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Experimental Side Channel Analysis of BB84 QKD

Source
Ayan Biswas, Anindya Banerji, Pooja Chandravanshi, Rupesh Kumar, and Ravindra P. Singh

Abstract—A typical implementation of BB84 protocol for
quantum communication uses four laser diodes for transmitting
weak coherent pulses, which may not have the same charac-
teristics. We have characterized these lasers for mismatch in
various parameters such as spectral width, pulse width, spatial
mode, peak wavelength, polarization and their arrival times at
the receiver. This information is utilized to calculate possible
information leakage through side channel attacks by evaluating
mutual information between source and eavesdropper. Based
on our experimental observations of cross correlation between
parameter values for different laser diodes, we suggest methods
to reduce information leakage to Eve.

Index Terms—Quantum key distribution, Side channel, Cross-
correlation, Quantum communication,

I. INTRODUCTION

Q
UANTUM Cryptography [1], [2] is gaining importance

with the advancements in quantum computation which

can make the present cryptographic techniques redundant. It

exploits the basic principles of quantum mechanics to generate

or distribute a secret key between two communicating parties.

This process is referred as quantum key distribution (QKD)

[2]. The goal is to ensure that message remains confidential

and inaccessible to a third party.

The first QKD protocol was proposed by Bennett and

Brassard in 1984 [2] and referred as the BB84 protocol. In

this protocol, the secret key bits are encoded in the quantum

states, for example, polarization of a single photon. The

states to be sent are prepared in mutually unbiased bases

(MUB).The intrinsic uncertainty in measurement of polariza-

tion in randomly selected MUB [1]–[3] makes this protocol

secure in principle. The security proof of the BB84 protocol

came much later [4], [5], which was followed by a security

analysis for implementation scenarios with imperfect devices

[6]–[8]. There are QKD protocols, other than BB84, which use

degree of freedom different from polarization. For example

COW (Coherent One Way), SARG04 use phase instead of

polarization to encode the states [9], [10]. These protocols

lag behind on efficiency and easiness relative to BB84 in

terms of practical implementation. All these protocols use

various devices which are not perfect in reality and can be
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prone to attacks [11]–[15]. To reduce the vulnerabilities in the

QKD protocols due to imperfect measurement devices, MDI

(Measurement Device Independent) QKD schemes have been

devised [16], [17], [32]–[34], however, their implementations

are much more difficult in practice. On the other hand BB84

has solid theoretical security backup [18], [19] against a wide

range of attacks and widespread demonstrations around the

world, which makes it a preferred protocol to apply in practice.

Even though there are several security proofs based on the

attack strategies of Eve but most of them assume the devices

and the optical elements used in the QKD setup to be ideal.

There is a possibility that Eve might know the weakness of

these devices and can work this out to her benefit in guessing

the secret key. This so called side channel attack [20], [21] is

very serious in any QKD system as Eve can get information

about the key directly from the devices that are being used.

One way to get rid of this is to use fully device independent

QKD, however, it is still not widely used [16], [17], [22]

since they are much more resource intensive unlike general

prepare and measure protocol such as BB84, at the same

time their key generation rate is quite low. Although one

cannot avert side channel attack completely but can make sure

that Eve’s gain is minimized. This information leakage [23]–

[25] to Eve will keep an upper bound on the key after error

correction and privacy amplification (PA) [26]. For properly

quantifying the amount of information going to Eve, one needs

to know the limitations in the devices that are used in the

QKD process. Devices at both ends (Alice and Bob) must be

calibrated in order to quantify the side information to Eve.

Device imperfections at the Bob’s end are easy to measure as

these can be verified through parameter estimation for QKD.

In the present article, we are interested in calculating

Alice’s information leakage as the vulnerabilities associated

with the source are highly prone to leakage. This is because

signals passing through the quantum channel can always be

under Eve’s surveillance. Therefore, the primary concern is

to evaluate the various source parameters for side channel

attack. For quantifying this, one has to calculate the mutual

information between the source and Eve. The inability of the

source to produce ideal states for QKD will give information to

Eve. This can depend upon various parameters characteristics

to the source. To know the amount of information leakage, one

has to meticulously calibrate the source for these parameters,

which could be wavelength, photon arrival time, or any other

parameter making the transmitted states distinguishable from

each other such that Eve can easily gain some information out

of it. Therefore, source calibration is essential for knowing

the mutual information between the source and the adversary.
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In this article, we calibrate our QKD transmitter consisting

of four laser diodes through cross correlation for various

parameters and use it to estimate the mutual information [6],

[27] between Eve (E) and Alice (A), unlike [23] that calculates

conditional probabilities to find out this information. The work

is divided into four sections. The first section describes the

basics of the method for calculating the mutual information

in our experiment. The experimental method used for this

is elaborated in the second section. In the third section, we

discuss the results of the experiment performed. In the last

section, we conclude our work with suggestions to minimize

the leakage to Eve through the side channel.

