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Abstract
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Two-Photon-Polymerization for Powder Processing of Ceramics
by Johanna Christiane Sänger

No industry stays untouched by additive manufacturing and its huge po-
tential do revolutionize ourmanufacturing processes. 3D-printed ceramic
parts are of rising interest, due to their unique chemical, mechanical and
electrical properties.
The Two-Photon-Polymerization as a stereolithography technology stands

out with its high resolution in the small micrometer- down to nanometer-
range and its operation freedom to print freely in the three-dimensional
volume. Utilizing this process to produce high precision ceramic parts
opens a new order of magnitude to ceramic manufacturing.
Therefore a completely new resin is needed, which meets the require-

ments of the Two-Photon-Polymerization and ceramic processing. In this
study a resin was developed regarding the rheological, optical and pho-
tocuring requirements and printed into three-dimensional figures. Those
ought to be debinded and sintered to gain fully ceramic three-dimensional
structures of alumina toughened zirconia (ATZ), as an example of techni-
cal ceramic.…
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Chapter 1

Introduction

1.1 Motivation
3D-printing became a driving force in the development of products and
processes. People tend to have their own 3D-printer at home to print plas-
tic spare parts or their very own creations. Three-dimensional models of
any kind are freely available for any purpose imaginable. The technology
became easily accessible, especially to print plastic objects. They can be
processed with a simple setup and with cheap materials. Metals and ce-
ramics are higher demanding in forming conditions and production costs.
By now they are mainly used in industrial processes, but with growing
importance. In certain applications the three-dimensional printing, also
called additive manufacturing (AM), already enhanced metal or ceramic
productions.
Ceramic parts are of great interest due to their unique mechanical and

chemical properties, such as mechanical strength, thermal stability, hard-
ness, chemical resistance as well as their peerless electrical, optical and
magnetic properties [1]. Additive manufacturing of ceramic can advance
current ceramic processing technologies and open the way for new ce-
ramic applications, which cannot be addressed by conventional ceramic
processing like casting and moulding. This might be new shapes, small
unique stocks with the full flexibility of shaping and without the use of
expensive and space consuming moulds [2].
Nevertheless, processing ceramics in 3D-printing or conventional kind

of way comes with many drawbacks and difficulties [3]. Ceramic process-
ing means to form ceramic materials which are not pliable, neither with
force nor heat or any other treatment. The ceramic material needs to
be milled and the particles are embedded in a so-called slurry. After the
forming process the ceramic particles need to be joined together into a
strong ceramic material via sintering. This process is well investigated
in conventional fabrication methods with the conventional slurries. 3D-
printing slurries need to meet different requirements than conventional
slurries and therefore further material investigation is requiered. The
major problem is the embedding of ceramic particles in suitable amount
and quality into a slurry matrix.
Especially light induced additive manufacturing processes, like stere-

olithography, become difficult when ceramic particles are introduced into
the transparent photo-curable resins, which mainly cause scattering. In
some technologies like Single-Photon-induced stereolithography processes
the scattering might be balanced with utilizing strong laser sources with
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the drawback of lower resolutions. But when highly transparent resins
are crucial for the fabrication process, like the Two-Photon-Polymerization
(2PP), a different approach is needed.
The Two-Photon-Polymerization is THE 3D-printing technology to ad-

ditively generate objects with ultra high resolution. The resolution can
be tuned down to several hundred nanometer. No other additive manu-
facturing method ensures such a resolution and therefore a new kind of
micro- and nano-applications for any kind of material, also for ceramic
parts.
The task is to combine process andmaterial requirements onto a slurry,

which enables the Two-Photon-Polymerization of ceramic materials. The
slurry needs to contain enough ceramic particles to generate a stable
ceramic part after sintering, it ought to be photo-polymerizable with a
Two-Photon-Polymerization setup and therefore needs to be liquid, photo-
curable and most of all transparent.
The stakes are high: Utilizing the Two-Photon-Polymerization for ce-

ramic manufacturing opens a new-fashioned way for ultra-high resolution
ceramic processing, compared to all other additive manufacturing tech-
nologies. Those might introduce ceramic parts into new technical and/or
medical applications, where fine structured ceramics don’t exist so far
and where the special properties of ceramics are advantageous. Like in
high temperature, high pressure or very acid conditions, in catalysis such
as medical applications, where nano-structured implant surfaces promise
a better ingrowth. The rapid prototyping aspect of additive manufactur-
ing plays another role. Every engineer and researcher benefits from the
fast development of materials and methods in this field to create own
solutions for modern problems, e.g. with a micro-structured technical
ceramic.
I’m more than excited to show you my path to the smallest additive

manufactured ceramic part ever manufactured.
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1.2 Theory
Before bringing along the experimental data, the scientific background
and technological problems lying ahead need to be explained. This in-
volves the technological requirements unto the printing process and ce-
ramic material requirements.

