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Reinforcement Learning-based Dialogue Guided

Event Extraction to Exploit Argument Relations
Qian Li, Hao Peng, Jianxin Li, Member, IEEE, Jia Wu, Senior Member, IEEE, Yuanxing Ning, Lihong Wang,

Philip S. Yu, Fellow, IEEE, Zheng Wang, Member, IEEE

Abstract—Event extraction is a fundamental task for natural
language processing. Finding the roles of event arguments like
event participants is essential for event extraction. However,
doing so for real-life event descriptions is challenging because
an argument’s role often varies in different contexts. While
the relationship and interactions between multiple arguments
are useful for settling the argument roles, such information
is largely ignored by existing approaches. This paper presents
a better approach for event extraction by explicitly utilizing
the relationships of event arguments. We achieve this through
a carefully designed task-oriented dialogue system. To model
the argument relation, we employ reinforcement learning and
incremental learning to extract multiple arguments via a multi-
turned, iterative process. Our approach leverages knowledge
of the already extracted arguments of the same sentence to
determine the role of arguments that would be difficult to decide
individually. It then uses the newly obtained information to im-
prove the decisions of previously extracted arguments. This two-
way feedback process allows us to exploit the argument relations
to effectively settle argument roles, leading to better sentence
understanding and event extraction. Experimental results show
that our approach consistently outperforms seven state-of-the-
art event extraction methods for the classification of events and
argument role and argument identification.

Index Terms—Event extraction, reinforcement learning, incre-
mental learning, multi-turned.

I. INTRODUCTION

EVENT extraction aims to detect, from the text, the

occurrence of events of specific types and to extract

arguments (e.g., typed event participants or other attributes)

that are associated with an event [1]. It is a fundamental

technique underpinning many Natural Language Processing
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Fig. 1: Three example sentences belong to the “Conflict: Attack”
event type from the ACE 2005 dataset.

(NLP) tasks like knowledge reasoning [2], text summarization

[3], and event prediction [4].

Event extraction requires extracting all arguments and their

roles corresponding to each event. Doing so is challenging

because an event is often associated with more than one

argument, whose role can vary in different contexts. For

example, the argument “troops” has different roles in multiple

sentences, as shown in Fig. 1. This argument has the role of

being the “target” in sentence S1, while in sentence S2, its

role is the “attacker”. In sentence S3, the argument “troops”

could be either the “target” or the “attacker”. To extract

an event, we need to identify the argument role correctly.

Failing to do so can lead to erroneous information propaga-

tion, affecting the recognition of other event arguments and

sentence understanding. For example, incorrectly associating

the “troops” argument in the sentence S2 as the target will lead

to misunderstanding of the sentence. Unfortunately, argument

role detection remains an open problem because an argument

can be associated with multiple roles.

Our work aims to find new ways to identify event argument

roles for event extraction. Our key insight is that multiple

arguments associated with an event are typically strongly

correlated. Their correlations can provide useful information

for determining the role of an event argument. Consider again

our example given earlier in Fig. 1. To determine the role

of argument “troops” in the sentence S1, we can consider its

relevant arguments of “weapons” and “use”. The roles and ap-

pearance order of “weapons” and “use” suggest “troops” is the

target in the context. Although the argument “use” has many

subtle roles, we can still attribute it with the “Conflict: Attack”

event type in sentence S1 by using “weapons” as a hint.

Moreover, the role of argument “troops” can be recognized to

role by looking at the argument “weapons” and “use”. If the

“troops” is detected firstly, it may misidentify its argument role

and other arguments. As can be seen from this representative

example, the relation among arguments can help in inferring

the argument roles that are essential for event extraction.

However, prior work largely ignores such relations, leaving
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Fig. 2: An example of our dialogue guided event extraction. The input sentence is: “As the soldiers approached, the man detonated explosives
in the car killing all four of the soldiers”. It needs 10 turns to complete event extraction on the sentence.

much room for improvement. Most existing methods extract

all arguments simultaneously [5, 6] or individual arguments

sequentially [7], all of which do not consider the effect of

argument extraction order. Our work seeks to close this gap by

explicitly modeling the argument relation for event extraction.

Our approach is enabled by the recent advance in task-

oriented dialogue systems [8, 9] that are shown to be highly

effective in entity-relation extraction [10]. A task-oriented

dialogue system uses domain knowledge, e.g., knowledge

structures of intentions extracted from sentences, to complete

a specific task. The natural language understanding task is

structured as many slots are to be filled, where each slot can

take a set of possible values. For example, a travel query could

be translated into a structure consisting of slots like orig-

inal city, destination city, departure time and arrival time.

The goal of the dialogue system in this context is thus to

extract the right values from the user sentence to fill the slots.

The recent progress in a task-oriented dialogue system allows

one to effectively exploit the dialogue historical information

to optimize slot filling with the right order [11–13].

In this work, we formulate the event extraction task within a

task-oriented dialogue system, as shown in Fig. 2. We consider

the problem of event extraction as filling slots of relevant

arguments and their roles extracted from the input sentence.

To this end, we develop a multi-turn dialogue system [9] with

two agents to iteratively solve the slot filling problem. During

each turn, one agent selects an argument role and generates

a query through a dialogue generator. For example, the query

for the role of “instrument” could be “What is the killing

instrument of event Life: Die?” in Turn 3 of Fig. 2. The other

agent answers the query by identifying the right argument

or event type from the sentence. This iterative generation

and answering paradigm enable us to introduce knowledge

obtained from previous turns when extracting a current argu-

ment. For instance, it can exploit the argument relation like

“weapon”, “use” and “troops” in sentence S1 in Fig. 1 to

improve the quality of event extraction. Our dialogue-based

method extracts the argument of victim ”soldiers” according

to the argument of trigger killing and instrument explosives for

event Life: Die in Fig. 2. This multi-turn process also enables

us to leverage additional information about the newly extracted

argument to update and correct the argument roles identified

in the previous turn. As we repeat the process, we will obtain

more information about event arguments and better understand

the sentence over time. This richer information helps us extract

argument roles more precisely towards the end of the process.