II. THEORETICAL BACKGROUND

Mutual information is basically the correlation between

variables of the two parties involved in communication. It

quantifies the amount of knowledge one has about the other.

The mutual information between two parties Alice (A) and

Bob (B) can be written as [6], [18], [27]

I(A : B) = H(A)−H(A|B). (1)

H(A) is the information entropy Alice has about her variables

and H(A|B) is the conditional entropy of Alice given Bob

measured his. This can be further simplified in terms of

corresponding probabilities

I(A : B) = H(A) +
∑

aǫA

p(a)
∑

bǫB

p(b|a)Log(p(b|a)), (2)

where p(a) is the probability of occurrence of an event “a”

and p(a|b) is probability of happening “a” given the event “b”
has already occurred. The event “a” can be an outcome from

the space A, similarly “b” can be an outcome from the space

B and Log is taken in base 2. In practice this tells us how

much Bob’s information is correlated to Alice. The secret key

rate for reverse and direct reconciliation in QKD protocol is

given by [6], [19], [21]

rDR > I(A : B)− I(A : E) (3)

rRR > I(A : B)− I(B : E) (4)

where subscript RR means reverse reconciliation in which

Alice corrects the erroneous bits after sifting by comparing

it with the Bob’s key. DR means direct reconciliation where

Bob makes correct changes in the key by verifying it with

Alice after sifting. For secure QKD protocol this quantity

should be non zero. For rDR, rRR > 0 implies that the

mutual information between Alice and Bob (I(A : B)) must

be greater than Alice and Eve (I(A : E)) and Bob and

Eve (I(B : E)). I(A : E) can be found out if we know

the transmission channel and also the errors occurring at the

source and I(B : E) can be measured by looking at the

imperfections in the detection unit setup by Bob. If the two

parties happen to be Alice and Eve then Eq (2) can be rewritten

as [21], [23]

I(A : E) = 1 +
∑

aǫA

p(a)
∑

bǫE

p(b|a)Log(p(b|a)) (5)

In equation (5), b is the outcome of Eve’s measurement in her

device. Given the outcome a at Alice’s side, Eve’s probabil-

ity to measure bit b is the conditional probability (p(b|a)).
In reality, Alice doesn’t know what method Eve will use;

therefore, for quantifying this information, the measurement

has to be done from Alice’s side. It means she has to make

sure how much Eve can guess about the states she is sending.

To calculate the conditional probability for a variable, we

use Bayes’ Theorem by taking the source’s parameter that

deviates from the assumed value in the implemented protocol.

Since we have used four different laser diode sources, due

to differences in electronic fluctuations in the driving circuit,

there may be a difference in wavelength (λ), pulse width

(w), and other parameters. Equation (5) decides the amount

of information leakage to Eve due to imperfections in these

parameters of the source. To characterize this quantity, we

need to measure the amount of indistinguishability between

various source parameters.

In Eq (5), the primary quantity that needs to be calculated is

the conditional probability p(b|a), as this quantity decides the

amount of information shared between Alice and Eve. Here,

the parameters in consideration are wavelength (λ), pulse

width (w), photon time arrival (t), polarization error at the

source, and spatial mode (x). These are the events occurring in

Alice’s system and the bit value that Eve gets after measuring

the states is b (it can either be 0 or 1). p(λ|b) can be calculated

with the help of joint probability distribution (p(λ, b)). We can

rewrite Eq (5) in terms of experimental parameters

I(A : E) = 1 +
∑

λǫΛ

∑

bǫE

p(λ|b)

2
Log

(p(λ|b)

2p(λ)

)

(6)

