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ABSTRACT

Current tweet classification models aimed at enhancing crisis re-

sponse are based on supervised deep learning. They rely on the

quality and quantity of human-labeled training data. Still, the avail-

able training data is small in size and imbalanced in coverage of

crisis types, which prevents the models from generalization, and as

it is manually labeled, it is also expensive to produce. To overcome

these problems, distant supervision can be applied to automatically

generate large-scale labeled data for tweet classification for crisis

response. Experimental results on different crisis events show that

our work can produce good quality labeled data from past and

recent events. Substituting automatically labeled training data for

part of the manually labeled training data has a minimal impact on

the model performance, indicating that automatically labeled data

can be used when no hand-labeled data is available.
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1 INTRODUCTION

During crises, people spread the news on Twitter and share valuable,

real-time and on-topic information like their statuses, injured or

dead people and the damage caused by the crises [1]. They also

tweet to ask for help or offer help to others. Because of that, Twitter

has become a dominant platform for organizations and people to

post or gather information in many natural or human-made crises

during recent years [2], such as earthquakes [3], floods [4], wildfires
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[5] and nuclear disasters [6]. For example, in 2011, 177 million crisis-

related tweets were published in only one day during an earthquake

in Japan [7].

Situational awareness can be significantly enhanced by people-

generated tweets [1]. These tweets can be used by large-scale dis-

aster response organizations to make better decisions and quick

responses. However, humanitarian organizations cannot manually

observe, process and convert the enormous volume of data into

actionable information [8]. Thus, they do not widely use social

media data such as Twitter in their disaster response operations

[9].

Tweet classification for crisis response is a text classification task

that aimed at identifying whether a tweet is related to a specific

crisis event or not. For example, " BREAKING: Nepal police official

says at least 1,910 have died, including 721 in Kathmandu, in the

quake " is a tweet related to a Nepal Earthquake event while "So im-

portant! Hindu, Buddhist, Christian and Muslim leaders denounce

#childmarriage in joint broadcast in Nepal" is irrelevant. The main

purpose of binary tweet classification models is to reduce the vol-

ume of tweets in real- time to simplify the work for humanitarian

organizations to respond to people in need in the early hours of

a crisis. However, current tweet classification models suffer from

the lack of labeled data [10], which prevents them from reaching

a generalized model [11] as tweets related to various crisis types

have different features and social media response [12]. Besides, it

is infeasible to manually annotate tweets for every crisis event,

especially in real- time [13]. Because of that, semi-supervised ap-

proaches that automatically generate labeled training data from an

unlabeled corpus are desirable.

The authors in [14] applied semi-supervised learning to dis-

aster response data. They employed self-training learned on the

small available data to label a new collection, Mayanmar _Earth-

quake_2016, derived from Twitter with annotation accuracy of 80%.

Similar to [14], we build a semi-supervised method, but we use

distant supervision [15] via an external linguistic knowledge base,

FrameNet [16], instead of self-labeling. Unlike [14], we propose a

novel framework that does not duplicate the label noise exists in

the current dataset and explores different ranges of unseen features

by expanding the original keyword list to include new linguistic

units (new keywords with similar meaning) derived from FrameNet

which provides the chance to improve the generalization level of

the classification model.

1.1 Contribution

Our work addresses the problem of the low generalization level of

the crisis-related classifier caused by the lack of annotated tweets.

To reduce the generalization error, we present a new framework to
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label new crisis event data. This data will be added to the available

ones to train the classifier to filter the massive volume of tweets

posted by people during crises. Our main goal is to investigate, for

the first time, the application of distant supervision in producing

good-quality labeled-data for our task. Specifically, our research

questions are:

• Can we automatically generate labeled training data for

tweet classification for crisis response that has a compet-

itive quality level compared to manually labeled training

data.

• When added to the available labeled data, does our automati-

cally generated labeled data improve the performance of the

crisis-related tweet classifier.