While our multi-turn dialogue system provides a poten-

tially powerful event extraction capability, its potential can

only be fully unlocked if the arguments are processed in

the right order. Since we extract arguments and determine

their roles in sequential order by utilizing the knowledge

obtained from previously extracted arguments, the order of

argument extraction is crucial. Ideally, we would like to start

from event arguments whose argument roles are likely to be

accurately decided using already extracted information and

leave the more challenging ones later once we have obtained

sufficient information from others. For instance, we may wish

to extract argument “weapon” before “use” of sentence S1
given in Fig. 1 because determining the former’s role is more

straightforward than doing that for the latter.

We address the challenge of argument extraction or-

der by employing Reinforcement Learning (RL) to rank

arguments to best utilize the argument relation. To allow

RL to navigate the potentially large problem space, we need

to find the right representation of each word in the target

sentence and use the representation to predict the start and end

position of each argument. To that end, we use both a lexicon-

based graph attention network [14] and an event-based

BERT model [15] for learning the word representation

from semantics and context two perspectives. We then

utilize the learned representation to determine which argument

to extract and in what order. We go further by designing

an incremental learning strategy to iteratively incorporate

the argument relation into the multi-turned event extraction

process by continually updating the event representation across

turns. By doing so, the representation becomes increasingly

more accurate as the argument extraction process proceeds,

which, in turn, enhances the quality of the resulting argument

and event extraction.

We evaluate our approach1 by applying it to sentence-level

1Code and data are available at: https://github.com/xiaoqian19940510/
TASLP-EAREE
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event extraction performed on the ACE 2005 dataset [16]. We

compare our approach to 7 recently proposed event extraction

approaches [5, 6, 17–19, 7, 20]. Experimental results show that

our approach can effectively utilize the argument relation to

identify the argument roles, leading to better event extraction

performance. We show that our incremental event learning

strategy is particularly useful when the amount of labeled data

is limited.

This paper makes the following contributions. It is the first

to:

• develop a multi-turned, task-oriented dialogue guided

event extraction framework aiming to fill arguments

extracted from input text for specific arguments roles

(Section III);

• employ reinforcement learning to rank argument ex-

traction order to utilize argument correlation for event

extraction (Section III-B);

• leverage a lexicon-based graph attention network and

event-based BERT, under an incremental learning frame-

work to learn word representation for even extraction

(Sections III-A);

II. RELATED WORK

Event extraction [21–23] is a form of information represen-

tation to extract what users are interested in massive data and

present it to users in a certain way. For event extraction task,

it can be divided into four subtasks: event classification, trig-

ger identification, argument identification, and argument role

classification. Most recent event extraction works are based

on a neural network architecture like Convolutional Neural

Network (CNN) [24, 25], Recurrent Neural Network (RNN)

[26, 5], Graph Neural Network (GNN) [6, 27], Transformer

[19, 28], or other networks [29, 30]. The method of event

extraction based on deep learning first adopts pipeline. The

pipeline-based method [24, 19, 31] is the earliest event extrac-

tion based on neural networks and extracts event arguments by

utilizing triggers. It realizes event trigger identification, event

classification, event argument identification, and argument role

classification tasks successively [32] and takes the results

of previous tasks as prior knowledge. The first two tasks

are usually called event detection and the last two tasks are

called argument extraction. Chen et al. [24] and Nguyen et

al. [26, 33] use the CNN model to capture sentence-level

clues and overcome complex feature engineering compared

with traditional feature-based approaches. DBRNN [5] have

been proved to be influential in introducing graph information

into event extraction tasks. JMEE [6] is proposed with an

attention-based GCN, learning syntactic contextual node rep-

resentations through first-order neighbors of the graph. As we

all know, an argument usually plays different roles in different

events, enhancing the difficulty of the event extraction task.

Yang et al. [19] propose a pre-trained language model-based

event extractor [34] to learn contextualized representations

proven helpful for event extraction. It separates argument

predictions according to the roles and overcomes the argument

overlap problem. However, this requires a high accuracy of

trigger identification. A wrong trigger will seriously affect

the accuracy of argument identification and argument role

classification. Therefore, the pipeline based method considers

the event trigger as the core of an event [5, 35, 36] and

requires high accuracy of event trigger identification, avoiding

an adverse effect on event argument extraction. In order to

overcome the propagation of error information caused by event

detection, joint-based event extraction methods are proposed.

The joint event extraction method avoids the influence of

trigger identification error on event argument extraction. It

reduces the propagation of error information by combining

trigger identification and argument extraction tasks.

The existing event extraction corpus has a few labeled

data and hard to expand, such as ACE 2005 with only

599 annotated documents [16]. Existing deep learning-based

approaches usually require lots of manually annotated training

data. Consequently, except for the difficulty of event extraction

itself, inadequate training data also hinders. The zero-shot

learning method is the right choice, which has been widely

applied in NLP tasks [37]. Based on this, Huang et al.

[38] design a transferable neural architecture and stipulate a

graph structure to transfer knowledge from the existing types

to the extraction of unseen types. It finds the event types

graph structure, which learns representation almost matching

representations from the parsed AMR structure [39]. Existing

event extraction systems, which usually adopt a supervised

learning paradigm, have to rely on labelled training data, but

the scarcity of high-quality training data is a common problem

[40, 31].

Machine Reading Comprehension (MRC) tasks extract a

span from text [41], is a basic task of question answering.

MRC based event extraction [28, 7] designs questions for

each argument, helps capture semantic relationship between

question and input sentence. Question answering methods are

emerging as a new way for extracting important keywords

from a sentence [28, 7]. By incorporating domain-knowledge

to the question set, one can guide the extraction framework to

focus on essential semantics to be extracted from a sentence.

Existing approaches do not utilize the relations among multiple

arguments, leaving much room for improvement. Our work

aims to close this gap by using the argument relations to infer

roles of arguments that are hard to settle in isolation, leading

to better performance for argument and event classification.

