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4 Global Scenario Analysis 

4.1 Meta-Study on Energy Scenarios 

Authors: Julia Terrapon-Pfaff, Peter Viebahn, Sibel Raquel Ersoy 

Water and energy are of central importance for sustainable development globally and in 
Germany. At the same time, there are many links between water and energy supply, so that 
developments and decisions in one sector can have a direct or indirect impact on the other. 
Especially in view of the restructuring of the global energy supply, possible trade-offs and 
synergies between water resources and energy production should be investigated on a global 
and regional level. 

The energy sector today accounts for about 10% to 15% of global freshwater withdrawal, 
and for about 3% of total water consumption (OECD/IEA, 2016; IRENA, 2015). Most water 
in the energy sector is used for generating electricity (about 88%), especially for cooling 
processes in thermal power plants (thermal power plants account for about 70% of today’s 
global installed power plant capacity (OECD/IEA, 2016)). At the same time the demand for 
electricity is expected to increase significantly due to population growth and economic de-
velopment in emerging and developing economies, growing demand is also driven by elec-
trification strategies pursued by industrialized countries to decarbonize their economies 
(Bauer et al., 2017). With the global demand for electricity expected to increase significantly 
in the coming decades also the water demand in the power sector is expected to rise. How-
ever, due to the on-going global energy transition, the future structure of the power supply – 
and hence future water demand for power generation – is subject to high levels of uncertainty 
because the volume of water required for electricity generation varies significantly depend-
ing on both the generation technology and cooling system. And even assuming rapid decar-
bonization of the energy sector, the development of future water demand for electricity gen-
eration remains unclear because different renewable energy and climate protection technol-
ogies also have very different water use intensities (Jin et al., 2019). 

In light of these challenges the objective of this analysis is to provide more systematic and 
robust answers in terms of the impacts of different decarbonization strategies in the electric-
ity sector on water demand at global and regional level. The focus is on operational water 
use for electricity generation. The first step was to determine in which countries or regions 
the technologies in question are already widespread or where they are to be expanded in the 
future. To this end, a meta-analysis of existing long-term energy scenarios was conducted. 
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The time horizon was set to 2040 based on the data availability in the analyzed energy sce-
narios. In a second step, demand-side water scenarios are created by coupling the determined 
installed capacity of the technologies under consideration with their water consumption, so 
that the water consumption per year and region can be represented. To do so a set of future 
scenarios was designed by combining decision options in two technological fields: a) types 
of electricity generation technologies; and b) types of cooling technologies. In the third step, 
the water withdrawal and consumption levels of the different technological pathways are 
calculated for each region up to 2040, resulting in water demand scenarios for different elec-
tricity futures and making it possible to identify the most water-efficient transition pathways 
for the electricity sector. 

4.1.1 Research approach 

The water demand for electricity generation depends mainly on three key parameters: (a) the 
mix of energy sources and type of generation technologies applied; (b) the type of cooling 
technology deployed at thermal power plants; and (c) the water use intensity in form of spe-
cific water withdrawal and consumption levels for each combination of electricity generation 
technology and cooling technology. To determine the future water requirements of the power 
sector, these three parameters are first assessed individually and then combined to estimate 
the water demand of the electricity sector according to different given future energy scenar-
ios. The approach is summarized in Figure 4-1. 

 
Figure 4-1:  Overview of methodology applied to estimate water demand for different 

electricity generation pathways (Terrapon-Pfaff et al., 2020). 
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4.1.2 Meta-analysis global energy scenario studies 

As a result of the comparative literature review, one reference scenario (IEA CP) and three 
decarbonization scenarios were chosen based on their heterogeneity in terms of energy tran-
sition strategies and their ambition levels in terms of greenhouse gas emission reductions, 
i.e. in line with, or at least close to, the target of limiting the global temperature increase to 
“below 2C” (Table 4-1). This allows for comparisons to be made concerning the impact on 
water demand arising from major shifts in the electricity sector required to achieve these 
climate objectives. 

