal’ matrix of linear theory (Worden and
Green [2017]).

The coefficients aij and bij were then estimated in order to
minimise an objective function which measured the degree
of coupling of the new latent variables zi. The measure
of coupling was chosen to be a measure of statistical
dependence between the variables. As discussed in Worden
and Green [2017], measures of complete independence were
desired, but proved too computationally costly; instead
the chosen strategy was to minimise a sum of second and
third-order correlations as follows,

J = |a1.a2|
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The first term in the objective was added in order to make
sure that the columns a1 and a2 of the matrix A would
be orthogonal, as this would be required in the limit of
linear modal analysis. The actual optimisation algorithm
used was the self-adaptive differential evolution (SADE)
algorithm; details of the implementation can be found in
Worden and Green [2017].

Apart from the value of the objective function, the success
of the algorithm was verified by considering the spectral
densities of the zi variables in the frequency domain. In
linear structural dynamics, SDOF systems are charac-
terised by having response spectra with a single peak,
while MDOF system spectra have multiple peaks. As the
objective here was to transform to decoupled SDOF sys-
tems, the transformed spectra should have single peaks.
The results of the optimisation procedure on the 2DOF
benchmark from Worden and Green [2017] are shown in
Figure 1; one can see that the variables appear to have
been decoupled as desired. (The level of excitation for the
simulated data was chosen to be high enough that the yi
responses were significantly nonlinear; this is visible here
in the shape and breadth of the second peak.)

There were a number of subtle issues with the analy-
sis in Worden and Green [2017], but in the main, the
transformation above was considered successful. At this
point, the problem shifted to one of learning the inverse
(superposition) transform. The important point there is
that, as the variables z are now associated with the cor-
responding y, the inverse map can be learnt using any
appropriate supervised machine learning algorithm, and
Gaussian Process regression models (GPs) were used in
the paper. Following best practice with such algorithms,
the data were divided into a training set and a test set.
While the algorithm gave near-perfect reconstruction on
the training set, the results on the testing set (Figure 2)
showed a number of small ‘glitches’, some of which are
highlighted in Figure 3.
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Fig. 1. Decomposition via the optimisation procedure in
Worden and Green [2017]: Power spectral densities
for the physical y and transformed z variables.

Fig. 2. Superposition of z variables using a Gaussian
process (from Worden and Green [2017]).

Fig. 3. Three-sigma confidence intervals (red) over the
reconstructed physical variables (-) compared to the
measurements (- -). Zoomed region of superposition
of z variables using a Gaussian process (from Worden
and Green [2017]).

The gliches are not the fault of the GP, they are symp-
tomatic of a deeper problem. The issue is that the multi-
nomial transformation (1) does not admit a single-valued
inverse. Even if the results are perfect on the training set,
small variations in the testing set can cause the inverse

transformation to select the wrong root of the multivariate
cubic equation represented by (1).

As discussed in the introduction, the solution to the prob-
lem as presented in this paper, is to propose an entirely dif-
ferent means of learning the forward transformation which
is not only single-valued and invertible, but is also based
on attaining true independence of the latent variables z.

3. NORMALISING FLOWS

Normalising flows are capable of transforming simple
parametrised probability distributions onto complex den-
sities of unknown structure (Dinh et al. [2014]). This flex-
ibility is useful, as the underlying density of practical data
is often poorly described by any parametrised functions
that are also easy to handle (the Gaussian distribution,
for example). If a tractable probability density function
(p.d.f) can be transformed via an invertible mapping, the
density of complex data can be more easily modelled.

In more specific terms, Rezende and Mohamed [2015] de-
fine normalising flows as a transformation of a probability
density through a sequence of invertible mappings. By
repeatedly applying a change of variables rule, the initial
density can flow through the sequence of invertible units,
leading to a valid probability distribution at the end of the
sequence (Rezende and Mohamed [2015]).

3.1 Change of Variables Formula

Let Z ∈ R
d be a random variable with a known and

tractable density function pZ(zi)
2 . Then, considering an

invertible (smooth) function f : Rd′

→ R
d, such that,

Z = f(Y) (3)

one can compute the p.d.f for the random variable yi ∈

Y ∈ R
d′

, via the change of variable formula (Dinh et al.
[2014], Kobyzev et al. [2020], Murphy [2012]),

pY(yi) = pZ(f(yi))
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where
∣

∣

∣

∂f(yi)
∂(yi)

∣

∣

∣
is the determinant of the Jacobian of the

function f at yi. In conceptual terms, the determinant
is effectively scaling the p.d.f by the factor in which
the local area around yi stretches/shrinks through the
transformation f .

For normalising flows, f should be chosen such that the
determinant of the Jacobian and the inverse f−1 are
available. If these conditions are met, it becomes easy to
sample the random variable Y via Z,

zi ∼ pZ(zi) (5)

yi = f−1(zi) (6)

2 Herein, subscripts index rows of matrices, while superscripts index

columns of matrices
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The inverse (f−1) refers to the generative direction, while
f is the normalising direction (Kobyzev et al. [2020]).