Task-oriented dialogue systems aim to assist the user to

complete specific tasks according to existing corpora [9, 42].

The typical task-oriented dialogue system has four compo-

nents: natural language understanding, dialogue state tracker,

dialogue policy learning, and natural language generation [43].

Ramadan et al. [44] introduce an approach utilizing semantic

correlation in ontology terminologies and dialogue utterances.

It easily utilizes history knowledge for current dialogue [8, 9],

aiming to build the connection among dialogue. Therefore,

there have been some explorations on formulating NLP tasks

as a dialogue task. It can overcome the inadequacy problem

of historical information utilization in MRC. Therefore, there

have been some explorations on formulating NLP tasks as

a dialogue task. We treat event extraction as a dialogue for

capturing relationships among arguments. Our work leverages

the recent development in task-oriented dialogue systems

[9, 42]. Such a system decouples the problem to be solved
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through a multi-turn dialogue, allowing the system to connect

and exploit information obtained during multiple conversations

to solve a new task [8, 9].

III. EVENT EXTRACTION FRAMEWORK

Fig. 3 gives an overview of our framework that consists

of three components for (1) double perspective event rep-

resentation, (2) ranked argument extraction, and (3) event

classification. The argument extraction module automatically

generates the dialogue based on the event type and the selected

predicted arguments. The selected arguments are produced by

incremental event learning method to add the pseudo label as

the training data and append the pseudo relation to the lexicon-

based graph. The pseudo label is the arguments predicted by

our ranked argument extraction model. The pseudo relation is

the argument role of the predicted argument.

We add a pseudo edge by appending an edge among

predicted arguments of an event type to update word represen-

tation using existing prediction results. It takes the sentence

and event type as input. Event classification module detects

whether the input sentence is an event and classifies the

event type to which the text belongs. We design a multi-

task learning module to calculate the combined loss of the

two tasks to overcome the event type imbalance results in a

low recall. For different event type, different event schema

are designed for extracting different arguments according to

the schema. Our framework is first trained offline using a

small amount of labeled data. To expand the training data,

we design a dialogue generation module, generating multiple

question-answering pairs for each trigger or argument for data

enhance. The trained models can then be applied to extract

event types and associated event arguments.

During the training phase, the reinforcement learning-based,

dialogue-guided argument extraction model learns how to

extract event arguments by taking as input the target sentence

and a label of the event type. Our framework will first

learn several rounds of conversational argument extraction

according to event types and sentences, and train the event

classification model according to event arguments. In each

turn, the predicted argument is provided as a pseudo relation in

the lexicon-based graph and a pseudo label in role embeddings

of event-based BERT used by the incremental event learning

method. It updates the textual representation by adding the

pseudo argument knowledge. The event classification model is

then trained to predict the event type using the pseudo relation

knowledge provided by the event extraction module.

During deployment, we used the trained models in an

iterative process to perform event extraction. We will first

predict the event type with the event classification model,

and then implement argument extraction according to the

predicted event type. So the model ends up running through

all the predicted event types. To do so, we first use the event

classification model to predict the event type without a pseudo

label and relation. Next, we use the argument extraction model

to identify all arguments associated with the predicted event

type. We then go back to ask the event classification module

again to update the event type using the pseudo label and

argument relations extracted by the argument extraction model.

This 2-stage iterative process uses the predicted event type

to extract arguments, and the extracted information helps the

event classification model improve its prediction.

A. Double Perspective Event Representation

The first step of our argument extraction pipeline is to learn

the representation (or embeddings) to be used for argument

selection. We do so by first constructing a lexicon-based

graph, from which we learn the lexicon-based representation

of individual words. We then learn the context representation

at the sentence-level across multiple words. To that end,
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we use both a lexicon-based graph attention network [14]

and an event-based BERT model [15] for learning the word

representation from semantics and context two perspectives.

1) Lexicon-based Representation: Lexicon-based graph

neural network has been designed for the node classification

task [14], proved to be an effective way to learn global

semantics. Thus, we use lexical knowledge to concatenate

characters capturing the local composition and a global relay

node to capture long-range dependency.

We convert the sentence to a directed graph (as shown in

Fig. 4) where each word is represented as a graph node, and a

graph edge represents one of the five relations: words in a lex-

icon; lexicon to lexicon; a relay node connecting to all nodes;

co-occurrence words; and pseudo relation among arguments of

an event. The first connects words in the phrase sequentially

until the last word. The second is to create a line between

phrases that the last word of the current phrase is connected

with the latter phrase, and each edge represents the potential

characteristics of the word that may exist. We also use a relay

node as a virtual hub, which is connected to all other nodes.

It gathers all the edges and nodes’ information, eliminating

the boundary ambiguity between words, and learning long-

range dependency. Therefore, the representation of the relay

node can be regarded as the representation of the sentence. The

fourth edge represents pseudo argument relation by connecting

the predicted arguments in an event. The last one is calculating

the co-occurrence probability of words within sliding windows

in the corpus. The edge weights are measured by pointwise

mutual information (PMI):

PMI (wi, wj) = log
p(wi, wj)

p(wi)p(wj)
= log

Nwi,wj
Ns

Nwi
Nwj

, (1)

where Nwi
, Nwj

, Nwi,wj
are the number of sliding windows

containing word wi, wj and both wi, wj , and i, j ∈ [1, N ].
Ns is the total number of sliding windows in the corpus.

To learn the word-level representation, we extend the

lexicon-based graph attention network (LGAT) that is designed

for learning global semantics for node classification [14]. We

extend the LGAT by adding a pseudo edge, i.e., by appending

an edge among predicted arguments of an event type. Our goal

is to update word representation using existing prediction re-

sults. Given an N-word text T = {T1, T2, . . . , TN}, the model

embeds the initial input text ET = {ET1, ET2, . . . , ETN}
through the pre-trained embedding matrix. The embedding of

predicted event role R = {R1, R2, . . . , RN} is represented

as ER = {ER1, ER2, . . . , ERN}. The model takes as input

EI = ET ⊕ ER where ⊕ means concatenation and produce

a hidden representation Hn = {hn
1 , h

n
2 , . . . , h

n
N}, for text T .