Also, and to evaluate our work, we create a new collection of

crisis-related labeled examples from Twitter data from new disaster

events: 2018 Texas Floods, 2018 Indonesia Earthquake and 2018

Sunda Strait tsunami.

The rest of the paper is organized as follows: The following

section covers the related works in tweet classification for crisis

response and distant supervision fields. Next, our proposed labeling

framework is described in detail. After that, our experimental setup

and results are discussed. In the last section, we provide a conclusion

of our investigation and suggestions for future work.

2 RELATED WORK

2.1 Tweet Classification for Crisis Response

In the literature, many tweet classification methods have been

introduced to reduce the enormous volume of tweets posted by

people during crises to simplify humanitarian organizations’ work.

These methods rely on two main approaches: matching-based and

learning bases approaches [17].

2.1.1 Matching-based approach. The purpose of this approach is

to identify the related tweets based on predefined keywords and

hashtags [18]. The authors in [19] built CrisisLex based on keywords

and hashtags related to the crisis events. This method, however,

unable to retrieve related tweets do not contain these keywords or

hashtags even if the tweets contain words with similar meanings.

Another issue is that they mislabel unrelated tweet mention one of

the hashtags or keywords where no noise reduction technique is

used. Geolocation has also been used as a feature to retrieve related

tweets; however, this feature does not exist for most of the posted

tweets [20]. To solve these issues, platforms such as CrisisTracker

have been developed to enable humans to label disaster-related

tweets [21]. Yet, this method is costly because it requires a lot of

time, money and effort to manually label a large number of crisis

events from different locations and circumstances.

2.1.2 Learning-based approach. Unlike the matching-based

method, studies in the learning-based approach aim to build

a model based on a set of labeled tweets from crisis events to

identify crisis-related tweets from unseen examples. Recently,

deep learning algorithms are proven to outperform tradition

machine learning algorithms. In [2] and [10], the authors used

Convolutional Neural Networks (CNN) to classify tweets for crisis

response based on their relatedness to a given crisis event or

their information type. Nevertheless, these models are known to

suffer from low generalization levels when tested on the unseen

(out-of-domain) disaster event. The reason behind that is the lack

of manually labeled data available to train these deep learning

models, especially that they heavily rely on the quality and the

quantity of the training data [11, 14, 22]-[24]. Our work aimed at

solving this unaddressed issue.

2.2 Distant Supervision

Since 2009, distant supervision has been successfully applied to

label training data via an external knowledge base in many Natural

Language Processing (NLP) tasks such as event extraction [25, 26],

sentiment analysis [27], topic classification [28, 29] and relation

extraction [30]. [25] employed distant supervision for event extrac-

tion using frames from FrameNet as event types and the linguistic

units as triggers that evoke the event. [26] proposed a combina-

tion framework of a relational and a linguistic knowledge bases on

Wikipedia data, Freebase and FrameNet, respectively.

In addition, distant supervision technique has been useful to

label Twitter data with different approaches. In [27], the authors

assumed that the emotions in the tweets express the feeling of the

writers. This assumption has been used to label tweets for senti-

ment analysis tasks. For example, if the tweet contains happy face

emotion, then the tweet is labeled as positive. [28] applied distant

supervision to a topic classification task where they transfer labels

from tweets of topically-focused Twitter accounts to tweets posted

by general Twitter accounts. [29] used YouTube videos to assign

labels to tweets containing links to these videos. However, people

do not usually use emotions and YouTube videos when posting

information during crises. Also, there is a lack of crisis-related

Twitter accounts. On the other hand, keywords play a vital role in

identifying disaster-related tweets in crisis situations. Thus, we use

them in applying distant supervision to enhance the crisis response

process. In our work, if one of the top crisis type keywords exists

as a lexical unit of a frame in FrameNet, then distant supervision

assumes that all the lexical units related to the given frame express

the given crisis type.

