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Neural circuits use homeostatic compensation to achieve consis-

tent behavior despite variability in underlying intrinsic and net-

work parameters. However, it remains unclear how compensation

regulates variability across a population of the same type of

neurons within an individual and what computational benefits

might result from such compensation. We address these questions

in the Drosophila mushroom body, the fly’s olfactory memory

center. In a computational model, we show that under sparse

coding conditions, memory performance is degraded when the

mushroom body’s principal neurons, Kenyon cells (KCs), vary real-

istically in key parameters governing their excitability. However,

memory performance is rescued while maintaining realistic vari-

ability if parameters compensate for each other to equalize KC av-

erage activity. Such compensation can be achieved through both

activity-dependent and activity-independent mechanisms. Finally,

we show that correlations predicted by our model’s compensatory

mechanisms appear in the Drosophila hemibrain connectome.

These findings reveal compensatory variability in the mushroom

body and describe its computational benefits for associative

memory.

Drosophila | mushroom body | homeostatic plasticity | associative memory

Noise and variability are inevitable features of biological sys-
tems. Neural circuits achieve consistent activity patterns

despite this variability using homeostatic plasticity; because neu-
ral activity is governed by multiple intrinsic and network pa-
rameters, variability in one parameter can compensate for vari-
ability in another to achieve the same circuit behavior (1–5).
This phenomenon of compensatory variability has typically been
addressed from the perspective of consistency of neural activity
across individual animals (6, 7) or over an animal’s lifetime, in
the face of circuit perturbations (8–11). However, less attention
has been paid to potential benefits of maintaining consistent
neuronal properties across a population of neurons within an
individual circuit.

Indeed, previous work has emphasized the benefits of neuronal
variability/heterogeneity rather than neuronal homogeneity (12–
14). (Here, we follow ref. 5 in using “heterogeneity” to refer to
qualitative differences [e.g., between cell types] and “variability”
to refer to quantitative differences in parameter values.) Of
course, different neuronal classes encode different information
(e.g., visual vs. auditory neurons or ON vs. OFF cells). Yet, even
in populations that ostensibly encode the same kind of stimulus,
like olfactory mitral cells, variability of neuronal excitability can
increase the information content of their population activity
(15–17). In addition, variability in neuronal timescales can
improve learning in neural networks (18, 19). In what contexts
and in what senses might the opposite be true (i.e., when does
neuronal similarity provide computational benefits over neuronal
variability)? Additionally, what mechanisms could enforce
neuronal similarity in the face of interneuronal variability?

Here, we address these questions using olfactory associative
memory in the mushroom body of the fruit fly Drosophila. Flies

learn to associate specific odors with salient events (e.g., food
or danger). These olfactory associative memories are stored in
the principal neurons of the mushroom body, called Kenyon
cells (KCs), as modifications in KCs’ output synapses (20–22)
(reviewed in ref. 23). Because learning occurs at the single output
layer, the nature of the odor representation in the KC population
is crucial to the fly’s ability to learn to form distinct associative
memories for different odors. In particular, the fact that KCs
respond sparsely to incoming odors (≈ 10% per odor) (24) allows
different odors to activate unique, nonoverlapping subsets of
KCs and thereby enhances flies’ learned discrimination of similar
odors (25).

A potential problem for this sparse coding arises from variabil-
ity between KCs. KCs receive inputs from second-order olfactory
neurons called projection neurons (PNs), with an average of
approximately six PN inputs per KC, and typically require simul-
taneous activation of multiple input channels in order to spike
(26), thanks to high spiking thresholds and feedback inhibition
(25, 27). However, there is substantial variation across KCs in the
key parameters controlling their activity, such as the number of
PN inputs per KC (28), the strength of PN–KC synapses, and KC
spiking thresholds (27). Intuitively, such variation could lead to a
situation where some KCs with low spiking thresholds and many
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or strong excitatory inputs fire indiscriminately to many different
odors, while other KCs with high spiking thresholds and few or
weak excitatory inputs never fire; KCs at both extremes are ef-
fectively useless for learning to classify odors, even if overall only
10% of KCs respond to each odor. However, it remains unclear
whether biologically realistic inter-KC variability would affect
the mushroom body’s memory performance and what potential
strategies might counter the effects of inter-KC variability.

Here, we show in a rate-coding model of the mushroom body
that introducing experimentally derived inter-KC variability into
the model substantially impairs its memory performance. This
impairment arises from increased variability in average activity
among KCs, which means fewer KCs have sparse-enough ac-
tivity to be specific to rewarded vs. punished odors. However,
memory performance can be rescued by compensating away
variability in KC activity while preserving the experimentally
observed variation in the underlying parameters. This can oc-
cur through activity-dependent homeostatic plasticity or direct
correlations between key parameters like number vs. strength of
inputs. Finally, we analyze the hemibrain connectome to show
that, indeed, the number of PN inputs per KC is inversely cor-
related with the strength of each input, while the strength of
inhibitory inputs is correlated with the total strength of excitatory
inputs. Thus, we show both the existence and computational
benefit of compensatory variability in mushroom body network
parameters.

Results

Realistic Inter-KC Variability Impairs Memory Performance under

Sparse Coding. To study how variability between KCs might
affect the fly’s olfactory memory performance, we modeled
the mushroom body as a rate-coding neural network (Fig. 1).
To simulate the input activity from PNs, we modeled their
activity as a saturating nonlinear function of activity of the first-
order olfactory receptor neurons (ORNs) (SI Appendix) (29).
We applied this function to the recorded odor responses of 24
different olfactory receptors (30) to yield simulated PN activity,
as in previous computational studies of fly olfaction (31–34). To
simulate variability in PN activity across different encounters
with the same odor, we created several “trials” of each odor and
added Gaussian noise to PN activity, following the coefficients of
variation reported in ref. 35. To increase the number of stimuli
beyond the 110 recorded odors in ref. 30, we generated odor
responses in which the activity of each PN was randomly sampled

Projection

neurons

Kenyon cells

Mushroom body

output neurons

Punishment

Reward

Approach

Avoid
ΣAPL

Learning by

synaptic

depression

Fig. 1. Schematic for the mushroom body network model. PNs in the input

layer relay the odor responses, xi , downstream to the KCs (yj). KCs connect

randomly to the PNs with synaptic weights wji and receive global inhibition

from the APL neuron with weight αj . Learning occurs when DANs carrying

punishment (reward) signals from the environment depress the synapses (vj)

between the active KCs and the MBONs that lead to approach (avoidance)

behavior.

from that PN’s activity across the 110 odors used in ref. 30 (results
were similar with the “real” 110 odors) (SI Appendix; see below).