Here, hn
i represents the text feature of the i-th word on the

n-th hidden layer. Therefore, the final node representation is:

LT i = f(HN
i ), i = 0, 1, 2, . . . , N, (2)

where LT 0 is the relay node used to predict the event type.

It is then used to obtain the optimal decision through the

conditional random field (CRF). The probability of a label

sequence ŷ = ĉ1, ĉ2, . . . , ĉk can be defined as follows:

p(ŷ | s) =
exp

(

∑N

i=1 φ (ĉi−1, ĉi,LT)
)

∑

y′∈L(s) exp
(

∑N

i=1 φ
(

c′i−1, c
′

i,LT
)

) , (3)

where L(s) is the set of all arbitrary label sequences.

φ (ĉi−1, ĉi,h) = W(ci−1,ci)c
T
i + b(ci−1,ci), (4)

where W(ci−1,ci) ∈ R
k×N and b(ci−1,ci) ∈ R

k×N are the

weight and bias parameters specific to the labels ci−1 and ci,

k is the number of event types, and N is the input length of

text.

2) Event-based Context Representation: BERT is a multi-

layer bidirectional Transformer [15], achieving significant per-

formance improvement on event extraction task [19]. We use a

BERT model [19] to learn the context representation. Specif-

ically, we feed the sentence text into an event-based BERT

model to encode the input text T , the predicted event role R,

and the embedding of Agent A (used for dialogue generation

described in Section III-B1) EA = {EA1, EA2, . . . , EAM}.

We extend BERT by adding a self-attention mechanism to

learn new contextual representations of Agent A (denoted as

SA,) and input text (denoted as ST ).
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3) Final Representation: We concatenate the lexicon and

event-based representation to produce the final representation

CTi, to be used for argument extraction.

CTi = LTi ⊕ STi. (5)

B. Ranked Argument Extraction

Given an event type, our argument extraction component

aims to generate high-quality dialogue content by ranking the

argument extraction order and utilizing the historical dialogue

content. It consists of four main modules: dialogue generation,

argument extraction, incremental event learning, and rein-

forcement learning based dialogue management. The dialogue

guided argument extraction model automatically extracts the

arguments by inputting the actual event type and text. The

incremental event learning module then adds the pseudo label

as the training data and appends the pseudo-relationship to

the lexicon-based graph. After generating the target sentence’s

event representation, we follow a dialogue-guided strategy for

argument extraction. Specifically, Agent A uses the question

set from [7] to generate a query (or question) about an event

or a chosen argument (e.g., “What is the trigger of event

X?”). Then, Agent B answers the query by predicting an

argument role or event type. Based on the answer, Agent A

will then generate a new query in the next turn of argument

extraction. This iterative process is driven by an RL-based

dialogue management system described in Section III-B4,

aiming to optimize the order of argument extraction. The

answer given by Agent B will also be fed into an incremental

event learning module described later to update the previous

answers to be used for the next turn of argument extraction.

Later in Table III, we give an example dialogue generated by

our approach. The automatically generated dialogue produces

extra information to be used during the next-turn argument

extraction. Our approach is highly flexible, allowing one to

tailor the event extraction framework to a specific domain by

populating the question set with domain knowledge.

1) Dialogue Generation: Our dialogue generation module

uses two agents (A and B) to assist event extraction through

a sequence of question-answer conversations. Here, Agent A

generates dialogue content according to the currently pro-

cessed role. For each current role, it generates a question set

[7] to create more training data for argument extraction. For

example, when the goal of Agent A is to generate dialogue

for the argument role“Instrument”, we select one of the pre-

designed question set templates to generate dialogue. All

we need to do is filling the argument roles for the given

template. Agent A produces a hybrid content consisting of both

the current argument role and arguments already extracted.

Agent B then generates the content, including the predicted

argument given by the argument extraction (described in the

next paragraph). The predicted argument is then fed into Agent

A to generate a new dialogue for the next turn of argument

extraction. Similar to Agent A, Agent B also provides a dialog

content generation template and only needs to fill the template

with predicted arguments. If the predicted argument meets the

confidence conditions, it will be part of the content of Agent

A. The content of Agent B will also be fed into the incremental

event learning module described later to add high confidence

results for the next turn of argument extraction.

2) Argument Extraction: Agent B responds to a query by

filling the answer slots of a simple answer template designed

for each specific question template. It does so by using the

learned representation, CTi, to locate the start (is) and end

(ie) position of an argument within the target sentence. Specif-

ically, we obtain the word probability of a chosen argument

as:

Pstart(r, t, k) =
exp (W rsCT k)

∑i=N

i=1 exp (W rCT i)
, (6)

Pend(r, t, k) =
exp (W reCTk)

∑i=N

i=1 exp (W rCT i)
, (7)

where W rs and W re are vectors to map CT k to a scalar. Each

event type t has a type-specific W rs and W re. The probability,

Pspan(r, t, ais,ie), of an argument being the description (or

answer) for argument role r and event type t is given as

follows:

Pspan(r, t, ais,ie) = Pstart(r, t, is)× Pend(r, t, ie). (8)

3) Incremental Event Learning: Our incremental argu-

ment learning module tries to incorporate the information

obtained at the current argument extraction turn to extract

a new argument in the next turn. We do so by adding the

extracted argument roles (i.e., pseudo labels) whose reward

(evaluated by RL) is greater than a configurable threshold to

the input text to provide additional information for extracting

new arguments. We also add a new edge (i.e., pseudo relation)

to connect the extracted arguments in the lexicon-based graph

for an event, so that we can update the lexicon representation

to be used for the dialogue in the next turn.