The construction of a complicated, nonlinear, and invert-
ible function, with a defined Jacobian, is non-trivial. A
popular approach considers that a composition (i.e. chain)
of invertible functions is itself invertible, with a specific
form for the Jacobian (Kobyzev et al. [2020]). That is, for
a set of K invertible bijective functions,

f = f1 ◦ f2 ◦ . . . ◦ fK−1 ◦ fK (7)

f is also bijective, with inverse,

f−1 = f−1

K
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◦ . . . ◦ f−1

2
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1
(8)

and the determinant of the Jacobian is,
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where x
(k)
i

denotes the kth intermediate flow, i.e. x
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i

=
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1 (zi) = fk+1 ◦ . . . ◦ fK(yi); thus, at the

end of the sequence, x
(K)
i

= yi (Kobyzev et al. [2020]).
Consequently, K sets of nonlinear bijective functions can
be composed to form successively more complicated func-
tions.

3.2 Coupling layers

Dinh et al. [2014] showed that coupling flows can be used
to define f , such that flexible and tractable transforma-
tions can be learnt. In general terms, coupling layers define
units that are simple to invert, while depending on subsets
of the input-features in a possibly complex way (Dinh et al.
[2016]).

Briefly, consider a disjoint partition of the D-dimensional
input into two subspaces, i.e. xA

i
,xB

i
∈ R

d,RD−d. Addi-
tionally, consider a bijection, referred to as the coupling
function h(·, θ) (Kobyzev et al. [2020]). The output of the
coupling layer (in the generative direction, f−1

k
) can then

be defined,

yB

i = xB

i (10)

yA

i = h(xA

i ;Θ(xB

i )) (11)

i.e. the parameters θ are determined by some function Θ,
which depends only on xB

i
; the function Θ is referred to

as the conditioner.

The bijection and conditioner (h andΘ) combine to from a
coupling flow, which is invertible iff h is invertible (Rezende
and Mohamed [2015], Dinh et al. [2014]).

Importantly, the power of coupling flows lies in the fact
that the conditioner Θ can be arbitrarily complex, pro-
vided h is invertible, as established by Kobyzev et al.
[2020],

xB

i = yB

i (12)

xA
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i ;Θ(xB

i )) (13)

Following Dinh et al. [2014], Θ is defined by ReLU
multilayer perceptrons in the experiments here, and h
utilises the affine coupling function; in this case, (10) and
(11) correspond to,

yB

i = xB

i (14)

yA

i = xA

i ◦ exp(s(xB

i )) + t(xB

i ) (15)

where s and t are referred to as scale and translation neural
networks, while ◦ is the Hadamard product, as defined in
the RealNVP model (Dinh et al. [2016]) along with the
inverse and the Jacobian.

3.3 Learning normalising flows onto an independent
(spherical) Gaussian

The nonlinear transform f (onto the simple, parametrised
base-distribution) is learnt via maximum likelihood. Con-
sidering the change of variables formulae, the log likelihood
is (Dinh et al. [2014]),

log (pY(yi)) = log (pZ(f(yi))) + log
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Because of the requirement of independence in this appli-
cation, the base distribution is set to an isotropic Gaus-
sian with independent dimensions, as suggested in Dinh
et al. [2014, 2016], such that zd ∼ N (0, 1). The likelihood
can, therefore, be factorised, leading to a sum in the log-
likelihood,

log (pY(yi)) =
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3.4 Combinations with the Principal Orthogonal
Decomposition

To help enforce independence, a linear transform is ap-
plied at the each end of the normalising flow sequence.
This projection is defined as in the Principal Orthogonal
Decomposition (POD),

f(xi) = Φxi (18)

such that Φ are the orthogonal eigenvectors of the covari-
ance Σx = cov(xi). These additional transforms are useful
in the experiments, to further decouple the response of the
nonlinear MDOF system (yi), as well as the features in the
latent space (zi). While these transforms are not formally
included in the normalising flow, they can be considered
linear flows (Kobyzev et al. [2020]), since the inverse is
trivial, i.e. f−1 = Φ⊤zi, and then the determinant of the
Jacobian can be computed. In fact, orthogonal and linear
projections are related to the Householder flow (Tomczak
and Welling [2016]).

