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Abstract

In today’s engineering industry, constitutive modelingl @umerical analysis of the behavior of
composite materials, particularly transversely isottamid orthotropic materials, have gained a
lot of attention. This is mainly due to the usage of compadite a wide range of applications in
different industries. Moreover, the advantages of contpssiuch as high strength and flexibility
in design make these materials attractive.

Due to many factors in the design of composites, holes indates are unavoidable. Fibers
are usually cut by drilling a hole into laminates. Alternaty, fiber can be bypassed around holes
in order to reduce the fracture tendency around a hole, artteee different stress distributions.
One of the goals of this work is to compare these cases: In ase, dibers were bypassed
around the hole while fibers were cut in the other case byirik hole. In order to compare
these cases and to get a deeper insight into the processsisinkations, a constitutive model
of transverse isotropic for the small strain case is apphased on large strain theory. The
model is implemented in the in-house finite element progr&8AFEM. One major challenge
of this simulation is to determine the fiber orientations.bBgin with, the circumplacement of
fibers is modeled using the streamline function to obtainnhemogeneous fiber direction for
finite element simulations. In order to increase the prenisif simulations, the B-spline method
is used to model the fiber directions according to the expartal observations. In the broad
field of geometric modeling and computer-aided design (CAD$ common to use B-splines
to describe curves and surfaces which is mainly due to thathematical properties and their
flexibility. Another challenge regarding the simulatioeso identify the required parameters for
the presented material model. Several different expetisrage carried out in this regard. Finally,
the whole process of modeling, simulation, and materisdpeter identification is validated by
means of validation tests.

Orthotropic laminates belong to the most commonly useddates in industrial applications.
The investigation is extended to orthotropy laminates,r@ke have fibers in two directions, and
our aim is to predict the behavior of orthotropy laminatesdshon the calculated parameters. A
constitutive model of orthotropy for the small strain casapplied and implemented in the in-
house code TASAFEM. Another challenge in this work is to chte the material parameters
of orthotropy laminates as a basis for finite element sinutat The material parameters are
identified within a least-square approach with the help dicapresults of a digital image corre-
lation system. For this purpose, different experimenthsgctensile, three rail shear, lap shear
and compression tests are carried out. Nine material paeasnef linear elastic for orthotropy
case are identified. In the next step, it is necessary toatalithe numerical approach with ex-
perimental observations. The validation examples areopadd as theses samples have fibers
in two perpendicular directions, where the hole is drillé@rthe production process. Finally, a
comparison between the finite element simulations and therarental results is provided.
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1 Introduction

Composite materials are combinations of two or more mdsewéh different properties, with
the aim of obtaining properties that cannot be achieved anthof the materials alone. Compos-
ites have two parts, the reinforcing part and the matrix. pre reinforcing part is in the form of
fibers, particles or sheets which is combined with the otlet, the matrix. Reinforced concrete
is an example of fiber-reinforced composites. It is known tiiers are stronger and stiffer than
the matrix part. Using composites has advantages such hsstrigngth and light weight. In
addition, design flexibility is another advantage of comigsssince composites can be formed
in any shapes. Fiber composites have a wide range of apphsafrom racing car bodies and
building constructions to pipes and bicycle frames. Filmeasle from glass are manufactured in
many different ways and for specific uses. Glass fiber is amaatonsisting of fine fibers of
glass. In this work, E-glass fiber composite is used to makgkss as it is the cheapest and the
most common type of glass fiber.

1.1 Motivation

Nowadays, it is common to use numerical simulations foregéht investigations as these cal-
culations become more and more significant. Further, exygarial investigation of large-scale
samples or prototypes are very expensive and time consuniihgs, applying mathematical
models to predict the behavior of a material is valuable amdreduce the work.

Due to the common usage of fiber composites in the industeyesg (Hufenbach et al.,
2011), (Holbery and Houston, 2006), (Bohlke et al., 20189, @ronzino, 2006), it is important
to have the ability to model and simulate these structuregr @e years, constitutive modeling
and numerical analysis of anisotropic materials, espgdiansversely isotropic and orthotropic
materials, gained greater attention and emphasis becétmsewide range of applications of this
type of fiber composites.

Due to the design, holes in laminates are unavoidable. $daar be cut by drilling a hole into
laminates, see Fig. 1.1(a). Alternatively, fiber can be bBgpd around the hole, see Fig. 1.1(b).
This case can be utilized in the production process of fieerforced composites to obtain dif-
ferent stress distributions around a hole, for instancd, tanrminimize the fracture tendency.
One of the goals of this work is to compare the stress andhsstate of these cases. In one
case, fibers are bypassed around the hole, while the fibecsiabg drilling a hole in the other
case, see (Hartmann and Kheiri Marghzar, 2018). In ordeotopare these two cases, suitable
parameters have to be obtained for the transversal isotrmuel where continuous functions
have to be used to determine the fiber orientation in the mahteodel. Commonly, the works
treat fiber direction defined with piece-wise functions, @8®u et al., 2017), or by element-wise
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(a) Transversal isotropy laminates (b) Bypassed fibers around the hole

Figure 1.1: Sketch of transversal isotropy laminate andabgmg the fibers around the hole in
the laminate during the production process, (Hartmann arerkMarghzar, 2018)

formulations, see (Huang and Haftka, 2005; Hyer and Leel1l99owever, in this thesis, spa-
tially inhomogeneous transversal isotropy is formulatadtee basis of patches using B-spline
approaches to obtain the fiber orientation. B-spline metlawd very popular in computer-aided
geometric design because of their prominent advantagespitee¢he worldwide popularity and
usage of the B-spline, the possibility to define and contrelgarameters within B-spline is still
a challenging task and an ongoing field of research.

In the field of small deformation of orthotropy, the hypestiabehavior is well investigated,
and numerous constitutive models can be found in the liezatsee Sec. 1.2. On the other
hand, according to my knowledge, material parameter itieation in this case has not been
adequately addressed. This work therefore intends to sslthies topic as well. Hence, one of the
tasks in this work is to obtain parameters for the case obtmipy, and according experiments
have been carried out. Experiments, identification pro@ess modeling are closely connected
to each other, see Fig. 1.2. Furthermore, it is necessarydoae the final results since the
numerical solutions have to fulfill the requirements ofabllity and efficiency. Thus, validation
examples should be provided to compare the difference leeterperiments and simulations in
the case of transversal isotropy and orthotropy.

1.2 Literature Review

One of the goal of this work is to perform calculations ancestigations for uni-directional or
transversal isotropic laminates. It is convenient to asslinear elasticity for such kind of uni-
directional laminates, see, for instance, (Fiolka, 2008jdke, 1999), and, for a brief overview,
(Weise and Meyer, 2003). A fundamental work in this area ge(®er, 1984). An introduction
to laminates and sandwich materials, including the asdetsisotropic elasticity and modeling
of laminates, can be found in (Altenbach and Altenbach, 2004e theory of invariants for
different kind of composites is discussed in (Itskov, 208pgncer, 1984). Modeling aspects
of laminate and sandwich composites are discussed in slatgihltenbach and Becker, 2003).
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Figure 1.2: Modeling procedure

In this work, we restrict ourselves to the elastic materiaded. This can be formulated by an
invariant theory, for example (Itskov and Aksel, 2004; Sdar, 1996; Schroder and Neff, 2003;
Spencer, 1984). Invariants for materials exhibiting tvansely isotropic behavior were also
discussed in (Criscione et al., 2001). A model for nearlyompressible transversely isotropic
materials over reinforced rubber-like materials is giveriRuter and Stein, 2000). Further, the
following contributions can provide more information redjag the field of small deformation:
(Aboudi, 2013; Aboudi et al., 2012; Agarwal et al., 2006; §&ih, 2011; Parton and Kudryavtseyv,
1993; Vogler et al., 2007).

There is another area of applications for transversalapgtsince soft tissues show this kind
of anisotropic behavior, (Balzani et al., 2006; Itskov arls@l, 2004; Schroder and Neff, 2003;
Schrdder et al., 2005; Weiss et al., 1996a). The behavioiadbdical joints is explored by
(Almeida and Spilker, 1998), focusing on the modeling ot isfues as an incompressible trans-
versely isotropic material. The mathematical modelsimgahe constitutive modeling of the be-
havior of arteries over anisotropic soft tissues were iigated and summarized by (Holzapfel
and Ogden, 2010). A constitutive model to highlight the vtraof arteries was suggested by
(Holzapfel et al., 2000). A transversely isotropic hypastic material model that can be used
for blood vessels is presented in (Prot et al., 2007). FoesiBpillustration, see (Sansour, 2008;
Zdunek et al., 2014). Since there are only a very few anallytolutions, numerical methods
have to be chosen. The finite element method is the most conapyanoach. For information
on possible numerical difficulties, see (Sepahia et al.32WIriggers et al., 2016). Fine meshes
and quadratic shape functions are used in this work to reducesrical issues.

There are also contributions concerning the developmemiadérial models to analyze hyper-
elastic orthotropy materials. The construction of polywenorthotropic free-energy functions,
for instance, is discussed in (Schréder and Neff, 2003).

Strain energy functions that are polyconvex and proven todsgcive are discussed for or-
thotropic materials in (Itskov and Aksel, 2004). A model épiresent the hyperelastic material
behavior of pneumatic membranes reinforced with rovenemdibers can be found in (Reese



et al., 2001). Coated fabrics as an orthotropic materiaevmeodeled in a plane stress frame-
work, see (Colasante, 2014). An elastic—plastic constéunodel was developed for paper
and paperboard, see (Makela and Ostlund, 2003). Multiclpjstes with orthotropic behav-
ior are discussed in (Altenbach, 2000b). Moreover, a corsparbetween different proposals
for the transverse shear stiffnesses with values based efoenthble directed surface theory
can be found in (Altenbach, 2000a). An orthotropic model aig® discussed, for instance in
(Bischoff et al., 2002; Reddy, 2003; Schmid et al., 2006;r8dér et al., 2005; Spencer, 1971).
An orthotropic hyperelastic constitutive model that carubed for reinforced structures and bi-
ological soft tissues was proposed by (Itskov, 2001). A nelygonvex orthotropic hyperelastic
model for the geometrically nonlinear simulations of témsiembrane structures is provided in
(Motevalli et al., 2019). In (Itskov, 2001), the strain egerfunction of the orthotropy model
is formulated in terms of three isotropic tensor functionapmled with the associated structural
tensor which is usuable for anisotropic materials and @algrly biological soft tissues. A new
constitutive orthotropic model for the simulation of aiéémwvalls was proposed in (Holzapfel
et al., 2000), where each layer of the artery is consideredfider-reinforced material.

Different methods have been developed to determine fibentaiion to analyze different as-
pects of laminates with a hole. Laminates with deformed $iloan lead to a change of loading
paths, resulting in favorable stress distributions witthia laminate and, thus, improving the
structural performance. (Banichuk, 1981; Duvaut et alQ@®@Pedersen, 1991) are some ex-
amples for theoretical and numerical studies of fiber oagon, aiming to determine the fiber
direction within the domain of a composite panel in orderrmpiove structural performance
measures (e.g. buckling) through design optimization.tkestiffening of laminates and inves-
tigations to achieve variable stiffness in specimens seedho et al., 2016; Niu et al., 2016).
Further, see (Huang and Haftka, 2005; Peeters et al., 2dibeZal., 2017) for detailed re-
search on ways to optimize the fiber direction near a holenmrates, on path optimization for
laminated composite structures, and on how to determin@phlienal fiber angle distribution.
Regarding difficulties in buckling, failure, and vibratiam laminates reinforced by curvilinear
fibers see (Hyer and Lee, 1991; Ribeiro et al., 2014). Wall.¢2808) have developed a strategy
for shape optimal design based on the isogeometric apprdaitilies and research on stress,
strain, fracture and the influence of the thickness distiiouin a ply with different fiber angles
can be found in (Blom et al., 2010; Koricho et al., 2015; Malkak and Polilov, 2016, 2013;
Nagendra et al., 1995; Rowlands et al., 1973; Skordos 2@02; Toubal et al., 2005). An ap-
proximation of fiber pathways after forming process in filextiles is presented in (Roth et al.,
2020). Here, a practical tailoring of fiber orientations amsidered for laminates with circular
holes. (Yau and Chou, 1988) is one of the first works in thig avkich improves the compres-
sive load-carrying capability of composite laminates. Wuek of (Hyer and Charette, 1991) is
among the first works that study the effect of the fiber dimtangle around a cutout for a flat
plate with a circular hole. They suggested that improvedysscan be obtained by aligning the
fibers with the principal directions of the stress field. Rartmore, an improvement with respect
to material failure load levels can be seen in their finitereet simulations. In this work, a spa-
tially continuous formulation of the fiber orientation ugiB-spline is used, see (Hartmann et al.,
2020), although fiber orientation is commonly defined by @iegse functions, see (Zhu et al.,
2017), or by element-wise formulations, see (Huang andkddaf005; Hyer and Lee, 1991).



B-spline is a powerful tool to generate any curve or surf&spline attracts the researchers
due to its flexibility and ability in representing the compbeometry. There is a vast investiga-
tion on this topic. Definition and basis of B-spline is prasenmainly in (Catmull and Clark,
1978; Piegl and Tiller, 1987, 1997, 2000a; Rogers and Fog9d9Rogers, 2001). B-spline is
defined using different parameters. There are differentcguhes to these parameters discussed
in, for example, (Li et al., 2005; Lyche and Mgrken, 1987;i8&pand Farin, 1990a). B-splines
can be used for a representation of different surfaces ssithrhine blades, for example, see
(Auger et al., 2018; Van Oosterom et al., 2019). Anotheriappbn is image interpolation in
medical imaging (Lehmann, 2001), where it is shown that &tiggree of B-spline interpolation
has superior properties, exhibiting smallest interpofagrrors and reasonable computing times
in the scope of medical imaging. A method to generate a sHimBispline surface for wings
is presented by (Bentamy et al., 2005). Here, due to the fleeyibf this geometric modeling
using B-spline, it was shown that it is well-suited to regrsa smooth geometry of the com-
plex surface of a wing with a restricted number of parametas also (Brakhage and Lamby,
2008a). The problem of fitting curves and surfaces to knovia gets has been studied by nu-
merous researchers see, for example, (Gordon and Rie$ebh®314; Grossman, 1971; Rogers,
1977; Rogers and Fog, 1989h).

Identifying the material parameters of a material modehe of the main steps to make sub-
sequent predictions. The identification process for trarsal isotropy was discussed in (Chris-
tensen, 2005). Digital image correlation (DIC) systemsaavery useful measurement tool, as
was shown by full-field measurements of the displacemerdsaains over an area in the cen-
ter of a specimen, compared to finite element computatiohs. idea and the theory behind it
are discussed in (Andresen et al., 1996; Mahnken and St@@6)1 Other Works use this con-
cept with the help of gradient-based optimization metheds,(Benedix et al., 1998; Cooreman
et al., 2007; Kramer, 2016; Kreissig et al., 2001), wheraligra-based optimization methods
were used. In this work, a least-square method is chosenrtionmize the residual between the
experimental data and the numerical results. For a graflieatscheme see (Hartmann et al.,
2003), where the numerical algorithm of (Powell, 1998) idradsed, or (Huber and Tsakmakis,
1999a,b) regarding a neural network method. The basis amthfoental theory of parameter
identification using finite elements is treated in (Hartma2®17). In addition, for the aspect
of purely elastic material, see (Hartmann and Gilbert, 20H&tmann et al., 2018). An in-
verse method was proposed to determine the four elastionedeas of an orthotropic material,
see (Lecompte et al., 2005). Moreover, a method is proposechws based on a finite ele-
ment calculated strain field of a perforated specimen urahsion and on the displacement field
measured using an Electronic Speckle Pattern Interfeemmkt (Huang et al., 2004), parame-
ter identification was studied for two-dimensional ortlopic material bodies. Identification of
orthotropic material was also discussed in (Frederiks@874,b; Makela and Ostlund, 2003).

1.3 Layout of the Thesis

The motivation of this work and a literature review were athg presented in this chapt&hap-
ter 2 provides a brief overview fundamental of Continuum MechaniThis includes the kine-



matics as well as the introduction of the stress tensor amdgttiain tensor. In addition, balance
equations are introduced, which are the balance of magsrlend angular momentum, energy
and entropy. Additionally, the fundamentals of constit@tnodeling are given in the last section.

Chapter 3discusses the constitutive model. The first aspect is matixtion, which is related
to the term in Voigt-notation. Second, the constitutive elanf isotropy is discussed. The elas-
ticity tensor stands for all materials that are modeled \Witbar isotropic elasticity. Third, the
formulation for transversal isotropy is presented andrniaves for this case are studied. More-
over, the constitutive relations for the stress-state areveld. In the next step, the constitutive
equations for materials reinforced with two families of fibare discussed, which lead us to the
orthotropic case. A constitutive model of orthotropy forahstrain case is derived from large
strain theory and the relation between the invariants of2feen strain and right Cauchy-Green
tensor is shown. The derivation of a constitutive servesnpkfy the stress state. Finally, the
stress state is obtained for the orthotropy case.

Chapter 4focuses on the experimental investigation for the purpdseemtification. To
begin with, the production process of samples using vacussisted resin infusion (VARI) is
explained. Important aspects regarding the experimeatapsdimension of samples, and data
evaluation of the results are discussed, and tensile testiof)-bone specimens are examined.
Regarding transverse isotropic samples, tensile, thieghear, and computational compression
tests are performed. Additionally, tensile, three railashé&p shear and compression tests for
the orthotropy case are accomplished. The goal of theserimgm@s is to find the required
parameters for the models, which is discusse@hapter 3 Another topic in this chapter is to
derive a concept of material parameter identification. Here procedure, the basic definitions
and concepts for the identification problem are presentesse® on the experimental results
and the defined material model, the parameters for isottogysverse isotropy and orthotropy
are calculated. The identified parameters serve to makacpmt, as we are interested in
comparing the experiments and simulations.

Chapter 5addresses the aspect of determining the fiber orientati@enwdVld like to bypass
the fibers around a hole in order to improve the performanatra€tures. Addressing the fiber
direction is of interest for our computations@hapter 6 For this aim, a streamline approach is
provided as the first approach to define the fiber directiothémext step, a interpolation concept
to describe continuously the fiber orientations on the baisi&-spline is introduced which is a
more flexible way to describe the fiber direction in our conigoaiminates. We will start with
the B-spline curve, and the properties of the B-spline cwiiebe discussed. Furthermore, the
parameters to define the B-spline curve such as knot vectbcantrol points are discussed.
Since a unit tangent vector is needed for our material modelsvatives of the B-spline curve
are obtained. We will extend the B-spline curve to the BrepBurface while the parameters and
derivatives of the B-spline surface are discussed. In dalearry out any computations, input
data is required to generate a surface using the B-spliegooliation concept. For this purpose,
it is explained how the data points are obtained from the exy@ants. Finally, an application
based on the interpolation concept for fiber bypassing ataumle is presented.

Chapter 6addresses the finite element computations starting witte felément studies using
the streamline approach with the obtained parametersdioswersal isotropy i€hapter 4 First,
finite element studies using the streamline approach withilndd parameters for i@hapter 4



transversal isotropy can be seen. The details of the mapat® provided, followed by a com-
parison between the behavior of a plate with bypassed fibighsanplate with cut fibers. In the
following, we will carry out finite element simulations ugithe obtained material parameters for
transverse isotropy, to gain a better understanding offfleets of rivets on the performance of
laminates with hole. In the next step, we aim to validate thel@ process of material parameter
identification process using the results of experimentd,va@ would like to find out how well
the material model can predict the behavior of transvessaitopy plates. In order to do so, we
carry out computations using the obtained paramete@hapter 4for transverse isotropy so as,
with the help of the B-spline approach, to obtain the distll fiber directions ifChapter 5
FEM computations are again performed with the help of theastline approach since it is of
interest to compare the results of computations using Bwspind streamline methods with re-
spect to the experimental data. In addition, the detailsaompdes, experiments, the projection of
FEM simulation to DIC results and models are explained.tarrta comparison of experimental
results and simulations is presented.

For the next step, validation samples regarding the sampte®rthogonal fiber distributions
are discussed and the details of experiments are providedmfarison of simulations using the
obtained parameters Dhapter 4with the material model il€hapter 3and experiments using
DIC observations is given.

Chapter 7summarizes the main aspects of the work, followed by an okitbm possible future
research work.






2 Fundamentals of Continuum
Mechanics

Continuum Mechanics is the basic analysis of the kinemaficsaterial bodies and the balance
relations describing the behavior of internal and extefacé$. These are completed with the
relations of the theory of materials by introducing congivte equations. This chapter is based
on Continuum Mechanics textbooks such as (Altenbach, 28li&pbach and Altenbach, 1994;
Haupt, 2000; Holzapfel, 2008; Malvern, 1969; Ogden, 1984ie$dell and Noll, 1965). The
goal of this chapter is to present the main relations in @anim Mechanics.

2.1 Kinematics

Kinematics deals with the description of the motion of a mateébody without considering
external forces. In addition, strain measures with the loélp deformation gradient will be
introduced.

2.1.1 Configuration and Motion

A material body is composed of a set of material potfits: {P}. The configuratioriR which
does not change over time is called reference configuration

. {B — R[B] C V3 2.0

P = R(P)=X <P =R (X).

The material body3 deforms and moves and it generates a new configuration callednt

configurationy,
3
frx,: 45 TxlBlcV » 2.2)
P =(x)=x(P)<=P=x; (z)

Then, X andx are assigned to a material poiRt representing the position in the reference
configurationR, and in the current configuratiog, as shown in Fig. 2.1. The motion is defined

by
x = xr(X, ). (2.3)

The difference, see also Fig. 2.2

u(X t)=x— X = xpg(X,t) - X (2.4)



Figure 2.1: Reference and current configurations

represents the displacement vector. The deformationgmadescribes the local change of mo-
tion and is defined by
F(X,t) = Grad xg(X,1). (2.5)

It follows
F = Grad(u + X) = Gradu + 1, (2.6)

wherel is the second order identity tensor. The displacement gnadénsor can be written as
H(X,t):= Grad u(X,t) and the deformation gradient can be describeB asH + I.