4) Reinforcement Learning-based Dialogue Management:

We use RL to optimize the argument extraction order during

our iterative, dialogue-guided argument extraction process.

Dialogue action. The dialogue-guided event extraction

method defines the action as the set of event schema and

argument. It indicates that the reinforcement learning algo-

rithm requires determining the argument roles to go from the

current argument to the following argument. Different from

the previous reinforcement learning-based method, we design

two agents with varying spaces of action. For Agent A, action

aA is a role from the event schema, which is the action of

Agent A. For Agent B, action aB is the argument, which is

the action of Agent B. While it is essential to determine if the

event type of current dialogue turn needs to be converted to

the next event type. It means our method can determine well

of event type changing.

Dialogue state. Defined at time step t, state StǫS, is

characterized through St = (Rt, c
A
t , cBt ,Q0,H

C). Where

Rt is the argument role selected through the reinforcement

learning-based dialogue management, cAt , c
B
t are the current

embedding of Agent A and B, Q0 is the initial question of

Agent A about event type, HC represents the history of the

conversation. Different historical conversation HC contributes

differently to the target argument extraction. States sA and sB

are history-dependent, encoding the historical dialogue and T .

sA and sB are the concatenation of the state sAt−1, s
B
t−1 from
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the last dialogue content and the current content embedding

cAt , c
B
t , represented as:

sAt = sBt−1 ⊕ cAt , (9)

sBt = sAt ⊕ cBt . (10)

Dialogue policy network. The policy is choosing the right

action for role selection. The policy network is a parameterized

probability map in action space and confidence degree, which

aims to maximize the expected accumulated reward.

πθ

(

aA, aB | sA, sB)
)

= π
(

aA, aB | (sA, sB); θ
)

= P
(

aAt = aA, aBt = aB | sAt = sA, sBt = sB , θt = θ
)

,
(11)

where θ is the learnable parameter representing the weight on

our dialogue policy network. The dialogue policy network de-

cides that actions are chosen of T . It consists of two networks.

The first network is the feed-forward network for encoding the

dialogue histories is implemented using a softmax function.

The second network is the BiLSTM for encoding the dialogue

histories HC
t = (HC

t−1
, at−1, s

A
t , sBt ) being a continuous

vector hC
t , and HC

t is an observation, and at−1 is an action

sequence, updated through BiLSTM.

eT = softmax
(

WTF
(

sA, sB
)

+ bT
)

, (12)

hC
t = BiLSTM

(

hC
t−1,

[

at−1; s
A
t , s

B
t

])

, (13)

where WT and bT are the parameters, F (st) is the state feature

vector, eT is the vector of the input sentence T , hC
t−1 is the

representation in t− 1 conversation, at−1, s
A
t and sBt are the

action representation and the current state representation of

Agent A and B respectively.

Dialogue reward. The dialogue management module saves

the historical dialogues. For the specific event type, the search

space is limit. We design a reward function to evaluate

all actions. The reward R(sB, aA, aB) is defined as the

relatedness of the argument extraction part.

R(sB , aA, aB) =
∑

i

Pspan(ri, t, ais,ie). (14)

The policy agent can be effectively optimized using the reward

signal. Note that we simultaneously identify all remaining

arguments whose reward is less than a threshold in the final

turn to avoid error propagation. The threshold in our model is

0.75.

C. Event Classification

Event classification detects whether the input sentence is

an event and classifies the event type to which the sentence

belongs. Each sentence is fed into a lexicon-based graph

neural network model and an event-based BERT [34] model

to learn the global knowledge and context knowledge of the

sentence, respectively. The event classification model detects

what kinds of events the sentence contains by adding pseudo

argument relation knowledge. If the sentence does not contain

an event, NULL is output, and the subsequent modules are

not executed. enabling it to distinguish the prediction error.

We use a fully connected layer to compute the context-aware

utterance representation yi as follows:

yi = ReLU(W (LT i ⊕ ST i) + b), (15)

where W and b are trainable parameters, and ⊕ denotes vector

concatenation operation. For event classification sub-task, an

ReLU activation is used to enforce sparsity. To improve

event classification performance, we design an extra task -

predicting the number of event types. Our multi-task event

classification model calculates the combined loss of the two

tasks to overcome the event type imbalance results in a low

recall.

1) Trigger Classification: The existing event classification

is based on the trigger identification to identify the event type,

but our method is directly according to the input sentence to

identify the event type. Therefore, when we evaluate the per-

formance of trigger classification, we use the trigger predicted

in the previous Section III-B of ranked argument extraction.

We concatenate the predicted trigger and the input sentence to

classify the event type.

2) Multi-task Joint Loss for Event Classification: The

multi-task joint loss function estimates the difference in the

predicted result and ground-truth value. We design two tasks

to learn the distinction between prediction error. For the event

classification task, we employ the cross-entropy loss function

defined as:

LT = −
∑

i

yti log
(

ŷti
)

+ (1− yti) log
(

1− ŷti
)

, (16)

where yti and ŷti are the i-th real label and the predicted label

on the event classification task. For the type number prediction

task, we adopt the mean square loss with the L2-norm:

LN =
∑

i

∥

∥

∥
ŷli − yli

∥

∥

∥

2

+ η‖Θ‖2, (17)

where yli and ŷli are the i-th label and prediction on the

second task. Θ is model parameters, and η is a regularization

factor. The overall loss function for optimizing the whole event

classification model is:

L = λ1LT + λ2LN , (18)

where λ1, λ2 are hyperparameters to balance the two loss. The

λ1 is 0.65 and λ2 is 0.35 in our model.