Each of the 2,000 KCs in our model received excitatory input
from a randomly selected set of N PNs, each with strength w .
A KC’s response to each odor was the sum of excitatory inputs
minus inhibition, minus a spiking threshold θ; if net excitation was
below the threshold, the activity was set to zero. Inhibition came
from the feedback interneuron APL (“anterior paired lateral”),
which is excited by and inhibits all KCs (25). To avoid simulating
the network in time, we simplified the feedback inhibition into
pseudofeedforward inhibition, in which APL’s activity was the
sum of all postsynaptic excitation of all KCs (without the KCs’
threshold applied); we based this simplification on the fact that
KCs and APL form reciprocal synapses with each other on KC
dendrites (i.e., before the KCs’ spike initiation zone), and APL
activity is somewhat spatially restricted between KC axons and
dendrites (36). Thresholds and inhibition were scaled so that
on average 10% of KCs were active for each odor (“coding
level” = 0.1).

Learning in flies occurs when KCs (responding to odor) are
active at the same time as dopaminergic neurons (DANs; re-
sponding to “reward” or “punishment”); the coincident activity
modifies the output synapse from KCs onto mushroom body out-
put neurons (MBONs) that lead to behavior (e.g., approaching or
avoiding an odor). Typically, the output to the “wrong” behavior
is depressed; for example, pairing an odor with electric shock
weakens the output synapses from KCs activated by that odor
onto MBONs that lead to “approach” behavior (21, 22, 37, 38)
(reviewed in ref. 23). We simulated this plasticity using a simpli-
fied architecture with only two MBONs: “approach” and “avoid.”
The input odors were randomly divided; half were paired with
punishment, and half were paired with reward. During training,
KCs activated by rewarded odors weakened their synapses onto
the avoid MBON, while KCs activated by punished odors weak-
ened their synapses onto the approach MBON (depression by
exponential decay; see SI Appendix). The fly’s behavior then de-
pended probabilistically (via a softmax function; see SI Appendix)
on whether the avoid or approach MBON’s activity was greater,
and the model’s accuracy in learning was scored as the fraction
of correct decisions for unseen noisy variants of the trained
odors (i.e., avoiding punished odors and approaching rewarded
odors).

To test the effect of realistic inter-KC variability on this model,
we introduced variability step by step. We first tested the perfor-
mance of the model holding constant across all KCs the three
parameters N (number of PN inputs per KC), w (strength of
each PN–KC connection), and θ (KC spiking threshold). Then,
we added inter-KC variability step by step: first varying only one
of three parameters, then varying two of three, and finally varying
all three parameters (thus, eight possible models). Inter-KC
variability in N , w , and θ followed experimentally measured dis-
tributions (Fig. 2 A1–A3) (27, 28). Increasing inter-KC variability
systematically degraded the model’s performance when tested on
100 input odors; the more variable parameters there were, the
worse the performance (Fig. 2B). This performance trend was
the same when these eight models were trained and tested on the
real input odors responses from ref. 30 (SI Appendix, Fig. S1A).

To test whether this effect is robust to different learning and
testing conditions, we tested the two extreme cases while varying
the numbers of input odors to be classified, the amount of noise
in PN activity, the learning rate at the KC–MBON synapse (the
two models might have different optimal learning rates) (η in
SI Appendix, Eq. 20), or the indeterminacy of the fly’s decision
making (c in SI Appendix, Eq. 21). In every case, the model with
all parameters fixed (which we call the “homogeneous” model)
consistently outperformed the model with all parameters variable
(which we call the “random” model) (Fig. 2 C1–C4). These
results indicate that biologically realistic variability in KC net-
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Fig. 2. Inter-KC variability in w,N , and θ degrades the model fly’s memory performance. (A) Histograms of the experimentally measured distributions

for (A1) w (amplitude of spontaneous excitatory postsynaptic potentials in KCs; millivolts) (data are from ref. 27), (A2) N (number of PN inputs per KC;

measured as the number of dendritic “claws”) (data are from ref. 28), and (A3) θ (spiking threshold minus resting potential; mV) (data are from ref. 27). The

overlaid black curves show log-normal (w) and Gaussian (N , θ) fits to the data. (B) The model fly’s memory performance (given 100 input odors), varying the

parameters step by step. Fixed and variable parameters are shown by empty and filled circles, respectively. The homogeneous model (all parameters fixed,

N = 6; black) performs the best, and the randommodel (all parameters variable; red) performs the worst. All bars are significantly different from each other

unless they share the same letter annotations (a, b, etc.). P < 0.05 by Wilcoxon signed rank test (for matched models with the same PN–KC connectivity)

or Mann–Whitney test (for unmatched models with different PN–KC connectivity; i.e., fixed vs. variable N ), with Holm–Bonferroni correction for multiple

comparisons (full statistics are in Dataset S1). n= 30 model instances with different random PN–KC connectivity. (C) The performance trend is consistent

over a range of different conditions: (C1) the number of input odors; (C2) the learning rate used to update KC–MBON weights; (C3) the amount of noise

in PN activity (half, the same, or double the noise measured in ref. 35); and (C4) the indeterminacy in the decision making, quantified by log(c), where c is

the constant in the softmax function (SI Appendix, Eq. 21). The vertical dotted lines indicate the conditions used in B (each condition used the best learning

rate). (D) As KCs receive more inputs (thus, more similar inputs), inter-KC variability becomes helpful, not harmful, to memory performance, especially when

all KCs receive the same inputs (N = 24). Blue, KCs vary in excitatory weights (w); red, KCs vary in both w and thresholds (θ). Data for N = 6 are equivalent

to B. n= 30. (E) Inter-KC variability improves performance in dense coding regimes (coding levels 0.7 to 0.9) at classifying 100 odors (a hard task) or 20 odors

(easy task). Left of the dashed line is equivalent to B for comparison. Right of the dashed line is increasing coding levels, in each case without inhibition

(because inhibition is constrained to decrease coding level by half, which is impossible if coding level >0.5). n = 50. Error bars show 95% CIs. *P < 0.05,

Wilcoxon signed rank test (D) or Mann–Whitney test (E) with Holm–Bonferroni correction for multiple comparisons.

work parameters impairs the network’s ability to classify odors
as rewarded vs. punished.