The deformation gradient has the property to map matenialdlementd X in the reference
configuration to material line elements in the current configuration

dz = FdX. 2.7)

The inverse off must exist where the existence is guaranteed by the det@nthF denoted
by J, i.e.
J:=detF #0. (2.8)

Regarding all deformationg, is required to be greater than zerb;> 0, since the body can not
interpenetrate itself. Moreover, the deformation gratlteemsforms material surface elements
from the reference to the current configuration

da = (det F)F TdA (2.9)
and material volume elements are transformed by

dv = (det F)dV = JdV. (2.10)

10
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Figure 2.2: Displacement vector

It is necessary to have measures that are independent @fodgly motions. The deformation
gradient does not have this property. Thus, the right an€kfichy-Green tensors are introduced

C=F'F and B=FF". (2.11)
The Green strain tensor 1
E=2 (C-1) (2.12)

is of interest, which can be expressed by the displacemadtegrt
E=i{H+H +H'H). (2.13)
In the case of small strain theory, which is used in this wtrk,quadratic term is neglected,

e:=1H+H") = L(Gradu + Grad" u). (2.14)

1
2

Furthermore, it is assumed that there is no distinction betwthe spatial coordinatasand
the coordinates in the reference configuratidr(due to theory of small displacements which is
assumed in this thesis).

Principal strains are of interest and can be defined by

. .
In A, if m — 0,

for more details, see (Ogden, 1984).

11



2.1.2 Strain Energy Function

¥(F, X) is called strain energy function whendepends only on deformation gradidnt The
strain energy function relies on the deformation gradiemind the position of a point when we
are dealing with heterogeneous materiald’, X).

A significant constraint of the strain energy function istthas assumed to bebjective
This means that after a translation or a rotation in spaeeathount of stored energy has to be
unchanged

U(F) =¢(QF) (2.16)
whereQ is an orthogonal tensor. @ = R”, Eq.(2.16) leads to
U(F) = ¢(R'F) = ¢(R"RU) = ¢(U). (2.17)
Thus, we may write ) B
(F) =(C) = Y(E). (2.18)

2.1.3 Deformation Velocities

In Continuum Mechanics, the temporal rate of change over 8nrface, and volume elements is
of interest. The temporal rate of change of line elementgsedbed by

(dz) = (FdX) = FF'dz = Ldz, (2.19)
along with the change of surface elements as
(da) = (JFTdA) = [(dive)I - L'] da, (2.20)
and the change of material volume elements
(dv) = JdV = (div o) dv. (2.21)
In EqQ.(2.19), the spatial velocity gradient tensor
L = gradv(z,t) = FF! (2.22)

is defined. The spatial velocity gradiehtcan be decomposed additively into a symmetric part
D and a skew symmetric paw,

L=D+W, (2.23)
with .
_ - T
D=2 (L+L7). (2.24)
and .
W = 3 (L-L7). (2.25)

12
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(a) Reference configuration (b) Current configuration

Figure 2.3: Stress vectors and normal unit vectors

2.2 Stress Tensors

Stresses are generated by a deformation inside a body weidrates a body interaction. The
generated stresses are a significant quantity in Continuachkihics, (Holzapfel, 2008). Re-
garding constitutive modeling, different stress tensarsloe introduced depending on their def-
inition.

A traction is applied over a material body and if the body issidered in two parts cut by
a plane surface, see Fig. 2.3, this results in forces on ttiaces. The surface element can be
written as

df =tda = Tda, (2.26)

whereda = n da, see Fig. 2.3. The Cauchy stress vector is represented wettert and T
represents the Cauchy stress tensor which is also callegtress tensor due to the fact that it
acts on material surface elements in the current configurathccording to Cauchy’s theorem,
the stress tensd’ is connected with the surface tractign

t="Tn. (2.27)
The first Piola-Kirchhoff stress tens@lz can be introduced by
df =trdA =TrdA, (2.28)

wheredA = nrgdA. Furthermore, vectong represents the unit normal vector in the reference
configuration. Cauchy’s theorem can also be expressed wdhtdies related to the reference
configuration following

tR = TRnR. (229)

The Cauchy and the first Piola-Kirchhoff stress tensorseleged to each other using the trans-
formation relation for the material surface element (29) a

Tg = (det F)TF . (2.30)

13



The second Piola-Kirchhoff tensor is another significargsst tensor operating on the reference
configuration. Itis definedas
T:= (detF)F'TF " (2.31)

Furthermore, the Kirchhoff stress tensor is another stexssor that operates in the current con-
figuration and it is related to the Cauchy stress tensor by

S :=(detF)T. (2.32)

Considering Eq.(2.31) and Eq.(2.32), the Kirchhoff sttessor and the second Piola-Kirchhoff
tensor are connected to each other using

S = FTF’. (2.33)

2.3 Balance Equations

This section serves to introduce balance equations andiples that are applicable to any ma-
terial. These principles are the conservation of mass, thmentum balance principles and the
balance of energy. These principles are discussed in tloeviag subsections.

2.3.1 Balance of Mass

This principle shows that the mass remains constant withetgo time. This means that the
mass of a bodys remains unchanged during the deformation, and the mas® dfdtly in the
current configuration is equal to the mass of the body in tfe¥eace configuration as

m(B,t) = /g(m,t) dv = /QR(X,t) dVv (2.34)
w Q
which leads to q q q
m
- = — (X, = 2.
At dt / 3 | RX V=0 (2.35)
w Q

In the reference configuration, the local form can be catedlay

9 0r(X. 1) = 0 <= 0r = or(X) (2.36)
In the current configuration, the local form can also be emitising Eq.(2.10) and Eq.(2.35) as
0+ odivo =0 (2.37)
and
or = odet F (2.38)

can be concluded wheig is the mass density in the reference configuration angpresents
the mass in the current configuration .

14



2.3.2 Balance of Linear Momentum

The linear momentum of the material boBlyis defined as the volume integral of the product of
the mass density with its velocity

J(B,t) = /v(w,t) o(x,t)dv = /'v(X,t) or(X) dV. (2.39)
w Q
The balance of linear momentum in the reference configuratio
C;—'t] :% v(X,t)gR(X,t)dV:/tR(X,t)dA+/k(X,t)QR(X)dV (2.40)
Q 0N Q
and in the current configuration
dJ d
il (z,t) o (x,t)dv = /t (z,t)da + /k (z,t) 0 (x,t)do, (2.41)
w Ow w

demonstrate that the change of linear momentum with respéiche is equal to external forces
resulting from surface tractions and specific volume farchsorder to obtaining the global
balance momentum, we can use the divergence theorem ari18).{ogether with Cauchy’s
theorem, see (Haupt, 2000),

/%(v (x,t) 0 (x,t)J) dv:/didev+/k(m,t)g(m,t) dv. (2.42)

With the help of the local balance of mass (2.38) and Eq.§2theé local balance of momentum
in current configuration can be presented as

ov =divT + gk (2.43)
and regarding the reference configuration, it yields
ORV = Div TR -+ QRk (244)

2.3.3 Balance of Angular Momentum

The balance of angular momentum states that the changeatibrodl momentum

D.(B,t) = /(m —c) xvo(x,t)dv = /(XR(X,t) —c) x vor(X)dV, (2.45)
w Q
is equivalent to the moment generated by all forces actindp@ematerial body.
dD, d
T a/(:c—c) xvgdv:/(:c—c) xtda—l—/(:c—c) x ko dv. (2.46)
w ow w
It can be shown that local form of this expression is given by
T=T", (2.47)

which refers to the symmetry of the Cauchy stress tensofHsaept, 2000).
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3 Theory of Transverse Isotropic and
Orthotropic Composites

3.1 Introduction

Composites materials consist of two or more materials aedethmaterials are combined to
achieve specific properties. In engineering and the ingagiplications, thanks to the widespread
use of fiber for reinforcement purposes, it is possible taterdightweight composite materials
that are very robust. In this case, the material responsasstaopic, i.e. the materials exhibit
different responses under applied loads in different tivas. This means that composite ma-
terials show different physical properties and charastierdepending on the orientation of the
fibers in the matrix. In this work, in the context of small g we assume isotropy, transversal
isotropy, and orthotropy for linear elasticity. For thisnaimaterial models are needed for each
case in order to predict the behavior of isotropy, tranatesstropy and orthotropy.

3.2 Voigt-Notation

In this part, matrix notation is obtained from the tensoniatation which is related to the term
Voigt-notation. This notation is widely used by researchers, g@eexample, (Christensen,
2005; Hartmann, 2003; Luth and Ibach, 2003; Reddy, 2003 t€hsorial formulation, which
has the advantage of being independent of the choice of threlicate system, can be adjusted
to cartesian coordinates or to curvilinear coordinatessigé/et al., 1996a), where several soft
tissues show kind of anisotropic behavior. The propertyyohmmetry of the stress and strain
tensor have a significant influence in this regard. Furtheentbe scalar product in the principle
of virtual displacements leads to a representation of tiséovencluding the independent strain
tensor components caused by a symmetric elasticity méttiskcommon to reformulate tensorial
expressions into matrix equations, where the Voigt notatam be applied, see (Vannucci, 2018).
The components of the stress and strain tensors are asseimilé6 x 1) column vector, and
the (6 x 6) elasticity matrix connects both quantities, which will bekined in more detail in
the following. For this purpose, the stress and strain teas®

Ty T Ty
T = Ty T3 €; ® ey, (3.1)
sym. T3
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€11 €12 €31
E = €29 £923| €; (29 ej, (32)
sym. €33
which can be assembled into column vectors
T = {T'11 Ty T3 Ty Tog T}, (3.3)
and .
E = {811 €92 €33 €12 €23 831} . (3-4)

For a better understanding of the process of changing thengym properties into matrix for-
mulation, the tensorial quantities are representedby1) and O x 9) matrices, see (Hartmann,
2003). Eq.(3.94) leads to

T Ciinr Cri2z Crizz Criiz Crizz Ciisr Ciiis Crizr Crase €11
Ty Co211 Ca222 Cazzz Caziz Cazaz Cza31 Ch213 Cazo1 Cazza €22
T33 Cs3311 Cs3220 Cs333 Cs312 C3323 C33zr C3313 Cs321 Cszze €33
Tio Ci2i1 Cia22 Ciazz Ci2i2 Ci2ez Ciazi Ciaiz Ciaor Chase €12
Tos p = | Cazi1 Chzaa Cazzz Cazia Cazaz Cazzi Caziz Cazar Casso €23 (3.5)
T3 Cz111 Cs122 Cs133 Cs112 Cz123 Cz131 Cz113 Csz121 Csi32 €31
T3 Cizir Ciz2z Cizzz Ciziz Cizez Cizzi Ciziz Cizar Cisse €13
T Co111 Co122 Co1zz Coriz Caizz C2izr Coiiz Coi21 Coize €21
To | C3211 C3222 C3233 C3212 Cz223 C3231 Cs213 Cz221 Cso32 | | €32

Due to the symmetry of the stress tensor, equations 4 to 6Gyaia & the last three equations 7
to 9. This results in

€11
€
T Ciii1 Crizz Ciisz Criiz Ciizzs Cusi Ciiis Criizr Chase Ezz
Too Ca11 Cozza Crazz Cooia Cazaz Cozzi Cao1z Cooar Chaso iy
Tss | _ | Cssir Csszz Csszs Csziz Cssas Csssi Csziz Csszr Cssso . (3.6)
Ty Ci211 Cia22 Chi2sz Ci212 Cizez Ciazi Ci2iz Craa1 Clase ca) '
Th3 Co311 Cazaz Cazzz Caziz Cazaz Caszi Chziz Cazar Cozza i
T3y C3111 Cs122 Cs133 Cs112 Cz123 Cz131 Cz113 Cs121 Cs132 .
€32
The symmetry of the strain tensor leads to
€12 = €21, €23 = €32, £31 = €13- (3.7)
Thus, the § x 9) matrix can be transferred to
T Cii11 Crizz Chiizzs Criz + Cii2zi Crizs + Crizz2 Chrisi + Chaas €11
Tho Ca211 Ca222 Caazz  Cazro + Cazar Cagag + Caoze Casszr + Caois €22
Tss | _ | Cssi1 Csszz Csszs Csziz +Cssor Cssaz + Csszz Csszar + Cssis €33 (3.8)
T2 Ci211 Ciaza Chiazz Cioi2 + Ci221 Cizas + Crazz Chasi + Crois ez [
Th3 Ca311 Cazaz Cazzz Caziz + Cazar Cazag + Cazze Cassy + Casis €23
T3y C3111 C3122 Cs133 Cz112 + C3121 Cz123 + C3132 - C131 + C3113 €31
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In other words,T = CE, with T € R, E € R® andC € R®*® is obtained. The positioning of
the coefficients of a fourth order tensor irtas based on the actual calculation. For instance, a
product ofC = A ® B is considered, wherA = AT andB = BT are symmetric tensors. The

coefficients ofC are pointed out by;

the representation

[ aiibir  ainbas
a2b11 22020
azzbiy  azzbyo
a12b11  ai2b2
ag3bi1  azsbas

| 31 b1 az1bay

a11b33
22033
a33bss
12033
a23b33
az1bs3

2a11b12
2a29b12
2a33012
2a12b12
2a93b12
2a31b12

2a11ba3
202203
2a33b93
2a12b23
2a93b23
2a31b93

2a11b3;
2a29b3;
2a33b31
2a12b3;
2a93b3
2a31b3

= a;;biy. In this regard, the coefficient matrix (3.8) has

(3.9)

Regarding the transpositidn; of a fourth-order tensor, the produGt = Cj Ey; is considered,

T
1o
T33
T2
To3

Ciin
Ca121
C3131
Cii21
Coi31
Cs111
Ciia1
Co1nn

C‘3121

Ci212
Ca222
C3232
C1222
Co232
C3212
Cla32
Ca212
C3222

Ch
Co
Cs3
Ch
Co
Cs
Ch
Co
C3

Ci313
Ca323
CU3333
Ci323
Ca333
C3313
C1333
Ca313
C3323

112 Ci213 Cizi1 Ciiiz Ciann Cisie
122 Cozaz Cozar Caizz Cazor Casan
132 C3233 Cs331 C3133 Cs231 C3332
122 Cia23 Ciza1 Ciizz Cizar Cizae
132 Coazz Cazzr Caizz Caazi Casso
112 Cs213 Cs311 C3113 Czz11 Cssi2
132 Ciazz Cizz1 Crizz Chiazr Cisse
112 Co21z Cozir Coniz Crann Cosie
122 Cs223 C3321 Cz123 Cz221 C3322 |

€11
€22
€33
€12
€23
€31
€13
€21
€32

. (3.10)

The indices 2 and 3 are exchanged in every column in compeias@.5). Using the symmetries
and Eq.(3.7) the last three rows can be ignored, which leads t

Cllll

Ca121
C3131
Ciiz1

C'2131
CV3111

Ci212
Ca222
C3232
Ch222
C232
C3212

Ci313
C2323
C3333
C1323
C3a3
C3313

Cii12 + Cian
Ca122 + Ca201
C3132 + C3231
C1122 + Chao1
Ca132 + Caa31
Cs112 + Cs211

Ci213 + Ciz12
C2223 + Co322
C3233 + C3332
C1223 + Cl322
C2233 + Cass2
C3213 + Cs312

Ci311 + Chiis
Caza1 + Co123
C3331 + C3133
Ci321 + Chi23
Ca331 + Co133
Cs311 + Cs113

(3.11)

This idea can be applied to the tensbsT, To M+ M @ I, M@ M, andl@ M + M &1,
and we obtain the following representations:

I®I —

S OO = = =

S OO = = =

S OO = = =

SO OO oo

SO OO oo
OO OO oo

[l el eloNall

[N elolNeol ™
OO O = OO
OO = OO O
O = O OO O

_o O O o O

(3.12)
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_2m11 0 0 2m12 0 2m31
0 2m22 0 277112 2m23 0
0 2m 0 2m 2m
IeoM+MeI™ — 5 2 3 (3.13)
M1z M2 0 my1 + Mao mzy Mg
Mo3 Moy ma3y Moo + M33 M2
| M31 0 msy Ma3 mi ma1 + ma3
m% Mi1Mag  M11M3g3  2MMye  2My1Me3  2my1ms;
miy1mag m%g MoaMgs  2M1aMag  2MggMa3  2MaaMmsy
2 2
myim Moo m 2miom 2Meosm 2masm
M ® M 11733 22133 33 122 33 237133 3171133 (3.14)
mi11Maio Mi12M22 111271133 2m12 2miamas  2miama;
M11Ma3  MaaMa3  Mo3Mzz  2M12Ma3 ngg 2mo3may
M1z MaoM31 M31M33  2MiaMzr 2Mao3zMms3 277?:2»,1
2myy My + Maog My + Mz 2miz 2mas  2ma
my1 + Moo 2may Mog + M3z 2miz 2mao3  2ms;
my +m Moo + M 2m 2m 2m 2m
mio mi9 mi2 0 0 0
mMos mMa3 mMos 0 O O
| msy msq msy 0 0 0 ]
using relations
(B . C)A = (A & B)C, (3.16)
and
ACB" = [A ® B]"™ C, (3.17)

where the symbolicA”> implies the transposition of second and third index, i.e. fo =
aijpe; ¥e;Re,e , We obtaind™: = ipji€; X e; X e, X e;. 1= [I & I]T23 = ikéjlei Ke; ¥
e, ® ey is the fourth order identity tensoA = Z A, elasticity relation (3.57) can be presented by
a fourth order elasticity tens@rconsidering all aformentioned assumptions see, (de B8&L;1
Hartmann, 2003; Itskov, 2007).

In Solid Mechanics, the shear angles

Yi2 = 2€12, Vo3 = 2€923, Y31 = 2€31 (3.18)

are proposed, implying that the product with 2 can be omitkéehce, the last three columns of
matricesC should be multiplied with a factalr/2, which yields that the matrices (3.12) - (3.15)
become symmetric.

3.3 Constitutive Modeling
Chapter 2 introduces balance relations that hold for alenis. On the other hand, constitutive
relations are relations that are specific to a material. @otige equations are mathematical

relations which relate the response or behavior of a speuifiterial subjected to a specific
loading.

20



A path-independent material behavior with large reveesg@formation is called hyperelastic
(Aboudi, 2013; Aboudi et al., 2012; Schréder and Neff, 2008gveral researchers discussed
hyperelastic material in a purely mechanical theory, seeo(ly and Itskov, 2015; Krawietz,
2013). The stress tensors of homogeneous hyperelasticiatatere directly derived from a
strain energy function, (Holzapfel, 2008),

Tr = PR%, (3.19)
o(F, X OU(F, X)\"
T X g g (pa%) | (3.20)

whereTRr is the first Piola-Kirchhoff stress tensor dlids the Cauchy stress tensor, as introduced
in Sec. 2.2. These types of relations are known as consgtatjuations.
An alternative relation gained for the second Piola-Kimaffistress tensor is

06(C) _ u(E) 521)

T =2 —
PR oC PR OE
see (Holzapfel, 2008).
In this thesis, | would like to model and predict the behawbisotropic material, the trans-
verse isotropic and orthotropic laminates. For this ainmstitutive models of isotropy, transver-

sal isotropy and orthotropy are discussed in following.

3.3.1 Isotropy

Isotropic materials behave the same way in every directnmeuan applied load, as these mate-
rials have the same physical properties in every direcfidre hyperelastic material is isotropic
when the strain energy function must satisfy

U(F) =4 (FQT), (3.22)
or the following equation in terms &@
¥(C) = 4(QCQT), (3.23)
must be fulfield for all symmetric tenso§ = F’F and orthogonal tensolQ, (Holzapfel,
2008).
The strain energy function can be expressed in terms of tlagiants
Y(E) = (g, g, ) (3.24)
or
Y(C) =¢(lc, e, llc), (3.25)

where the invariants are defined by

lg =trE, llg=trE? lllg=trE3 (3.26)
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or based on the right Cauchy-Green terisor
lc=trC, llg=trC? Illg=trC>. (3.28)

Thus, the second Piola-Kirchhoff stress tensor is caledlditom the derivative of the strain
energy function with respect i by

~

T = 3.29
PR dE ) ( )
or based on the right Cauchy-Green strain
- db(lc, e, I
T = 2pr vllc, e, llc) (3.30)

0C

Due to the construction of the constitutive model for smtaliss, the Green strain tensBris
considered. Applying the chain rule on Eq.(3.29) yields

T = pr (a_w1+2a_¢E+3 09 E2>.

Olg ol g ol g (3.31)

With regards to small strains, the stresses become efjual, T. Hence, the final stress can be
written for the isotropic part like
T = Algl 4 2urE. (3.32)

Regardindl' = CE, a fourth order elasticity tensor can be expressed by
C=AN®I+2urZ, (3.33)

for more details on this, see (Hartmann, 2003; Haupt, 200@}h the help of Sect. 3.2, it is
possible to write

(TH\ ->\+2IMT A A 0 0 O- (811
TQQ A A + Q/LT A 0 0 0 €922
T33 A A A+ 2,uT 0 0 0 €33
= . 3.34
T 0 0 0 pur 0 0 V12 ( )
T23 0 0 0 0 M 0 Y23
(Is1) [ 0 0 0 0 0 pur| s

In this case A andyur demonstrate the constants depending on the Young’s moduarl the
Poisson’s number by

vE E
A= =—. 3.35
A+v)(1—20) M 72010) (3.35)
“It should be noted that invariants can also be presented as
lc=trC, llg= %[(trC)Q—(trCQ)], Il ¢ = detC = J>. (3.27)
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€3 A

€1
Figure 3.1: Schematic representation of fiber orientatiaihe transversal isotropic material

3.3.2 Transverse Isotropy

The mechanics of fiber-reinforced composites are basedeocoticept of anisotropic materials,
in which the response of the material relies on the fiber doac The most simple anisotropic
material has one preferred direction. These materials @heplysical properties that are sym-
metric about an axis. This type of material is known as trarsw isotropic. This section ad-
dresses the modeling of laminates using one fiber direction.