Here, λ is the wavelength of the laser having a finite bandwidth

(FWHM). Λ is the space containing all values of λ. Just as

wavelength (λ), Eq (6) will be identical for other parameters

also. For pulse width Λ is replaced by W , similarly for

photon time arrival it is T and X for spatial mode. Estimating

I(A : E) as given in Eq (6) can be slightly time taking task

if we are implementing the QKD source in the field. Instead

we have come up with a method that can quickly give us

the amount of information leaked to Eve quantitatively. We,

need to calculate the cross correlation (R) between various

parameters of the two sources of the same basis in the QKD

transmitter to quantify the amount of information leakage. The

expression for cross correlation is given by [30]

R(∆s) =

∫

f∗(s)g(s+∆s)ds. (7)

Equation (7) tells us about the similarity between the two

signals f and g as a function of ∆s. The quantity ∆s is

the shift of one signal with respect to other and the value

of R ranges from 0 to 1. The indistinguishability between the

sources can be known from R(∆s = 0) (more close to 1

means more similar to each other). Putting R(∆s = 0) in the

Eq (6) we get

I(A : E) = 1 +
∑ R(0)

4
Log

( R(0)

4p(λ)

)

. (8)

R is the measure of offset of the parameters like wavelength,

pulse width etc. between the four laser diodes. It is impossible
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for Eve to predict the state of Alice’s signal after measurement

if the parameters of the sources are identical. p(λ|b) tells

about probability of guessing the correct initial state after the

measurement by Eve. This value is half i.e upon getting a bit

value 1 it is impossible to say whether it comes from source

containing λ1 or λ2. Deviation from this value basically gives

us the quantity of leaked information. R(∆s = 0) represents

the deviation from indistinguishability between the various

parameters of the source. By argument, one can say that the

quantity R(∆s = 0)× 1

2
is the guessing probability of Eve, so

this quantity can be replaced with p(λ|b). For exactly identical

states, the quantity I(A : E) will be zero as the parameters of

the source are indistinguishable which can be verified using

Eq (8). Therefore, measuring the cross correlation between

the various parameters gives a good idea about amount of

information leakage to the eavesdropper.

III. EXPERIMENTAL METHOD

The schematics of the experiment is given in the figure 1

Fig. 1. Experimental scheme for measuring the parameters involved in source
characterization. For different parameters one has to change the measuring
devices. LD: Laser Diode, FPGA: Field Programmable Gate Array, PBS:
Polarizing Beam Splitter, HWP: Half Wave Plate, QWP: Quater Wave Plate,
M: Mirror, SMF: Single Mode Fiber, NDF: Neutral Density Filter, IF:
Interference Filter, DDG: Digital Delay Generator, BS: Beam Splitter.

In the setup, the measurement devices can be changed

according to the parameters that need to be measured for the

experiment. The scheme contains four laser diodes (ThorLabs

L808P010) with driver circuit [28]. The pulse width coming

out from the laser can be varied according to input bias

voltage. We keep the average pulse width around (650 ps)

and the repetition rate of the laser is 5 MHz. The laser

driver circuit is connected to stable power supply (Keithley

2231A-30-3) and FPGA (Arty A7) for driving it randomly.

The initial HWP and PBS combination is used for preparing

specific polarization states for encoding Alice’s signal. All of

the four sates coming out from the laser diodes are combined

in the 50:50 beam splitter and coupled to a single mode fiber

(SMF). The SMF is used to reduce any sort of misalignment

error in the four lasers. Then a combination of QWP, HWP

and QWP is used for compensating the polarization after

propagation through the fiber [31]. For measuring wavelength,

we just place an optical spectrometer (Ocean Optics HR4000),

for pulse width it is a fast photodetector whose output is

connected with oscilloscope for monitoring the signal. For

measuring the spatial mode we use EMCCD camera. Photon

Arrival time is measured by placing a single photon counting

module (Excelitas SPCM-AQRH-16) connected to time tagger

(ID Quantique ID900). The clock of frequency equal to the

driving frequency of the laser is sent to TDC for starting the

counting time of photon arrival. The histogram will give us

the knowledge of time of arrival of photons with respect to

clock.

IV. RESULTS AND DISCUSSIONS

Experimental results show that the proper source character-

ization should be done to quantify the amount of information

leakage due to side channel attack by the adversary. The fol-

lowing parameters have been quantified for indistinguishability

between the individual laser diodes of the BB84 source.

A. Wavelength

The mismatch between the peak wavelengths for the laser

diodes can give eavesdropper a chance of differentiating be-

tween different polarization states by looking at the mismatch

between the wavelengths. The figure shows the wavelengths

(nm) verses normalised intensity in terms of counts per second

(cps) for four laser diodes and their mismatch in terms of peak

difference.