Our conclusion contrasts with earlier results that interneuronal
variability between mitral cells increases information content
(15–17) (i.e., that variability is helpful, not harmful). This ap-
parent contradiction can be resolved by noting two differences
between our approaches. First, the mitral cell studies provided
the same input to every neuron, whereas here, every KC receives
different inputs thanks to random PN–KC connectivity. Indeed,
when we forced every KC to receive input from the same PNs
(N = 24; i.e., every KC receives input from every PN) (Fig. 2D),
variability between KCs in input weights actually improved per-
formance compared with the homogeneous model (although
both models unsurprisingly performed much worse compared
with the more realistic N = 6). In other words, when all KCs
receive the same input, only inter-KC variability allows them to
have different odor response profiles from each other (39), which
is required for distinct olfactory memories to be formed at KC
output synapses.

Second, unlike in our model, the mitral cell studies did not
enforce sparse coding where only a small fraction of cells should
respond at any given time. Indeed, under dense coding (coding
level = 0.9), while all models unsurprisingly performed worse
than under sparse coding (coding level = 0.1), the random model
outperformed the homogeneous model. While this difference
was only marginal when discriminating 100 odors (possibly due
to a floor effect), it was more apparent on an easier task where
the network learned to classify 20 odors instead of 100 (Fig. 2E).
Thus, while sparse coding and diverse PN inputs for each
KC greatly improve learned odor classification, these features

require homogeneous KCs to fully exploit their advantages, thus
making inter-KC variability harmful rather than helpful under
sparse coding.

Performance Depends on KC Lifetime Sparseness. We next asked
what features of KC population odor representations might ac-
count for the worse performance of the random model com-
pared with the homogeneous model under sparse coding but
the reverse under dense coding. Learning KC–MBON weights
to correctly classify rewarded vs. punished odors is equivalent
to finding a hyperplane (in 2,000-dimensional space) to separate
KC responses to rewarded odors from those to punished odors.
Finding a separating hyperplane might be easier if 1) odors are
far apart from each other in KC coding space (measured by
angular distance, a scale-insensitive distance metric [Fig. 3A1]
used in, e.g., ref. 27) or 2) odor responses occupy more inde-
pendent dimensions (measured by a metric for dimensionality
developed by ref. 39) (Fig. 3B1). Indeed, under sparse coding
(coding level = 0.1), the random model had smaller angular
distances and lower dimensionality than the homogeneous model
(Fig. 3 A and B and SI Appendix, Fig. S2). However, surprisingly,
the same was true at coding level = 0.9, even though in this
condition, the random model outperformed the homogeneous
model (Fig. 2E), suggesting that separation and dimensionality
of KC odor responses alone do not explain inter-KC variability’s
effect on performance, at least with the learning rule used here
(i.e., depression of KC outputs to wrong actions by exponential
decay).

Instead, we hypothesized that inter-KC variability impairs per-
formance under sparse coding because it makes some KCs indis-
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Fig. 3. Performance depends on KC lifetime sparseness. (A1 and B1) Dia-

grams of angular distance between odors (i.e., between centroids of clusters

of noisy trials; A1) and dimensionality of a system with three variables (B1).

The system with its states scattered throughout three-dimensional space

(green) has dimensionality 3, while the system with all states on a single

line (magenta) has dimensionality 1. (A2 and B2) The homogeneous model

has higher angular distance and dimensionality than the random model

(P < 0.05, Mann–Whitney test), matching the performance difference when

coding level is 0.1 but the opposite trend to performance when coding

level is 0.9. CL, coding level; Homog., homogeneous. (C and D) cdf of the

lifetime sparseness (C) or valence specificity (D) of KCs in the homogeneous

(black) and random (red) models across 50 model instantiations. The gap

between 1.0 and the top of the cdf represents silent KCs (lifetime sparseness

and specificity undefined). At coding level 0.1, the random model has many

more silent KCs, nonsparse KCs, and nonspecific KCs than the homogeneous

model, but at coding level 0.9, the random model has more KCs with high

lifetime sparseness and more KCs with high valence specificity. (E) High

lifetime sparseness enables high valence specificity, although many sparse

KCs have low valence specificity because of random valence assignments

(data here are from single model instances). (F) Removing the sparsest or

most valence-specific KCs (corresponding to the dashed horizontal lines

in C and D) removes the performance advantage of the random model

under dense coding. Hom., homogeneous; Rand., random. n= 50 network

instantiations. Error bars are 95% CIs (horizontal error bars in A2 and B2

are smaller than the symbols). These results are from the 20-odor task in

Fig. 2E; SI Appendix, Fig. S2 shows results of the 100-odor task. *P < 0.05,

Mann–Whitney test (Dataset S1).

criminately active but leaves others completely silent, meaning
fewer KCs provide useful odor identity information. Sparse cod-
ing requires sparseness in two dimensions: population sparseness
(each stimulus activates few neurons) and lifetime sparseness
(each neuron responds to few stimuli) (40). While our models
enforced population sparseness (coding level = 0.1), they did not
enforce any particular lifetime sparseness. In an extreme case,
a model could have very consistent population sparseness with
a coding level of 0.1 for all odors simply by having the same
10% of cells responding equally to every odor and the other
90% being completely silent. In this case, no cells would provide
any useful information about odor identity. We asked whether a
less extreme version of this problem could explain the relative
performance of our models.

To test this, we quantified the specificity of KCs both across all
odors and for rewarded vs. punished odors. To quantify specificity
across odors, we used lifetime sparseness, a metric that is 1 when
a cell fires to one stimulus and no other stimuli vs. 0 when it
fires equally to all stimuli. A cell that fires to no stimuli has an
undefined sparseness (SI Appendix). The homogeneous model
had fairly consistent lifetime sparseness values, with almost 80%
of KCs having a lifetime sparseness between ∼ 0.85 and 1. In
contrast, the random model had KCs with much more variable
lifetime sparseness, with a long tail of KCs with low sparseness
(below 0.7) and more than 50% of KCs having undefined sparse-
ness (i.e., completely silent). (These figures are when considering
20 odors; when considering 100 odors, there are fewer silent KCs,
but the overall pattern is the same [SI Appendix, Fig. S2].) The
contrasting distributions of lifetime sparseness can be seen in
the cumulative distribution functions (cdfs) of lifetime sparseness
in Fig. 3C and SI Appendix, Fig. S2F in how the steep curve of
the homogeneous model and the shallow curve of the random
model cross each other. This result can also be seen in the
larger SD of lifetime sparseness across KCs in the random model
(SI Appendix, Fig. S2 D and E). The silent KCs can be seen as the
fraction of missing KCs needed for the cdf curves to reach 1; the
random model has many more silent KCs than the homogeneous
model.