A considerable amount of studies has been directed toweadsversal isotropic materials.
Linear elasticity is assumed for transverse isotropy |lates, see for example, (Fiolka, 2008;
Spencer, 1971; Weiss et al., 1996b). Other works are, fanpla(Altenbach and Altenbach,
2004; Spencer, 1984). There are also publications focusinidpe aspect of deformations, see
for instance, (Aboudi, 2013; Aboudi et al., 2012; Agarwakét 2006; Gibson, 2011; Parton
and Kudryavtsev, 1993; Reddy, 2003). There is also a newdarapplications of transverse
isotropic, in the field of biomechanics, due to the fact tleatesal soft tissues show anisotropic
behavior, (Itskov and Aksel, 2004; Schroder and Neff, 2@x3yroder et al., 2005; Weiss et al.,
1996a).

Transversal isotropic laminates are characterized byfanpeel direction, see Fig. 3.1. Consti-
tutive equations for transversal isotropy of an elasticanak are modeled using a strain-energy
function depending on the Green strain tensor and a staldensoM = a ® a, wherea (X))
defines the fiber orientation with the propertjes| = 1,

T oY(E, M)

— PR (3.36)

or a strain-energy function can be written based on the fighichy-Green tens@ = F'F as

(3.37)
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Regarding the structural tensbf, some properties have to be mentioned:

M =M" (3.38)
M=M=M3=.., (3.39)
det M = 0, (3.40)
adjM = cof M = 0, (3.41)

whereadj is the adjoint of a tensor field

adj(e) = (det(e))(e) ! = (cof(e))". (3.42)

According to (Itskov, 2007), the strain energy function t&nexpressed as a function of traces
of the following tensors

E, E} E) M, M? M? EM, EM, EM? E*M> (3.43)

tr(E), tr(E?), tr(E®), tr(M), tr(M?), tr(M?), tr(EM), tr(E*M),

tr(EM?), tr(E*M?). (3.44)
Sincea is a unit vector
trM=trla®a)=a-a=1, (3.45)
trM =tr M? = tr M® = 1, (3.46)
tr(EM?) =E-M? = E- M, (3.47)
tr(E*M?) = E* - M? = E* - M, (3.48)

the set of invariants reduce to
lg=trE, llg=trE* Illg=trE* IVg=tr(EM)=E-M,

Vg = tr(E°M) = E? - M. (3.49)

Thus, a set of five invariantg ]l g, lll g, IVg and Vg is required, for more details see also (It-
skov, 2007; Spencer, 1971, 1984). The invariants can benal#en based on the right Cauchy-
Green tensor,

lc=trC, lg=1trC? Illc=1trC? IV¢=tr(CM)=C- M,

Vg = tr(C*M) = C*- M. (3.50)

*Scalar product or dot product is defineddy b = |a||b|cosf whered, is the angle between the vectarsind
b.
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Thus, the second Piola-Kirchhoff stress tensor reads

- do(la e e, Ve,V
T = 2pm Y(lc Cacc C c)’

(3.51)

or based orE

~

T _ pRaw(lE’ ”Eag::EEa IVEa VE)

The invariants of the Green strain and the right Cauchy-Gteasors are connected to each
other, and they can be represented by

: (3.52)

lc=2lg+3, lg=4llg+4lg+3, Ng=8llg+8lg+6lg+3 INg=2Vg+l1,

Ve =4Vg +4IVg + 1, (3.53)
or vice versa

1 1 1 1
le=5(c=3). lp= (lc-2c+3). Mg=_(llc-2lc+lc). Veg= (Vc-1),

1
Ve = (Ve —2Ve +1). (3.54)

Since the constitutive model is formulated for small stsalater on the Green strain tendors
considered. Applying the chain rule on Eq.(3.52) leads to

T = pr <8—¢1+28—¢E+3 0y E* + 04 M+a—w(EM+ME)> . (3.55)

Jdlg ol g ol g OlVEg OVg

We take a strain energy function which quadratically degesdthe strain tensdt

A

Then, T depends linearly on the strain st#gsee (Fiolka, 2008; Spencer, 1984). In the case of
small strains, the stresses become edlial; T, since the stresses have the tendency to become
equal for very small strains. With respect to Eq.(3.52) fih&l stress can be expressed as

The product of density in the reference configuration withrtiaterial parameters is usually not
visible in the final version, so it is abbreviated by,

A= prA,  pr = prpT, pL 4 pRUL, @4 pROG B4 pRO. (3.58)

Thus,
T =CE (3.59)
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whereC can be written as

C=MNI+2urZ+aleM+MI|+ MM +2(ur, — pr) I M +M®1)™3. (3.60)

In the case of transverse isotropy, fibers are directed irdoeetion. For example, the structural
tensor can be expressed using= e; which leads toM = a ® a = e; ® e;. Using matrix

representatiorC can be shown as,

(T}, (A + 200+ 2up +4(pp — pr) + 5 A+« Ada 0
T22 A +« A + QIMT A 0
T33 o A + « A A —+ QIMT 0
T 0 0 0 ML
Ths 0 0 0 0

\Tglj i 0 0 0 0

which can also be seen in the literature as
(Tn\ -011 Ci2 Cho 0 0 0 ] (511
15 Chra Co Oy 0 0 0 €22
Tz | _ Cia Co Cop 0 0 0 €33
Tho 0 0 0 Ce 0 0 V12
Tos 0 0 0 0 <259 0| |73
\ T31 ) L 0 0 0 0 0 066_ \’}/31 )
IfM=a®a=e;,R e,, itreads
(Tn ) -022 Cha Cos 0 0 0 (611
T5 Ci2 Ci1 Cho 0 0 0 €22
Tss\ _ Cos Cia Cp 0 0 0 €33
T 0 0 0 Cg O 0 Y12
Ths 0 0 0 0 Cg 0 V23
(7)) [0 0 0 0 0 2] |4y

andifM:a®a:(%+e_2)®(e_1+

2 2

<), matrixC yields

o O OO

Hr
0

€1
€22
€33
Y12
23

L V31 )
(3.61)

S OO OO

Br |

(3.62)

(3.63)

o O O

0
C23—C92+2C66

C =
[C114+2C12+C0+4Cs6 C11+2C19+C22—4Cs6  C12+Co3 C11—Co 0
4 4 2 4
C1142C124C22—4Ce6  C114+2C124+C2244Cs6  C12+Ca3 C11—Co9 0
4 4 2 4
01245023 01245023 022 0125023 0
C11—Co9 C11—Coo C12—Co3  C11—2C124+Co0 0
4 4 2 4
0 0 0 0 Ca2—C23+2C66
4
C23—C92+2C66
i 0 0 0 0 7
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3.3.3 Orthotropy

The constitutive equations for materials reinforced witlo families of fibers are discussed in
this section. It is possible to construct three structuaasoraVl;, M,, andMs; in three different
directions, including the information of anisotropy. Thasuctural tensors can be represented
as

M;=a®a, M;=b®b, Mz=c®c (3.65)
and the strain energy function is given by
¥(C. My, My, M;) = $(QCQ". QM,Q". QM,Q". QM;Q"), (3.66)

where it must be fulfilled for all symmetric tensotsand orthogonal tensoQ. On the other
hand, the argument tensors are reducible due to the ortmahbasisa, b, andc, see (Schroder,
1996). Considering the orthonormality condition,
3
> (M;C + CM;) = M;,C + MyC + M;C + CM; + CM, + CM; (3.67)
=1

and, accordingly,

3
Z tr(M,;C) = tr(M;C) 4 tr(M2C) + tr(M3C) = tr(C(M; +Mj + Mj)) = tr(CI) = tr C,
=1
tr(M3C) = tr C — tr(M,C) — tr(M;C), (3.69)
the strain energy function depends on
¥ =(C, My, My), (3.70)

see (Holzapfel, 2008; Schroder, 1996; Spencer, 1984). rllowy to (Itskov, 2007), the strain
energy function can be expressed as a function of trace ¢étisors,

E7 E27 E37 Mla M%) M:fa M27 Mga Mga EMla EM27

M,M,, M3M,, E’M,, E°M,, EM3: EM; E*M], EM.. (3.71)
Sincea andb are unit vectors, we have the properties,

trM; =trla®a)=a-a=1 (3.72)

trM; = trM; = trM? =1 (3.73)

trMy =tr(b®b)=b-b=1 (3.74)

tr My = tr M3 = tr M3 = 1 (3.75)

tr(MiM,) = tr(M;M,) = 0 (3.76)

tr(EM]) =E-M: =E- M, (3.77)

tr(EM3) =E-Mj5 = E - M, (3.78)

tr(E*M?) = E2 M: = E*- M, (3.79)

tr(E*M3) = =E?- M, (3.80)
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Figure 3.2: Schematic representation of fiber orientationise orthotropic material

and the set of invariants reduces to
lg=trE, llg=trE* Illg=trE®’ IVg=tr(EM;)=E-M,,
Vg = tr(EM,) = E-M,, Vig = tr(E*M,;) =E*-M,, Vllg=tr(EM,) =E? - Mo,
Vlillg =trMMy) =M, - My = (a®a)- (b®b) = (a-b)’>=0. (3.81)
The invariants can also be expressed based on the right &relen tensor:
lc=trC, llg=trC* llg=trC? IV¢g=tr(CM;)=C-M,,
Vg =tr(CM,) = C-M,, Vig=tr(C*M;)=C*-M,;, Vlig=tr(C*M,) =C? - M,,
Vil g = tr(M;M,) = M, - My = 0. (3.82)

In the following, the model of orthotropy for linear elastycand for a small strain theory will be
introduced. The second Piola-Kirchhoff stress teriBatepends on the Green strain tensor and
the two structural tensors

~ oY(E, M, M)
T = 3.83
PR OE ) ( )
or alternatively, with the right Cauchy-Green tensor
. O (C, M, M)
T=2 . 3.84
PR ble ( )

Using the invariants in Eq.(3.81), and since we are intetest a theory of small displacements,
the most general quadratic form can be obtained for thenséragrgy function which is quadratic
in E, see also (Spencer, 1984). Thdhdepends linearly on the strain stdte

The invariants of the Green strain and the right Cauchy-Gteasor are related, see also
Appendix 8.1,

lc=2lg+3, lg=4llg+4lg+3, Ng=8llg+12lg+6lg+3, INg=2Vg+],
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Ve =4Vg +4IVg +1, Vig=2VIg+1, Vll¢g=4Vllg+4Vlg +1 (3.85)

or vice versa
1 1 1 1
lg = 5(IC—3), g = Z(IIC—2I0+3), g = g(IIIC—:’yllc+3lc—3), Vg = 5(IVC—l),

1 1 1
= Z(VC—QIVC+1), Vig = Q(VIC—l), VIIE:Z(VIIC—QVIC+1). (3.86)
The second Piola-Kirchhoff stress tenddcan be written as

- O(Ig, g, g, Vg, Vi, Vig, VI g)

Ve

T = 3.87
PR 8E ) ( )
or the strain-energy function can be written based on rightdDy-Green tensdr as
- m lc,lle, ¢, IVe,Ve, Vg, VI
T: 2pRa,l/}< C,1C, C, C, VC, C, C>. (388)

oC
We draw on the formulation using the Green strain tefsdor orthotropy materials, because
we are again interested in formulating a constitutive méaletmall strains. Applying the chain
rule on Eq.(3.87) yields, see also Appendix 8.2,

P g (201900 b g, 00 0
T = <8IEI+26)IIEE+38IIIEE aIVEM1+—8V (EM; + M E)+

B O
aVIEM 2+ aV”E(E1\42+1\42E)>. (3.89)

Since we are interested in small strain theory, the stragmggnfunction must depend quadrati-
cally on the strain tensor

A
Y(E, M, M,) = E(trE)Q +putrE* + (E-M; + aoE - M) trE + 2p,E* - M+

2415 F? - M, + %ﬁl(E “M;)? + %ﬁQ(E -M,)? + B3(E - M)(E - M), (3.90)

alternatively, this reads
A, 1 2

1
+ 5ﬁzw?E + BsIVEVIg. (3.91)
The strain energy function can also be expressed in terrasast

%oc —3)2 + %”(lvC ~1)(Vlg —1) + %(nc — 2l +3)

+ (%(IVC — 1)+ %(wc - 1)>(|C —3)+ %(vC — Ve + 1)

581 (Vg —1)°+ %(wc —1)% (3.92)

P(C, My, M) =

‘; (Vllg —2Vig + 1) +
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The final stress states using Eq.(3.87) can be obtained lyiagphe derivative in Eq.(3.89)
T = pr ((AIE + a1V + apVIg)l + 2uE + (a1l + SilVE + B3VIE) M,

+ 241 (EM; + ML E) + 215(EMy + MuE) + (azlg + G2 Vig + 53|VE)M2> . (3.93)

The relation can be expressed by the fourth order elastemitsorC
T =CE (3.94)
with
C:AI®I+a1[I®M1+M1®I] +a2[I®M2+M2®I] +2uT + HM; ® My

Tos Tos
B M @M+ s | M G M+ M@ M, | 42701 [T0My My @1 4240 [ToMa+ M|
(3.95)
see also Appendix 8.3.

Using theVoigt-notation, which is discussed in Sect. 3.2, Eq.(3.94) caexipeessed in matrix
notation:

4 Tll 3\ 4 611 3\
T5 €22
133 €33
=C . 3.96
T Y12 ( )
153 Y23
(131 (V31 )

If a = e; andb = e,, C can for this case be represented using Eq.(3.95) as

_A—|-2041—|—61—|—2,LL—|—4ILL1 A+ a;+ay+ F3 A+ 0 0 0
A—'—Ozl—FOéQ—l-ﬁ:; A+2a2+62+2u+4,u2 A+042 0 0 0
A —+ A + Qo A + 2,u 0 0 0
0 0 0 W+ 2 0 0
0 0 0 0 W+ 0
i 0 0 0 0 0 M 1 A e |
(3.97)
Using Eq.(3.96) and Eq.(3.97), EqQ.(3.94) can be expressed a
(1) [C1y Cipy Ciy 0 0 01 (eun
T Cia Cyp Cy 0 0 0 €22
133 Cig Cy3 C3 0 0 0 €33
T |0 0 0 Cu 0 O M (3.98)
Tas3 0 0 0 0 Cs 0 V23
(131 ) 00 0 0 0 Ce \31)
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The relation between the invariants of EQ.(3.97) and Eg8)3can be written as

p1 = Co6 — Cua (3.99)
po = Ce — Css (3.100)
p = Css + Cyy — Ceg (3.101)
A = Cs3 4+ 2(Co6 — Cag — Cs5) (3.102)
a; = Ci3 — C33 — 2(Cge — Cyy — Css) (3.103)
ay = Cy3 — O3 — 2(Cyg — Cyq — Css) (3.104)
pr = Ci1 + Cs3 —4C55 — 203 (3.105)
B2 = Caa + C33 — 4Cy — 203 (3.106)
f3 = Cig — C13 — Coz + Cs3 + 2(Co — Caa — Css) (3.107)

The elasticity stiffness matrix which is presented in EQ{3 can also be obtained using elastic
constants such as Poisson’s ratio, Young's modulus, arat shedulus. For this aim, we reverse
Eq.(3.94) to

E = ST, (3.108)
Sis called the compliance matrix, aflis equal toS™. Eq.(3.108) leads to
(511 ) -511 Sz Siz 0 0 0] (Tn
€22 Sia Saa Saz 0 0 0 Ty
€33 | Sig Saz Szz 0 0 0 T33
e T 0 0 Su o0 0| )Tu( (3.109)
V23 0 0 0 0 S5 0 Ths
L V31 ) | 0 0 0 0 0 566_ (731 )

where the relation between elastic coefficients of Eq.(3298 Eq.(3.109) can be shown as

o 52253; 5% Sud . SuSn o _ S . SuSe 3110
o 533513— %o 511522 S, _ SnSs . S
Cus =4 Crs = o Cos =4
ith
" S = 511599533 — 511533 — 5225123 — 5333%2 + 2512593513, (3.111)

see (Reddy, 2003).
The extensional straiaﬁ) in the material coordinate directien due to the stres$;; in the
same direction i%, whereFE; represents the Young’s modulus of the materiad imlirection.

The extensional straien(ﬁ) due to the stres$,, in the same direction, is —T%Zm, wherevsy; is
the Poisson ratio -
Vo1 = —g (3112)

€22
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and E, represents the Young’s modulus of the materia.ilirection, see (Reddy, 2003). Sim-
ilarly, T33 generates a strahﬁ) equal to—%’fl, whereE; represents the Young’s modulus of
the material ire; direction. The total strain;; due to the stresses in all directions is

T Thov Tsav
1 2 3 11 22021 33731
e =l + e 4 = S e (3.113)
and similarly foreq,
Tivie  Toy  T33vs
- -2 3.114
€22 7, + 7, B, ( )
and foress
Ty Taorny 133
= — — —, 3.115
€33 B E, 5 ( )
Regarding the shear behavior for orthotropic materiagllbtvs that
T T T
12 23 31 (3116)

T2 = G—12’ Y23 = G—237 Y31 = G—Bl’

whereGs, Go3, andGs; are shear moduli in three different directions. Thus, Eqd3) can be
reformulated as

(&1 E% _Vé_zl _% 8 8 8 (T}
vi2 V32
€22 T By Esy T Es T5
el |- = L 0 0 0 |]m, 3.117)
e | 0 0 0 s 0 0 Ty [ '
€93 0 0 0 0 ﬁ 0 To3
(€31 0 0 0 0 0 g=| s
which can be written as
r M1 V21 V31 1 »
€11 ) Ei B2 _Eis 0 0 0 T
€22 _%2 EL2 _;/Ei; 0 0 0 T5
€33 o —% —VELQS E_3 0 0 0 T33
Y12 o O O O GLQ 0 0 T12 ’ (3118)
Yo3 0 0 0 0 G%s 0 T3
L 731 0 0 0 0 0 G%,l (1531

In EQ.(3.98), matribxC is a symmetric matrix and the inverse of a symmetric matrsyrametric.
Hence,S™! (inverse ofC) in Eq.(3.118) is also symmetric. The matBx ' implies that

V21 V12 V31 13 V32 Va3 (3 1 19)

BB B B BB
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Finally, comparing Eq.(3.118) and Eq.(3.109), it follows

1 v v
Sll - Fa SIQ - _ﬁa 513 - _ﬁa (3120)
1 1 1
1 v 1
322_§7 323__§7 533_57
2 2 3
1 1 1
Spp = — Sy = — Ses = —

Consequently, elastic coefficients of Eq.(3.98) for an atribpic material are represented by
9 independent material coefficients in Eq.(3.109) which can e expressed by Eq.(3.118).
Working with engineering constants has advantages, smgehiave physical meanings. For this
reason, in the next chapter, we will identify the parametisiag Eq.(3.118) which leads us to
calculate the parameters in Eq.(3.109) and subsequesetjyatameters in Eq.(3.98).

To this end, alternative expressions of the componentseoélfisticity matrixC, can be ex-
pressed using the parameter sets,

Ksp = {Aa041>Oé27M>M17M2751752753}7 (3121)
Kc = {Cn, Clz, 0137 0227 0237 0337 044, 055, C66}7 (3-122)
ks = {E1, By, E3, 119, V13, V33, G1a, Gag, G} (3.123)

Alternative expressions of the componeatsbased ornks components are

1 _ <V23 )2 v13V23 vi2 vi12V23 Vi3

_ EqFE3 Ey _ BBy E1E3 _ E1Ey E1Eo
Cll — ) 012 — ) 013 - ) (3124)
w w w
Es m)Q 1 (m)Q Vigv13 | V23
o E1 1 E2E1 E1 E% E2E1
022 - ) 033 - ) 023 - )
w w w
C(44 = G237 C(55 - G137 C(66 - G127
with
_ Mislia L 193 L 13

V12 V129 V1293013 (3 125)

E? 5% 5% B E°Ey
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Another possibility is to represent componentsgf usingxs by

p1 = Gia — Gag (3.126)
Ho = G2 — Gi3
=Gz + Gaz — G
1 _ (m)Q
A = L2212\ " L2 + 2(G12 — G23 — Glg)
VioV23 + V13 1 (m)Q
oy = Al b _ b e 2(G12 — Gz — Gls)
w w
V1213 + V23 1 (v12)\2
oy = E% FoFq _ ExE (El) . 2(G12 . G23 . Glg)
w w
1 v 2 1 v 2 | 201% v
61 _ E2Fs ;(EL;) + EyEy ;(ﬁ) o 4G13 _9 éibg;: E1lf%2
E V132 1 V12 \2 V12113 V23
g— B @) BRG] . R TEa
w w w
V13V v 1201% v vi2v13 v23 1 v 2
b3 = ézEQf: EI%?’ — EliEQ;: Ellg2 _ P : P2l + £25 ;(ﬁ) +2(G1a — Gog — G13)
(3.127)
with
_ stz i(@ 2 i Yizvo V12 V2.9 V12123013 (3 128)
Ei” Ei " E, Ey" E Es Ey EfEQ ’ '
It is also possible to represent componentg&tith the help ofkc by
C2, — CyC C! r
S = — BB g, 2 F . (3129
O30 — 2C12C13C23 + CF,Cs3 —C1305 + C1209
Cio4T C12(Ca3+T")
313 _ 1 - *01302122+012023 'y = Cl?’(_l + *01;2022%3012023)
Ci3 ’ C13C5 — C120%3 ’
C12(Caz+T) 2 C12(Ca3+T)
. Cro(=1+ —rtrones) Gy — Ch(—1+ 6 ones)
C13C% — C120%3 ’ C13(C13022 - 012023) ’
1 1 1
S = A S = =, S = -,
44 Cut 55 Ces 66 Cos
with

— CHOy — 2015C13C3 + C%Cs3°
For orthotropic materials, there are constraints amongiergng constants which should be

considered. If only one normal stress is applied at a timeegtiresponding strain is determined

by the diagonal elements of the compliance matrix, (Jor#8)L Hence, these elements can not
be negative which yields to

S11, S22, 533, Saa, Ss5, S66 > 0, (3.131)
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and in terms of engineering constant
E17E27E37G237G317G12 > 0. (3132)

Likewise, considering the stress alone, the work is deteeohby the diagonal elements of the
stiffness matrix where these elements should be positee, i

Ch1, Ca, Cs3, Cuy, Cs5, Ce > 0, (3.133)

and
1-— Vo3ls3g > 0, 1-— V13V31 > 0, 1 — o191 > 0, (3134)

see also (Jones, 1998). Moreover, using Eq.(3.133) an8.EqQ), it is possible to write,

| Soz |< v/ S22533, | S13 1< v/ S11533, | S12 |< v/ S11520. (3.135)

Using Eq.(3.135), Eq.(3.120), and Eq.(3.119), they carebmmulated as
| vo1 [< N E2/Ey, | vse |[<E3/Es, |13 |</Ei/Es,
| V19 |< \/El/EQ, ‘ Vo3 |< \/EQ/Eg, ‘ V31 ‘< \/Eg/El. (3136)

35






4 Experiments and Material Parameter
|dentification

Experiments are an essential part of every scientific disesince they provide necessary in-
formation regarding the behavior of a material. The presiobapter served to introduce the
material models for isotropic, transverse isotropic, arttiairopic materials. In this chapter,
we concentrate on detailed descriptions of different erpemts designed for material parameter
identification purposes.