IV. EXPERIMENTS AND RESULTS

A. Tasks

We test our approach on the ACE 2005 [16] dataset, which

is the most widely-used dataset in event extraction. It contains

599 documents, annotated with 8 coarse-grained event types,

33 event subtypes, and 36 argument roles. The part that

we use for evaluation is fully annotated with 5,272 event

triggers and 9,612 arguments. To make our results directly

comparable, we keep the same data split as previous work

[6, 19, 7, 20]. The number of documents for the training set,

validation set, and test set is 529, 30, and 40, respectively. It

contains a complete set of training data in English, Arabic,

and Chinese for the ACE 2005 technology evaluation. For the
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TABLE I: The P (precision), R (recall), and F1 score on event classification, argument identification and argument role classification results
performed on the ACE 2005 test set. Best results are highlighted in bold and “–” means results are not available. We use the two perspective
event representation module and multi-turn dialogue module in our dialogue guided model. The difference between our full model and
dialogue-guided model is whether using reinforcement learning.

Task Trigger Classification Trigger Identification Argument Identification Argument Role Classification Runtime

P R F1 P R F1 P R F1 P R F1

DBRNN [5] 74.10 69.80 71.90 - - - 71.30 64.50 67.70 66.20 52.80 58.70 -
JMEE [6] 76.30 71.30 73.70 80.20 72.10 75.90 71.40 65.60 68.40 66.80 54.90 60.30 -
Joint3EE [17] 68.00 71.80 69.80 70.50 74.50 72.50 59.90 59.80 69.90 52.10 52.10 52.10 -
GAIL-ELMo [18] 74.80 69.40 72.0 76.80 71.20 73.90 63.30 48.70 55.10 61.60 45.70 52.40 -
PLMEE [19] 81.00 80.40 80.70 84.80 83.70 84.20 71.40 60.10 65.30 62.30 54.20 58.00 23.8h
Chen et al. [45] 66.70 74.70 70.50 68.90 77.30 72.90 44.90 41.20 43.00 44.30 40.70 42.40 20.3h
Du et al. [7] 71.12 73.70 72.39 74.29 77.42 75.82 58.9 52.08 55.29 56.77 50.24 53.31 24.6h
MQAEE [20] - - 71.70 - - 74.50 - - 55.20 - - 53.40 31.5h

Our fine-tuned BERT 75.34 76.15 75.93 85.51 84.24 86.02 70.42 60.24 64.12 62.34 53.45 57.80 32.9h
Our dialogue guided model 78.24 80.44 79.62 86.34 85.21 86.91 72.75 63.53 67.71 67.67 54.92 59.42 36.1h
Our full model 81.23 80.00 80.71 87.94 87.22 87.73 73.43 65.30 69.97 69.82 54.43 61.42 38.1h

dialogue content generation of Agent A, we generate content

for the argument role selected by the reinforcement learning-

based dialogue management module. For example, if the event

type is ”Life:Die” and the argument role is ”instrument” for

example in Fig. 2, the generated content is “What is the killing

instrument of event Life:Die?”. In dialogue, we add predicted

arguments from Agent B. To keep the sentence grammatically

correct, we add fixed compositions, such as adding “using”

before the role of “instrument”. For the dialogue content

generation of Agent B, we generate content according to

the predicted argument. Here, as with Agent A, the template

is pre-designed. We evaluate the performance of our model

and comparison models for trigger classification (TC), trigger

identification (TI), argument identification (AI), and argument

role classification (ARC) sub-tasks. The evaluation metrics

include precision (P), recall (R), and F1.

B. Parameters

We implement our model based on BERT [34]. We use

BERT [34] as sequence encoding for queries and the hyperpa-

rameters of the decoder are the same as for the encoder. It has

12 layers, 768-dimensional hidden embeddings, 12 attention

heads, and 110 million parameters. The dialogue generation

module generates multiple questions for the same trigger and

argument. The final number of sentences is added to 2,4000

in training, validation, and test sets of 19,200, 2,400, and

2,400 sentences, at an 8:1:1 ratio. The maximum sequence

length is 512-word pieces, the learning rate is 3 × 105 with

an Adam optimizer, the maximum gradient norm for gradient

clipping is 1.0. The model is trained for 10 epochs and the

batch size is 8, where we set the max question length to 128

and the max answer length to 64. The optimal hyperparameters

are tuned on the validation set by grid search, and we tried

each hyperparameter five times. The dialogue policy network

contains a 128 unit bidirectional LSTM and a softmax layer.

The dimension of BERT-based word embeddings is 512 di-

mensions. The mini-batch size is 128 in training. We use Adam

as optimization algorithm with the gradient clipping being 5.

C. Comparisons.

We compare our extraction method with eight event extrac-

tion methods: DBRNN [5] leverages the dependency graph

information to extract event triggers and argument roles.

JMEE [6], a jointly event extraction framework, introduces

attention-based GCN to model graph information. Joint3EE

[17] is a multi-task model that performs entity recognition,

trigger detection and argument role assignment by shared Bi-

GRU hidden representations. GAIL-ELMO [18] is an ELMo-

based model that utilizes generative adversarial network to

focus on harder-to-detect events. PLMEE [19] is a BERT-

based pipeline event extraction method and employs event

classification depending on trigger.

Chen et al. [45] use bleached statements giving models

acquire to information included in annotation manuals. Du

et al. [7] apply machine reading comprehension method

employs event extraction and enhance data by constructing

multiple question for each argument. MQAEE [20] is a multi-

turn question answering method expediently utilizing history

answer to implement event extraction.

D. Main Results

Table I shows the overall results of each approach per eval-

uation task with six GAT layers. In the trigger classification

task, in order to make our model and baseline model adopt the

same evaluation index, we supplement the trigger classification

experiment. We use the predicted triggers together with the

text as the input of the event classification model to predict

the event type corresponding to the current triggers. In our di-

alogue guided model, we use our event representation module

and multi-turn dialogue model without reinforcement learning.