To quantify KCs’ specificity for rewarded vs. punished odors,
we defined “valence specificity” for each KC as the absolute value
of the difference between total activity for all rewarded vs. all
punished odors, divided by total activity for all odors. Again,
under sparse coding, the homogeneous model had more KCs with
high valence specificity than the random model (Fig. 3D). Given
random valence assignments, high lifetime sparseness does not
guarantee high valence specificity but does make it more prob-
able (the two measures are correlated [Fig. 3E]) for the same
reason that flipping a coin 5 times is more likely to give all heads
than flipping a coin 50 times; a KC active for only a few odors is
more likely to be active only for rewarded (or punished) odors,
compared with a KC active for many odors.

Under dense coding, KCs also have more variable lifetime
sparseness in the random model (dashed lines in Fig. 3C and
SI Appendix, Fig. S2). However, here, the inter-KC variability is
helpful rather than harmful; whereas KCs in the homogeneous
model have uniformly low lifetime sparseness (and thus, are
uniformly useless for odor discrimination), in the random model,
the inter-KC variability allows a small minority of KCs to have
relatively high lifetime sparseness and valence specificity (al-
though still worse than under sparse coding) (Fig. 3 C–E). To
test whether this minority of relatively specific KCs explains the
better performance of the random model under dense coding,
we removed the 10% of KCs with the highest lifetime sparseness
or the 5% of KCs with the highest valence specificity (fractions
correspond to the approximate parts of the cdfs where the ran-
dom model had higher values) (dashed horizontal lines in Fig.
3 C and D) and replaced them with useless KCs (either silent
or responding equally to all odors to preserve the 0.9 coding
level). Indeed, in these cases, the random model no longer out-
performed the homogeneous model (Fig. 3F). However, these
changes did not correspond to the effects of removing the spars-
est or most specific KCs on angular distance or dimensionality
(SI Appendix, Fig. S2I), again indicating that angular distance
and dimensionality do not always correspond to performance in
our model.

Together, these results indicate that under sparse (but not
dense) coding, introducing realistic inter-KC variability in w ,
N , and θ worsens the performance of the network by making
KCs’ odor response profiles less consistently sparse and thus less
specific to rewarded/punished odors. Because the real mushroom
body uses sparse coding, we focus the rest of our analysis on the
sparse coding condition (coding level = 0.1).
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Compensatory Tuning of KC Parameters Rescues Memory Perfor-

mance. Because the central problem for memory performance
in the random model was inter-KC variability in activity, we
hypothesized that performance could be rescued in models where
KCs could achieve roughly equal activity across the population
while still preserving experimentally realistic variability in spiking
thresholds and number/strength of excitatory inputs.
Activity-independent tuning of excitatory input weights. First,
we tested a model that equalizes KC activity indirectly by making
parameters compensate for each other in an activity-independent
way. In particular, we modeled KCs as adjusting input synaptic
weights (w) to compensate for variability in spiking threshold (θ)
and number of PN inputs (N ). Thus, an individual KC with low
θ or high N would have low w , while a KC with high θ or low N

would have high w . We simulated these correlations (w ∝
√
θ;

w ∝ 1/
√
N ) constrained by experimental data. To do this, we

sampled N and θ from the distributions in Fig. 2A and sampled w

from a posterior compensatory distribution, P(w | N , θ), whose
overall shape across all KCs was constrained to be the same as
the experimental P(w) in Fig. 2A1 but which was composed of
multiple distributions of P(w) for different values of N and θ.
For example, a KC with a relatively high N = 7 would sample
its weights from a P(w) shifted to the left (lower w) (Fig. 4A1,
dashed lines), while a KC with a relatively low N = 2 would
sample its weights from a P(w) shifted to the right (higher w)
(Fig. 4A1, solid lines). The same would be true for different val-
ues of θ (Fig. 4A1, different shadings). We fitted these component
P(w) curves so that with experimentally observed distributions of

N and θ, the sum of the components would produce the experi-
mentally observed distribution of w across all KCs (SI Appendix).
(Note that this algorithm is not meant to describe an actual
biological mechanism, merely to create correlations between w

vs. N and θ while constraining the parameters to experimentally
realistic distributions. Biologically, such correlations could arise
through several mechanisms [Discussion].) This compensatory
mechanism rescued the fly’s performance, producing significantly
higher accuracy at classifying odors than the random model (cyan
bars in Fig. 4B and SI Appendix, Fig. S1B), likely resulting from
the reduced variability in KC lifetime sparseness (Fig. 4C). (Note,
however, that this model did not perform quite as well as the
homogeneous model.)
Activity-dependent tuning of KC parameters. We next tested
compensatory mechanisms based on activity rather than explicit
correlations between network parameters. Here, each KC has
the same desired average activity level across all odors, A0 (with
a tolerance of ±6%). We tested three models, each of which
equalized average KC activity A0 by tuning a different param-
eter: input excitatory weights (w), inhibitory weights (α), or
spiking thresholds (θ). The nontuned parameters followed the
distributions in Fig. 2A (inhibitory weights were constant when
nontuned), while individual KCs adjusted the tuned parameter
according to whether their activity was too high or too low. For
example, a relatively highly active KC (whether because it has
high w or N , was low θ, or simply receives input from highly
active PNs) would scale down its excitatory weights (Fig. 4A2),
scale up its inhibitory weights (Fig. 4A3), or scale up its spiking
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Fig. 4. Compensation in network parameters rescues memory performance.

(A) Schematics of different compensation methods. (A1) Activity-independent

compensation. Log-normal fit of experimental distribution of the synaptic

weights (Exp.; red) and its component distributions for different N and θ for

high N = 7 (dashed) or low N = 2 (solid). Shades of gray indicate different

values of θ. (A2–A4) Mechanisms for activity-dependent homeostatic compen-

sation. Overly active KCs weaken excitatory input weights (wji ;A2), strengthen

inhibitory input weights (αj ; A3), or raise spiking thresholds (θj ; A4). Inactive

KCs do the reverse. (B1) Compensation rescues performance, alleviating the

defect caused by inter-KC variability in the random model (red) compared

with the homogeneousmodel (black) whether compensation occurs by setting

w according to N and θ (cyan; A1) or using activity-dependent homeostatic

compensation to adjust excitatory weights (blue; A2), inhibitory weights

(green; A3), or spiking thresholds (magenta; A4). (B2) Differences between

models are more apparent when the task is more difficult due to more

stochastic decision making (c = 1 instead of c = 10 in the softmax function).