Several selections, noise reduction and generating negative ex-

amples techniques have been introduced under the umbrella of

distant supervision to achieve the best results.

2.2.1 Selection methods. Pointwise Mutual Information (PMI) is a

well-known method to calculate the importance of a feature (key-

word) in a given category (class) [31]. In the context of event de-

tection, [14] used the mean PMI to select the most related features

in the disaster lexicon. Moreover, KeyRate (KR) has been devel-

oped by [26] to select the most important triggers and arguments

for a specific event type for event extraction tasks. In our work,

we use a method inspired by [26]; however, we change some vari-

ables to suit the case of the binary classification task instead of the

multiclassification task discussed in [26].

2.2.2 Noise Reduction. Noise is a recognized labeling problem in

using distant supervision for labeling raw data. This problem can

seriously affect the performance of deep learning models and hence

has been well-addressed in the literature. For relation extraction

task, a multi-instance single-label model has been introduced by

[32]. They assumed that each entity pair holds at least one relation

419



Automatic Labeling of Tweets for Crisis Response Using Distant Supervision WWW ’20 Companion, April 20–24, 2020, Taipei, Taiwan

expression. This work has been extended to a multi-instance multi-

label model by [33], where more than one label is allowed for

each entity pair. Besides, noise reduced in other works by other

approaches. [34] filtered the noise in the positive examples by using

a threshold for the frequency of the dependency paths among these

examples. [35] and [36] applied three heuristic labeling methods

that were initially proposed by [37]: top trigger words, closest pairs

and high-confident patterns. In the event detection literature, [26]

used two external knowledge bases instead of one to generate large

scale distant supervision data. FrameNet has been used to eliminate

the noisy trigger words and expand the trigger list to include new

triggers. To filter the noise in our distant supervision data, we only

take into account the tweets with two keywords from the final list

instead of only one keyword. In addition, all the tweets contain

only one keyword are ignored to reduce the noise reduction caused

by using weak keywords from FrameNet.

2.2.3 Generating Negative Examples. The simplest way to generate

negative examples is to apply the against assumption of distant

supervision. For instance, if the distant supervision assumes that

every sentence contains at least one existing pair in the external

dataset, then this sentence expresses that relation and thus labeled

as positive. In this case, negative examples can be generated directly

when the sentence has no such pairs. However, applying this simple

technique may cause a lot of noise in the labeled data. Several works

have been introduced to avoid this problem. In our framework, we

assume that the tweet with no keywords from the final list does

not express the crisis type in any way, and thus we label them as

negative tweets.

Our main goal in this research is to examine the application of

using distant supervision in generating large scale labeled data with

less amount of money, time and competitive quality compared to

manually labeled data to fulfil the urgent need of more training data

for crisis response. In this paper, we propose a framework to label

unlabeled tweets from new crisis events retrieved using Twitter

API.

3 METHOD

Our method is described by the following steps (as shown in Figure

1):

1. Creating the initial keyword list. The list is created based

on the available annotated tweets from different collections related

to the same crisis type. For example, all the available manually

labeled data for all the Earthquake events are used to establish

the initial keyword list for the crisis type Earthquake. The initial

Earthquake keyword list in this step includes an unlimited num-

ber of words without any restrictions. To avoid word redundancy

and reduce the amount of linguistically similar words, we use the

Snowball Stemmer tool from NLTK 3.4 to stem each word to its

root.

2. Selecting top K keywords. After extracting the initial list

of crisis type keywords, the top K keywords are then chosen based

on an intrinsic filtering method where a statistical measurement is

used to pick the keywords with the highest scores. We calculate the

Keyword (KW ) value for each keyword in the initial keyword list.

