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1  |  INTRODUC TION

Persistent forms of atrial fibrillation (AF) represent more advanced 

atrial disease than paroxysmal AF.1 However, the mechanisms for 

persistence are still debated and may involve multiple wavelets, 

endo- epicardial dissociation, or drivers.2– 5 Clinical studies using 

dominant frequency analysis of roving contact catheter data to 

locate driver regions have had mixed success.6,7 Subsequently, en-

docardial basket contact mapping catheters were used to demon-

strate rotors and showed promising responses to treatment,8 but the 

results of more recent meta- analyses have been equivocal.9,10 Atrial 

substrate changes detectable during clinical electrophysiology stud-

ies include low voltage areas (LVA) or fractionated signals.1 Although 

LVA is advocated as a target for ablation,11,12 more recent studies 
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Abstract
Background: Despite studies using localized high density contact mapping and lower 

resolution panoramic approaches, the mechanisms that sustain human persistent 

atrial fibrillation (AF) remain unresolved. Voltage mapping is commonly employed as a 

surrogate of atrial substrate to guide ablation procedures.

Objective: To study the distribution and temporal stability of activation during persis-

tent AF using a global non- contact charge density approach and compare the findings 

with bipolar contact mapping.

Methods: Patients undergoing either redo or de novo ablation for persistent AF un-

derwent charge density and voltage mapping to guide the ablation procedure. Offline 

analysis was performed to measure the temporal stability of three specific charge 

density activation (CDA) patterns, and the degree of spatial overlap between CDA 

patterns and low voltage regions.

Results: CDA was observed in patient- specific locations that partially overlapped, 

comprising local rotational activity (18% of LA), local irregular activity (41% of LA), 

and focal activity (39% of LA). Local irregular activity had the highest temporal stabil-

ity. LA voltage was similar in regions with and without CDA.

Conclusion: In persistent AF, CDA patterns appear unrelated to low voltage areas but 

occur in varying locations with high temporal stability.

K E Y W O R D S
atrial fibrillation, non- contact mapping
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have described marked variation in the extent of LVA observed 

depending on cycle length and direction of wave front activation, 

and also in sinus rhythm versus AF.13,14 Complex, fractionated sig-

nals themselves could represent either active drivers or wavefront 

collision or fusion and the initial success of targeting complex atrial 

electrograms reported by Nademanee15 was not replicated in the 

randomized Substrate and Trigger Ablation for Reduction of Atrial 

Fibrillation (STAR- AF) II trial.16

Combined charge density and ultrasound mapping (AcQMap, 
Acutus Medical) is possible with a novel system employing a spherical 
catheter with six splines, each of which has eight ultrasound trans-

ducers and electrodes. Rapid ultrasound cardiac chamber geome-

try combined with the ability to collect up to 150 000 non- contact 

charge density samples per second allows acquisition of full cham-

ber, high resolution electrical activity.17 Several stereotyped charge 

density activation (CDA) patterns were described during mapping of 

AF with this system, namely focal activity (FA), local rotational ac-

tivity (LRA), and local irregular activity (LIA). LRA shows a regionally 

organized pattern of conduction that rotates in one direction around 

a confined zone (clockwise or counter- clockwise) and subtends a 

path of ≥270°, FA indicates radial wavefronts propagating from a 
single location, while LIA is a disorganized pattern of conduction 

with repetitive, multidirectional, isthmus- like conduction through a 

confined zone that may enter, exit, and pivot within and around the 

zone (Figure 1). Initial clinical results using this technology to guide 

ablation have been reported in a single arm study with 73% freedom 

from AF at 12 months after a single ablation procedure for persistent 

AF.18 More recently, non- contact data from the AcQMap system 
have been validated against standard contact electrograms demon-

strating a high degree of correlation for morphology and timing.19

The purpose of this study was to describe the spatial distribution 

and temporal stability of CDA identified using this novel mapping 

system in a cohort of patients with persistent AF, and to determine if 

there was any relationship between LVA (using conventional bipolar 

voltage mapping techniques) and CDA.

2  |  METHODS

Following granting of European CE mark and US FDA approval, we 
obtained local institutional approval to use the novel AcQMap sys-

tem to treat AF, and all patients in the study gave informed written 

consent. Between September 2018 and November 2019, sixteen 
consecutive patients underwent an electrophysiology study and ab-

lation for persistent AF using both AcQMap (Acutus Medical) and 
Ensite Precision (Abbott Medical) systems.