(C) Compensation reduces variability in KC lifetime sparseness. n= 20 model

instances with different random PN–KC connectivity; error bars are 95% CIs.

All bars are significantly different from each other unless they share the same

letter annotations; P < 0.05 byWilcoxon signed rank test (for matchedmodels

with the same PN–KC connectivity) or Mann–Whitney test (for unmatched

models with different PN–KC connectivity; i.e., fixed vs. variable N ), with

Holm–Bonferroni correction for multiple comparisons (full statistics are in

Dataset S1). Annotations below bars indicate whether parameters were fixed

(empty circles), variable (filled circles), or variable following a compensation

rule [“H” for homeostatic tuning; f(N , θ) for activity-independent tuning].

Results here are for 100 synthetic odors; SI Appendix, Fig. S1B shows similar

results with odors from ref. 30. (D) KC excitatory input synaptic weights (w)

after tuning to equalize average activity (blue) follow a similar distribution

to experimental data (black) (from Fig. 2A1). (E) KC spiking thresholds (θ)

after tuning to equalize average activity (magenta) havewider variability than

the experimental distribution (black) (from Fig. 2A3). (F) Tuning KC inhibitory

weights (α) to equalize average activity requires many inhibitory weights to

be negative, unless the coding level without inhibition is as high as 99%.
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threshold (Fig. 4A4). Likewise, a relatively inactive (or indeed,
totally silent) KC would do the reverse (details of the update
rules underlying the homeostatic tuning and discussion of variant
update rules are in SI Appendix, Figs. S3 and S4).

All three homeostatic models performed as well as the
homogeneous model (blue, green, and magenta bars in Fig. 4B1
and SI Appendix, Fig. S1B) and indeed, even outperformed
the homogeneous model when decision making was more
stochastic (lower value of c in the softmax function) (Fig. 4B2).
The more stochastic decision making makes the task more
difficult and thus, brings out the enhanced coding by the
homeostatic models. Indeed, the variability in KC lifetime
sparseness was even lower in the homeostatic models than in the
homogeneous model (Fig. 4C). (As average activity and lifetime
sparseness are not the same thing, it is notable that tuning
to equalize average activity also tended to equalize lifetime
sparseness.)

What distributions of excitatory weights, inhibitory weights,
or spiking thresholds emerge after activity-dependent tuning to
equalize KC activity? Do they match experimentally observed
distributions? Tuning excitatory weights led to a distribution
fairly similar to the approximately log-normal experimentally
observed distribution of amplitudes of excitatory postsynaptic
potentials (EPSPs) (Fig. 4D). Tuning spiking thresholds led to
a distribution with greater variance than the experimental dis-
tribution, although with a qualitatively similar Gaussian shape
(Fig. 4E). This larger variance of thresholds suggests that natural
variation of θ is too small, on its own, to equalize KC activity given
the variation in the number/strength of excitatory inputs.

The tuned distribution of inhibitory weights differed even
more strongly from experimental results. While there are no
experimental measurements of inhibitory weights, equalizing KC
activity by tuning inhibitory weights required many of them to
be negative (Fig. 4F), which is unrealistic, because negative
inhibition is actually excitation, and there are no reports of KCs
being excited by γ-aminobutyric acid (41). Our model required
negative inhibition because of the constraint that inhibition is
only strong enough to reduce the fraction of active KCs by half
(from 20 to 10%, based on results from ref. 25). In other words,
80% of the time, KCs are silent even without inhibition, thanks to
high thresholds; such responses cannot be increased by reducing
inhibition unless inhibition becomes negative (i.e., excitatory).
Indeed, if we relax the constraint that the coding level be 0.2
without inhibition, such that sparseness is enforced by inhibition
alone (not thresholds), then variable inhibition can equalize KC
activity without becoming negative (Fig. 4F). However, in this
case, the coding level without inhibition was 99%, which is not
observed experimentally (25). Even allowing a coding level with-
out inhibition of 50%, equalizing KC activity still requires some
APL–KC inputs to be negative (Fig. 4F). Interestingly, these un-
realistic models, where sparseness is mainly driven by inhibition
rather than high thresholds, perform better than the three models
shown here (SI Appendix, Fig. S4A), suggesting that biological
constraints may limit network performance. Overall, these results
suggest that tuning inhibitory weights cannot compensate on its
own for variability in other KC parameters. More likely, the
system optimizes multiple parameters at once (Discussion; see
Fig. 6).

We also tested whether memory performance can be rescued
by equalizing not KC average activity but rather, KC response
probability (equivalent to average activity if KC activity is bi-
narized; i.e., zero or one). Equalizing response probability (as
opposed to average activity) by tuning KC spiking thresholds has
been shown to improve separation of KC odor representations
in a different computational model (34). However, in our model,
this technique (tuning thresholds to equalize KC response prob-
ability) produced somewhat worse classification performance
compared with tuning thresholds to equalize KC average activity

(SI Appendix, Fig. S4 B1, B2, and C), although still better than
the random model (compare Fig. 4 with SI Appendix, Fig. S4).

Robustness of Pretuned Compensations in New Environments with

Novel Odors. Any activity-dependent tuning depends on the
model’s context. If a fly tunes its network parameters based
on experience in one odor context (e.g., smelling only odors
of one chemical family), will it still perform well at classifying
odors in a novel environment with different odors (e.g.,
odors of a different chemical family)? We hypothesized that
performance would depend more on tuning context with the
activity-dependent compensation mechanisms than the activity-
independent mechanism.