4.1 Experimental Investigation

In this work, different tests are performed to obtain theeriat parameters of isotropy, transver-
sal isotropy, and orthotropy. First, the production preagfithe specimens is explained. Second,
specimens for isotropy, transversal isotropy, and ortipgtifor the purpose of determining the
parameters of the models are introduced. Moreover, thelslefathe chosen experiments are
discussed. Then, the identification procedure of isotrspgsversal isotropy, and orthotropy are
explained in detail.

4.1.1 Glass-Fiber Material

There are different types of fibers that can be used to profibeereinforcement composites.
It is very common to use E-glass fibers as a reinforcementriabite composites, since E-glass
fiber is cost-effective and, hence, a very economical retefiment fiber. The samples used in
this work are made of E-glass fibers from HP-Textiles GmbHcdkding to the manufacturer,

the Young’s modulug is 73 000 N mm~?2 and the Poisson’s ratiois 0.22.

4.1.2 Vacuum Assisted Resin Infusion (VARI)

All glass fiber reinforced specimens are made using a VARtgsse at the Institute for Polymer
Materials and Plastics Engineering (PuK) at Clausthal esivy of Technology. It should be

mentioned that VARI is a well-accepted technique for the ufiacturing of composites. This

method is discussed and utilized in many works, see for mesta(Goren and Atas, 2008; Li

et al., 2004; Poodts et al., 2013; Van Oosterom et al., 20b&@ng et al., 2014). Samples are
manufactured using resin RIMR135 with a curing agent RIM68,3and a weight ratio of 10:3

is needed between the resin and curing agent.
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The VARI process requires a setup as shown in Fig. 4.1(a)ttemdetup is prepared in the
following steps. In the first step, a qualitatively good m@daequired for vacuum infusion. In
addition, the mold should be rigid and properly cleanedhéndecond step, the fiber plies are put
under a vacuum bag using tacky tape. The bag should be tigligérbut still allow space for
all the materials, including networks of tubing. Infusioagathat is too large or too small could
lead to an improper infusion. Once all the components aneémagg are in place, the vacuum
pump should be attached. Since resin is infused throughwaquessure, it is beneficial to have
a strong pump. Before starting the infusion process, it essary to check the setup in order
to avoid possible leakage. In the third step, bubbles mightioafter mixing resin RIMR135
with the curing agent RIMH1366. Thus, the bubbles can beietted by putting the mixture
into a vacuum situation so that the bubbles are sucked caifige 4.2. Two tubes can be seen

(a) VARI set-up (b) Compression machine

Figure 4.1: Production steps in VARI process

in Fig. 4.1(a). The resin flows through the inlet tube due ®Ildck of of air generated by the
outlet tube. Then, the glass fiber plies are placed under auvadag. The resin should be
sucked through the tube into the laminate quickly. It takeghde for the resin to cover all the
areas under the vacuum bag, depending on the size of fiber pdie in Fig. 4.3. After the resin
reaches the outlet tube, the setup is placed in a compresgohine for one hour witB0 °C,
see Fig. 4.1(b). One of the main reasons for using a compresschine is to ensure a constant
thickness throughout the plate. In the next step, the sstpfaced in an oven for 10 hours with
80 °C to complete the curing process. After the curing processitting machine is used to cut
the plates to the desired dimensions for the samples.

4.1.3 Testing Procedure and Experimental Setup

After the described production process, the samples ady feathe mechanical tests. All tests
(except for the compression tests) are performed with ategting machine Z100, which has a
force gauge load maximum @b kN at the Institute of Applied Mechanics, Clausthal Universit
of Technology, see Fig. 4.4(b). The tests are repeated fivestiat room temperature, and the
surface displacements are observed by means of a 3D-digiégle correlation system (DIC-
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Figure 4.2: Resin in a vacuum atmosphere before startingpthgion process

Figure 4.3: Flow process of the resin through the fiber plies
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(a) Observing the surface of the (b) Zwick testing machine (2)0)
sample using a DIC-system

Figure 4.4: Experimental setup

system), see Fig. 4.4(a). Here, we use the software Arantiieafompany GOM, Braunschweig
(Germany), see (GOM, 2011), to calculate the surface defboms. For this purpose, a white
background is painted on the surface of the samples using DORLOR AQUA spray paint,
produced by MOTIP DUPLI GmbH, HalRmersheim (Germany). Intamid a black spray paint
(DUPLI-COLOR Deco Matt, from the same company) is used tdyathye desired pattern to the
white background, see Fig. 4.5(a). The cameras are posttiatith respect to the samples by a
calibration process, and the images are recorded with adrexy ofl Hz for each test. In each
test, the detected forces in the testing machine’s forcg@ate recorded.

Since rigid body motions are observed, one challenge of xperaments is to evaluate the
displacements of the specimens. In order to compensateagidebody movement, two rulers
are adapted directly at the clamping system so that theyisitdesin the pictures. Using a DIC-
program, we were then able to compensate the rigid body mentsmOne ruler is attached to
the upper clamp in the Zwick machine, where the displacersientild be equal to zero. The
second ruler is fixed to the lower clamp, where the displaceénseapplied to the machine, see
Fig. 4.5(a). The rigid body motion is compensated and mingaiby determining the displace-
ment of both rulers.

4.1.4 Pure Resin Samples

One set of samples are dog-bone specimens manufacturgoresin RIMR135 with the curing
agent RIMH1366, see Fig. 4.6 and Fig. 4.7(a), and they aréyoex according to the German
standard (DIN EN ISO 527-2, 1996). The tests for pure resmpsas are accomplished with
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ruler1

specimen
DIC-pattern
ruler2
(a) Experimental setup in tensile test (with rulers) (b) Shear tool

Figure 4.5: Experimental tools for tensile and shear tests

— |oad direction

dog-bone sample

Figure 4.6: Reinforced composite specimens withf (90°, 0°) fiber orientation and dog-bone
sample
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(a) Dog-bone specimens for pure epoxy (thicknéss (b) Reinforced composite sampleg & 0°: thickness

4.1+0.1 mm, widthsw; = 10.18 £ 0.27mm andws = d = 2.55 + 0.15mm, widthw = 15.7 + 0.3 mm; v =

20.09 + 0.33 mm) 45°: thicknessd = 2.55 £+ 0.05 mm, widthw = 25.4 +
0.1 mm; v = 90°: thickness! = 2.65 4 0.05 mm, width
w = 25.1+ 0.3 mm)

Figure 4.7: Geometry of the dog-bone samples and reinfocoetposite with0°, 45° and 90°
fiber orientation (innm) (Hartmann and Kheiri Marghzar, 2018)

a displacement-rate control ©f65 mm/min. With the help of rulers and by means of digital
image correlation system, the displacement is measurecier ¢o compensate the rigid body
movement. In addition, the force is obtained using the Zvdekice. The force-displacement
diagram in the linear region for pure resin samples is showkid. 4.8(a).

4.1.5 Specimens with Unidirectional Fiber Orientation

Specimens witlh°, 45°, and90° fiber orientation using VARI process are produced, seeZ&).
The dimensions of the specimens are chosen according to ENNSO 527-5, 2009), see
Fig. 4.7(b). Here, the angle = arccos(a - e1) is presented, where is the fiber direction

in each specimen. For instanee~= 0° means that the fibers are parallel to the load direction,
see Fig. 4.6. The specimens have a volume fraction of 55%.

Tensile Tests

Tensile tests are one of the most common tests in mechanatatials testing. We carry out this
test for specimens with°, 45°, and90° fiber orientation. Tensile tests for glass fiber reinforced
specimens are accomplished at a displacement ret2®fom /min using the Zwick machine.
The displacement is applied é direction using the Zwick machine. Moreover, the DIC-syste
is used to observe the surface deformation of the samplezydhe tensile experiments. The ax-
ial strain distribution of the tensile specimen is showniigp B.9. Force-displacement curves for
samples witht5° and90° are obtained, see Fig. 4.8(b) and Fig. 4.8(c). Furtherpribeeforce-
displacement curves for specimens withfiber orientation are shown in Fig. 4.8(d). Similar to
the resin samples, the displacements are determined Ungnglers in order to compensate the
rigid body movement. In addition, the force is obtained gsarZwick force gauge.

Shear Tests

The shear behavior is examined using a three-rail shearsess{ASTM D4255/D4255M-15a,
2002). In these experiments, the middle rail is fixed to theenglamp of the testing machine,
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Figure 4.8: Force-displacement curves for uni-directioesasile tests
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Figure 4.9: DIC-information of axial strairs;

while the load is applied to the outer rails and transfercetivb symmetric regions of the sam-
ples. The displacements of the outer rails with respectediked central rail generate a shear
deformation in the samples, see (Sguazzo and Hartmann).20h#® specimens are fixed in
the rails by nine bolts, see Fig. 4.5(b). A torque wrench itbrque value of5 N m is used to
tighten the bolts. Due to the limitation of the visible ardaen using a DIC-system, only one side
of the specimen is monitored. Four experiments are cartugdvith the displacement-rate con-
trol 0.75 mm/min. Again, two rulers serve to measure the displacements ohtheng and the
fixed rails, in order to eliminate rigid body motions. The @insions and details of the samples
are shown in Fig. 4.10(a). The resulting force-displacamarves can be seen in Fig. 4.10(b).

4.1.6 Specimens with Two Fiber Orientations

In this section, the research is extended to the orthotrcgse where we have two orthogonal
fiber directions.

Tensile Tests

In the case of two orthogonal fiber orientations, the spexsiteve)® (e; direction) and90°

(e, direction) fiber orientations and the geometry of the sasfuetensile tests can be seen in
Fig. 4.11(a). The samples hagdayers and the volume fraction of the specimen&i&. The
tests for orthotropic glass fiber reinforced specimens arged out at a displacement-rate of
2.25mm/min as the force is applied ia; direction, see Fig. 4.11(a). Again, the DIC-system
is used to observe the surface deformation of the samplésgdilne tensile tests. Additionally,
force-displacement curves are obtained, see Fig. 4.11(b).
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Figure 4.10: Unidirectional samples for shear test and rexygatal force-displacement response
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Figure 4.11: Sample with two fiber directions for tensilettesd experimental force-
displacement response
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Shear Tests

In the orthotropic case, one aspect of shear mode is inastigising the three-rail shear test.
The three-rail shear tests are carried out similarly to thesversal isotropy case in Sect. 4.1.5
where the center rail is fixed to the upper clamp and the disph&nt is applied to the outer rails.
The geometry of specimens can be seen in Fig. 4.12(a). Agaorque wrench with a torque
value of15 N m is used to tighten the bolts. Furthermore, the experimestsaried out with a
displacement-rate control 6f75 mm/min. Fig. 4.12(b) shows the force-displacement curve.

500

400

300 / /
- e dyea g 0 - | 200 /
T /4

i ) . 100 Sample 1

real shear sample

force inN

Sample 2
. Sample 3
clamping area e Sample 4
A 0 Sample 5
— } 0 0.005 0.01
30 5 30 5 30 displacement imnm
20k

(a) Reinforced orthotropic composite samples with fiber  (b) Force-displacement diagram for shear test
directiona = e; andb = e, (thicknessd = 2.65 +
0.15 mm, widthw = 25.65 + 0.15 mm)

Figure 4.12: Sample with two fiber directions for shear teatsdl experimental force-
displacement response

Lap Shear Tests

Lap shear tests including single lap and double lap shety &8 commonly used in adhesive
testing. In this work, lap shear tests are used to examinehkar behavior in the in-plane
direction. The experiments are carried out with a displaa@rnate control ofl.27 mm/min
according to (ASTM D1002-05, 1999), see Fig. 4.13(a) and #i@§3(b). The displacement
applied ine, direction using a Zwick testing machine, see Fig. 4.14. bhitaah, the displacement
in e, direction is also obtained using the Zwick device. The geoyrd the samples can be seen
in Fig. 4.14(a). The steel grade S235JR was used to prodasathples.

Since we are interested in the displacement of specimehgioantral part, see Fig. 4.14(a),
specimen with a given shape, see Fig. 4.14(b), is neededilboata the displacement of the ma-
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Figure 4.13: Lap shear test setup
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Figure 4.14: Geometry of lap shear test samples
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chine and other parts of the samples. This can be done baskd ¥oung's modulus of S235JR,
which is E = 210 GPa, and the obtained force from the Zwick machine. For thipgse, by
considering the force from the Zwick device and having thendgs modulus of S235JR, the
displacement of the sample in Fig. 4.14(b) can be calculd&atdher, we obtain a displacement
from the Zwick device. The difference between the obtainsgldcement from the Zwick ma-
chine and the calculated displacement is considered asdabagly movement. The lap shear
test are also repeated five times, and Fig. 4.15 shows the-fisplacement diagrams in linear
region. It should be also mentioned that, since the samesfdrerused in both directions, the
shear behavior in the in-plane direction in bethande, orientation is the same.

1000
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4

400

force inN

Sample 1
200 Sample 2
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Sample 5

0 0.001 0.002
displacement imnm

Figure 4.15: Force-displacement curves for lap shear tests

Compression Tests

A compression test is also needed to obtain other materrahpeters. Compression tests are
performed at the Institute of Metallurgy (IMET) at Claudtbiaiversity of Technology. A Zwick
compression testing machine is used for the experiments.eXperiments are carried out with
a displacement-rate @3 mm/min. The geometry of the samples are shown in Fig. 4.17(a).
In this test, the axial force applied on the upper surfacenefdgample ire; direction and the
side forces are fixed as the side forcegirande, directions are measured by the compression
tool. Furthermore, the displacementdn direction is obtained by the testing machine. In or-
der to compensate the rigid body movement, we performeddimpression experiment without
any sample. In this case, we expect to obtain no displacemendal direction though a dis-
placement due to the elongation of the machine is observéa displacement is considered
as the rigid body movement. It should also be mentioned tbeses are observed during the
compression test. The lateral stress for each sample caebearsFig. 4.18(a) and Fig. 4.18(b).
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(a) Compression tool (b) Compression set up

Figure 4.16: Compression test

(a) Sketch of samples for compression test (width= (b) Sample for compression test
wo = 12.06 £ 0.01mm, thicknesg = 2.51 + 0.04mm)

Figure 4.17: Compression test
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Although a larger dispersion in lateral stresses can berobdeén Fig. 4.18(a) in comparison to
the Fig. 4.18(b), the mean values of the stresses in botlreBare very close to each other. Since
the same fibers are used in both directions, it is expectéththaide forces will be equal. On the
other hand, due to the imperfections in the generated sanapl& in the compression tool and
friction during the tests, there is a small deviation betwte lateral stresses. The axial stress
of each experiment can be seen in Fig. 4.18(c).

4.2 Material Parameter Identification

This section focuses on a concept to determine the matenahyeters of the constitutive mod-
els presented in Chapter 3. The parameter identificatiobl@mois a challenging issue in the
theory of materials. The aim of material parameter idemtiion is to find suitable parameters
for models calibrated to experimental data. Parametettifastion using constitutive models
is often discussed by researchers when considering horaogs@and inhomogeneous deforma-
tions. Regarding the theory and concept of material paranmntification, works of (Beck and
Arnold, 1977; Draper and Smith, 1998; Mahnken, 1998) can bationed. There are several
optimization methods that can be applied in the scope oftifilgation problem. For the linear
least-square problem, this is discussed in (Hartmann, 20D for the case of hyperelasticity.
The main procedure to calculate the material parametemsiscobon combining the least-square
method (which is explained in following section) using tirawation which is carried out based
on finite elements, the data from a digital image correlapstem, and the force data of the
testing machine. This approach follows the works of (Andrest al., 1996; Mahnken and Stein,
1996).

In this section, a parameter identification procedure istlesd. Second, the two parameters
for pure resin will be identified. Third, according to Eg8), five parameters are determined
for transversal isotropy. In the next step, nine parameteralibrated to the experimental data
for EQ.(3.95), i.e. the orthotropic case.

4.3 ldentification Procedure

The aim of material parameter identification is to obtairapagters for a model which is cali-
brated to experimental results. The parameters of the rabteodels in the cases of isotropy,
transversal isotropy, and orthotropy have to be identifieah identification procedure using ex-
perimental observations. A least-square approach is ohosebtain the parameters. For this
purpose, the residua(x) = s(k) — d between the modal(k) € R™ and the measured data
d € R™ is defined. This is given by

s! d!
, 4.1)
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wheres* andd” represent thé-th simulation and experiment. Furthermorg,, corresponds

to the number of experiments ang shows the overall data points used in identification. The
parameters € R"~ of the material model have to be identified in the identifmatprocedure.
For this purpose, the residual

nd

1 1 1 .
J(r) = SIr WP = SR (k) = 5 Y (si(w) = d)* = min (42)
i=1
under the inequality constraints
KEminj < Kj < Kmaxs J=1...,n. (4.3)

has to be minimized, while each of the material parametesslmavithin the specified inter-
val. One of the main questions is what experiments are redua determine hopefully unique
material parameters for each model.

The fundamental approach to determine the material paeamist based on combining the
least-square method discussed above, where the simuisitarried out by means of finite ele-
ments and information from the experiments is determinebldily the full-field strain data with
the help of a digital image correlation system and the foroenfZwick testing machine. This
approach can be seen in, for example, (Andresen et al., B39&dix et al., 1998; Cooreman
et al., 2007; Kreissig et al., 2001), and the minimum probiegiven by

df (k)

P =J"(k"){s(k*)—d} =0, (4.4)

K=K*

with the Jacobian
J(k) :=dr(k)/dk = ds(k)/ dk, (4.5)

whereJ € R"*™< The result from the optimizer is represented A5y In the optimization
process and under consideration, the simulation data sfigaeby, see also (Hartmann et al.,
2020),

g(u(k),k) =0, (4.6)

with B
g(u(k),k) :=K(k)u(k) +K(k)u —p. 4.7)

K andK are parts of the total finite element stiffness mattixshows the unknown nodal dis-
placementsy are prescribed nodal displacements, prtie given equivalent nodal forces. Us-
ing the result of the finite element simulationthe unknown nodal forces

p(k) =K (k)u(k)+K(k)T (4.8)

can be calculated. The model fx) and the data ofl have to be defined in order to deter-
mine the Jacobian. The Matlab tdad gnonl i n. mis used for this, see (Hartmann and Gilbert,
2018; Hartmann et al., 2018) for further information. Relyag the identification procedure,

for finite element computations, points of the strains a@yaed at Gauss-points. Concerning
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the curvilinear surfaces in finite element simulations axgeeiments with DIC-system, strain or
displacement computation has to be provided. For a bettiratanding of the concept and the
method to obtain these quantities, see (Hartmann and Rai@018; Hartmann and Sguazzo,
2015). Coordinates of each point can be obtained for everg sitep for a DIC-system and fi-
nite element simulations. Furthermore, triangulationrapph is used for both sets of data, see
(Shewchuk, 2002) for further details. Triangulation isdise project the displacement informa-
tion of finite element simulation onto the DIC-data. Furtreercurvilinear surface approach is
used for the strain calculation, see (Hartmann and Rodzid2(®18).

In the linear least-square problem, we haye) = Ax with A € R"*"~ j.e. the simulation
depends linearly on the parameters and the goal functiais liea

flr) = LAk —d[? = L (TATAR - 267ATd +dTd) o min (@9)

The necessary conditions of a minimum in Eq.(4.2) can beutatked by applying the Gateaux-
derivative

T N
Df(n)[h]:%f(nJr)\h)‘A:O: {%} h :;%hk:o, (4.10)
i.e. we have
%E:’) - 0 (4.11)
at the minimumk*. In the linear least-square problem, this leads to
D f(k)[n] =h"AT{Ak —d} =hT{[ATA]k —ATd} =0, (4.12)
e

i.e. for arbitrary direction#, the system of linear equations
ATA]k =A"d, (4.13)

has to hold, wheréd = J(k*), see (Beck and Arnold, 1977; Hartmann and Gilbert, 2018;dcaw
and Hanson, 1995), for example.