In a tweet, a word that describes a given crisis type can be a verb, a

noun, or an adverb. For instance, "magnitude" (noun), "shake" (verb)

Figure 1: Distant supervision-based Framework.

and "deadly" (adv) can be considered to be keywords of the crisis

type Earthquake. Intuitively, if the word appears more than other

words in the labeled tweets of a given crisis type, then the word

most likely describes this crisis type. If the same word appears in

both positive and negative examples of the crisis type, then the

word has a lower probability to describe the crisis type. Thus, KW

is calculated as follows:

RSi=
Count(Wi CT)

Count(CT)
(1)

CRi= log
3

Count( CTCi )
(2)

KWi= RSi ∗ CRi (3)

Where RSi (Role Saliency) represents the saliency of i-th keyword

to identify a specific word of a given crisis type, Count(Wi , CT ) is

the number of a wordWi occurs in all the tweets related to the crisis

type CT and Count(CT ) is the count of times all words occurring in

all the tweets related to the crisis type. The KW equation is inspired

by [26] where they used a similar Key Rate (KR) value to detect

key arguments in event extraction tasks; however, unlike [26], CRi
(Crisis Relevance) in our work represents the ability of the i-th

keyword to distinguish between the tweets related to the crisis type

and irrelevant tweets, and Count(CTCi) equals 1 if the i-th keyword

occurs only in the related tweets and 2 if the i-th keyword occurs

in both related and irrelevant tweets. Finally, and after removing

stop words such as "and," hashtags such as "#earthquake," places

such as "Nepal" and useless twitter-specific words such as "RT"

and "via," we compute KWi for all the words in the initial keyword

list from step one and sort them according to their KW values. At

the end, we pick the top K keywords of a given crisis type. For

example, for crisis type Earthquake, the top K words list contains

"earthquake", "hit" and "magnitude," which have the highest KW

values comparing to the other words in the initial Earthquake list
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Table 1: KWvalues ofwords fromEarthquake keywords list.

Keywords KW values Ranking

Help 0.00495 5

Quake 0.00702 3

Hit 0.00449 6

Kill 0.00216 25

Aftershock 0.00199 28

Give 0.00114 77

New 0.00129 62

from step one. The KW value for a given word increases when

the RS or CR value of the same word increases. RS rises only if the

frequency of the word in the related tweets rises. In contrast, CR

increases in one case where the word occurs only in the related

tweets. Table 1 shows how KW values play an important role in

indicating the strongest keywords of Earthquake crisis type, where

we can see that crisis-related and earthquake-related words have

higher KW values than the unrelated ones.

Other methods, such as PMI or Term Frequency-Inverse Docu-

ment Frequency (TF-IDF), have not been used here for solid reasons.

PMI, where we calculate PMI for positive examples and PMI for

negative examples to calculate the final PMI score, is not a fair

metric in our case because of the imbalanced data problem given

the limited available manually-labeled data where the number of

positive examples is higher than the number of negative examples

in all events as shown in Table 2. On the other hand, the imbalanced

dataset problem does not affect our formula as Count(CT ) takes

into account the total number of words in the related tweets only,

while the total number of words in the unrelated tweets is ignored.

TF-IDF is another selection method that aims at measuring the

importance of a feature (word) to a given document (event type) in

a given corpus (collection of tweets) [38]. However, this selection

method is not suitable for our case because IDF has more impact on

the final result than TF, while, in our case, they should be equally

important since tweets are short and full of noise. If we used TF-IDF

on our data, rare words such as hashtags, mentions and misspelled

words will have higher TF-IDF than essential keywords. Also, an

important keyword may appear in both related and not related

tweets. For instance, in Earthquake crisis type data, "earthquake"

may appear very frequently in related Earthquake event tweets and

once or twice in unrelated Earthquake event tweets. On the other

hand, our method does not discard the impact of word frequency if

the word appears in both related and unrelated tweets.