To test this, we tuned the parameters in our models using only
a subset of odors from ref. 30, grouped by chemical class, and
then trained and tested the models on odor–reward/punishment
associations using the other odors. We took the four chemical
classes that had the most odors in the dataset: acids, terpenes,
alcohols, and esters. For each class, we tuned the model’s param-
eters on that class and then trained the model to classify odors
in the other three classes (“novel” environment). For matched
controls, we trained models that had been tuned on the same
three classes used for training/testing (“familiar” environment).
As expected, the three activity-dependent models performed
worse in novel environments than familiar environments, while
the activity-independent model performed consistently regard-
less of tuning environment (blue, green, and magenta vs. cyan
in Fig. 5C). However, in general, tuning odors on one class
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Fig. 5. Robustness of pretuned compensations with novel odors. (A) For

each model fly, network parameters are tuned as in Fig. 4 on a subset of

odors. At this stage, no rewards or punishments are given, and KC output

weights are not modified. Then, the model is trained to classify rewarded

and punished odors that are the same as or different from the odors used for

tuning. Finally, the model is tested on new noisy variants of the odors used

for training. (B) Empty symbols (novel environment): models were tuned

on odors from one chemical group (Gi : acids, circles; terpenes, triangles;

esters, diamonds; or alcohols, squares), and then, they were trained and

tested on odors from the other three groups (Gi �=j). Each empty symbol is

paired with a matched control (filled symbols) showing how that model

would have fared in a familiar environment (i.e., a model tuned, trained,

and tested all on the same three groups of odors that the matched novel

model was trained and tested on [Gi �=j]). (C) Models with activity-dependent

compensation (blue, magenta, and green) performed significantly worse in

the novel environment than familiar environments (matching indicated by

connecting lines; P < 0.05, Wilcoxon signed rank test with Holm–Bonferroni

correction). In contrast, models with no compensation (black and red) or

activity-independent compensation (cyan) performed similarly in novel and

familiar environments (P > 0.05 except for homogeneous [black] acids and

random [red] terpenes) (full statistics in Dataset S1). Mean of 20 model

instantiations, where each instantiation received a different permutation

of odors (SI Appendix). Annotations below the graph indicate whether

parameters were fixed (empty circles), variable (filled circles), or variable

following a compensation rule [H for homeostatic tuning, f(N , θ) for

activity-independent tuning].
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but training/testing on different classes does not fatally damage
the activity-dependent compensation strategies; although perfor-
mance is worse in novel environments, it remains better than
the random model. Thus, activity-dependent compensation is still
a good strategy to overcome the pernicious effects of inter-KC
variation, even if the compensation environment differs from the
classification environment (at least within the range of the odors
in ref. 30).

Connectome Reveals Compensatory Variation of Input Strength and

Numbers. Our proposed compensatory mechanisms predict cor-
relations between the key model parameters. Excitatory weights
(w) should be inversely correlated to number of PNs per KC (N ),
where w is tuned to compensate for variable N and θ (Fig. 6B) or
where w is tuned to equalize KC activity (Fig. 6C). Meanwhile,
inhibitory weights (α) should be positively correlated to the sum
of excitatory weights (

∑
w or wN , where w is the mean w per

KC), where inhibitory weights are tuned to equalize KC activity
(Fig. 6D). Such correlations have been observed in larvae (42),
but they have not yet been analyzed in the adult mushroom body.

To test these predictions, we analyzed the recently published
hemibrain connectome (43, 44), which annotates all synapses
between PNs and KCs in the right mushroom body of one fly. The
connectome reveals three of our parameters: the number of PN
inputs per KC (N ), the strength of each PN–KC connection (w),
and the strength of inhibitory inputs (α). Although the anatomy
does not directly reveal w and α (which can only be measured
electrophysiologically), we used an indirect proxy for synaptic
strength: the number of synapses per connection (i.e., number
of sites between two neurons where neuron 1 has a T bar and
neuron 2 has a postsynaptic density, counted by machine vision)
(Fig. 6A). It seems reasonable to presume that, all else being
equal, connections with more synapses are stronger. Indeed,
in the Drosophila antennal lobe, when comparing connections
from ORNs with ipsilateral PNs vs. contralateral PNs, ipsilateral
connections are both stronger (45) and have more synapses
per connection (46). Moreover, synaptic counts approximate
synaptic contact area throughout the larval Drosophila nervous
system (47), and synaptic area approximates EPSP amplitude in
mammalian cortex (48).
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Fig. 6. Connectome analysis reveals compensatory variation in excitatory and inhibitory input strengths. (A) Example αβ-c KC (body identification

5901207528) with inputs from three PNs (yellow, green, and blue dots) and seven dendritic APL–KC synapses (red circles). The magenta circle shows the

posterior boundary of the peduncle. Line widths are not to scale. (B and C) Mean synaptic weight (w) per PN–KC connection is inversely related to the

number of input PNs in models that tune input weights given N and θ (B) or that tune input weights to equalize average activity levels across KCs (C). (D) In

the model that tunes input inhibitory synaptic weights (α) to equalize average activity levels across KCs, inhibitory weights are directly related to the sum

of excitatory weights per KC (i.e., wN ). Note the negative values of α (discussed in the text). (E and F) Probability distributions of the number of synapses

per PN–KC connection (E) and the number of input PNs per KC (F) in the different KCs subtypes (αβ, γ,α′β′). The dashed line in E shows our threshold for

counting connections as genuine. (G) Mean number of input synapses per PN–KC connection (averaged across PNs for each KC) is inversely related to the

number of input PNs per KC in γ-main KCs (SI Appendix, Fig. S5 shows other KC types). (H) Mean distance of PN–KC synapses to the posterior boundary of the

peduncle (presumed spike initiation zone) is directly related to the number of input PNs per KC. (I) The number of APL–KC synapses per KC is directly related

to the total number of PN–KC synapses per KC. (J) Four αβ-c KCs, one from each neuroblast clone. The posterior boundary of the peduncle (magenta circles)

lies where the KC axons begin to converge. (K) Grids show Pearson correlation coefficients (r) between various KC parameters for all KC subtypes tested