In our full model, we introduce reinforcement learning-based

dialogue management. The difference between full model

and dialogue-guided model is whether using reinforcement

learning to learn the order of argument extraction. Our model

consistently outperforms all other approaches on F1 and pre-

cision. Compare to Du et al. [7] and MQAEE [20], two recent

machine reading comprehension models, our dialogue-guided

model respectively achieves 7.23% and 7.92% improvements

on the F1-score on the TC sub-task. For TI and AI, our

dialogue-guided model improves the F1-score by at least

10% through reinforcement learning to guide the argument

extraction order. It achieves 6.11% and 6.02% improvements

on the ARC sub-task. It shows that our method is significantly
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Fig. 5: The change of Precision, Recall and F1 for our model with different GAT layers under different tasks.
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Fig. 6: The change of sub-tasks for our model with different GAT layers under different label rates.

superior to the MRC methods, which only utilize relationships

among arguments.

Our dialogue guided model also consistently outperforms

PLMEE [19], the best-performing baseline model. The results

show the importance of exploiting argument knowledge and re-

lation for event classification and argument extraction. Our full

model boosts the F1-score by 9.01%, 13.23%, 14.77%, and

8.02% on TC, TI, AI, and RC, respectively, when compared to

the MQAEE, the best-performing alternative on F1-score. Our

approach delivers higher precision than other approaches. On

some tasks, our approach gives a lower Recall compared to

the best-performing baseline model, but the resulting Recall is

not far from the best model JMEE (0.47%) and our dialogue

guided model exceeds it. By utilizing argument extraction

order, our approach delivers the best overall results.

We compare the runtime of our model with BERT-based

baseline models, including the QA-based model. In our model,

event extraction is realized through multiple rounds of our

dialogue system, and reinforcement learning is introduced to

optimize the argument extraction order. It can accomplish

event extraction more accurately but increases training com-

plexity. The original intention of our model is to improve the

precision, recall and F1 of event extraction by making full use

of the dependence among arguments under limited data. We

will consider improving the accuracy without increasing the

model complexity and training difficulty in future work.

E. Impact of GAT Layer Number

A GAT model in a semi-supervised task with a lower label

rate, which means the proportion of labeled data to the ACE

dataset, requires more graph attention layers to maintain the

best performance. Fig 5 presents some empirical evidence to

demonstrate the layer effect on our lexicon-based graph for

all sub-tasks. We test the performance on TC, TI, AI, and RC

four tasks and observe that the F1-score enhances when the

GAT layer increases until the sixth layer reach the maximum.

With respect to Precision and Recall, GAT achieves the best

performance on the sixth and seventh layer.

As shown in Fig 6, we also test our model’s performance

with different layers in special label rates for TC, AI and RC

sub-tasks. It is apparent to note that the model gets the best

performance under different label rates when the GAT layer

is 6, and the number of layers under the best performance

exhibits an increasing trend as the label rate increases. It

demonstrates that the best GAT layer gets a stable performance

under different tasks and changing the label rate. As can be

seen from Fig. 5 and Fig. 6, using more GAT layers can

improve the performance, judging by the Precision, Recall

and F1-score. However, the improvement reaches a peak when

using 6 GAT layers across all three evaluated tasks, and a

further increase in the number of layers does not give improved

performance. Therefore, we choose to use 6 GAT layers.
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Fig. 7: The resulting F1 score of our approach as the ratio of labeled data changes for different tasks on different tasks.
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Fig. 8: The F1-score of our approach as the ratio of labeled data changes for multiple type test data on different tasks.
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Fig. 9: The influence of reinforcement learning on argument extraction task.

F. Impact of Data Settings

To verify that our model can achieve significant perfor-

mance improvement even with little labeled data, we test the

model’s performance by changing the training data amount.

We evaluate the impact of training data on three subtasks

in Fig .7. Compared with the other two sub-tasks, trigger

classification is the least affected by the labelled data ratio,

which can basically reach 75% F1-score. It shows that our

model can achieve relatively stable results under different data

scales. Fig. 7c shows how the F1-score changes as the ratio of

labeled data available to our scheme changes on argument role

classification task. As expected, using more labelled data thus

improves the performance of our models. Our reinforcement

learning module can achieve good performance, even when

the amount of labeled data is small. The combination of

reinforcement and incremental event learning can improve

the robustness of our approach, leading to better overall

results than individual techniques. Still, when we remove the

incremental event learning and reinforcement learning module,

respectively, the former changes dramatically than the latter. It

indicates that the incremental event learning module can make

our model insensitive to the data scale change.
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TABLE II: Ablation study on global constraints on F1-score (%).

Tasks Trigger Classification Trigger Identification Argument Identification Argument Role Classification
P F1 P F1 P F1 P F1

Ours 81.23 80.71 87.94 87.73 73.43 69.97 69.82 61.42
-RLD 79.34 78.25 86.21 86.33 71.82 67.12 67.92 59.80
-IEL 79.62 80.13 87.01 86.85 71.92 67.63 67.99 60.78
-LGAT 80.52 80.46 86.21 86.10 72.03 69.45 68.51 61.01
-MTL 80.02 79.49 86.93 86.81 71.89 67.72 67.20 60.22

TABLE III: A dialogue generated by our RL-based dialogue system for sentence: “As the soldiers approached, the man detonated explosives
in the car, killing all four of the soldiers.”.

Agent A query Agent B answer

A: What is the first event type? B: The first event type is Life: Die.
A: What is the trigger of event Life:Die? B: The trigger of event Life:Die is killing.

A: What is the killing instrument of event Life:Die? B: The killing instrument of event Life:Die is explosives.
A: Who is the killing victim of event Life:Die using explosives? B: The killing victim of event Life:Die is the soldiers.
A: What agent killing the soldiers of event Life:Die using explosives? B: The agent of event Life:Die is the man.
A: What is the second event type? B: The second event type is Conflict: Attack.

A: What is the trigger of event Conflict: Attack? B: The trigger of event Conflict: Attack is detonated.

A: What is the detonated instrument of event Conflict: Attack? B: The detonated instrument of event Conflict: Attack is explosives and car.

A: What is the detonated target of event Conflict: Attack using
explosives and car?

B: The detonated target of event Conflict: Attack is soldiers.

A: Who is the detonated attacker of event Conflict: Attack using
explosives and car?

B: The detonated attacker of event Conflict: Attack is man.