3. Applying distant supervision. The list contains K key-

words is then expanded to include similar linguistic units from

FrameNet. FrameNet is an external linguistic knowledge base for

English that consists of more than 1000 semantic frames that have

more than 100,000 Lexical Units (LU), lemmas and part of speech

tags. Each frame in FrameNet is associated with a group of LUs

that evoke that frame. In our work, these elements can be used as

the keywords that evoke the crisis type. We retrieve all the LUs

of a given frame if the crisis keyword is one of these LUs, and the

frame is related to the crisis type. For example, "aid.v" is a linguistic

unit related to the frame Assistance in FrameNet which is inherited

Figure 2: FrameNet example of Moving_in_place frame (in

orange), its associated Lexical Units (in blue) and the key-

word from our crisis type keyword list for Earthquake

events where the LUs are mapped, earthquake.n (in red).

from Intentionally_act and can be mapped to "help" which is a crisis

keyword gathered from the first step and has been picked in the

second step as one of the top K keywords according to its high KW

value. In other words, if one of the top crisis type keywords exists

as a lexical unit of a frame in the database, then distant supervi-

sion assumes that all the lexical units related to the given frame

express that crisis type. Figure 2 shows an example of a frame and

its associated LUs and how we map them to keywords.

4. Retrieving unlabeled tweets from a new crisis event.Un-

labeled tweets of a new crisis event are obtained from Twitter using

the Twitter API. Hashtags are used as the initial indicator of the

crisis-related tweets along with geolocation information of the

crisis location. For example, we use the hashtags "#earthquake",

"#prayforriyadh", "#riyadhearthquake", or any other widespread

hashtags related to Riyadh Earthquake event and the geolocation

of Riyadh city. Unlabeled tweets from multiple hashtags can also be

merged. Although hashtags can be a beneficial method to classify

related and unrelated tweets, there is still a considerable number of

unrelated tweets where people use the same hashtag while tweet-

ing about irrelevant subjects, such as advertising for a particular

product or service. Moreover, this step can be seen as hashtag-based

supervision where tweets may contain some of these topical hash-

tags. However, not all the hashtags are in the keyword list of the

related crisis type. Also, in the previous steps, we replace all the

words starting with the symbol "#" with the word hashtag, which

eliminates any possible active role of the topical hashtags in the

list.

5. Noise reduction. We filter the unlabeled tweet set gathered

from step four by applying a specific lexical feature (bigram of

keywords). After filtering the unlabeled tweets, only the examples

with two keywords from the final keyword list remain. This step

reduces the effect of a powerful hashtag where the hashtag without

symbol # is one of the keywords. It also eliminates several tweets

that contain only one weak keyword expanded from FrameNet,

which decreases most of the noise caused by step three.

6. Labeling the corpus as related and not related examples.

A collection of data from the given crisis event is automatically

generated by labeling tweets from step five as relevant examples

and tweets with no keywords from the expanded keyword list as

not related (negative) examples.
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Table 2: Summary of the collections used in our experiments fromCrisisNLP, CrisisLex26 andCrisisLexT26. The abbreviations

in the table represent the type of the data, the place of the crisis and the crisis type. For example, ATF represents Automatically

labeled data for Texas Flood event whileMGC representsManually labeled data for GlasgowCrash event. Paid workers labeled

the blue collectionswhile the orange collections are unlabeled tweets retrieved by tweets IDs available inCrisisNLP. In contrast,

the collections in green are the labeled data generated by our framework (CrisisLA).