2.1  |  Electrophysiology study and ablation

All procedures were performed under general anesthetic with tran-

soesophageal echocardiography. Patients were routinely anticoagu-

lated with direct oral anticoagulants (DOAC). Femoral venous access 

was used for double trans- septal puncture, followed by hepariniza-

tion to ACT >350 s. The baseline charge density map (pre- PVI) was 

acquired for 30 s during AF with AcQMap, followed by a high density 
(>3000 points) contact map of the left atrium (LA) during AF using 

a multipolar catheter, either Advisor FL SE or Advisor HD Grid SE 
(Abbott Medical). A threshold of 0.2 mV (in AF) was used to define 
LVA as this has been shown to correlate with the conventional defi-

nition of 0.5 mV in sinus rhythm and with the presence of a scar on 

MRI.14,20 Pulmonary vein isolation (PVI) was then performed either 

by de novo wide area circumferential ablation (n = 6), or for redo 

procedures (n = 10) at regions of vein reconnection with contact 

force guidance (TactiCath SE; Abbott Medical). Power settings were 
by operator preference either 30 W anteriorly/25 W posteriorly, 

guided by Lesion Index (LSI; Abbott Medical), or 45 W up to 15 s 
“high power, short duration”. Following PVI a further 30 s map (post- 

PVI) of AF was acquired using AcQMap. AcQTrack software (Acutus 
Medical) was used to identify CDA (LIA, LRA, FA) targets and thresh-

olds of 5, 7 and 1 for LRA, LIA, and FA, respectively, gave clinically 

usable maps with similar numbers of CDA in the majority of our pa-

tients. These were ablated at operator discretion. Two patients were 

ablated directly to sinus rhythm, while the remainder completed 

the procedure with external cardioversion. Clinical follow- up was 

undertaken using a combination of patient symptoms, 12 lead EKG, 
and continuous EKG recordings.

2.2  |  Image registration

Comparing left atrial (LA) maps across multiple patients is challeng-

ing due to variation in LA size and geometry. In order to accurately 

compare maps from the two systems and across patients, in- house 

F I G U R E  1  Example charge density 
activation patterns
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methods were developed within Matlab (Version 2020a; www.
mathw orks.com) and Cloud Compare software (Version 2.6.1; www.

cloud compa re.org) to merge maps. Fiducial markers were used to 

tag structures common to both geometries, typically the LA append-

age and the carina between pulmonary veins, in order to generate a 

transformation matrix which is then used to align, resize, and rotate 

maps. Next, a “nearest neighbor” matching algorithm was used to 
apply bipolar voltage values from the Ensite Precision map onto the 
AcQMap geometry. This allows direct comparison of CDA and volt-
age for each vertex in the map.

For the composite images, an average LA geometry was gen-

erated. Again, fiducial points were marked and used to transform 

each patient's geometry to the common LA geometry, before the 

nearest- neighbor matching applied the thresholded CDA and volt-

age values to the common geometry. The number of occurrences of 

above- threshold CDA, and the mean of the voltage at each vertex, 

were used to create LA heatmaps.

2.3  |  Image comparison and statistical methods

The detection of LVA and CDA in the LA is threshold dependent. 

A commonly used metric for medical image comparison, Sørenson 

Dice coefficient, is sensitive to changes in the thresholds used, 

so we compared maps using a novel area under the curve (AUC) 

metric. Our AUC metric calculates the AUC of a sensitivity/

(1- specificity) plot using a continually- varying threshold for each 

of the two maps being compared. This is analogous to the area 

under a receiver- operating characteristic (ROC) curve except that 

both the ‘test’ and ‘reference’ maps are from the same dataset and 

are both are subject to varying thresholds. This differs from the 

binary outcome of a gold- standard reference test used when com-

paring diagnostic test accuracy— the typical application of ROC. 

Therefore, in this application, AUC values of <0.5 are possible for 

inversely matched maps (where CDAs have less intersection be-

tween maps than would be expected by chance), whereas a per-

fect match scores 1.0. This method has the substantial advantage 

that, by analyzing every possible CDA threshold, it removes the 

requirement for a threshold to be chosen.

Due to constraints of clinical workflow, of 16 patients treated, 

11 had the full set of data comprising bipolar voltage map, pre- PVI 

CDA map, and post- PVI CDA map. The primary analysis of tempo-

ral stability was performed on these 11 patients, but we also used 

all available datasets across all 16 patients for a secondary analysis 

(provided as a supplement). To assess single map temporal stabil-

ity, a 30 s CDA acquisition was divided into three consecutive 10 s 

sections. Within each 10 s section, the locations of each CDA were 

annotated to create binary maps of the LA with FA/LRA/LIA present 

or absent. Each 10 s section (1, 2, 3) was compared against the other 
sections within the same 30 s window using AUC i.e. 1 vs. 2, 2 vs. 3, 

and 1 vs. 3. To compare longer term (intraprocedural) temporal sta-

bility, we compared the 30 s pre- PVI recordings with 30 s recordings 

post- PVI. Figure 2 gives an overview of all comparisons performed.