Confidence Interval

Measuring the quality of identification results is a mattemberest. There exist measures for
the quality of an optimization such as the confidence intetlia correlation coefficient, or the
coefficient of determination. Considering a linearizatimer the identified parametess

r(k)=r(k")+JI(K){k—K"}, (4.14)

with the Jacobian a¥(x) := dr (k)/ dk = ds(k)/ dk. The covariance matriR can be repre-
sented using the Jacobian and standard deviatiefy age (Brandt, 1998),

—1

P=3s*[3"(k")I(K")] , (4.15)
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where the standard deviation is given by

1
2 T * *
s° = - u (K)r(Kk"). (4.16)
There is also another approach to approximate the objéctnation by a quadratic function
oy ey o JAFRT Ly [€F()
f(r) = f(r") + { I } ) *An+ 2Af~c e || AR, (4.17)
Ak = k — k*, where the covariance matrix yields
P = SQHil(K‘,*), (418)

with the Hessian

- 1) 1] _ (55 (0 D] e

df(k)/dk is called sensitivity, see (Hartmann and Gilbert, 2018)e Thnfidence interval is
calculated by, see (Brandt, 1998),
Keonf = K = Ak (4.20)
with
AK,i =\ Pii7 1= 17...,nd. (421)

Correlation Matrix

The correlation coefficient can be computed as
Pi'

Cij = )
T /PPy
and describes the dependence of two parameteasid ~;, see (Tarantola, 2005). The corre-
lation coefficient can vary from-1 to 1. Value 1 represents a total correlation, and value
means an inverse of total correlation. In addition, valshows no dependence or correlation of
parameters.

(4.22)

Coefficient of Determination

Commonly, theR?-value specifies how well the model fits to the experimenttd,da

nd

> (di =)

— o 1 X
RP=1-2"  withd= n—dZdi. (4.23)
=1

nd

> (di—dy

=1
R? can vary betweef and1. If R? ~ 1, it shows that model matches the experimental data very
well.
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4.4 I|dentification using Pure Resin Sample

The surface information of the dog-bone specimens in Fi9'4are observed using a DIC-
system during each test after compensating rigid body mewenThe coordinates of all points
at each point in each time-step are acquired, see the maxipnmeipal strains in Fig. 4.19
for example. The surface strain distribution is used, asl figpdy motions occurring in the

000000000
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m

Figure 4.19: Maximum principal strain distribution for arpuesin sample

experiments are compensated. The maximum and minimumipairgtrains from all the five
experiments plus the forcds(t) in Fig. 4.8(a) are needed to identify Young’s modulisnd
Poisson’s ratiar. The strains from 25 points in-direction and 12 points ip-direction along
with reaction forces of 40 time steps of each experiment htailwed. This information is used
to identify the material parametefsandv. The results of the material parameter identification
process regarding Young’s modulésand Poisson’s ratio can be seen in Tab. 4.1, where the

Table 4.1: Identified parameters of the resin material

parameter dimension resin  glass fiber

E Nmm~—2 1971.42 73000
v — 0.39 0.22

material parameters of the glass fiber material are listedrding to the manufacturer. The
result of the force-displacement curve from the identif@aprocedure is shown in Fig. 4.20(a).
The simulation curve has a good prediction as it is withingkeerimental range. A more exact
comparison can be provided since the strains can be cadwatach point of DIC-system. The
finite element simulation and the final result of comparisan be seen in Fig. 4.20(b), where a
specific area is examined using a DIC-system.

“Figures 4.19-4.24 are taken from (Hartmann et al., 2020MmdRose Rogin Gilbert generated these results.
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Figure 4.20: Result of material parameter identification gare matrix material, (Hartmann
et al., 2020)

4.5 Identification of Unidirectional Composites

The aspect of transversal isotropy in this regard is alscudised in (Christensen, 2005). Differ-
ent experiments are needed to obtain the material parasnétere, it is assumed that we have a
homogeneous deformation. The details are discussed ioltbe/ing.

4.5.1 Compression Test

Compression test is needed for obtaining parametes this parameter can not be obtained from
tensile tests or shear tests. Tensile tests with 0°,90° do not provide enough information to
obtain all parameters. Thus, a compression test is needed;ig. 4.21. Due to the lack of a
measuring device for this test in the beginning, a numetieat” is used to obtain paramet&iin
Eq.(4.24). Having the material parameters of the pure @sihthe fiber material, see Tab. 4.1, a
compression simulation with fiber volume fractionf% is carried out, see Fig. 4.21(b), where
fibers are shown with blue colour and resin part is shown widey colour. The side parts of
this model are fixed and a displacement is applied on the ugyésce of this cube. In this
compression test, it is assumed thgt = 723 = 31 = 0, andes; = €95 = 0. For a known stress
T1,, ityields to

Ty = (A+a)ess, Too = Aess, T3 = (A4 2u7)ess (4.24)

using Eq.(3.61). Using this procedur,can be obtained. Straiys in Eq.(4.24) is given as
e33 = 1% . The sum of the nodal forces &y direction divided by the cross-section provides a
mean stress componéfi, and with the help of using Eq.(4.24), this leads\tn Tab. 4.2.
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(a) Principle sketch of boundary conditions of (b) Finite element mesh (20-noded hexahedral ele-
the compression test ments) for a glass a fiber volume fraction of 55%

Figure 4.21: Compression of a flat specimen
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4.5.2 Tensile Test with v = 0°,90° and Shear Test

After obtaining the material parametar a least-square method is used through all results of
tensile tests withy = 0°,90° and the results of shear tests using the force measuredeby th
testing machine as well as maximum and minimum principalisérof the DIC-data. Finally,

the material parameters = {u ., «, 5, ur} are obtained, see Tab. 4.2. The maximum principal

Table 4.2: Identified parameters fraify 90° fiber orientation and shear tests withfiber orien-
tation

parameter dimension value

A Nmm~2  4408.89
« N mm 2 93.55
6] Nmm~—2 27091.83
153 N mm 2 3527.76
L Nmm~2  3781.16

strains from all of five experiments with = 0°,90° and four experiments of shear tests plus
using measured force of testing machine are used to idahhparameters. The maximum
principal strain distribution can be seen, for instancé&im 4.22. Fig. 4.23 shows a comparison

0.00321
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Figure 4.22: Maximum principal strain distribution fer= 0°

between the force-displacement of the finite element sitimnand the experiments. Fig. 4.24
shows the relative error between the experiment and thelaiion. Therefore, all parameters
are determined as mentioned above.

4.6 Identification of Orthotropy

This section focuses on identifying the material paransefi@r the orthotropic model assumed
in Section 3.3.3. The compliance matfxin Eq.(3.118) is taken into consideration. For this
purpose, we need four experiments. Under the assumptioombfeneous deformations, the
nine material parameters can be determined uniquely. Tlie steps will be explained in the
following, with detailed information on every single step.

58



3500 1600
3000 ¢ 1400
2500 1200
z z 1000
£ 2000 £
8 8 800
5 1500 5
= 2 600
1000 400
500 Experiments i 200 Experiments .
Fit - ’ Fit -
O | O | | | |
0 0.1 0.2 0.3 0.4 0O 005 01 015 0.2 025 03
displacement in mm displacement in mm
(a) Force vs displacement curve ffrspecimens (b) Force vs displacement curve fii° specimens
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Figure 4.24: Exemplary representation of maximum princsprain error after identification for
~ = 0°, (Hartmann et al., 2020)
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1. First, in the tensile test$y,, = 733 = 0 and for a knowr{;;, we have

1
= __T 4.25
€11 B 115 ( )
whereF,; can be obtained by, = T3;/¢1;. For the tensile tests, using Eq.(3.118), we can
write

en = — 2T, (4.26)
1
wherev;, can be calculated by
€9l €22
= — = —— 4.27
= Tn €11 ( )

A DIC-system is used to determing; ande,,. It should be also mentioned that tensile
tests also provide another relationag = —”E%TH. However, we are not able to read
£33 using the DIC-system. Thus;3 cannot be obtained. Since we assumed that the fiber
plies are perpendicular to each other and the same fibersadeini both directions, we
obtainE; = FE,. If the fiber plies are different in both directions; # FE,, E5 should be
determined separately in another tensile experiment. diitiad, using Eq.(3.119), it can

be shown that P
1%
Vo1 = 1;1 2 — V19, (4-28)

wherev, is equal tavy; .

2. Second,F;s, 137 andus, can be obtained by means of a compression test. Considering
Eq.(3.118) and Eq.(3.119), we can write,

ETH - ETZQ - ET?)?, =& (4-29)
v 1 v

_EL;TH + ETm — Eist?, = €22 (4.30)
v v 1

—Ei;Tn — Eiij + EO)T?)?, = €33. (4.31)

In the compression tests, a force is appliedjmlirection, see Fig. 4.17(a), and the sides in
e; = a ande, = b are fixed which leads te;; = =55, = 0. After obtainingF; = E, and
v = o1 from the tensile tests, the other three parameters arenelot&iom Eqns.(4.29) -
(4.31). This leads to,

E,E,T?
E; = —% (4.32)
ETy1 — F Tho)T:
Uy = _( 2411 Q11/21 22) 33 (4.33)
Vi — — (—Erivo T + ErToo)T3s (4.34)
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where
Q = E2T121 — 2E1V21T11T22 + E1T222 + E1E2€33T33. (435)

Since we are using the same fiber in both directions, the samendions of the specimen,
and since the side forces are expected to be the identicahawel}; = T5,. Thus, it
follows thatvs, in EQ.(4.33) is equal tos, in Eq.(4.34).

3. Inthe third step(7,, can be obtained using the three-rail shear test. Consgleqr(3.118),
it follows that

1
Y2 = G—HTH; (4.36)
where~;; can be obtained using a DIC-system afid is obtained from the Zwick ma-

chine.

4. Fourth, we can address,; using the lap shear test. Again considering Eq.(3.118), we

have 1

Vo3 = G—23T23' (4.37)
(o3 can be obtained by computings, and the testing machine providés;. Since the
fibers are orthogonal in two directions and the same fiberased in both directiongy,;

is assumed to be equal o 5. All 9 parameters can be calculated based on these steps.

In following, the details in each step are discussed. Inmr®btain E; based on a tensile

test, Eq.(4.25) leads to

1
El - _Tll- (438)

Regarding:4, it can be computed as follows, see also Fig. 4.25(a),

AL_L—LO_(L0+UR—UL)—LQ_UR—UL

T Lo Lo Lo Lo

(4.39)

€11

In order to calculate the parameters, points are defined fizdrdal and vertical lines, see

w

U
Pt LY B Vo Vi
UU i €y T K
77777777777777777777777777777777777777777777 : K e K
VVO 3, ,,,,,,,,,, T,_:,e,l,,,”,”””” ,,,,,,,,,,,j I w ”;’12,’/ 1 L
Ul) i /\//,’ € //,’
Lo ) P
L Vi W Vi
(a) Sketch for calculating;; andeas (b) Sketch for calculating, from three-rail

shear tests

Figure 4.25: Sketches for measuring, ( £22 and~;») for obtaining parameters
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Fig. 4.26. The displacements of each point for every tine@-stsing the DIC-system are ob-
tained. The mean displacement of right set of points in E@6 4an be represented(dgv), and
it follows that

no i)
v = Zim U (4.40)
n
wheren is equal to the number of points in the right side (in Fig. 426 4), N is the number
of total tensile experimentgy =1, ..., 5, andUi(N) represents the displacement of right points

at each time step for experiment numbéin e; direction. Similarly, the mean displacement of
the left set of points ire; direction,UéN) can be obtained by

n )
U = 2= U (4.41)
n
Thus,sq; can be represented as
N N
(N) Uz(a: ) - Ué )

11 = T, (442)

WhereLgN) is equal to the initial length between these two sets of goifit; can be obtained
using the measured ford&”) for each time step (obtained from the Zwick machine). Thiea, t
Young’s modulug?; in Eq.(4.38) can be calculated as

F L
A(()N) U}(%N) — UéN)'

EW = (4.43)

In the next stepy,; can be obtained using Eq.(4.27). Fgg, it is possible to calculate as
follows, see also Fig. 4.25(a),

AW W W, (Wo-Uy—Up)—Wy  Uy+Up

WQ W(] WO WO

E99 = (444)

The mean displacement of the upper and bottom set of poifiig)id.26 in vertical directioe,

can be represented HéN) andUl(jN), where the mean displacement of the upper set of points for
each time step in Fig. 4.26 can be represented as

n V(N)
Uz(JN)ZLzl —, (4.45)

n

andn is equal to the number of points on the upper side (in Fig. 4.2618) andVZ.(N) represents
the displacement of the points in the upper part for each sitee regarding experiment number

N in e, direction. Similarly, the mean displacement of the bottanhcf points,Ul()N) can be
obtained by

n V_(N)
Uy = Zim Vi (4.46)

n
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Thus,e9, is equal to
v + Uy

(4.47)
Wi

29 = —

WhereWO(N )is the distance (width) between the upper and the bottomosetsan the reference
configuration and;; was already obtained by Eq.(4.42). Thus, can be calculated using
Eq.(4.27).

Point 3 72 [lli71 Jii7tPoint 3 68 p«Point 3 60l 3 62 i Point 3 5¢Point 3 57

Point 3 Point 3 551l

Point 3 int3 3700
Point 3 ‘a— E!E’E HIEIE! [ 19.

point 3 18l - =

Point 3 16 int 3 11l

Figure 4.26: Generated points on the surface of tensilestasples

In the second step, using Eqns.(4.32) - (4.34), we olbfigjn/;;, andvs, are obtained £, =
E5 andry, = 19 are known from tensile tests. On the other hafid, T5,, 153 andess are
unknowns, and the following steps serve to calculate theowvks.

* In the compression tests, using the fofg(év) in e direction, which is obtained using the
compression tool[3; for each time step can be calculated as, see also Fig. 4,.17(a)

TR (4.48)
33 AgN) .

whereAgN) = wywy and N represents the number of experiment.

(V)
 Using the force ire; direction F3, Ty, can be obtained usinf, = %, AgN) = wst.
2

- . . o . (N)
 Similarly, applying the force ie; directionFy, 71, can be calculated using,; = %, AgN) =

w1t, see again Fig. 4.17(a). Since the same fibers are used inBati in e; anldeQ di-
rection, the side forces are assumed to be equal, from waildwis thatT,, = T;.

* £33 can be obtained by dividing the displacementkindirection (with consideration of

rigid body movement) to the thickness of sample, which isxsshim Fig. 4.17(a) for each
experiment.
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In the third step, using the three-rail shear test, the shedulus’, is obtained, see Eq.(4.36).
For 15, the following can be computed, see also Fig. 4.25(b),
Vo —Vp

L

Points with equal distances are generated on the surfadeeo$amples, as can be seen in
Fig. 4.27. The mean value the displacements.irlirection for each time-step are calculated

Y12 R lanyig = (4.49)

Figure 4.27: Generated points on the surface of shear tegtiea

for these two sets of points using the DIC-system. The megmlatiement of the upper setén

direction can be represented‘é}f}v),

n V(N)
o = 2 Vi (4.50)
n
wheren is equal to the number of points on the upper side (in Fig. &«&haven = 17) and
V[(,N) represents the displacement of bottom points at every tiepe fer experiment number
N. Similarly, the mean displacement of the bottom set of [gointe, direction,V[(,N) can be
obtained by
N Zn V(N)
/S R (4.51)
n
The forceF™) is applied ine, direction, see Fig. 4.12(a), and it can be obtained from thielZ
force gauge. Since we are only considering one part of tleethail shear test, half of the force
is considered in our equation") is the distance between the upper and bottom set of points in
reference configuration. In additiod(") is also known for every experiment, see Fig. 4.12(a).
For each time stef;,, can be computed as
Ts 1 FV) L(N)

GO = 212 . 4.52
2 T2 2 AW) VIEN) — V[(,N) ( )

In the fourth step, the lap shear test is performed to detexi@h; using Eq.(4.37). The
concept for obtaining the parametgs; is similar to the three-rail shear test. Fgg, it follows
that, see also Fig. 4.28,

Vo —Vp

- (4.53)

Vo3 R lanyss =
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Figure 4.28: Sketch for calculatings; from lap shear test

Using the displacement generated by the Zwick mach'ﬁ@ andVlgN) in e, direction and the
thickness of sampl&™) = 2.6 in this test, see Fig. 4.14(a},; can be obtained using,

FW) TWN)
GO = 4.54
23 A(N) VéN) B V[()N)v ( )
where (V) is obtained by the Zwick machine fo¥ = 1,...,5, andAY) is known, see again
Fig. 4.14(a).

In each step, we determine the material parameter from tiresgonding five tests using a
least-square method. We proceed step by step, as discusfeed. bThus /'y, F,, andv,, are
obtained from the tensile testss,, 15, and 3 are acquired from the compression tests; is
obtained from three-rail shear tests. The last two paras\éfe; andG, 3 are captured using the
lap shear tests. The resulting material parameters { £y, Fs, Es, V19, V3, V31, G2, Gas, G13}
are compiled in Tab. 4.3. The parameters satisfy the camditin Eqns.(3.131) - (3.136). The
results of the identification according to the aforemergtbprocedure are shown in Fig. 4.29
and Fig. 4.30. In each diagram, the blue region demonstex@srimental results. Since the
experiments are repeated five times, an area is obtaineddbrexperiment and this area shows
the dispersion within the result of each experiment.

We are also interested in determining the uncertaintiygt, , Fs, v12), v31(E1, E2, 1v12) and
v3o(E1, Ea, 112), See Eqns.(4.32) - (4.34). To obtain the uncertainty, wevanathe linear error
propagation theory, see (Taylor, 1997). A functifix) with the estimated deviatioAx yields
the uncertainty

5f = nz (ﬁmk) , (4.55)

Ok
k=1 k

i.e. f £ 0f, evaluated at the best #it obtained by the other parameters. Heke,. is taken as
the standard deviation.

Using the data in Tab. 4.3, the compliance ma8ii Eq.(3.109) can be calculated. In the
next stepC can be computed using Eq.(3.110) and Eq.(3.111), see Pabl'de uncertainty of
Cll(Eh Es, E3,v39, 131, V21), C'12(E17 Es, E3,v39, 131, V21), Cls(El, Es, E3,v39, 131, V21),

C'22(E17 Es, E3,v39, 131, V21), C'23(E17 Es, E3,v39, 131, V21), 033(E1, Es, B3, v39, 131, V21),
Cu(G12), Cs5(Ga3), Ces(Gs1) are also determined based on the linear error propagatamyth
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Table 4.3: Identified parametets for orthotropy laminates from tensile, compression, thagke
shear, and lap shear tests

parameter dimension value  error propagation

B, Nmm=2  26808.4 +130.6
B, Nmm~2  26808.4 +130.6
By Nmm=2  2361.6 +80.7
V1o - 0.11 +0.06
Ks Uso - 0.002 +0.00016
- - 0.002 +0.00016
Gia Nmm=2  6406.8 +213.7
Glas Nmm=2  7841.7 +921.2
Gis Nmm=2  7841.7 +21.2

by EQ.(4.55), see again Tab. 4.4. In this case, larger ecaorde seen in comparison to errors in
Tab. 4.3 sinc&€ depends on the elements in the compliance m&trix

Table 4.4: |dentified parametexs for orthotropy laminates from tensile, compression, tinak
shear, and lap shear tests

parameter dimension value  error propagation

Cy Nmm~—2 27172.3 +166.7
Clo Nmm~—2  3138.9 +102.4
Cis Nmm~—2 615 4+1943.6
Coy Nmm=—2 27172.3 +166.7
Ke Cs Nmm—2 615 11943.6
O3 Nmm=2  2361.9 482.29
Cu Nmm~2  6406.8 4+213.7
Css Nmm~2  7841.8 +921.2
Css Nmm~—2  7841.8 +21.2

Ultimately, the material parametetsp = {11, po, 1, A, a1, e, 51, B2, f3} are obtained using
Eqns.(3.100) - (3.107) which is required for the fourth erdisticity tensoC in Eq.(3.95).
1o 1S equal to zero, sinc€’ss and Cs5 are equal. These parameters are shown in Tab. 4.5.
Again, the uncertainties Qf;(Cus, Cgs), 12(Css, Ces)s 11(Cua, Css, Cog)y A(Css, Cua, Css, Ces),
ﬁl(Cn, Cs3, Css, 013), 52(022, Cs3, Cya, 023), 53(0337 Cua, Css, Ceg, Cas, Cha, 013),
Oél(ng, Cus, Css, Cee, 013), Oég(ng, Cyy, Cs5, Ceg, 023) are calculated with the help of the linear
error propagation theory by Eq.(4.55), see Tab. 4.5.
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Table 4.5: Identified parameteks;p for orthotropy laminates from tensile, compression, three
rail shear, and lap shear tests

parameter dimension value error propagation

41 N mm 2 1435 +213.7
[ho N mm~?2 0 +29.9
14 N mm~—? 6406.8 +21.2
A Nmm—2 —10451.7 +435
Ksp b1 N mm—? —1955.9 +436.4
Bo N mm~—2 3783.9 +656.1
53 N mm 2 —7435.9 +1832.7
oy N mm—? 10513.2 +435
o N mm 2 10513.2 +435
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5 Geometric Modeling

5.1 Introduction

Over the last decades, geometric modeling has gained singeattention. B-spline and Bézier
curves (which are a special case of B-splines) are the twd oomsmonly used methods for
designing shapes. Here, B-spline curves provide more aofixibility than Bézier curves,
since the parameters are not dependent on each other. ig-spk powerful standard method
for the representation of different shapes where compléxalad physical properties have to be
presented and modeled. For instance, the wings of an agglan be modeled using B-spline
patches, see (Brakhage and Lamby, 2008b).

Cutting fibers by drilling a hole in fiber composite laminatas be seen as a common process
technology. In another approach, fibers can be bypasseddtbe hole in order to avoid cutting
fibers, see Fig. 4.21. In this work, we need a mathematicaitimm to describe the spatially
distributing fiber orientatiom = a(x) as it is necessary for finite element simulations. Thus,
the streamline approach is discussed as a first approachetonilee fiber orientation. Further-
more, B-splines are introduced as another suitable methrodielscribing fiber direction due to
its high flexibility. This chapter focuses on B-spline prdpes, and it is shown how surfaces for
finite element simulation are generated. In the next stepjtaangent vector for finite element
simulation using B-splines is obtained.