 

Table 4-1: Overview of selected energy scenarios (Terrapon-Pfaff et al. 2020) 

Study Time  
horizon 

Scenario GHG-changes 
2040 (compared 
to 1990) 

Summary strategies 

World Energy 
Outlook  

(IEA/OECD 
2017)  

2040 Reference 
scenario: 

IEA | Current 
Policies (CP) 

+104%  Assessment of energy sector development 
in the absence of any additional measures 

IEA | 
Sustainable 
Development 
(SD) 

-13%  Back-casting approach 
 Stronger role of renewable energies 
 Broad exploitation of efficiency poten-

tials in the industrial sector 
 Transport sector: increasing electrifica-

tion and increasing use of ("advanced") 
biofuels and natural gas assumed 

 Carbon capture and storage (CCS) 

The advanced 
energy [r]evo-
lution 

(Greenpeace 
2015) 

2050 GP | Ad-
vanced En-
ergy Revolu-
tion 

(Ad.R) 

-61%  Renewable electricity as the most im-
portant primary energy resource 

 Limited use of biomass (100 EJ/a) 
 Broad electrification of the transport sec-

tor  
 Hydrogen and other synthetic fuels in 

sub-sectors difficult to electrify (e.g. 
freight transport) 

  No carbon capture and storage (CCS)  
 Phase-out of nuclear energy 

Global Energy 
and Climate 
Outlook  

(JRC 2017) 

2050 GECO | 
B2°C 

+1%  Combination of carbon capture and stor-
age (CCS) , renewables and nuclear 
power in the electricity sector 

 In the transport sector: combination of 
electricity, biofuels, natural gas and hy-
drogen 
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The comparison of transition pathways for the electricity sector show that all the scenarios 
anticipate an increase in electricity generation by 2040 compared to 2015 (Figure 4-2). How-
ever, the extent of the increase and the overall mix of energy sources vary considerably de-
pending on the scenario. The different underlying decarbonization strategies and the level of 
ambition in respect to GHG emissions reductions explain these differences. For example, 
scenarios assuming a higher degree of electrification in sectors such as transport or industry 
require higher amounts of electricity. Moreover, assumptions about economic development 
and population growth underlying the energy scenarios can influence the anticipated total 
future electricity demand. Unsurprisingly, all the scenarios expect an increase in electricity 
generation from renewable energy sources, with wind and photovoltaic anticipated to in-
crease the most. 

 
Figure 4-2: Electricity generation by energy source (in TWh) for the year 2015 and the four 

selected energy scenarios in 2030 and 2040 (Terrapon-Pfaff et al., 2020. Based on data 
from IEA/OECD, 2017; Greenpeace, 2015; JRC, 2017). 

4.1.3 Modeling future water demand for electricity generation 

These differences in the electricity mix influence both the water withdrawal and consump-
tion of future electricity systems. The changes in future global water withdrawal vary be-
tween +55% and -72% compared to 2015 (Figure 4-3). Overall, higher shares of fossil fuels 
are likely to lead to greater water withdrawal, while scenarios with high shares of renewable 
energies perform better in terms of reducing future water withdrawal. This is due to the fact 
that electricity generated from fossil fuels still comes predominantly from thermoelectric 

0

10.000

20.000

30.000

40.000

50.000

60.000

Statistic
data

IEA CP IEA SD GP Adv.
[R]

GECO |
B2°C

IEA CP IEA SD GP Adv.
[R]

GECO
B2°C

2015 2030 2040

El
ec

tr
ic

ity
 g

en
er

at
io

n 
(T

W
h)

Hydrogen Geothermie and others Biomass
Hydro Solar CSP Solar PV
Wind Oil Natural gas
Coal Nuclear



 Meta-Study on Energy Scenarios 

125 

power plants based on technologies with higher water withdrawal intensities. 

 
Figure 4-3: Water withdrawal (in km³ per year) for electricity generation by energy source 

for different scenarios in 2040 (Terrapon-Pfaff et al., 2020. Based on data from 
IEA/OECD, 2017; Greenpeace, 2015; JRC, 2017). 