Baseline demographic data are presented as mean ± SD or 

median (range) as appropriate. All pairwise comparisons were 

performed with Wilcoxon signed- rank test (R, The R Project for 

Statistical Computing).

3  |  RESULTS

Patient characteristics are shown in Table 1.

3.1  |  Spatial distribution and co- localization of 
CDA and relationship to voltage

The spatial distribution of LRA, LIA, and FA regions for all pa-

tients during the baseline 30 s AF recording is shown on a common 

geometry— Figure 3. There was some preferential location in ante-

rior/septal wall, but CDA could be observed throughout the LA. The 

LIA and FA patterns were more frequently observed than LRA. At 

the clinically used thresholds, 55% of the atrial endocardial surface 

was involved in activation across one or more LRA, LIA, or FA. The 

Venn diagrams for complete cases and for all available data (Figure 4 

and Figure S1 respectively) show the overlap for CDA types— LRA 

was rarely observed in isolation and mainly occurred in association 

with LIA or FA, while LIA and FA occurred more often in isolation. 

Across all patients studied, the median LA voltage was 0.39 mV 

(IQR 0.16– 0.83). Comparing LA voltage in areas where CDA were 

present or absent, nominally significant differences were observed, 

with lower voltage in areas with LIA. However, there was a large 

range of data and no clinically meaningful differences were identi-

fied (Figure 5, Figure S2).

3.2  |  Temporal stability of observed CDA

Within the 30 s pre- PVI recordings of AF, when 10 s segments were 

compared in individual patients to examine short- term CDA stability, 

we observed a high degree of CDA overlap, indicating stable pat-

terns of CDA (Figure 6, Figure S3). At both timepoints, LIA was the 

most spatially stable form of CDA.

Comparing the pre-  and post- PVI maps (with a mean ± SD inter-

vening time period of 100 ± 50 min) to assess longer term CDA sta-

bility, the observation of stable CDA patterns was again seen over 

this much longer time period (Figure 7, Figure S4).

4  |  DISCUSSION

In this study using a novel mapping system in persistent AF patients, 

the main findings were:

1. Temporally stable, regions of activation during persistent AF 

the location of which varied between patients.
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2. Localized irregular activity was frequently observed and showed 

high temporal stability, while rotational activity was less frequent.

3. CDA did not correlate well with low voltage regions mapped dur-

ing AF.

The observation of directional organization or “linking” during AF 

has been recognized previously, suggested to represent underlying 

anatomic structures or refractoriness from previous wavefronts.21,22 

Our data using high resolution global non- contact mapping confirms 

that repetitive patterns of activity can be observed over timescales 

of <1 min, and greater than 1 h, which may be more consistent with 

a “driver” mechanism than “multiple wavelets”. This extends previ-

ous observations during epicardial perioperative maps acquired over 

the course of 10 min of AF.23 Our long- term stability assessment 

was performed by comparing pre- PVI and post- PVI data. We accept 

interim ablation may affect the AF substrate, although one might ex-

pect this to reduce temporal stability. Mapping with unipolar signals 
mitigates against some of the downsides of bipolar electrograms, 

including sensitivity to wavefront direction and loss of fine detail of 

complex activation patterns or “bipolar blindness”.

With regard to specific CDA events, our data indicate that ro-

tational activity, particularly occurring in isolation, was infrequent. 

This is consistent with previous reports using biatrial epicardial 

contact mapping studies24,25 and also by mapping the epicardium 

non- invasively using CardioInsight (Medtronic).26 Studies that report 

more consistent findings of rotors, tend to depend on phase analysis 

methods.8,27 The appearance of rotational activity can be a passive 

phenomenon based on phase analysis of electrograms at lines of 

conduction block.28 We observed frequent and consistent endocar-

dial FA which could represent either focal or micro re- entrant drivers 

or epicardial to endocardial breakthrough. In a previous high density 

epicardial mapping study predominantly focal activations were ob-

served with collision and merging of wavefronts.25

Atrial bipolar voltage is commonly used clinically as a surro-

gate for atrial substrate, despite potential limitations including 

wavefront direction and regional variation in LA wall thickness. 