5.2 Streamline Approach

In this section, fiber orientation is presented using a stlie& function to obtain continuously
distributed fiber directions. In (White, 2009), the streimes are defined by

. 2 ]
U = U(Uy,0,r, R k) = Uy siné <r . R—) —k O}g%r. (5.1)
T
We definek = 0,a = ¥ /U, x = rcos 6, andy = rsin 0, which leads to
g(z,y,a) =y —ay® + (2 — R*)y — az® = 0 (5.2)

representing a cubic polynomial in whereR represents the radius of a hole. Next, we consider
the real solution of Eq.(5.2), which can be presented as

2(a>+3(R—z)(R+1))
{’/a3+ %CJr @ + 9az?

+2a]. (5.3)

1
y(x,a) = B 2%/33/2a3 4+ ¢ + 9aR? + 18ax? +
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with

¢ = /(20 + 9aR* +1802?)? — 4 (a2 + 3(R — 2)(R + 2))".

Fig. 5.1 shows the orientation lines for differentThe arbitrary facton is constructed in a such
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Figure 5.1: Orientation distribution of fibers using stréiaefunctions

way that it has a geometrical meaning, which is studied irfdhewing. Then, Eq.(5.2) can be
written as,

f(z,y) = g(z,y,0a). (5.4)

The position vector should be differentiated with respeatin order to obtain the tangent vector
as

r=uze, +y(x)e,, (5.5)
3)/(3:) = _fvm /fay' (56)
The tangent vectar(x) is equal to
dr N
t(x) = P + 9 (v)ey, =€, — f.o/foyey (5.7)

To obtain a unit vector at a point= z; andy = y;

: (5.8)

a(ry, ) = |

with

ta)l = 1+ F2 057 =\ 2\ P2+ F3 (59)
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Then,a can be written as

! iy

where the unit tangent vector can be obtained at any poatlik x; andy = ;. Regarding
Eq.(5.2).f,, andf,, can be presented as

foo=2z(y —a), f,=2>—R*>—2ay+ 3y (5.11)

with
(22 — R*)y +y°
x? 4+ y? '
This method is not complicated in comparison to other metlsath as B-spline. Considering
the streamline approach, there is no need for experimeatal dOn the other hand, since no
real or experimental data are used, it has to be assumedthfibérs are oriented in a certain

manner. However, the implementation and the basic condetbteostreamline approach are
straightforward.

(5.12)

5.3 Definition and Properties of B-Spline Basis
Functions

The streamline approach introduced in the previous seidian efficient and fast method to rep-
resent fiber orientation but the aim is to find a more precigeagrh. The mathematical theory
of spline approximation is introduced by (Schoenberg, }98®ere he developed splines for
creating curves using initial points. Later on, other wasksh as (De Boor, 1972; Riesenfeld,
1973) promoted the usage of splines for the field of compaitded design. Using B-splines to
obtain curves and surfaces is a very popular approach inrtaelldield of geometric modeling.

This is mainly due to their mathematical properties and thexibility. For a better understand-

ing, we will first take a closer look at the B-spline curve ane &ccording fundamental relations.
In the next step, we will discuss the way B-splines are usegetwerate surfaces in this work.
In this thesis, all of the fiber orientations in the samplesrapdeled with the help of B-splines
where the curvilinear coordinates represent the fibers coheept of this section is mainly based
on books and other literature dealing with NURBS and B-gplsuch as (De Boor, 1978; Piegl
and Tiller, 1997; Rogers, 2001).

5.4 B-Spline Curve

Havingp(&) as a position vector, a B-spline curve can be defined as

p(&) = Z N (€)bi. (5.13)
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The number of control points is presented fyfor a B-spline curve, and it is defined as a
polynomial spline function of ordér or degree: — 1 wherek must be at least two. In general, a
B-spline is considered as a polynomial spline function deok because it satisfies the following

two conditions (Rogers, 2001).

» Each component gb is a polynomial of degreg — 1 in each intervak; < ¢ < =;,;.
» p and its derivative of ordet, 2, . . . .,k — 2 are continuous during the whole curve.

N, k(&) represents B-spline basis functions having the inglex & < n.. Theb,’s are the
position vectors of they, control polygon vertices, and it can be determined fromahdata
points. The B-spline basis function§ ;. (¢) are defined by the Cox-de Boor recursive definition

Nix(§) = _&%Ni,k—l(g) + ﬁ

Sitk—1 — 54 Stk T Sl

Nit1-1(£) (5.14)

with the basis
1 if = <€<Ein,

_ (5.15)
0 otherwise

Ni,l(g) = {

see (Piegl and Tiller, 1997; Rogers, 2001). In the case/ofof the fractions in Eq.(5.14), a
value of zero is assumed, see (Piegl and Tiller, 1997). AlBwsgurve depends on parameters
which defines it, determining the order of the curve. Thesetlae knot vector and the control
points, which have a significant influence.

5.4.1 Properties of B-Spline Curve

There exist several properties for B-splines in additiothtzse that were already mentioned.
 Each basis functiotV; ;, cannot be less than zero for all parameters.
* The curve generally follows the shape of the control poifRegers, 2001).

* The sum of the B-spline basis functions for any vajus
=1

see (De Boor, 1972; Rogers, 2001).
* The curve can be transformed by any change in control points

» Cox-de Boor relation Eq.(5.14), which is used to define Bagbasis function, is a recur-
sive formula, i.e. a basis function of prescribed ortlezlies on lower order basis functions
down to order one. The calculation of the- 1 degree functions leads to a triangular pat-
tern table as follows

74



Ni 1,

Nik-1 Nig1p—1

Nik—2 Nigip—2 Niyor—2

Nig—3 Nig1k-3 Nigoar-3 Nigsp—s

N1 Niti1a Niyo21 Niysh Nip ... Nigk-1a

for more details, see (Gopi and Manohar, 1997; Rogers, 2001)

5.4.2 Knot Vector

The knot vector is one of the main parameters to define B-splasis functions. There is a wide
range of research regarding the knot vector. An algorithembdeen presented by (Sapidis and
Farin, 1990b) for fairing a B-spline curve using the knotteec A knot removal strategy for
splines was presented in (Lyche and Mgrken, 1987). The Kamobval strategy is also discussed
in (Eck and Hadenfeld, 1995). In (Guo and Li, 2020), a methad provided to obtain adequate
geometric shape even for data with considerable noiseh&iudetails on the knot vector can be
found in (Cohen et al., 1980; Gordon and Riesenfeld, 19741 &i., 2005).

The B-spline basis functions depend on the knot valijes= 1, . . ., nyy, With ny, = nc + k,
and this condition should always be satisfied when used toal&fispline curves. Commonly,
theses values are assembled in the knot vegter {=,,. .., =, }, where the knot values have
a significant influence on the shape of the curve (and représefiexibility of a B-spline func-
tion). The only requirement for a knot vector is that it hasabisfy the conditiore; < =4,
representing a non-decreasing series of real numberscallgisiwo types of knot vectors can
be used: periodic and open. Here, an open and uniform nareagtinot vector is used to obtain
the knot vector, where the knot entri€s and=,,.,; are chosen to have the multiplicity 6fso
that the first and last control points are equal to the firstthedast points of our data, see (Piegl
and Tiller, 1987). We choose the knot values as follows:tFive generate the values

0 for1 <i<k
i=qt—k fork+1<i<n (5.17)
ne+1—%k forne+1<i<nc+k

[1]>

and normalize them t8; = =;/(nc+ 1 — k), i = 1,..., nk. Further discussions on knot vector
formulations are provided in (Haron et al., 2012b; Jung and,KR000a; Li et al., 2005; Park
and Kim, 1996).

The parameter valugfor each data point is a measure of the distance of the datad wah
respect to the B-spline curve, see Fig. 5.2(a). This pamancan be obtained in different ways.
Investigations regarding the possibilities of obtainihi parameter can be found, for example,
in (Jung and Kim, 2000b). Parameterization methods fouutating this parameter are discussed
in (Haron et al., 2012a), while a new methodology is propasedis work. Many other Param-
eterization methods have been suggested, see for exai@pleerf and O’dell, 1989; Foley and
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Nielson, 1989; Lee, 1989; Rogers and Fog, 1989b). One useftiiod for defining this parame-
ter is the chord length method, see (Piegl and Tiller, 19®gdRs, 2001). The distance between
the data points is given by

dy =\ld; —d; 1ll, j=2,...,na (5.18)
Using¢; = 0, theg; can be defined as
Zé’:z d;
2t di

and¢ can vary betweetimin andémay. In this work,¢ is normalized, while i, = 0 andémay = 1.

& = for 2<1<nyg (5.19)

A Data points
Control points

| T T J ! !

& &2 &3 & & G
(a) Parametef (b) Data points and control points

y

N \
\ I | , , -
N . ! | L L —

Figure 5.2: B-spline basis function

5.4.3 Control Points

Another significant parameter is control potnt which is needed to generate a B-spline curve,
see Fig. 5.2(b). A B-spline curve is strongly influenced by tontrol points. For this reason,
any modification in the control points cause changes in tte fiarve. There exist many works
dealing with control points and all the possibilities to defihis parameter. For instance, Yang
et al. (2004) proposes a new technique to adjust the contiatpof a B-spline curve using
an optimization scheme to adapt the curve to given data gofnother approach is presented
for B-spline curves fitting to a sequence of points whilesgiing the desired shape, see (Park
and Lee, 2007). The application of control points in shap@napation is investigated in (Hu
et al., 2001; Qian, 2010). (Lin et al., 2004; Ma and Kruth, 8P&re further works that draw on
different approaches to determine control points.
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In this work, it is assumed that the first and the last contoihpare equal to the first and the
last data point,
p(0)=di, and  p(l) =d,, (5.20)

or it can be presented like
b, =d; and bnc = dnd7 (521)

see also (De Boor, 1972; Montemurro and Catapano, 2019;&iddiller, 1997; Rogers, 2001).
Using a least-square method, the curve (5.13) has to be fit¢lde given data points. The

coefficients of the geometrical vector componentp@f) € V* andd; € V3, j = 1,...,ng, are
written into column vectorp(¢) € R® andd, € R®. The residual of each data point is defined by
rj(b27b3a-"7bnc—1) = p(&]) _dj' (522)

Using Eq.(5.21), the polynomial representatiorp@f) can be written as

ne—1 ne—1

P(&) = Ny p(€)dy + Ny 1(€)dny + Z Nix(E)b; = s(€) + Z N;x(€)b, (5.23)

with s(&) := Ny 4 (&)dy + Ny 1 (€)d,,. The sum of the squares of the residuals (5.22) should be
minimized,

ndl ndl

f(by,bs, ... by_1) Z [r;(by,bs, ..., b, 1)|* = Zr r; — min. (5.24)

All vectors and residuals can be compiled into column vexctor

ro d, p(&2) s(&2)
P, d= N I : : :
Fng—1 d, 1 P(&ng-1) $(&ng-1)

Fe R¥=2 de R pe RN ge R332 ands e R*™~ 2. Then, the problem can

=i
I
I
2]
I

. (5.25)

be reformulated. Using the control poirtis = {b, ...b, ,} € R*"2 and Eq.(5.23), we
obtain o
P—5+Nb (5.26)
with
Na i (&2) N3p(§)l oo Npe1k(&2)!
ol Nor(E) Nar(E)l o N a(&)
N — 2,k.<£3) 3,k(§3) 1,k(§3) (527)
NQ,k(gnd—l)l N3,k(§nd—1)| cee Nnc—l,k(gnd—l)l-

Here, the identity matrixe R**? is introducedN € R3"¢~2*3(n=2) Then, the minimum prob-
lem (5.24) can be reformulated to

f(b) = 1FT(E)r(B) — min (5.28)

2
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with

r(b)=Nb+5—d. (5.29)
In order to obtain all unknown control poinits the necessary condition
4 _NNB+s-d}-o, (5.30)

db
has to be fulfilled. This leads to the system of linear equistio

[NTN} b=N {d—s} (5.31)

Significant advantages of the B-spline approach for thegaeof generating curves are smooth-
ness, continuity, and flexibility. It is possible to createmoother curve by decreasing the num-
ber of control points, which is a significant advantage whenegating complex curves. In
Appendix 8.4, the concept and effect of control points onfthal curve is shown with one
example.

5.4.4 Derivatives of B-Spline Curve

The B-spline curvep(§) and its derivatives are all continuous over the entire cuiiee m'"
derivative of the B-spline curve is given by

p™(E) =Y NI ()b, (5.32)
=1

whereNZ.(f,?) (¢) can be obtained by

NGO NERL©) ) _ (5.33)

NI(E) = (k= 1) (; kel
Sitk—1 T S Sitk T Sl
The tangent vector can be obtained by the first derivativieeBtspline curve (5.13) with respect
to ¢,

/ d N /
p'(€) = % =D N (5.34)
1=1
N;,(§) can be computed as
, k—1 k—1
Nz’,k(f) = ﬁNz,kq(ﬁ) - ﬁNiJrl,kfl(g)u (5.35)
—it+k—1 —1 —i+k —i+1

see (Piegl and Tiller, 1997). Since the B-spline basis fonds a recursive formula, the deriva-
tive of the B-spline function is also recursive where a basistion of prescribed ordek relies
on lower order basis functions down to order one.The prod&a({5.35) can be found in (Piegl
and Tiller, 1997). The details of the second and third déxiesof the B-spline curve are given
in Appendix 8.5 and the unit tangent vector reads,

aie) — P'©
© =T

(5.36)
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5.5 B-Spline Surface

Different methods such as Bezier, B-spline, and NURBS «uared surfaces are mostly used
to represent various types of figures in computer-aidedydg€€AD) systems, see also (Piegl
and Tiller, 1997). B-spline surfaces are helpful for sketghany surfaces such as automobile
bodies, aircrafts or any other smooth surface. There areymanks dealing with B-spline
surfaces. (Catmull and Clark, 1978) describes a methocefmursively generating surfaces that
approximate points lying on a mesh of arbitrary topologyckand Hoppe, 1996) mentions a
procedure for reconstructing a tensor product B-splinéasarfrom a set of scann&i points.
B-spline surfaces are generalized in (Loop and DeRose,)28Bigh are capable of capturing
surfaces of arbitrary topology. Further works that addtlegopic of B-spline surfaces are (Hu
and Bo, 2020; Piegl and Tiller, 2000b, 2002).

In this section, the B-spline formulation in Section 5.4x$e@ded to a B-spline surface. The
goal of this section is to generate a surface using initigh g@ints that can be obtained from
the samples. In Chapter 4, it is shown that the material nsodepend on structural tensors
which represent fiber orientations. In the next step, thé tanigent vector that represents the
fiber direction is calculated in order to perform a finite edgnsimulation. Using the B-spline
surface, the tangent vectors are obtained for coordinags.li

A B-spline surface can be defined by

TNice  MNen

PEn) =)D Nin(©)M;(n)by, (5.37)

i=1 j=1
and in column vector form, this reads

Ncg  Nen

PEn) =D > Nir(©)M;(n)by;, (5.38)

i=1 j=1

whereN; ,(¢) and M, ,(n) are the B-spline basis functions§randn direction. They are defined
by

Not() = === N () + = N (6), (5.39)
—i+k—1 —1 —i+k —i+1
with
N =4 TEsE<Zm, (5.40)
’ 0 otherwise
and
n— H; Hi—n
M ()= ——L M, 1(n) + ——L M1 ,4(n), 5.41
with
1 ifH, <n<H;,
M;i(n) = 7= b 5.42
() {0 otherwise (5-42)
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The parameters should be determined for the B-spline basdion in& andr direction. The
numbering for the control points and data points is fromteftight and from bottom to top for
our computations. The number of data points is given byssndng,, andn. andng, are the
number of control points ig- andn-direction. Another important aspect are the knot valued, a
the knot values ig-direction=;,: = 1, . . ., ny, are independent of the knot valuesjitlirection
H;, j=1,...,nq, see (Piegl and Tiller, 1997; Rogers, 2001). They have dathtultiplicity
of k at the first and last point ig-direction; similarly to Eq.(5.17), they are normalizeditolrhe

conditionsnyy = ne + k andny = ng, + [ should be satisfied

0 forl1 <i<k
i=1c1—k fork +1 <i <mng (5.43)

[1]>

where normalization ig-direction is done by, = éi/(ncg +1—k),i=1,..., Nk,
0 forl1 <j <l
Hi={j—1 fori+1<j < ng, (5.44)

and normalization im-direction is obtained usingl; = [;/(ne, + 1 —1),7 = 1,..., nky,. The
data points are equal to the control points on the edgesPsegl @nd Tiller, 1987):

p(07 0) = b117 p(07 1) = blncn7 p(17 0) = bncglu p(17 1) = bncgncn- (545)

As before, the parametefsandr, are determined according to the chord length approach.,Here

dje = ||dj1 —dj_14l[, 7=2,... nq, (5.46)
and s
L de
& =S, for 2<r <nge. (5.47)
E:jiéagf
Accordingly, the parameter, can be computed by
djn = ”dlj _d1j71H7 .] :27"'7nd177 (548)
and o
2z g oo Nety- (5.49)

778 = ann d 9
j=2 %jn

5.5.1 Control Net

Another important parameter for defining a B-spline suriathe control neB. A B-spline sur-
face is strongly influenced by the control net. Thus, any gkan control net leads to changes
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in the final surface. There exist many works dealing with tbetol net and all the possibili-
ties for defining this parameter. (Loop, 1994) provided agoathm for creating smooth spline
surfaces over irregular meshes. (Zhang et al., 2016) piexbam iterative and adaptive surface
approximation framework using B-splines. This method ie &b use any scattered data points
with parameterization as input to generate surfaces. Amatiethod to reconstruct surfaces from
scattered points is presented in (Gregorski et al., 2000).

In this work, the total number of control points argn.,, and the total number of data points
arengeng,. The quantities can be formulated as

A T T VA
M dj; by
T T T
1ngy, d 1:%017; b 1%07]
T
1 dy; by,
R=|, |, D=lg4 | B=|py | (5.50)
2ndy 2ngy 2ncy
T T T
rndgl dndgl bncél
T T T
L~ Nd¢ Ndn | dgNdn | L Negnen

with R € R« >3 D ¢ Rrenan*3 B ¢ R« %3 The residual of each data point reads

Neg  Nen
rrs(B) - P(gmﬁs) - drs - Z Zﬂjrsbij - drsa (551)
i=1 j=1
with
CZjijrs - i,k(gr)Mj,l(ns)- (552)
The overall residual can be computed as
R(B)=TB —D (5.53)
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whereT is equal to

[ T 0 T Tornn oo Topgun e Toeint -+ Togneyin |
Tlllnd,] o e Tlncnlndn T211nd,] o e TQnCnlndn ------ Tncgllndn o e Tnc&ncnlndn
T1121 v Tlnc,,21 T2121 v T2nc,,21 ------ TnC5121 cee Tncgnchl
T112nd,] o e Tlnchndn T212nd,] o e TannQndn ------ Tnc&12ndn o e Tnc&nchndn
Tllndgl s Tlnmndgl Tandgl s TQnm,ndEl ------ Tncglndgl s Tncgnm,ndgl
_Tllndgndn o Tlncnndgndn Tandgndn o Tannndgndn ------ Tncglndgndn o Tncgncnndgndéz)

with T € R(neenan)*(neenen) The minimization problem reads
£(B) = %R(B) "R(B) = min (5.55)

and it yields to, see (Piegl and Tiller, 1997) for more dstalil
[T"T|B =T'D. (5.56)

It should be mentioned that oscillations are to be expectednvusing the B-spline method.
However, it is possible to minimize these fluctuations byuag the number of control points
or the control net.

5.5.2 Derivatives of B-Spline Surface

A required surface can be obtained using B-spline surfatéeweurvilinear coordinate lines
can be obtained for tangent vectors. We need the unit tangetdr for the constitutive model,
representing the fiber orientation. The first derivativeh& B-spline surface if direction can
be calculated by

Teg  Men

ar(en) = 2 fg DS S N O b (5.57)

i=1 j=1

As mentioned before, the derivatives’,k(f) can be computed using Eq.(5.35) and the unit tan-
gent vector is equal to

a*(&,n)

) = el

(5.58)
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5.5.3 Obtaining Data Points from Experiment

A set of data points is needed to generate a B-spline surdecghown in Fig. 5.3(a), one quarter
of a sample is considered. The required data is obtained asthgital image of a specimen,
with manually applied data points on the fibers, see Fig.b3.3Due to the concentration of
the fibers, especially around the hole, it is assumed thatliben data points express the fiber
directions. It is also presumed that these data points argi@l in different experiments. The
center of the hole is assumed as the origin of the coordiyaters, while the-axis is along the
fiber direction andj-axis is perpendicular to thgaxis. The coordinates of the data points are
estimated using the standard pixel counting method (PC)Mattlab, and the B-spline surface
is determined with Eq.(5.56) using these data points. Tainldtorizontal tangents above the

e —
(a) A plate with bypassed fibers around holes and zone oféstiéor
obtaining a set of data points

N 3 -l ———— el e -

(b) Gray-scale image of data points

Figure 5.3: Orientation distribution of fibers

hole, the points are mirrored with respect to thaxis. Hereng: = 17 data points anae = 11
control points withk = 3 in ¢-direction are considered. For thedirection, we choose., = 4
control points anahy, = 4 data points with = 4, see Fig. 5.4.

The B-spline surface is implemented in the in-house finiéeneints code TASAFEM to per-
form the simulations, and the spatial distribution of th& tangent vecton for the constitutive
model is calculated by Eq.(5.58).
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6 Numerical Examples

This chapter includes computations using the constitutieglels formulated in the previous
chapters, with the help of the obtained material parameggrarding transverse isotropic and
orthotropic fiber reinforced composites. GiD software isdisas a pre-and post-processor for
the numerical investigation, (GiD-Manual, 2012). The comagpions are carried out using the
in-house finite elements code TASAFEM.