In term of global water consumption for electricity generation it is shown that water con-
sumption is expected to rise in five out of eight scenarios (by between 9% and 78%) com-
pared to 2015. The increase in global water consumption occurs as a result of an increase in 
electricity production and a shift towards improved cooling systems, which withdraw less 
water but consume more (Figure 4-4). Furthermore, the widescale implementation of ther-
mal renewable energy technologies such as geothermal, biomass and concentrated solar 
power (CSP) compared to solar photovoltaic or wind can lead to an increase in water con-
sumption from the renewable energy side. From a global perspective, it can be concluded 
that more efficient cooling and electricity generation systems (i.e., ETS scenarios) can sig-
nificantly reduce the water demand of the power sector in terms of water withdrawal and 
consumption. 
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Figure 4-4: Water consumption (in km³ per year) for electricity generation by energy source 

for different scenarios in 2040 (Terrapon-Pfaff et al., 2020. Based on data from 
IEA/OECD, 2017; Greenpeace, 2015; JRC, 2017). 

At the regional level, the analysis focuses on the development of water demand for power 
generation in ten regions. The shifts in electricity generation expected in the scenarios lead 
in part to very different regional developments. North America is the only region that shows 
a consistent reduction in water withdrawals (5% to 74%) across all scenarios. Despite this 
decrease, North America remains the region with the highest share of global water with-
drawals (20% to 28%) in six of eight scenarios. A decrease in water withdrawal is also ob-
served in most scenarios for Europe, Eastern Europe and Eurasia, and Asia-Oceania-OECD. 
On the other hand, the developing and emerging regions, namely China, India, Asia (other), 
the Middle East, Latin America, and Africa, are characterized by an increase in water with-
drawals for electricity generation in the scenarios with higher shares of fossil fuels. Overall, 
the results indicate that it is particularly important for developing and emerging regions to 
combine the expansion of energy supply with less water-intensive technologies, including 
in particular renewable energy technologies such as photovoltaics and wind energy, in order 
to reduce water demand for electricity generation. The results for water consumption also 
differ markedly across the regions (Figure 4-5) depending on the scenario. In North America, 
four of the scenarios result in reduced water consumption by 11% to 31%, while four predict 
an increase of 1% to 11%. In Europe, seven scenarios predict a reduction in water consump-
tion which can mainly be attributed to the decrease of coal and oil in the electricity mix and 
to the phase-out of nuclear energy. The water consumption for renewable electricity gener-
ation increases in Europe in all scenarios but remains lower than the use of water for fossil 

0

5

10

15

20

25

30

35

40

BAU ETS BAU ETS BAU ETS BAU ETS

Statistic
data

IEA Current
Policies (CP)

IEA Sustainable
 Development (SD)

GP Adv.[R] GECO B2°C

2015 2040

km
3 / 

ye
ar

Geothermal
Biomass
Solar
Oil
Natural gas
Coal
Nuclear



 Meta-Study on Energy Scenarios 

127 

power generation in 2015 in seven out of the eight scenarios. Scenario results also show 
large variations in water consumption for future electricity generation in China. In India, 
Asia (Other), the Middle East, Latin America and Africa, the growth in water consumption 
is substantial in all scenarios except one. The rise in water consumption in these regions is 
mainly driven by the rapid growth in electricity demand. In terms of technologies, natural 
gas, biomass, solar and nuclear energy, are the main drivers for the increase in water con-
sumption in these regions. 

	

Figure 4-5: Water consumption for electricity generation (in km3 per year) by region for dif-
ferent scenarios in 2040 (Terrapon-Pfaff et al., 2020. Based on data from IEA/OECD, 

2017; Greenpeace, 2015; JRC, 2017). 

The results show that water demand varies significantly between different electricity mixes. 
Ambitious decarbonization scenarios with extensive use of renewables and high electrification 
rates in key energy-intensive sectors have the lowest water intensities, but in absolute terms 
these systems may result in higher water use than the less ambitious climate change mitigation 
scenarios. The results underline the importance of considering not only the potential to reduce 
greenhouse gas emissions but also other environmental aspects - such as water demand - when 
designing future electricity systems to ensure a holistically sustainable energy transition. 
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