F I G U R E  2  Summary of workflow undertaken to compare bipolar voltage and charge density, and to assess short-  and long- term temporal 
stability of charge density activation
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Age (years) 63 ± 11

AF history (years) 4.2 ± 3.0

Gender (M:F) 15:1

Body mass index (kg/m2) 29 ± 4

CHA2DS2- VaSC score– median (range) 1 (0– 4)

LV ejection fraction (%) 52 ± 5

LA dimension (mm) 46 ± 5

Previous AF ablation procedures– median (range)

Antiarrhythmic drugs at time of procedure

Betablockers 14/16

Digoxin 3/16

Amiodarone 1/16

Patients with previous AF ablation procedure 10/16, median 1 (0– 3) procedures

TA B L E  1  Patient characteristics. 
Continuous variables are described using 

mean ± SD unless otherwise stated

F I G U R E  3  Composite images demonstrating spatial distribution and frequency (normalized to scale 0– 1) of CDA, for all patients displayed 
on a common geometry; (A) AP and (B) PA views. CDA, charge density activation; FA, focal activity; LIA, local irregular activity; LRA, local 

rotational activity
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F I G U R E  4  Venn diagram 
demonstrating the involvement of left 

atrium (percentage of LA area) and 

degree of spatial overlap between charge 

density activity, complete datasets only. 

CDA, charge density activation pattern 

comprising LRA (local rotational activity); 

LIA, local irregular activity and FA, focal 

activity

F I G U R E  5  Bipolar tissue voltage, in 
areas with and without CDA present, 

complete datasets only. Pairwise 

comparisons with Wilcoxon signed- rank 

(****, p < .0001. ns, not significant). 

CDA, charge density activation pattern 

comprising LRA (local rotational activity); 

FA, focal activity; LIA, local irregular 

activity

F I G U R E  6  Short- term temporal 
stability expressed as AUC (comparing 

10 s sections within the same 30 s 

window), complete datasets only. Pairwise 

comparisons with Wilcoxon signed- rank 

(****, p < .0001. ns, not significant). 

CDA, charge density activation pattern 

comprising LRA (local rotational activity); 

FA, focal activity; LIA, local irregular 

activity; PVI, pulmonary vein isolation; 

UAC, area under the curve metric
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Although voltage values were nominally statistically different in 

areas of CDA versus non- CDA, this was likely due to the sheer 

number of points compared. More importantly, the significant 
overlap made it impossible to identify any clinically useful voltage 

threshold to identify CDA locations. This has also been recently re-

ported by Chierchia et al.29— LVA identified during paced and sinus 

rhythm (but not during AF) did not overlap with CDA locations. Yet 

the consistent observation of temporally stable activity in patient- 

specific locations, LIA in particular, strongly suggests this reflects 

an underlying fixed atrial substrate. Our observations regarding 

the frequent occurrence of LIA confirm those of others using this 

approach.18,30,31 Using optical mapping ex vivo, fibrotic regions 

have been shown to harbor microscopic intramural re- entrant cir-

cuits that can act as AF drivers.32 However, current human in vivo 

electrophysiological and imaging methods are limited to either the 

endocardial or epicardial surface and lack the resolution to resolve 

this microscopic level of detail. Prior endocardial non- contact 

mapping studies using the Ensite array failed to show stable dom-

inant frequency sites, or stable focal or rotor sites.33,34 However, 

this earlier generation system was of lower spatial resolution and 

does not utilize accurate patient- specific ultrasound chamber ge-

ometry. Using the current system, LIA locations detected during 

AF co- localize to areas of slow conduction during non- AF paced 

rhythm, providing further evidence that these represent localized 

areas of abnormal substrate.31

Acute AF termination during ablation was a relatively infrequent 

occurrence in this study, but freedom from AF observed after ab-

lation in this and other studies using this mapping system suggests 

that areas of CDA identified for ablation were involved in mainte-

nance of AF.18,35 The findings in this study of temporally stable CDA 

locations during AF that vary from patient to patient would not sup-

port an approach of either empiric linear ablation or voltage based 

ablation for persistent AF. The AcQMap system allows a bespoke 
approach and provides the ability to rapidly map, ablate and remap. 

The clinical effectiveness of non- contact charge density guided 

mapping for treatment of AF is being evaluated in ongoing larger tri-

als (e.g. RECOVER, NCT03368781 and DISCOVER, NCT0389333).

5  |  LIMITATIONS

The population studied had mostly longstanding persistent AF, and 

observations here may not apply to all forms of AF. Mapping in this 
study was confined to the endocardial LA, and we did not perform 

right atrial mapping.

6  |  CONCLUSIONS

This study of persistent AF has demonstrated temporally stable ac-

tivation patterns over both short and relatively long periods of time, 

that appear unrelated to bipolar voltage. These may represent novel 

targets for AF ablation but this requires further investigation with 

larger clinical trials.
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