To begin with, we present the computations for transversgadpy, based on the streamline
approach of Sect. 5.2 with the help of the parameters ca&niliam Chapter 4. Furthermore,
the computations using this approach are compared withnkzties with uni-directional fiber
orientation. In addition, the local effect of a rivet in lamies is investigated by finite element
simulations.

Second, the computation using the parameters obtained apt&h4 and the B-spline ap-
proach, which is introduced in Chapter 5, is done for valatatases. In this part, the results of
the simulations are compared with validation experimeifitge goal of this section is to verify
the whole process of modeling, simulation, and materighpater identification using verifica-
tion tests. Moreover, these computations are again dorethathelp of streamline approach in
Sect. 5.2, and the result of computations are again compathcxperimental results. Then,
the results of both methods (streamline and B-spline agpex) are compared with each other.

Finally, the validation tests for the orthotropy case amvated. The finite element simulations
are performed using the material model presented in Ch&piteth the parameters calculated
in Chapter 4. The main aim of this part is again to verify théremprocess of modeling, simu-
lation, and material parameter identification of orthoyrégminates. For this aim, we compare
computations of a plate with a hole with experimental ressult

6.1 Finite Element Studies - Streamline Approach

This section focuses on the simulations to determine threcedf bypassing the fibers around
the hole. For this aim, two computations of a plate with a laeing a radius o = 10 mm
are compared while a displacementu@l 00, y) = u, = 0.01 mm is applied to the plate. The
plate is meshed using GiD with 20-noded, hexahedral elesneith (3 x 3 x 3) Gauss-points.
Due to symmetry conditions, only one-eighth of the plate aglgied in this example. For details
regarding the symmetry conditions, please refer to Figa, And to Fig. 6.1(b) for information
on the geometry and mesh. In the first computation, the diyatanstantuni-directionalfiber
orientationa = e, is chosen. In the second computation, the fiber orientatidfgg5.10) is
used, which is indicated by the tangent vectors.

The calculated material parameters in Chapter 4 are usdtidaromputations. Since there
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U, = 0.0l mm
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g
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L(D —

Y, >R = 10mm Y Uy =0

L,z z
1mm
(a) Geometry of one-eighth of the specimen (b) Geometry (mesh and boundary conditions)

Figure 6.1: Geometry, mesh, and boundary conditions

is a small region around the hole where there are no fiberspprovement is considered, see
Fig. 6.7. A polynomial of third order is used to separate thon, as there is no fiber below

starting point(3v/5, 5, z)

inhomogeneous transversely isotropy

end point(15,0, z)

Figure 6.2: Region with purely isotropic material

this polynomial. This case is calléypass-reducedrhe curve begins at poilit, y) = (3v/5, 5)
and ends at poirtz, y) = (15,0). The slope of the curve on the right sidevat 31/5 is equal to
the slope of the circle at this point, and the slope of thee€us\wzero at the point = 15. Below
the polynomial and inside the small region, the isotropi pathe elasticity relation (3.60) is
taken.

In the following, the stress and strain states in uni-diog@l and bypassed-reduced cases
are considered. This is followed by calculating the stressg with respect to vertical axis at
x=0andz =1, 0,,(0,y, 1), see Fig. 6.3(a). Furthermore, the stresses in verticattiim at
the horizontal symmetry plane,,(x,0, 1) are studied, see Fig. 6.3(b). The plots are generated
using GID as Gauss-point information transfer to nodal {sdiry interpolation schemes.

The highest horizontal stresses can be seen in the unifatisisibuted fiber orientation at
point(z,y) = (0, R). On the other hand, the simulation for the “bypass-reducedé does not
show higho,., stresses in this region. In this case, the stresses arer 60% of o, stresses in
the uni-directional case.
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(a) Normal stresses, .. in the vertical axis (b) Normal stresses,, in the horizontal axis

Figure 6.3: Stresses,, ando,, at the vertical and the horizontal symmetry lines

A similar result is obtained for the strains, see Fig. 6.4théligh very promising results
are obtained over,, in the “bypass-reduced” case, there are larger compressai@se,,, for
the bypass-reduced computation in comparison to the weciiibnal case. In contrast, negative
strains are not as critical as tensile strains. Hence, miogresults are obtained for the “bypass-
reduced” case where the fibers go around the hole. The stnésstiin distributions in the
uni-directional and the bypass-reduced case are explicatée following.
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Figure 6.4: Strains,, ande,, at the vertical and the horizontal symmetry lines

04, Uni-directional o,y Uni-directional

9.7551
6.5304
3.3058
- 0.08122
1 -3.1434
-6.368
-8.5926
-12.817
-16.042
-19.266

0., bypass o,y bypass

12,695
6.6281
0.66122
+-5.3056
g -11.273
-17.23¢
-23.208
-29.173
-35.14
-41.107

Figure 6.5:0,, ando,, in N mm~? for bypass and uni-directional computations
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€42 UNi-directional

0.0044418
0.0039475
0.0034533

- 0.0029591
00024648
0.0019708
0.0014763
n.o0o09s211
000048787
-6.37270-06
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00028062
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-0.0017729
0.0014284
0.001084
0.00073958
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5.0721e-03
-0.00029371

&,y Uni-directional

0.00077527
0.00047952
0.00018378
-0.00011197
-0.00040771
-0.00070346
-0.00099821
-0.001295
-0.0015907
-0.0018864

bypass
Eyy yp 0.00047395
7.836e-05

-0.00031524

~=D.00070983

00011044

-0.001429

-0.0018536

-0.0022882

-D.00265328

-0.0030774

Figure 6.6¢,, ande,, for bypass and uni-directional computations
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6.2 Projection of FEM Simulation to DIC Results

In order to perform the simulation, the orientation veaigr) of the experimental data, see
Eq.(5.58), must be transferred to the finite element progrémthis work, it is assumed that
a(x) is constant within the thickness of the sample. The spatiatdinatexg = {zg, ysc} of
a Gauss-point are known in a finite element program. Theselowies are equivalent to the
position vector (5.38)£s andrg are the coordinates of spatial points in the B-spline setfac
The coordinatess andrg can be obtained using the system of two non-linear functveitis
two unknowns,

g(&e,16) = x6 — p(&e,m6) =0, ~~ §eandng (6.1)

{ 91(&e, M6) }: { e }_ { p1(&c: 16) }:{ 0 } 6.2)
925 16) Yo p2(&6, M) 0

In the scope of calculating the tangent vector Eq.(5.58)eatin-Raphson method is used to
find the coordinategs andrs for each Gauss-point. The starting values(@ré, 0.1). It is clear
that points are out of field whefy or g are not betwee and1. There is a region near to

the hole where no fibers exist. In this area, a linear isotrefastic behavior within the resin is
assumed, i.e. there is pure resin material in the area béewirve, see Fig. 6.7.

which leads to

p(£,0)

Yy
R =25mm N _

€T
pure resin material5

Figure 6.7: Area with matrix material (isotropic elastyit
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6.3 Finite Element Studies of Uni-directional Fiber
Laminates with Rivet

In many industrial applications, such as aircraft congiounc for example, it is common to use
rivets, since they are extremely durable and require noingldee also (Moroni and Pirondi,
2010). A glance at any airplane or aircraft reveals thousaridivets in the outer skin, which
indicates how important riveting is. Rivets used in the apaze industry are made of aluminum
or steel, see (Wincheski and Namkung, 2004; Yang et al., RORdvets are mainly used to
hold different sections in place, to secure fittings, todadtracing members, and to attach two
or more components, see (Abdelal et al., 2015; Chiou et @21}l Quality prediction for riv-
eting is very important, as it can improve the efficiency ofveting design. Moreover, there
are many different riveting method (Kim et al., 2019). Kimakt(2019) published a literature
survey about rivet quality prediction, mainly carried oasbd on the finite element method to
predict deformed shapes, joint strength, and fatiguedifetfor a given material design condi-
tion. Simulations can provide better insight into the perfance of rivets. Specific requirements
in industry for riveting (along with failure mode) are dissed in (Moroni and Pirondi, 2010).
A detailed study on the fastening process of small panelnasises with single and multiple
rivets was performed by (Abdelal et al., 2015). In additithe dimensional growth of aircraft
panels while being riveted with stiffeners is also investagl in (Abdelal et al., 2015). A new
design of a composite countersunk rivet made of rolled |aei for aeronautical applications
is proposed and numerically analyzed in (Leite, 2016). Tifextof the riveting process on the
residual stress/strain in joints and the stress conditiaiveted lap joints is investigated using
experimental and finite element methods in (Li et al., 20123ing rivets brings compression
force and friction in an area around a hole, which is critmadl significant for us. Rivets can
influence the behavior of plates, especially in a region redoai hole. Thus, we are interested
in studying the effect of compression force generated bstsiin the area around the hole with
respect to the fiber orientation.

In this section, simulations are done in order to investighe local effects of rivets on
structure’s performance with respect to the fiber orieatati For this purpose, we compare
two computations of plates with holes with a radius/f= 2.5 mm, while a displacement
of u, = 0.1 mm is applied to the surface of the plate. The plate is meshetyusiD with
guadratic, tetrahedral elements. In these examples, @tegare placed on each other, connect-
ing them with a rivet. The distance between the two platel$)is® mm. This means that no
contact between the two plates is assumed. A rivet with a ygunodulus ofF = 200GPa and
a Poisson’s ratio of = 0.3 is considered. A sketch of such a rivet can be seen in Figa)s.&(d
a displacement d¥.005 mm due to the force of the rivet is applied around the hole (bravea),
as shown in Fig. 6.8(b). It is assumed that the force betweeplates is transferred through the
whole rivet. Due to symmetry conditions, only half of thetplés modeled. The geometry is
shown in Fig. 6.9, and the mesh and boundary conditions anégubout in Fig. 6.10.

In the first computation, the spatially constant fiber od¢ionha = e, (uni-directional) is
chosen. In the second computation, we model the fiber otientasing the B-spline approach,
assuming a spatially varying fiber orientation (which wdethbypass). In this case, there is no
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Figure 6.8: Rivet considerations for computations
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Figure 6.9: Geometry

fiber in a small region around the hole, and isotropic materieonsidered for this area. In these
set of examples, the material parameters determined int€&hjare used.

In the following, the stress and strain states in uni-diogal and bypass cases are studied.
The stresses,. (50, y, —5) with respect to the vertical axis at= 50 mm andz = —5 mm (in
the center of hole) are calculated, see Fig. 6.11(a). Fumitve, the stresses in vertical direction
at the horizontal symmetry plane,, (0 < = < 160, 0, —5) are studied, see Fig. 6.11(b). Again,
the plots are generated using GiD as Gauss-point data eéraieshodal points by interpolation
schemes. Since the plate is more critical than the rivetplbis are generated only for the plate.
The simulation results can be seen in Fig. 6.13 - Fig. 6.16.

As mentioned before, the plates are more critical in consparito the rivets due to their
stiffness. If we only consider the plate area, the maximunizbatal stress is generated in uni-
directional fiber orientation at poiitt, y) = (0, R). Theo,, for the uni-directional case is more
than six times larger than that of the bypass case. A simiacqulure is carried out for the
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U, = 0.1mm,u, =0,u, =0

Figure 6.10: Mesh, and boundary conditions

strains, see Fig. 6.12. Even though promising results ai@rsdd overs,.,. in the bypass case,
larger compressive straing, around the hole, for the bypass computation, can be observed
comparison to the uni-directional case. These larger cesspre strains can also be seen in
the bypass-reducedase in Sect. 6.1 where there are no rivets. Comparing th@uiatons

in Sect. 6.1 and Sect. 6.3, it can be seen that bypassing #rs filbound the hole reduces the
0.z, although larger compressive strains can be observed drenhole in both cases (with
rivets and without). It should be noted that negative sgraire not as critical as tensile strains.
Thus, positive results are obtained for the bypass caseewisrs go around the hole in both
cases (with rivet and without). The stress and strain @histions in uni-directional and bypass
laminates with rivets are exemplified in the following.
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6.4 Validation Examples

The material models for isotropy, uni-directional fiberemriation, and orthotropy laminates are
discussed in Chapter 3. In Chapter 4, the parameters faoggttransversal isotropy, and
orthotropy are obtained. One question we are aiming to ansmMeow well we are able to
predict the behavior of these laminates. In order to answequestion, we have to compare the
simulation and the experiments. In the following, validatexperiments will be introduced. In
addition, we will take a look at a comparison between the ftien and the experiment data for
the cases of transversal isotropy and orthotropy.

6.5 Transversal Isotropy

6.5.1 Experimental Results

Two sets of experiments are considered. In the first set, bleesfiare cut after the production
process by drilling a hole into the laminates. In the secatgte fibers are bypassed around the
hole. The aim of this section is to validate the entire precdghe experiments, the modeling,
and the material parameter identification. Two sets of spews are manufactured using resin
RIMR135 with the curing agent RIMH1366, similar to the saagpfor identification purposes
in Chapter 4, see. Fig. 6.17(a). Each set of experimentpéeated five times. The geometry is
shown in Fig. 6.17(b).

6.5.2 Comparison of Experiments and Simulations

Due to symmetry conditions, we can compare the experimeesalts with the finite element
computations of one-eighth of the plate with a hole with auadf R = 2.5 mm, see Fig. 6.18(a).

A displacement ofi, = 0.26 mm is applied to the plate at the clamping part, see the blue area
in Fig. 6.18(b). The model is meshed usi?@grnoded hexahedral elements, see Fig. 6.18(b).
GID software (GiD-Manual, 2012) is used as a pre-and pastgssor for the finite element
simulation. Further, the in-house finite element progranSAKEM is used to perform three-
dimensional computations for the small strain case usinrgd&®d hexahedral elements with

3 x 3 x 3 Gauss-point.

First, a uni-directional fiber orientation computationhwit = e; is performed. In the second
simulation, the fiber bypassing simulation, the tangentors@are determined using the B-spline
approach, see Eq.(5.58). A comparison between the expaisraad the simulations regarding
the force-displacement curves can be seen in Fig: avith the mean-value and the blue-scaled
standard deviation. A force-displacement curve repregéstforce determined by finite element
computations. From the results, we can see a deviation istiffieess. The force-displacement
plots for both cases indicate that there is a deviation oflp&a— 10% between the simulations
and the experiments. Let us compare the computations andxgperimental values for the

“Figures 6.19- 6.22 and Tab. 6.1 are taken from (Hartmann,&2@20) and Mr. Rose Rogin Gilbert generated
these pictures.

97



(a) Specimens with bypassed and cut fibers with hole radius-of

2.5mm
clamping area e
1’
50 150 50
<t =
=k 150 2

(b) Bypass specimens: thickness= 2.5 + 0.1 mm, widthw = 19.7 £+
0.4 mm; uni-directional specimens: thicknegs= 2.4 £+ 0.1 mm, width
w = 19.95 + 0.45 mm (with a hole having a radius &8 = 2.5 mm)

Figure 6.17: Samples for validation purposes

maximum principal strain in the middle of the samples, whilsignificant and critical. The
maximum principal strain of the simulations around the htde be seen in Fig. 6.20. The
division between the purely isotropic and anisotropic@agican be noticed in Fig. 6.20(b), i.e.
the discontinuity of the material is recognizable in theidetion.

Here, the maximum principal strain distributions are afedi for the uni-directional fibers
and the fiber bypassing samples, see Fig. 6.21. The DICrysteot able to present data in the
white regions. This might be due to the spray-paint patterthe surface of samples, since some
big black dots can be seen on the surface of the samples. Maréithe surface of specimen is
not smooth enough or has any defects, this can also lead Ibkepne for DIC-systems. On the
other hand, the principle strain distribution is relatjvelose to the numerical results.

The introduction of relative errors is provided to allow Bobetter comparison of the results
from the simulation and the experiments,

o = oo = craml g0 (6.3)
|51,exp|

The experimental maximum principal strains are representth ¢, ¢y, ande; sim correspond to
the numerical results. The relative error for the five vdlmaexperiments with uni-directional
fibers and fiber bypassing specimens are provided in Fig. 62@rder to evaluate the results,

the mean-values of all data of the evaluation points arerihted. The mean relative errors of
all the five uni-directional and fiber bypassing samples sted in Tab. 6.1, (Hartmann et al.,
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Figure 6.18: Geometry, mesh, and boundary conditions

2020). The prediction of the entire region based on finitenelet simulation has a deviation of

Table 6.1: Mean relative error of uni-directional and bygiag fiber samples

uni-directional fiber

fiber bypassing

sample mean relative er- mean relative er mean relative er- mean relative er-
no. ror - full field (in ror - ROI (in%) | ror - full field (in ror - ROI (in %)
%) %)

1 20.79 29.50 24.53 30.72

2 15.44 18.65 26.52 35.44

3 16.45 26.11 22.97 35.75

4 17.76 27.58 23.40 32.01

5 17.95 28.43 22.59 30.32

~ 18% for the uni-directional fiber direction arwe 24% for the bypass case. If we concentrate
only on the region around the hole, the errors are highers bacomes more noticeable if we
specify a “region of interest” (ROI). For this aim, an areabefim x 6 mm around the center
of the hole is chosen. For the specified area, a mean relatoed 26% can be observed for
the uni-directional samples and ord$% for the bypass samples. Nevertheless, there are much
higher errors in the uni-directional case locally, while tnean relative errors are larger in the
bypass case. In this regard, quality measures of heterogemeaterial calculations are still an
open matter.
Since it is possible to address the fiber direction using tvethwds, the difference between
the streamline and the B-spline approaches is of interest.tHts aim, the computations are
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Figure 6.19: Force-displacement curves of validation gpam

again done using the obtained parameters for transveosadjpy in Chapter 4 with the geometry
and mesh in Fig. 6.18. Again, a displacementigf= 0.26 mm is applied to the plate at the

clamping part, see the blue area in Fig. 6.18(b). Fiber tatem a is determined using the

streamline approach, with the help of Eq.(5.10). There isi@a where no fibers exist, see
Fig. 6.23(a). Regarding this area, the first and the end pairg obtained from the experiment
pictures, see Fig. 5.3. A polynomial of third order is usedéfine the area. This polynomial is
defined with the help of coordinates and the first derivativine start and end points, which is
assumed to be zero.

A force-displacement curve shows the resulting force fromftnite element computations,
see Fig. 6.23(b). The force-displacement plots indicaa¢ ttere is a deviation of arourtd—
12% between the simulations and the experiments. Again, a cosgomebetween the maximum
principal strains of the computations and the experimenpsavided with regard to the center of
the samples. Fig. 6.24 shows the maximum principal straine$imulations for the area around
the hole. The relative error of the five validation experitsdor the fiber-bypassing specimens
are provided in Fig. 6.25.

To get a better understanding of the results, the meanwalal data of the evaluation points
are calculated. The mean relative errors of all the five filygrassing samples are compiled in
Tab. 6.2. The prediction of the entire region based on a fel@ment simulation has a deviation
of ~ 23%. In addition, the finite element simulation for an areg6ofm x 6 mm around the
center of the hole, which is again referred to as a ROI, hawvtiten of ~ 43%. Comparing
Tab. 6.1 and Tab. 6.2, it can be seen that finite element silongausing the streamline approach
have a larger deviationy 1% for the entire plate ang: 10% for the ROI, in comparison to the
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(a) Uni-directional fiber orientation (b) Curvilinear fiber orientation

Figure 6.20: FEM prediction of uni-directional and fiberatimplacement computations using
B-spline approach

Table 6.2: Mean relative error of validation samples with streamline approach

sample no. mean relative error - full field (i) mean relative error - ROI (if%)

1 21.65 38.77
2 22.34 43.45
3 24.59 49.17
4 22.99 43.98
5 21.50 40.99

finite element simulation based on the B-spline approack.differences in the ROI result from
the fiber directions around the hole. Clearly, since the tamgent vector has different values,
the most pronounced difference between the streamlineadethd the B-spline method is to
be found in the area around the hole. It is obvious that coatjmus using a B-spline approach
show less deviation, since the experimental data repre#enfiber orientations more accurately.
On the other hand, the behavior of the entire plate is verylainm the two methods.l A direct
comparison does not show huge differences between the-dmsp&acement curves of the two
computation methods; both have an average deviatien 9f.
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(a) Maximum principal strains for uni-directional fiber(b) Maximum principal strains for fiber bypassing ori-
orientation entation

Figure 6.21: Maximum principal strain distribution in \@dition examples
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(a) Relative error for uni-directional fiber orientation (b) Relative error for fiber bypassing orientation

Figure 6.22: Relative error for uni-directional fiber ori@tion and fiber bypassing orientation
with respect to experimental results
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Figure 6.23: Region with isotropic material and force-thspment curves of validation exam-
ples with fiber bypassing orientation for transversal oyrlaminates
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Figure 6.24: FEM prediction of fiber circumplacement conapions using the streamline ap-
proach
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Figure 6.25: Relative error of validation examples usirggstreamline approach
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6.6 Orthotropy

6.6.1 Experimental Results

A set of bi-directional fiber laminate experiments is catraut. In this set, the fibers are cut
after the production process by drilling a hole into the laatés. The set of specimens was made
using resin RIMR135 with the curing agent RIMH1366, simtlathe sample for identification
purposes in Chapter 4, see Fig. 6.26(a). This experimergasmaepeated five times, and the
geometry is shown in Fig. 6.26(b). It should also be mentiaihat, in this case, bypassing the

(a) Specimens with cut fibers with hole radiugof 2.5 mm

clamping area
ping . e

G—>€1 ‘js

. 50 >'< ;:(0) >~< 50 |

<t o~

(b) Reinforced composite samples with fiber directios e; anda = e;
(thickness! = 2.5 £+ 0.1 mm, width w = 20.4 + 0.4 mm, with hole radius
of r = 2.5mm)

Figure 6.26: Orthotropy samples for validation purpose

fibers around the hole generates an area around the hole thlediibers are not perpendicular
to each other. Thus, the laminate is not orthotropic anymaned it is not considered for the
validation experiments. In this section, the entire precafsexperiments, modeling of fiber-
bypassing, and material parameter identification for thieadropy material is validated.