Collection # related tweets # not related tweets Total # tweets

Bohol Earthquake (MBE) 969 30 999

Queensland Floods (MQF) 919 280 1199

Colorado Floods (MCoF) 924 74 998

Manila Floods (MMF) 920 79 999

Alberta Floods (MAF) 982 17 999

Yolanda Typhoon (MYT) 939 108 1047

Sandy Typhoon (MST) 1581 429 2010

Oklahoma Typhoon (MOkT) 1769 241 2010

Nepal Earthquake (MNE) 2839 177 3016

Chile Earthquake (MChE) 1648 364 2013

California Earthquake (MCE) 169 13 182

Pakistan Earthquake (MPE) 1676 336 2012

India Floods (MIF) 1500 502 2002

Pakistan Floods (MPF) 1985 27 2012

Hagupit Typhoon (MHT) 1779 233 2012

Pam Typhoon (MPT) 1515 497 2012

Odile Typhoon (MOT) 178 4 182

Pakistan Earthquake (UPE) - - 35954

Pakistan Floods (UPF) - - 69521

Hagupit Typhoon (UHT) - - 26588

Indonesia Earthquake (AIE) 1900 300 2200

Texas Floods (ATF) 1100 400 1500

Sunda Strait Typhoon (AIT) 2000 400 1600

4 EXPERIMENTS

4.1 Datasets

We use specific collections from CrisisNLP [39], CrisisLex26 [19]

and CrisisLexT26 [40] datasets to evaluate our framework (shown

in Table 2). The datasets are labeled by paid workers based on

either their relatedness to a given crisis event (CrisisLexT26 and

CrisisLex26) or their corresponding informative class (CrisisNLP)

(e.g., affected individuals, donations and volunteering, infrastruc-

ture and utilities, sympathy and support, other useful information

and not related). However, for CrisisNLP data only, we relabel the

available tweets into two classes: related and not related to a given

crisis event. First, we combine all the tweets containing similar

information such as "Personal updates" and "Affected individuals."

Then, we relabel all the tweets from all the four classes except "not

related" to a related class. "Not applicable" and other unclear labels

have been discarded. We also eliminate the non-English tweets

as our main goal is to build a reliable model for English tweets

only, although it may be then transferred to other languages. To

fulfil step four in our framework, we collected unlabeled tweets

using Twitter API from three crisis events from three different crisis

types: Texas Floods, Indonesia Earthquake and Sunda Strait tsunami

(Typhoon). 4351 unlabeled data were collected for Texas Floods.

Texas Floods data was crawled for five days from October 16 to 20,

2018, by using the hashtag "#flood" and geolocation information

of Texas. We used the same methodology to collect 3989 unlabeled

data of the Indonesia Earthquake event. However, we used the hash-

tag "#earthquake" and the geolocation information of Indonesia.

The data was crawled for only one day, October 16, 2018, started

from 16:00 to 23:59. Sunda Strait tsunami (Typhoon) was one of

the strongest natural disasters that occurred in 2018 in Indonesia.

The typhoon killed at least 426 people and 14060 were injured. We

collected 145921 unlabeled tweets using the hashtag "#tsunami"

and the geolocation of Sunda Strait. The data were crawled for an

entire day on December 23, 2018.

Crisis-related Automatically Labeled dataset (CrisisAL) has been

built using our framework. The created dataset includes automati-

cally labeled tweets from three new crisis events. To train the model,

we randomly select examples from these collections to approxi-

mately match the number of tweets of the other similar datasets

from the same crisis type.

4.2 Evaluation Procedure

To answer our research questions, we ran two groups of experi-

ments: The first group aimed at answering the first question, where

we investigate the quality of the labeled data generated by our

framework comparing to the manually labeled data from the same

event. To do this, we conduct two sub experiments for each crisis
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type: with manually labeled data and with automatically labeled

data from a given disaster event. For example, in Earthquake crisis

type, we train the model with all the manually labeled data, includ-

ing Pakistan Earthquake (MPE). In the second experiment, MPE

was replaced with the automatically labeled data related to Pakistan

Earthquake (APE) to train the classifier. The second group of exper-

iments aimed at showing the effectiveness of incorporating recent

labeled data generated by our framework on the performance of

the tweet classification model for crisis response. In these exper-

iments, we compare three labeling methods which give labels to

the unlabeled tweets from the recent events: Pseudo Labeling (PL)

where similar manually labeled collections from the same crisis

type were used to pretrained a model to be then used to label the

recent unlabeled data (similar to [14]); Distant Supervision-based

framework (DS) where our framework was used; and DS without

FrameNet (DS-F) where step three was removed. Regarding the

training data, we directly mixed the automatically labeled data

with the available human-labeled data to train the tweet classifier.