Fig. 8 shows the impact of argument compositions. In this

experiment, we divide the test data into three parts where

each word has (1) one role (One Role of Each Word), (2)

more than one role (Multiple Role of Each Word) and (3)

a mixture of both (All Circumstances). Our model achieves

92.74%, 76.74% and 63.00% F1-score on the part of one

role of each word. As expected, our approach gives better

results when the argument has just one role than other data

compositions. Nonetheless, our framework still delivers good

performance for other data settings and can use the increased

labeled data to improve performance. For sentences having

multiple roles of words, our model is less affected by the label

rate in the event classification task, but more affected by the

label rate in the argument extraction sub-task. In general, our

model can have relatively stable performance in both one role

and multiple roles for each word.

G. The influence on RLD module

In order to verify the reinforcement learning helping for

argument extraction, and the model performance is improved

through iterative training. We demonstrate this from three

aspects: average loss, average reward, and F1 score. Our model

converges in the 110th iteration, with a loss value of 0.0282.

The average reward of reinforcement learning converges in

the 120th iteration and is 10.7256. The F1 score or argument

identification and role classification converge in the 120th
iteration. The F1 argument identification subtask is 0.6142, and

the F1 of role classification is 0.6997. Therefore, our model

converges on 120th iterations when we add the RLD module.

H. Ablation Study

We evaluate four variants of our approach, given in Table

II. We remove the Reinforcement Learning-based Dialogue

(RLD) module, which is the most key module. The descending

on TI, AI and RC sub-tasks is 1.40%, 2.85% and 1.62% F1-

score, leading to performance changing significantly. When it

comes to the Incremental Event Learning (IEL) module, F1-

score decreases 0.58%, 0.88%, 2.34% and 0.64%, respectively.

It may prove that our IEL module can provide useful pseudo

labels and relations to model the arguments relation. We

remove the Lexicon-based Graph Attention network (LGAT)

module. F1-score decreases on all four sub-tasks, which shows

that the LGAT module positively affects learning lexicon-

based knowledge. It may prove that our lexicon-based graph

attention network and event-based BERT model can learn

better of the event representation. Moreover, the Multi-Task

Learning (MTL) module is employed for TC. It improves

1.22% F1 score by distinguishing the error types and con-

tributes F1 score of TI in terms of 0.92%, AI in terms of 2.25%
and ARC in terms of 1.20%. It suggests that the MTL module

can accurately identify the sentence with multiple same event

types. The results suggest that all variants are useful, and the

RLD is the most important, as removing it can result in the

most drastic performance degradation. By utilizing historical

dialogue knowledge, our approach achieves about 6.55%,

11.83%, 11.92% and 6.40% F1-score gains than the best-

reported question answering based method MQAEE [20] on

the four subtasks. It may demonstrate the effectiveness of re-

inforcement learning-based dialogue generation. For argument

role classification, the precision enhances 7.52% compared

with the best-reported model PLMEE [19]. It may prove that

our lexicon-based graph attention network and event-based

BERT model can learn better of the event representation.
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Sentence: Some 70 people were arrested  Saturday  as demonstrators clashed with police at the end of a major peace rally here, as at least 200,000 

anti war protesters   took  to the  streets  across the United States and Canada.
Trigger

Time-With

Artifact Destination

Event 1 Event 2 Event 3 Event 4

Type: Justice: Arrest-Jail Type: Conflict: Attack Type: Conflict: Demonstrate Type: Movement: Transport

Trigger: arrested Trigger: clashed Trigger: rally Trigger: took

Time-Within: Saturday Time-Within: Saturday Time-Within: Saturday Time-Within: Saturday

Place: here Place: here Place: here Artifact: protesters

Person: people Attacker: demonstrators, police Entity: protesters Destination: streets

Fig. 10: An example on ACE 2005 with a standard answer table for event extraction. The words in bold are the event arguments.

I. Case Study

Table III gives a dialogue conversation generated by our

approach (Section III-B). Our model can solve arguments with

multiple roles, including words with different roles in different

contexts. It can recognize the argument more completely by

learning the relationship between arguments and the order

of argument extraction. For example, in the sentence “As

the soldiers approached [...]”, the word “soldiers” can play

different roles. When the event type is “Life: Die”, its role

is “Victim”, while when the event type is ”Conflict: Attack”,

its role becomes “Target”. By contrast, the word “explosives”

plays the same role (“Instrument”) in different events. Both

cases can be correctly recognized by our approach.

In some scenarios where the text contains multiple events,

our approach may fail to identify some arguments of scattered

distribution. For example, as shown in Fig 10, the sentence

“Some 70 people were arrested Saturday [...]” contains four

event types: “Justice: Arrest-Jail”, “Conflict: Attack”, “Con-

flict: Demonstrate” and “Movement: Transport”. For the latest

event type, our model does not recognize “Saturday” although

it has the same role in multiple events. This is because this

argument is further away from other arguments, and our model

does not explicitly capture such relation when determining the

event extraction order. Our future work will look into this.

V. CONCLUSION

We have presented a new approach for event extraction by

utilizing event arguments’ relationships. We tackle the problem

within a task-oriented dialogue guided framework designed

for event extraction. Our framework is driven by reinforce-

ment learning. We use RL to decide the order for extracting

arguments of a sentence, aiming to maximize the likelihood

of successfully inferring the argument role. We then leverage

the already extracted arguments to help resolve arguments

whose roles would be difficult to settle by considering the

argument in isolation. Our multi-turn event extraction process

also uses the newly obtained argument information to update

decisions of the previously extracted arguments. This dual-

way feedback process enables us to exploit the relation among

event arguments to classify the argument’s role in different

text contexts. We evaluated our approach on the ACE 2005

dataset and compared to 7 prior event extraction methods.

Experimental results show that our approach can enhance

event extraction, outperforming competing methods in the

majorities of the tasks. In the future, we plan to improve

the multi-semantic representation of the dialogue guided event

extraction by introducing commonsense knowledge.
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