4. A CASE STUDY

As in the original work by Worden and Green [2017], a
nonlinear two-DOF lumped mass system is simulated here
for illustration. The equations of motion are,
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The model parameters here are set to: m = 1, c = 0.1,
k = 10, k3 = 1500. The damping is proportional and
the mass matrix is a multiple of the unit matrix (Han
and Feeny [2005]); thus the underlying linear system truly
uncouples via Principal Orthogonal Decomposition (POD)
– with natural frequencies of 0.5hz and 0.87Hz. Data were
simulated at a sampling frequency of 100Hz using a fourth-
order Runge-Kutta method. The excitation u1(t) was a
Gaussian white-noise sequence, applied to the first mass,
with zero mean and standard deviation 5.5. The input
u1(t) was filtered with a low-pass Butterworth filter, up
to 50Hz. A total of 50000 points were simulated, with
the first 10000 ignored, to remove the transient, such that
N = 40000.

In the benchmark results below, the results of a standard
linear modal analysis are shown via the POD; whereby
the transformation Φ is estimated using the standard
eigenvalue approach (Worden and Green [2017]). The
transformation from Y = {yi}

N

i=1 to Z = {zi}
N

i=1 can
then be defined by,

Z = ΦY (20)

The result of the POD projection of the outputs is shown
in Figure 4; this presents the power spectral densities

S(·) for the physical variables yi = {y
(1)
i

, y
(2)
i

} and the

transformed variables zi = {z
(1)
i

, z
(2)
i

}. Clearly, the system
is not uncoupled by linear modal analysis (in the visual
sense defined earlier, whereby uncoupling results in single
peaks in the spectra). Intuitively, as the system has been
designed to produce a nonlinear response, the level of
distortion is clearly visible – particularly in the spectrum
of the first transformed variable S(Z1).

Normalising flows are now applied to learn the mapping
from Y = {yi}

N

i=1 to Z = {zi}
N

i=1. To summarise, the
mapping is defined as follows,

Z = Φ2f(Φ1Y ) (21)

i.e. there are two linear POD transforms Φ1 and Φ2

at the beginning and end of the normalising flow f . In
the experiments here, the conditioner Θ of the coupling
layers is defined by two, two-layer perceptrons, with ReLu
activation functions and four hidden units. The coupling
functions h are constructed according to the RealNVP

model, for details, see reference Dinh et al. [2016]. Six
coupling layers are used in these experiments. The model is
trained with a batch size of 1000, and a held-out validation
set of 30% of the training data. The validation-set is
used to monitor the negative-log-likelihood as validation-
loss, to implement early stopping and help mitigate over-
training. Because of the stochastic nature of training, a
large number of models were learnt, the best result was
then manually selected from the batch of models with the
highest log-likelihood scores (on the validation set).

Fig. 4. Principal Orthogonal Decomposition: Power spec-
tral densities for the physical S(Y ) and transformed
S(Z) variables.

The power spectral densities from the normalising flow
projection are shown in Figure 5. The decomposed power
spectra show a marked improvement over the linear modal
analysis; i.e. there is uncoupling into what appears to
be two individual ‘modes’. As in the original work of
Worden and Green [2017], it is acknowledged here that this
observation is based on the preconception that an isolated
peak in the spectrum can be referred to as a mode – a
possible artefact of linear thinking in a nonlinear context
(Worden and Green [2017]).

To test the reconstruction, the inverse transform is used
(generative direction) from the transformed variables, back
to the physical variables,

Ŷ = Φ⊤

1 f
−1(Φ⊤

2 Z) (22)

The time-series reconstruction Ŷ is compared to the orig-
inal response in Figure 6. Visually, the inverse transform
provides a near-perfect inverse modal transformation, ver-
ified by a mean-squared-error of 9.21× 10−6.

5. CONCLUSIONS

A new approach to nonlinear modal analysis, based on
normalising flows (NFs) and the principal orthogonal de-
composition (POD) is presented here and demonstrated
on data from a simulated nonlinear system. As in previous
work based on machine learning, the method is based
on the idea that a ‘modal’ transformation into latent
variables should induce pairwise statistical independence
among those variables. However, the current approach is
seen to overcome a number of shortcomings of the previous
optimisation-based method; in particular, invertibility of
the modal map – and thus a nonlinear principle of super-
position – is ensured. Apart from invertibility, the method
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Fig. 5. Decomposition via normalising flows: Power spec-
tral densities for the physical S(Y ) and transformed
S(Z) variables.

Fig. 6. Reconstruction (inverse modal transformations)
of the time series via normalising flows (generative

direction). Reconstructions Ŷ are black lines and the
true variables Y are the green lines. Mean-squared-
error residuals shown by red lines.

also tries to ensure that the transformed variables are fully
independent, rather than just uncorrelated to some order.
In many ways, the new approach is more transparent
and elegant than the optimisation-based method and also
offers more direct ways forward in solving the outstanding
problems. Furthermore, as will be shown in future work,
the NFs offer the prospect of direct physical interpre-
tation. Future work will also consider formally defining
flow sequences that further prioritise independence in the
transformed variables: Householder flows (Tomczak and
Welling [2016]) present one approach to include orthogonal
(POD-type) steps within the flow.
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