6.6.2 Comparison of Experiments and Simulations

Due to symmetry conditions, we can again compare the fingmeht computations of one-
eighth of the plate with a hole with a radius &f = 2.5mm to the experimental results, see
Fig. 6.27. The model is meshed usi2igthoded hexahedral elements. A displacement, o
0.19mm is applied to the plate at the clamping part, see the blueiarég. 6.27(b).

Orthotropic laminates with two fiber orientations,= e; andb = e,, are considered. A
comparison between the experiments and simulations wéeit to the force-displacements
can be seen in Fig. 6.28. The results clearly show the demstiegarding the stiffness. The
force-displacement plots for both cases indicate thangusg.(6.3), there is a deviation of nearly
7 — 13% between the simulations and the experiments.
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Figure 6.27: Geometry, mesh, and boundary conditions bbtndpy laminates for computations

Since the center of the samples is significant and cruciali$gra comparison between the
maximum principal strains of the computations and the arpats is provided. The maximum
principal strains of the simulations around the hole candam $n Fig. 6.29. Here, the maximum
principal strain distributions of the orthotropy samples the five validation experiments are
obtained, see in Fig. 6.30(a). The DIC-system is not ablepoasent data for the white regions.
On the other hand, the principle strain distribution is irodagreement with the numerical
results.

To allow for a better comparison between the results of thrukition and the experiments,
the relative errors using Eq.(6.3) are provided. The expental maximum principal strains are
represented with ex, ande; sim correspond to the numerical results. The relative errotffer
five validation experiments in the orthotropic samples aipled in Fig. 6.30(b). In order to
evaluate the results, the mean-values of all data of th@atrah points are determined. The mean
relative error of all the five uni-directional and fiber-bggang samples are compiled in Tab. 6.3.
The prediction of the entire region using finite element datian shows a deviation et 32%
for the orthotropic case. Moreover, finite element compontat for an area 06 mm x 6 mm
from the center of the hole, which is again referred to as R@4,a deviation of 35.5%.

Considering the uni-directional samples in Tab. 6.1 and &&} it can be seen that finite el-
ement simulations for orthotropic plates have higher dewia,~ 14% for the entire plate and
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Figure 6.29: FEM prediction of orthotropy computations

~ 10.5% for the ROI. In the orthotropy case, more parameters ardvaddn the computations.
Therefore, the uncertainty of each parameter causes aéeagnt, and this increases the devia-
tion between the simulations and the experiments in thetdpy case. A comparison between
the force-displacement curves of the computations forabrtipy and the transversal isotropy
laminates shows almost the same mean deviatiers— 10% on the average.

108



Table 6.3: Mean relative error of orthotropy samples

sample no. mean relative error - full field ) mean relative error - ROI (ifx)

1 29.64 32.64
2 32.61 35.20
3 29.26 32.10
4 36.13 42.35
5 32.13 35.37

=1
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T |
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LU TS

(a) Maximum principal strains for orthotropy samples us-  (b) Relative error for orthotropy samples
ing DIC-system

Figure 6.30: Maximum principal strain distribution andatale error in validation samples
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7 Conclusions and Outlook

One major aim of this thesis is to study, simulate, and ptedecbehavior of transverse isotropic
laminates where the fiber orientation is spatially inhonmageis. This is modeled using a B-
spline approach. It is also investigated what effect it iasspecimen is designed in such a way
that the fibers bypass a hole. In both cases, special focuadsgon determining the material
parameters from experimental investigations.

Composite laminate specimens with a hole can be obtaineddguping a fiber-reinforced
composite plate and, subsequently, drilling the borehdtather approach is to bypass the fibers
around the hole before injecting the matrix material. Infils case, the spatial distribution of
the axis of anisotropy and the structural tensor concernedatially constant. In the second
case, i.e. the fiber circumplacement around the hole, yeesggce-dependent area of anisotropy.
Thus, the possibility of bypassing the fibers around a holerder to improve the structure
performance is one of the aspects addressed in this workthEopurpose, it is necessary to
investigate the stress and strain distribution of uniaiomal and inhomogeneous fiber directions
around a hole. A mathematical function serves to model tter fiistribution in a plate. In the
first step, the circumplacement of the fibers is modeled usisigeamline function to obtain the
inhomogeneous fiber direction, which can be used in finitmetd simulations of transversely
isotropic material. The calculated material parametegstlaen used for the computations. A
comparison between the two described cases showed prgmesialts, namely that the stresses
are essentially reduced around the hole. There are, howegber compressive strains, vertical
to the loading direction, but they are not as problematichasténsile strains. In addition, the
computations are also performed for plates with rivets tteoto investigate the local effect of
rivets around the hole. It is observed that bypassing thesfimeluces the stress around the hole,
however with higher compressive strains. Thus, positigelte are obtained, as compressive
strains are not as critical as tensile strains in these cases

It turns out that further investigations and comparisonsxXperimental data have to follow.
For this purpose, the aim is to find a more precise way to defivex frientation, although
the streamline approach is an efficient and fast way to reptdter directions. B-splines are
powerful when it comes to representing curves and surfacsisould also be mentioned that the
precision of the continuous description of the spatiallyamogeneous fiber distribution in the B-
spline approach is a remarkable advantage, although thfeoehés much more complicated than
the streamline approach. Thus, with regard to determinirigeocontinuous fiber distribution, a
new concept of interpolating data points regarding expenital fiber directions using B-splines
surfaces is proposed. This approach leads to a smooth aptton in comparison to classical
discrete approaches. The function is implemented into thie felement program (TASAFEM)
so that the fiber orientation can be computed at each Gausssgfathe finite element. An
important aspect is the formulations of computing the admoints from experimental data,
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where a consistent matrix notation is applied.

The next challenge is to obtain the material parameters itionpe the finite element simu-
lations. Five material parameters of linear elastic, tvanse isotropy have to be identified for
the material model. The material parameter identificatimtess is performed based on a least-
square approach combining finite element simulations attdd®is of surface strain information
from a digital image correlation system as well as force ffata the testing machine. Specific
experiments have to be carried out to obtain the materialpeters, namely uniaxial tension for
the fiber orientations ai° and90°, a shear test, and a computational compression test.

The material model is evaluated using the parameters autdor the transverse isotropic
samples. For this, it is necessary to validate the numeajgatoach by means of experimental
observations. Two types of specimens are used for the Walidexamples: one with a hole that
was drilled after the production process, with a uniformfiistribution, and one with a hole
where the fibers were bypassed around the hole before thexmmatierial was injected. All the
solutions are treated using finite elements. Validatioreexpents are performed, and real errors
between the computations and the experimental resultsedditfital image correlation system
are shown. This is commonly circumvented in the literaturéurns out that, firstly, the strain
scattering of the samples dominates the evaluation andndig that it is possible to determine
a region of interest. The computations for the bypassing eas performed based on B-spline
and streamline approaches, and the streamline method dhogleer deviations with respect to
the experiments.

The investigation is extended to orthotropy laminates wath fiber directions. One goal is
to predict the behavior of orthotropy laminates based orcéteulated material parameters. In
the first step, a constitutive model of orthotropy for the Bre@ain case is derived from large
strain theory. The model is implemented in the in-housedfi@iement program TASAFEM. The
constitutive model of orthotropy is based on strain enetmcfion with seven invariants. Nine
material parameters of linear elastic, orthotropy areftifled. In order to obtain the material
parameters, various samples based on the VARI productmseps are manufactured, and dif-
ferent experiments such as tension, compression, thileshear, and lap shear tests are carried
out. Furthermore, the material parameters are identifidioinva least-square approach with the
help of optical results from a digital image correlationtsys.

In the following step, the material model is evaluated usirgobtained material parameters
for specimens with bi-directional fiber orientations. Haistpurpose, it is necessary to validate
the numerical approach with experimental observationenTkalidation experiments are per-
formed with specimens with fibers in two perpendicular dicets and with a hole (drilled after
the production process). To estimate the final stress aaih Stiate for an orthotropic composite
plate, finite element simulations are again accomplishedgiaRling the validation experiments,
a real error can again be shown between the computation anexfirerimental results of the
digital image correlation system. A comparison betweerfithitee element simulations and the
experiment results shows promising results. The computsifor bi-directional fiber orientation
show higher deviations with respect to the experimenta slatomparison to the uni-directional
case, because more material parameters had to be condiletieel predictions.

There are aspects that could be investigated more thorpugtite future. The scope of this
work is restricted to the linear elasticity, but the apptoaould be extended to the non-linear
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problem in future work. Further, it could be promising to d®p a model to represent bypassed
fibers in samples with bi-directional fiber orientations.
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8 Appendix

8.1 Relation of the Invariants of the Green Strain and
the Right Cauchy-Green Tensor

UsingE = (1/2)(C —1I) or C = 2E + I, the invariants of the Green strain and right Cauchy-
Green tensor are related to each other as

trC=tr2E+I=2trE+3=2lg + 3, (8.1)
trC* =tr(QE+I)2E+ 1)) = tr(4E* +4E + 1) = 4trE* + 4trE + 3
= 4llg + 4lg + 3, (8.2)
trC* = tr((4tr E* + 4tr E + 3)(2E + 1)) = tr(8E® + 12E* + 6E + 1)
=8trE* + 12trE* + 6tr E+ 3 = 8lll g + 12llg + 6lg + 3, (8.3)
trCM; =tr(C(a®a))=a-Ca=a-2E+I)a=2a-Ea+a-a=2a-Ea+1
= 2lVg + 1, (8.4)
tr C*M,; = tr(C*(a ® a)) = Ca-Ca = (2E + I)a - (2E +I)a = (2Ea + a) - (2Ea + a)
=4Ea-Ea+4Ea-a+1=4Vg +4IVg + 1. (8.5)

Similarly to Eq.(8.4) and Eq.(8.5), it can be written that

tr CM, = tr(C(b ® b)) = 2Vlg + 1, (8.6)
tr C*M, = t1(C*(b®@ b)) = 4Eb-Eb + 4Eb- b+ 1 =4Vl g + 4VIg + 1. (8.7)

8.2 Calculation of Second Piola-Kirchhoff Stress Tensor
in Orthotropic Case

The calculation of the second Piola-Kirchhoff in Eq.(3.8%uires a chain rule which is applied
on EQ.(3.87). The Gateaux-derivative is required withimm¢hain rule. The details of the calcu-
lation of the Gateaux-derivative for invariants is provdde the following. The first invariant is
lg = tr E, and by applying the Gateaux-derivative, it yields

S H = Di In(E)[H] oY

which results in

Ixeo = tr(H) =1 H, (8.8)
e _p (8.9)

E
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The second invariant isgl= tr E?

dll dtr(E + AH)?
d—EEH =Dgllg(E)[H] = ( D ) =0 = 2E - H, (8.10)
and yields to
% =2E (8.11)
oE T '
The third invariant isg = tr E?
ol dtr(E + \H)? dtr(E® + 3E*\H + 3EN?H? + V*H?
L EH — Dg (e = THELARS dul . mo
=3E*-H, (8.12)
and it follows that
olll g 9
= 3E~. A1
3E 3 (8.13)
The fourth invariant is I\, = tr(EM,)
OlVg
and itis equal to
OlVg
SE M,;. (8.15)

Correspondingly, for the sixth invariant = tr(E*M,), it can be shown that

a(;/; = M., (8.16)
The fifth invariant is \, = tr(E*M,)
@/—EEH =DgVg(E,M,)[H =HE-M, + EH-M, =H- (M,E+EM,), (8.17)
from which follows
%V_EE = M,E + EM,. (8.18)

Similarly, for the seventh invariant il = tr(E*M,), it is possible to write

OVl g
JE
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8.3 Calculation of the Fourth Order Elasticity Tensor C
for the Orthotropic Model

In order to obtain Eq.(3.95), the following steps have todleeh: The second Piola-Kirchhoff
stress tensdr’ can be written as

T = h(E, M, M,) (8.20)
where the fourth order elasticity tengbran be obtained by applying the Gateaux-derivative as
CH = Dg lg(h)[E, M, M,|H (8.21)

which follows with the help of Eq.(3.93) as
CH = <()\(H 1)+ (M - H) + 03(My - H))L+ 20H + (o (H-T) + 4 (M, - H)
+ 35(M - H) )M, + 2; (EH + HE) + 245 EH + HE) + (ap(H - T)+
Bo(M, - H) + B4(M, - H))M2>, (8.22)
and it leads to

CH= | MI+uI®M; +al® Ms+2uZ + oM, @ I+ 51 M; @ M,

Tos
+ BsM; @ My + 241y I®M1+M1®I] + aoMy @ T+ .My @ My

T:
+ B5My @ My + 2415 [I © M, + M, ® I] Y1 (8.23)

Finally, the elasticity tensor reads
CZAI®I+a1[I®M1+M1®I} +a2[I®M2+M2®I} +2uT + /M, ® M,
Tos
+52M2®M2+53[M1®M2+M2®M1} +2M1[I®M1+M1®I}

Ts
+ 2, [I ® M, + M, ® I] ' (8.24)

8.4 Control Points

Here, two examples are provided to show the influence of thé&ralopoints on the final curve.

In the first example, the number of data points and contraits@re the same, as the curve goes
through all data points, see Fig. 8.1(a). In the second ebgrtipe number of control points is
reduced tot, and the curve goes only through the first and the last data.plmi this case, the
first and the last data point are equal to the first and the tagtal point.
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Figure 8.1: The impact of number of control points on the eurv

8.5 Investigation Regarding Second and Third
Derivatives of the B-Spline Curve

A derivative of higher order for the B-spline curve can beanid as well. Generally speaking,
second and third derivatives are of interest in most curpeesentations since they provide in-
formation about the characteristics and the quality of esrvihe second derivative corresponds
to the curvature of a curve, and the third derivative is categtto the torsion of a curve, which
is a fundamental property of curves in three dimensiondeRihtiating Eq.(5.35) yields

k—1
Nz‘(,? (f) - ﬁNi(}c)fl(g) - =

Sipk—1 — S

Sitk—1 T S \ Sitk—2 T S

k—1 ( k—2

Stk T Sl

_ N - o
—i+k—1 =7 —i+1

1

- 1
7—~Ni(+)1,k71 (f)

itk T St

k—1 k—2 k—2
= — ( —Nip2(§) —=——=—

= = Ni+1,k—2(§))

Sitk—1 — Zit1

k-2
Ni+2,k_2<§>) . (8.25)

Sk T Si42

The third derivative of a B-spline basis function can alsaakeulated. Using Eqgns.(5.33) and
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(8.25), the third derivativeV;} (¢) reads

kE—1 k—1

3 2 2
N3 (©) = ﬁNi(,k)—l(g) - ﬁNi(Jr)l,kfl(g)
—i+k—1 = —i —it+k T —i+1
k—1 k—2 k—3 k—3
—— = [: = <: = Nip-3(8) — #Ni“vk—?’(g))
k-1 — Zi | Sigr—2 — Zi \Sigr—3 — Z Eitk—2 — Zit1
k—2 k—3 k—3
—= = <: —Niy1x-3(8) — ﬁNi—l—Q,k—i&(&))}
k-1 — Zit1 \Sith—2 — Zig1 Eirk-1 — Zig2
k—1 k—2 k—3 k—3
- = = [: = (: = Nit15-3(§) — ﬁNi—i—Q,k—Z&(g))
itk — Zit1 [ Zitk—1 — Zig1 \ Sigk—2 — Zir1 Eitk—1 — Zit2
k—2 k—3 k—3
—= = <: = Niyay-3(§) — ﬁNiH,ks(f))} : (8.26)
ik — Zig2 \ Zigh—1 — Zigo Eirk — Zit3
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9 List of symbols

9.1 Scalars

At, Time step size of intervall reaching from until ¢,,,;

Cij Material parameters of generalized polynomial elasticity
Cijri Component of fourth order tensor

0 Density in the current configuration

OR Density in the reference configuration

dVv Material volume element in the reference configuration
dv Material volume element in the current configuration
d Internal dissipation

dn Discretized internal dissipation

E;; Components of Green strain tensors given as vector
E(B,t) Internal energy

e Mass specific internal energy

n Viscosity of material body

Mo Initial viscosity

F; Components of deformation gradient

G Shear modulus

g Step length in line search

y Entropy production density

Vij Shear angles

['(B,t) Volume distributed entropy production

H(B,t) Entropy exchange

lc First invariant of tenso€

Ilc Second invariant of tens@r

¢ Third invariant of tenso€C

J Determinant of deformation gradient

Im Mechanic part of deformation gradient

K Bulk modulus

k Order of a curve or surface

k—1 Degree a curve or surface

K(B,t) Kinetic energy

L(B,t) Power of external forces

m(B,t) Mass of a material body

1 Material parameter
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Y Helmholtz free energy

S(B,t) Entropy content of a material body
g, llg,lllg  Invariants

IVg, Vg, Vlg Invariants

Vil g Invariants
A, g, pip Material parameter of transversal isotropy model
a, 3 Material parameter of transversal isotropy model

lc,llc, Il Invariants of transversal isotropy model
IV, Ve, Vle Invariants of transversal isotropy model

Vil ¢ Invariants

t Time

X, Y, Z Component of coordinates of material point in referencdigaration
T,Y, 2 Component of coordinates of material point in current camigion
a1, Qo Material parameter in orthotropy case

B, Pa, B3 Material parameter in orthotropy case

[y JU1, fho Material parameter in orthotropy case

E; Young’s modulus

Vij Poisson ratios

s Standard deviation

Kconf Confidence interval

Cij Correlation coefficient

R? Coefficient of determination

N Number of experiments

Ao Intended surface of sample in the current configuration
Ne Number of control points

N x(€) B-spline basis function

1S Parameter value in B-spline

Ty number of knot values as it is fxdirection

T number of knot values as it is ipdirection

Nde The number of data points direction

ey The number of data points kta-direction

Neg The number of control points ifrdirection

Ney The number of control points irta-direction

Ni’,?’ (&) m'™ derivative of B-spline basis function

[ Order of a curve or surface

9.2 Vector Valued Quantities

X Arbitrary configuration of material body
X Current configuration of material body
XR Motion of a material body
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p(§)

Mapping from unit element to reference configuration
Virtual displacement

Material line element in the reference configuration
Material line element in the current configuration
Material surface element in the reference configuration
Material surface element in the current configuration
Base vectors of cartesian coordinates

Parametric curve description for curvef the reference element
Rotational momentum

Surface unit normal in the reference configuration
Surface unit normal in the current configuration
Entropy flux vector

Linear momentum

Cauchy heat flux vector

Position vector over B-spline curve

Piola-Kirchhoff heat flux vector

Cauchy stress vector

Piola stress vector

Displacement of material point

Velocity of material point with respect to the current configtion
Position of a material point at tinte

Position of a material point in reference configuration
Position of a specific material point in reference configorat
Coordinates of the reference element

Fiber orientations in laminates

Fiber orientations in laminates

The tangent vector

Knot vector

Parameter vectcor for defining B-spline functions
Contro points vector

Tangent vector of B-spline surface

m'™ derivative of B-spline curve

Unit tangent vector

9.3 Second and Higher Order Tensor Quantities

ogaaw

Left Cauchy-Green tensor

Right Cauchy-Green tensor

Volume-preserving part of right Cauchy-Green tensor
Symmetric part of spatial velocity gradient

Green strain tensor
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2 =N =T

0]
Ke]

H:mﬂ:ﬂzmﬂﬂﬂm

Q
<

=

Deformation gradient

Isochoric part of deformation gradient

Volume changing part deformation gradient
Displacement gradient

Second order identity tensor

= [I® 1), fourth order identity tensor

Spatial velocity gradients

Structural tensor

Weighted Cauchy stress tensor, Kirchhoff stress tensor
Cauchy stress tensor

Cauchy stress tensor of equilibrium part

First Piola-Kirchhoff stress tensor

Second Piola-Kirchhoff stress tensor

Equilibrium part of second Piola-Kirchhoff stress tensor
Overstress part of second Piola-Kirchhoff stress tensor
Skew symmetric part of spatial velocity gradient

9.4 Matrices and Column Matrices

| <

C >Q 0 7Y X
X
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parts of the total finite element stiffness matrix

parts of the total finite element stiffness matrix

Jacobian matrix

Covariance matrix

Matrix containing simulation data

Matrix containing experiment data

€ R"*"~ coefficient matrix for least-square problem
Matrix containing the coefficients associated with unknown
displacement coefficients

Matrix containing the coefficients associated with presemli
displacement coefficients

Matrix of given equivalent nodal forces

Arbitrary directions in system of linear equations

The residual of data points

Total number of data nets

Total number of control nets

The residual of each data point



9.5 Mathematical Operators

det
div
Div
grad

Grad

A-B
AB
tr A

Determinant of a second order tensor
Divergence with respect to coordinates of the current cardigpn

Divergence with respect to coordinates of the referencégunation

= ﬂei ® e’, gradient of a vector field with respect to

T Oxd

coordinates of the current configuration

= gg; e; ® €, gradient of a vector field with respect to
coordinates of the current configuration

Inner product of two second order tensors

Dyadic product of two second order tensors

Trace of a second order tensor

Invers of a second order tensor

Partial derivative of: with respect tq,

Total derivative ofr with respect tq,

Adjugate of a tensor field
Determinant of a tensor field
Cofactor of a tensor field

9.6 Short Notations

CAD
FEM
VARI
DIC
NURBS
PCM

Computer Aided Design

Finite element method

Vacuum Assisted Resin Infusion
Digital image correlation
Non-Uniform Rational B-spline
pixcel counting method

9.7 Miscellaneous

B

oB
o(x, t)
)

6o}

oS}

Ow

Material body

Surface of a material body

Production density of physical quantity in the current cgufation
Physical quantity in the current configuration

Flux of physical quantity in the current configuration

Boundary of a body in the reference configuration

Boundary of a body in the current configuration
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Qn, Volume of unit element (3-D)

P Material point or particle

Spefn(Q,)  Tensor-product-space (2-D)

R Reference configuration of material body

(o) Quantity associated with an orthogonal transformation
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