Fig. 2. Spectrum of four laser diodes without using Interference Filter (IF)

The source is having the average wavelength of 795.6

nm.The measurements have been taken without putting any

wavelength filters. Figure shows the wavelength of the four

laser diodes in the Alice transmitter unit. The information

leakage due to wavelength difference between the four laser

diodes is calculated from the cross correlation between the

lasers is I{H,V }(Λ : E) = 4.3 × 10−3 bits/pulse where the

subscript H,V denotes the information leakage in H/V basis

and Λ and E are the corresponding spaces on which a typical λ
and b belong, similarly I{D,A}(Λ : E) = 6.5×10−3 bits/pulse

giving mutual information I(Λ : E) ∝ 10−3 bits/pulse.

B. Pulse width

The difference between the FWHM of the pulses (pulse

width) from the laser diodes can give eavesdropper a chance

of differentiating the transmitted states. In our setup, the shape



4

of the RNG output pulses from the FPGA that are fed into the

driver circuit are identical but, the optical response of the four

laser diodes is not completely identical leading to a difference

in the pulse widths from each diode. Therefore, optical output

pulse of the laser diode is independent of the RNG pulses

fed into FPGA. This variation in the pulse width creates some

degree of distinguishability which can be exploited by Eve.

Eve can unambiguously detect the polarization states sent from

Alice just by looking at their pulse width variation in her

detector. For characterizing this error the measurement scheme

is modified by replacing spectrometer with photodetector. The

source has an average pulse width of 627 ± 75 ps as shown

in figure 3 . In QKD mode (sending qubits to Bob) pulse

height is made identical by applying different attenuation to

different states. All the four sources then have identical height

hence having same mean photon number (µ). The information

Fig. 3. Pulse width of four laser beam coming out from different laser drivers

leakage due to pulse width in laser diodes calculated from the

cross correlation between the sources is I{H,V }(W : E) =
9.2×10−4 bits/pulse, I{D,A}(W : E) = 1.2×10−3 bits/pulse

with mutual information I(W : E) ∝ 10−3 bits/pulse.

Eve can design optimized attacking strategies based on the

knowledge of both wavelength and pulse width from which

she can learn more about the state. In fact, Eve can also

exploit all the side channels together which may allow her

to extract more information. However, it is too complex to

conceive a best attack strategy which is out of scope of this

article. Nevertheless, we will try to consider it in our future

work.

C. Arrival time

The arrival time of photons will depend on at what time

the photons from different laser diodes are leaving the Alice’s

QKD transmitter. The difference in the initial timing will give

a hint to eavesdropper about the corresponding states being

sent to Bob. Even if the optical circuit is perfect, the electrical

driver circuit which triggers the on and off time of the laser

diodes is subject to jitter. This will result in pulses from dif-

ferent diodes leaving the transmitter at different times causing

a difference in the photon arrival times. This can be exploited

by Eve to extract information about the states sent from Alice

to Bob by looking into the timing information that is disclosed

during the sifting stage in the QKD protocol [35]. In order to

know the amount of information that can be gained by Eve,

one has to measure photon arrival time. For measuring it, the

attenuated pulses need to be sent to single photon detector and

the output of that is taken from a time counter. The average

time of arrival of the photons is almost same for the four

laser diodes as seen in the figure 4 which in this case is 41.34

± 0.075 ns. The information leakage due to photon arrival

time difference for four laser diodes calculated from the cross

correlation between the sources is I{H,V }(T : E) = 3.2×10−3

bits/pulse, I{D,A}(T : E) = 2.5×10−3 bits/pulse with mutual

information I(W : E) ∝ 10−3 bits/pulse.

Fig. 4. Graph showing arrival time of photons from four different laser diodes

D. Polarization Error at Source

The use of optical devices in the transmitter to combine

the beams from four diodes into one may lead to many

imperfections. These imperfections may occur either due to

misalignment in the transmitter setup or due to imperfect

optics. Therefore, the generated states are not perfect in terms

of polarization and may contain error which may reflect in

the polarization extinction ratio in H,V as well as D,A basis.