We also reported the classifier performance when trained using

the original manually labeled data without incorporating the new

labeled data (OG) to be used as our baseline.

It is worth noting that we used the same experimental setup, ex-

cept the training data and the labeling method, for all the classifiers.

To eliminate the noise in the tweets, we removed all the emojis,

HTTP addresses, numbers, hashtags, user mentions and punctu-

ations. Then all the examples were converted to lowercase and

split into tokens to be passed to the model. We used Bidirectional

Long Short-Term Memory (Bi-LSTM) [41] with a Maxpooling and

100-dimensional Global Vector Embeddings (GloVe) [42] as a pre-

trained word embedding since it is currently the best reported deep

learning architecture for tweet classification for crisis response [43].

We used the same pre-processing and settings for all the experi-

ments, and we repeated every experiment 30 times and took the

mean as the final score.

5 RESULTS AND DISCUSSION

5.1 Quality of the Produced Data

As shown in Table 3, using APE instead of MPE with training

datasets from other Earthquake events to classify the tweets in

MChE,MBE,MCE andMNE datasets slightly drops the performance

in F1 score by 1.2%, 2.8%, 0.5% and 1.2% respectively. Similar results

are presented in Table 4 for Floods crisis type data, where the

maximum drop is 4.2% on the MAF dataset. F1 scores displayed in

Table 5 on four Typhoon event datasets determine minor decline in

themodel performancewhen usingAHT instead ofMHT in training

them along with hand- labeled Typhoon events data. However, this

is not the case for MST. One possible reason is that MST is very

similar to one of the Typhoon (Hurricane) events in the previous

training data.

In general, and to answer our first research question, it can be

said that substituting automatically labeled data produced by our

framework with manually labeled data from the same crisis event in

training tweet classifiers for disaster response has a minimal impact

on the classifier’s performance for the three crisis types (< 5%). This

is due to the noise (mislabeling problem) in the produced data.

These results demonstrate that data annotated by our framework

can be used when no hand-labeled data is available for new disaster

events because they have similar quality levels. This finding can

be considered as a good outcome; hence manually labeling new

data from multiple events requires a lot of time, money and effort

compared to the automatically generated data.

5.2 Effect of adding recent data

As can be seen in Table 6, DS reports the best labeling method

for two Earthquake crisis datasets (MChE and MPE) with a max-

imum improvement of 2.1% in F1 score. On the other hand, the

performance does not improve for MBE, MCE and MNE datasets.

In Table 7, for Flood crisis datasets, DS is the best labeling method

when tested on MAF, MIF, MCF and MQF datasets while PL is bet-

ter than the other methods in the remain two datasets. However,

the improvements in F1 score are very minor. For Typhoon crisis

datasets, in Table 8, the classifier performance improves when us-

ing DS as the labeling method on three out of five datasets (MYT,

MPT and MHT). After analyzing the data, we observe that more

than seven keywords from the top K keyword list appear in MPE

and MIF datasets which helps in providing new keywords from

FrameNet to the training data while only one keyword occurs in

MChE dataset with more than 30 new keywords driven from the

external knowledge-base. These new keywords assist in recogniz-

ing related tweets that would not be identified by the old keyword

list. And since we only label tweets with two keywords, different

(new) relations may emerge using these new keywords. On the

other hand, in the case of the limited number of new keywords

driven from FrameNet, adding data from new crisis event does not

improve the model performance regardless of the number of the

top K keywords appear in the test data especially if the training

and the testing data are dissimilar. If the train and the test data are

similar and the number of matched keywords is low, then, PL is

the predicted best labeling method. To answer the second research

question, we can say that there is no significant improvement in

the model performance when adding the automatically labeled data

produced by neither any of the three labeling methods (DS, PL or

DS-FN) to the original manually labeled training data. Generally,

results indicate that DS is the best labeling method if new driven

keywords from FrameNet exist in the test data, especially if the

similarity between the test and train data is low. However, more fu-

ture experiments are needed to examine the effectiveness of adding

more than one crisis event’s data at the same time and to test the

models on recent 2019 data.