(red, positive; blue, negative). Dots indicate P < 0.05 (Holm–Bonferroni corrected) (full statistics are in Dataset S1). Colored outlines indicate predictions of

models (cyan/blue, models tuning w [G and H]; green, model tuning α [I]). Number of KCs for each subtype, from left to right, are 588, 222, 350, 220, 127,

and 119. In B, C, G, and H, red dots are medians, and the widths of the violin plots represent the number of KCs in each bin. Trend lines in D, G, H, and I

show linear fits to the data. D, dorsal; M, medial; P, posterior.
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Therefore, to test if mean w and N are inversely correlated
across KCs, we asked if the number of PN inputs per KC was
inversely correlated to the number of synapses per PN–KC
connection. We ignored PN–KC connections with two or fewer
synapses because the number of synapses per PN–KC connection
formed a bimodal distribution with a trough around three to four
(Fig. 6E); we presumed that connections with only one to two
synapses represent annotation errors. We divided KCs into their
different subtypes as annotated in the hemibrain (44) because
different subtypes have different numbers of PN inputs per KC
and different numbers of synapses per PN–KC connection (28)
(Fig. 6 E and F and SI Appendix, Fig. S5). We excluded KCs that
receive significant nonolfactory input (γ-d, γ-t,αβ-p,α′β′-ap1).
In all analyzed subtypes of KCs (γ-main; αβ-s, -m, and -c;
α′β′-ap2 and -m), the number of PN inputs per KC (N ) was
inversely correlated to the mean number of synapses per PN–KC
connection, averaged across the PN inputs onto a KC (proxy for
w) (Fig. 6 G and K and SI Appendix, Fig. S5). Linear regression
showed that, on average, there were ≈ 6− 15% fewer input
synapses per PN–KC connection (w) for each additional PN
per KC (N ) (compare with the equivalent slopes for the linear
fits to the activity-independent [−22%] and activity-dependent
[−18%] model parameters in Fig. 6 B and C). This negative
correlation meant that the number of total PN–KC synapses
per KC increased only sublinearly relative to the number of PN
inputs per KC (SI Appendix, Fig. S5).

We also tested another anatomical proxy of excitatory synaptic
strength. Because KCs sum up synaptic inputs linearly or sub-
linearly, their dendrites likely lack voltage-gated currents that
would amplify inputs, so synaptic input currents likely propa-
gate passively (26). Therefore, an excitatory input would make
a smaller contribution to a KC’s decision to spike the farther
away it is from the spike initiation zone (49). While the spike
initiation zone cannot be directly observed in the connectome,
the voltage-gated Na+ channel Para and other markers of the
axon initial segment (also called the “distal axonal segment”)
are concentrated at the posterior end of the peduncle, near
where axons from KCs derived from the four neuroblast clones
converge (50, 51). This location can be approximated in the
connectome as the posterior boundary of the “PED(R)” (i.e.,
peduncle) region of interest (ROI) (magenta dots in Fig. 6 A and
J). From this point, we measured the distance along each KC’s
neurite skeleton (i.e., not the Euclidean distance) to each PN–
KC synapse. In the αβ-c and γ-main KCs (but not other KCs),
this distance was positively correlated with the number of PNs
per KC (Fig. 6 H and K and SI Appendix, Fig. S5). That is, the
more PN inputs a KC has, the farther away the input synapses
are from the putative spike initiation zone (and thus, the weaker
they are likely to be). Intriguingly, of all the KC subtypes, αβ-
c KCs show the strongest correlation between number of PN
inputs and PN–peduncle distance but the weakest correlation
between number of PN inputs and number of synapses per
PN–KC connection (Fig. 6K), suggesting that different types
of KCs might use different mechanisms to achieve the same
compensatory end.

To test if inhibitory and excitatory input are positively corre-
lated across KCs (as predicted in Fig. 6D), we approximated α
by counting the number of synapses from the APL neuron to
every KC in the calyx (annotated as the “CA(R)” ROI in the
connectome). In all types of KCs, the more total PN–KC synapses
there were per KC, the more calyx APL–KC synapses there were
(Fig. 6 I and K and SI Appendix, Fig. S5), indicating that, indeed,
inhibitory and excitatory synaptic inputs are correlated.

These results confirm the predictions of our compensatory
models. That correlations exist for both excitation and inhibi-
tion suggests that the mushroom body tunes more than one
parameter simultaneously (thresholds may be tuned as well but
cannot be measured in the connectome). Such multiparameter

optimization likely explains 1) why the correlations in the con-
nectome are not as steep as when only a single parameter is tuned
in our models (Fig. 6 D–F) and 2) why natural compensatory
variation of tuned parameters need not be as wide as the variation
of tuned parameters in our models (Fig. 4E).

Discussion

Here, we studied under what conditions interneuronal variability
would improve vs. impair associative memory. Using a computa-
tional model of the fly mushroom body, we showed that under
sparse coding conditions, associative memory performance is
reduced by experimentally realistic variability among KCs in
parameters that control neuronal excitability (spiking threshold
and the number/strength of excitatory inputs). These deficits
arise from unequal average activity levels among KCs. However,
memory performance can be rescued by using variability along
one parameter to compensate for variability along other pa-
rameters, thereby equalizing average activity among KCs. These
compensatory models predicted that certain KC features would
be correlated with each other, and these predictions were borne
out in the hemibrain connectome. In short, we showed 1) the
computational benefits of compensatory variation, 2) multiple
mechanisms by which such compensation can occur, and 3)
anatomical evidence that such compensation does, in fact, occur.

Note that when we say “equalizing KC activity,” we do not
mean that all KCs should respond the same to a given odor.
Rather, in each responding uniquely to different odors (due to
their unique combinations of inputs from different PNs), they
should keep their average activity levels the same. That is, while
KCs’ odor responses should be heterogeneous, their average
activity should be homogeneous.

How robust are our connectome analyses? We found correla-
tions between anatomical proxies for the physiological properties
predicted to be correlated in our models (i.e., KCs receiving
excitation from more PNs should have weaker excitatory in-
puts, while KCs receiving more overall excitation should also
receive more inhibition). In particular, we measured the number
of synapses per connection as a proxy for the strength of a
connection. As described above, this proxy seems valid based
on matching anatomical and electrophysiological data (46–48).
However, other factors affecting synaptic strength (receptor ex-
pression, posttranslational modification of receptors, presynaptic
vesicle release, input resistance, etc.) would not be visible in
the connectome. Of course, such factors could further enable
compensatory variability (see below). It is also worth noting that
the connectome data are from only one individual.

We also used the distance between PN–KC synapses and the
peduncle as a proxy for the passive decay of synaptic currents as
they travel to the spike initiation zone. In the absence of detailed
compartmental models of KCs, it is hard to predict exactly how
much increased distance would reduce the effective strength of
synaptic inputs, but it is plausible to assume that signals decay
monotonically with distance. Note that calcium signals are often
entirely restricted to one dendritic claw (26, 52). Another caveat
is that the posterior boundary of the peduncle is only an estimate
[although a plausible one (50, 51)] of the location of the spike ini-
tiation zone. However, inaccurate locations should only produce
fictitious correlations for Fig. 6J and SI Appendix, Fig. S5F if the
error is correlated with the number of PN–KC synapses per KC
(and only in αβ-c and γ-main KCs, not other KCs), which seems
unlikely.