This error may lead to information leakage to Eve. It gets

further amplified in the final QBER after the states are sent

to Bob. Figure 5 gives the errors in polarization. It shows that

from mismatch in the basis dependent error (in non-compatible

basis) Eve can extract information about the bits sent by

Alice. Error in H/V and D/A basis are eH/V = 0.0341
and eD/A = 0.0094 respectively and their mismatch is

∆e = |eH/V −eD/A|. While doing basis reconciliation in QKD

Eve can guess the bits sent to Bob by the data she already had

about this mismatch. So, information shared between Alice

and Eve is I(A : E) ∝ ∆e ∝ 10−2 bits/pulse.
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Fig. 5. Polarization error at the source

E. Spatial Mode

While doing free space QKD it becomes very important to

look at the modes of the signal that are propagating through

the medium. The spatial mode may be responsible for creating

vulnerability in the QKD source. If the modes do not perfectly

overlap with each other it may hamper the indistinguishability

of four quantum sates. If the four beams enter the fiber with

different injection angles then the output spot size distribution

will be different for different beams and is evident while

using shorter length fibre for mode cleaning. This mismatch

in spatial modes can be measured by EMCCD camera. For

making four spatial modes overlap with each other one needs

to couple them into a short length single mode fiber. Earlier

work has not given much emphasis on mismatch among spatial

modes as they amounted to very less leakage [23] but here

we show that if Eve has a very low pixel size camera then

she could measure the mode mismatch in four laser diodes.

Experimental scheme remains the same as in figure 1 only this

time EMCCD camera is used instead of spectrometer. Images

of spatial modes of four laser diodes are recorded in EMCCD

camera. Figure 6 shows the spatial mode distribution of these

four laser diodes. The information leakage due to spatial mode

difference for the four laser diodes calculated from the cross

correlation between them is I{H,V }(X : E) = 4.2 × 10−3

bits/pulse, I{D,A}(X : E) = 4.5×10−3 bits/pulse with mutual

information I(X : E) ∝ 10−3 bits/pulse.

The highlight of the present work which makes it different

from [23] is the consideration of new parameters that can also

contribute to the information leakage. Pulse width variation is

an important parameter in the source which gives rise to side

channel information to the adversary. Our work quantifies this

leakage of information to Eve due to pulse width mismatch

between four laser diodes. Secondly, the polarization error in

different bases at the source is also an important quantity

which sets a bound in the side channel information to Eve.

Lastly, it has been shown that leakage can take place if Eve

uses detector with smaller pixel size to find the spatial mode

Fig. 6. Images of beams taken at the out of the fiber which are coming from
four laser diodes

distribution of four states. The smaller the pixel size, the

better the Eve will be able to discriminate four spatial modes

with higher certainty. However, [23] concludes that spatial

measurements leads to negligible information leakage.

In the given reference [23], to find out the information leak-

age, laborious way of calculating the conditional probabilities

has been used. Instead we use the cross correlation technique,

which is much more experiment friendly, simple and also gives

a good estimation of the side channel leakage in the QKD

source.

V. CONCLUSION

In the present work we have characterized the various

source parameters that can lead to possible side channel

attack. Using cross correlation function for calculating mutual

information between Alice and Eve gives quite good results.

This method is simple and can be easily implemented in the

field which can give real-time values for possible information

leakage. In our setup parameters such as pulse width and

spatial mode contributes less to side channel information to

Eve. The information leakage once quantified can be crucial

for extracting the secret key after privacy amplification. This

mutual information can further be decreased by correcting the

optical and the electronic elements in the source. To make a

better BB84 source, one has to make sure that the states that

are being created must be as indistinguishable as possible.

This makes very difficult for Eve to guess the states correctly

by knowing the parameters of the source. For wavelength

mismatch one can put very narrow bandwidth filters which

can decrease the the overall FWHM as well as the peak to

peak mismatch between the four laser diodes. Using precise

temperature control and stabilization methods one can reduce

the wavelength mismatch between the four laser diodes. For

making the pulse width of the laser diodes same, one can

build a common laser driver circuit for them. For making

arrival times same for all the four laser diodes one has to

put fast delay generator in the driving circuit. For removing

spatial mode mismatch, one can use long length fiber for mode

cleaning. For reducing polarization error, one can use polar-

ization maintaining fiber and broad-band optical elements in
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the setup. The parameters mainly contributing to information

leakage are wavelength and polarization errors which need

special attention while developing the QKD source. Earlier

spatial mode was thought to be contributing less in information

leakage [23], [29] but if Eve has good resolution camera,

then she can guess the states with more confidence. Pulse

width mismatch contributes less in this leakage and can be

overlooked if the bit length of the secure key is not the matter

of concern.
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