6 CONCLUSION AND FUTUREWORK

In this paper, we investigate the application of distant supervision

in generating automatically labeled tweets from new crisis events

to overcome the problem of reduced generalization levels of the

current crisis-related classifiers when tested on tweets from unseen

events. Reducing the generalization errors leads to a more reliable

system to be used by humanitarian organizations to help people

in need during crises. The results show the effectiveness of our

distant supervision- based framework in producing labeled training

tweets from new crisis events to train the classifier, especially when

no manually labeled data is available for the given crisis event.

Substituting generated annotated data instead of manually labeled
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Table 3: Results in F1 score for the first experiment group in Earthquake crisis data. E is all the available manually labeled

Earthquake crisis datasets excluding MPE.

Train/ Test MChE MBE MCE MNE

E+MPE 0.8044 0.9335 0.8941 0.9168

E+APE 0.7882 0.9052 0.8890 0.9043

Table 4: Results in F1 score for the first experiment group in Flood crisis data. F is all the available manually labeled Floods

crisis datasets excluding MPF.

Train/ Test MIF MCF MAF MMF MQF

F+MPF 0.7389 0.9224 0.9619 0.8987 0.7855

F+APF 0.7100 0.9170 0.9190 0.8881 0.7496

Table 5: Results in F1 score for the first experiment group in Typhoon crisis data. T is all the available manually labeled

Typhoon crisis datasets excluding MHT.

Train/ Test MOkT MYT MST MOT MPT

T+MHT 0.8418 0.8781 0.8023 0.9618 0.7072

T+AHT 0.8067 0.8372 0.7242 0.9126 0.6955

Table 6: Results in F1 score for the second experiment group in Earthquake.

Model/ Test MPE MNE MCE MBE MChE

OG 0.7915 0.9068 0.8921 0.8876 0.8356

PL 0.7903 0.9045 0.8842 0.8877 0.8302

DS 0.7940 0.8875 0.8769 0.8863 0.8566

DS-F 0.7913 0.9026 0.8780 0.8855 0.8581

data in training tweet classifiers for disaster response has a small

impact on the performance. The performance dropped for less

than 5% on 13 out of 14 datasets from different locations and crisis

types. This indicates that the generated data has a competitive

quality compared to the manually labeled data with less effort,

time and money. Results also suggest that our proposed framework

is the best labeling method when the test and the train data are

dissimilar. This is because it can recognize the related tweets in

Table 7: Results in F1 score for the second experiment group in Flood.

Model/ Test MPF MQF MCF MIF MAF

OG 0.962 0.839 0.917 0.764 0.916

PL 0.968 0.836 0.921 0.762 0.917

DS 0.960 0.840 0.922 0.767 0.925

DS-F 0.966 0.840 0.920 0.761 0.920

Table 8: Results in F1 score for the second experiment group in Typhoon.

Model/ Test MHT MPT MYT MOT MOkT MST

OG 0.881 0.827 0.901 0.961 0.793 0.708

PL 0.881 0.825 0.897 0.962 0.787 0.703

DS 0.882 0.829 0.9117 0.957 0.759 0.699

DS-F 0.883 0.828 0.910 0.960 0.777 0.702
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the test data that include new keywords retrieved from FrameNet

and do not exist in the original training data. However, adding

these tweets to the previously available human-labeled tweets in

training the classifiers did not have significant improvements in the

performance. More future experiments are needed to examine the

effectiveness of adding automatically annotated data from two crisis

events instead of one to cover the gap in the tweets number between

the manually and the automatically labeled data. In addition, we

intend to use our framework to generate datasets for crisis types

that have only one or two manually labeled collections, such as

building collapse.
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