Our work is consistent with prior work, both theoretical and
experimental, showing that compensatory variability can main-
tain consistent network behavior (1–11, 53, 54). However, here
we analyze the computational benefits of equalizing activity levels
across neurons in a population (as opposed to across individual
animals or over time). A recent preprint showed that equalizing
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response probabilities among KCs reduces memory generaliza-
tion (34), but we showed that equalizing average activity outper-
forms equalizing response probabilities (SI Appendix, Fig. S4).
Another model of the mushroom body used compensatory inhi-
bition, in which the strength of inhibition onto each KC was pro-
portional to its average excitation (31), similar to our inhibitory
plasticity model (Fig. 4A2). However, the previous work did not
analyze the specific benefits from the compensatory variation; it
also set the inhibition strong enough that average net excitation
was zero, whereas we show that when inhibition is constrained to
be only strong enough to reduce KC activity by approximately
half [consistent with experimental data (25)], inhibition alone
cannot realistically equalize KC activity (Fig. 4G). In addition,
there is experimental support for our models’ predictions that
KCs with more PN inputs would have weaker excitatory inputs;
when predicting whether calcium influxes in individual claws
would add up to cause a suprathreshold response in the whole
KC, the most accurate prediction came from dividing the sum of
claw responses by the log of the number of claws (52). However,
the functional benefits of this result only become clear with our
computational models. Finally, the larval mushroom body shows
a similar relationship between number and strength of PN–KC
connections; the more PN inputs a KC has, the fewer synapses
per PN–KC connection (42); however, again, the larval work did
not analyze the computational benefits of this correlation.

We modeled two forms of compensation: direct correlations
between neuronal parameters (Fig. 4A1) and activity-dependent
homeostasis (Fig. 4A2–A4). Both forms improve performance
and predict observed correlations in the connectome. Certainly,
activity-dependent mechanisms are plausible as KCs regulate
their own activity homeostatically in response to perturbations
in activity (55). Indeed, different KC subtypes use different com-
binations of mechanisms for homeostatic plasticity (55), consis-
tent with the different correlations observed in the connectome
for different KC subtypes. Our activity-dependent models lend
themselves to straightforward biological interpretations. Excita-
tory or inhibitory synaptic weights could be tuned by activity-
dependent regulation of the number of synapses per connection
or expression/localization of receptors or other postsynaptic ma-
chinery. Spiking thresholds could be tuned by altering voltage-
gated ion conductances or moving/resizing the spike initiation
zone (51, 56). Such homeostatic plasticity would be akin to the
sensory gain control implemented by feedback inhibition but on
a slower timescale.

On the other hand, KCs are not infinitely flexible in home-
ostatic regulation; for example, complete blockade of inhibi-
tion causes the same increase in KC activity regardless of
whether the blockade is acute (16 to 24 h) or constitutive
(throughout life) (55). This apparent lack of activity-dependent
down-regulation of excitation suggests that activity-independent
mechanisms might contribute to compensatory variation in KCs,
as occurs for ion conductances in lobster stomatogastric ganglion
neurons (8, 9). For example, the inverse correlation of w and N

arises from the fact that the number of PN–KC synapses per KC
increases only sublinearly with increasing numbers of claws (i.e.,
PN inputs) (SI Appendix, Fig. S5H). Perhaps a metabolic or gene
regulatory constraint prevents claws from recruiting postsynaptic
machinery in linear proportion to their number. [Interestingly,
this suppression is stronger in larvae, where the number of PN–
KC synapses per KC is actually constant relative to the number

of claws (42).] Meanwhile, the correlation between the number
of inhibitory synapses and the number of excitatory synapses
might be explained if excitatory and inhibitory synapses share
bottleneck synaptogenesis regulators on the postsynaptic side.
Although activity-dependent compensation produced superior
performance in our model compared with activity-independent
compensation thanks to its more effective equalization of KC
average activity (Fig. 4) (most likely because it takes into account
the unequal activity of different PNs), activity-dependent mech-
anisms suffered when the model network switched to a novel
odor environment (Fig. 5). Given that it is desirable for even a
newly eclosed fly to learn well and for flies to learn to discrimi-
nate arbitrary novel odors, activity-independent mechanisms for
compensatory variation may be more effective in nature.

Compensatory variability to equalize activity across neurons
could also occur in other systems. The vertebrate cerebellum has
an analogous architecture to the insect mushroom body; cere-
bellar granule cells are strikingly similar to KCs in their circuit
anatomy, proposed role in “expansion recoding” for improved
memory, and even signaling pathways for synaptic plasticity (21,
39, 57–60). Whereas cortical neurons’ average spontaneous fir-
ing rates vary over several orders of magnitude (61), granule
cells are, like KCs, mostly silent at rest, and it is plausible that
their average activity levels might be similar (while maintaining
distinct responses to different stimuli) (62). Granule cell input
synapses undergo homeostatic plasticity (63), while compartmen-
tal models suggest that differences in granule cells’ dendritic
morphology would affect their activity levels, an effect attenu-
ated by inhibition (64), raising the possibility that granule cells
may also modulate interneuronal variability through activity-
dependent mechanisms. Future experiments may test whether
compensatory variability occurs in, and improves the function of,
the cerebellum or other brain circuits. Finally, activity-dependent
compensation may provide useful techniques for machine learn-
ing. For example, we found that performance of a reservoir
computing network could be improved if thresholds of individual
neurons are initialized to achieve a particular activity probability
given the distribution of input activities (65).

Materials and Methods
Full details of the computational models are given in SI Appendix. For

Fig. 6, KC neurite skeletons and connectivity were downloaded from the

hemibrain connectome v. 1.1 (43). KCs with truncated skeletons lacking the

dendritic tree were excluded. The distance from each PN–KC synapse to

the posterior boundary of the peduncle along the KC’s neurite skeleton

(i.e., not the Euclidean distance) was measured as described in ref. 36.

SI Appendix has further details. Modeling and connectome analysis were

carried out using custom code written in MATLAB, which is available at

https://github.com/aclinlab/CompensatoryVariability.

Data Availability. Code has been deposited in GitHub (https://github.com/
aclinlab/CompensatoryVariability) and the raw simulation results are in
Dataset S1. Previously published data were also used for this work [Scheffer
et al. (43)].
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