1.2.1 Stereolithography a Additive Manufacturing Technol-
ogy

Additive Manufacturing technologies are defined as the “process of join-
ing materials to make objects from 3D model data, usually layer upon
layer, as opposed to subtractive manufacturing methodologies, such as
traditional machining” [4]. Additive manufacturing (AM), solid freeform
fabrication (SFF) and rapid prototyping (RP), of equal meaning, are pro-
cesses [2] building three-dimensional objects [5]. Layer-by-layer (LbL)
means using a three-dimensional computer model, which is then sliced
into layers and stacked on top of each other. Advantages can be the, in
comparison to subtractive methods or molding, fast building time, reduc-
tion of waste, the absence of tools, moulds and fixtures (see Figure1.1)
and the possible complexity of the desired parts [6]. Different materials
require different processing methods and parameters, thus a great vari-
ety of AM-technologies occurred. Examples are Stereolithography (SL)
for polymers, Fused Deposition Modeling (FDM) for polymers and met-
als, Selective laser Sintering/Melting (SLS/SLM) for ceramics, polymers
and metal, Laminated Object Manufacturing (LOM) for foils of any kind
of material, Electron Beam Melting (EBM) for metals and many more [7].

Figure 1.1: Comparison of substractive and additive manu-
facturing technologies vs. molding

Stereolithography (Greek στερεός stereos – „hard“, „tough“, „physi-
cally “, also „spatial“ and λίθος lithos – „stone“ and γράφειν graphein –
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„to write“) is one type of additive manufacturing processes, where bod-
ies are formed in a layer-by-layer-fashioned way by initializing a photo-
polymerization in a mainly liquid photo-curable resin. This polymeriza-
tion is carried out by a molecular chain reaction [8] which solidifies the
polymer at the illuminated spot. This gives a great freedom in design and
therefore opens a wide field of forms and structures, mostly applied to
polymeric materials [9].

1.2.2 Radical Polymerization
The chemical basis of stereolithography is the light induced radical poly-
merisation. The basis are compounds with olefinic double bounds, mainly
acrylates and methacrylates. Those can be either a single group, di-
acrylates or acrylated polymer chains. Depending on this architecture
the resulting polymeric networks have a variety of properties. But they
all have in common to be highly reactive in the presence of radicals [10].
Those are formed via the photo-induced cleavage of a photo-initiator

and leads to the radical polymerization mechanism, involving initiation,
propagation and termination [11], displayed as following. First the Initia-
tor is cleaved by the radiation and forms two rest-specimens containing
a free radical 𝑅•.

𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 → 2 × 𝑅•

Those react with a Monomer 𝑀 containing an olefinic group/double
bond and forming a combined specimen with a free radical 𝑅𝑀•

1 .

𝑅• + 𝑀 → 𝑅𝑀•
1

This specimen react with another monomer. With every new incom-
ing Monomer 𝑀𝑛 the chain grows longer and longer 𝑅𝑀•

𝑛+1, the so-called
chain propagation.

𝑅𝑀•
1 + 𝑀𝑛 → 𝑅𝑀•

𝑛+1

This process continues until one of the chain termination mechanisms
occures. Mostly the free radical 𝑀•

𝑛 recombines with another one, which
can be either a start Radical 𝑅• or another chain 𝑀•

𝑚.

𝑀•
𝑛 + 𝑀•

𝑚 → 𝑀𝑛 − 𝑀𝑚

In any case a polymeric network forms a more or less stiff network.
The outcome mainly depends on the architecture of the Monomer 𝑀.
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Monomers with only one olefinic bond tend to form linear polymeric chains
(see Figure1.2 left side), whereas polymers with two or more terminal
olefinic bonds can producemore stable polymeric networks (see Figure1.2
right side).

Figure 1.2: Polymerization process comparing the formation
of polymer chains or networks depending on the number of

olefinic bonds of the photo-curable agent

Radicals are highly reactive and unstable, meaning the polymerization
happens only in a small area around the initiation due to the high termina-
tion probability. This effect can be used in Stereolithography by enlight-
ening the wished polymerization spot with an accurate light source. The
whole polymerization process is diffusion driven, meaning the polymer
resin needs to be liquid enough to ensure free movement of the reactive
compounds, but shouldn’t be too viscous, as it’s diluting the polymeriza-
tion zone too far over the enlightened spot, causing a reduction in the
accuracy of the process.

1.2.3 Two-Photon-Polymerization a Stereolithography Tech-
nology

Such a precise light source can be either any continues laser or an even
more precise an pulsed laser triggering the two-photon absorption (2PA).

Two-Photon-Absorption (2PA)

Light is absorbed my matter usually in that way, that the energy of one
photon is in resonance with the energy difference between the occupied
electronic state and the higher electronic state [12], meaning the photon
can enhance the electron to overcome this specific energy gap into the
excited state (see Figure1.3 left side). In 1931 Marie Göppert-Mayer pre-
dicted the excitation with two photons of the half resonance energy, which
are absorbed literally at the same time [13]. With the first photon the elec-
tron is excited to a intermediate virtual state, with a very short lifetime,
in which the second one needs to absorbed to reach the excited state [14].
This could not be proven till the availability of lasers in 1961 [15], which
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can be set up to non-linear behavior (see Figure1.3 right side), provid-
ing a high photon density to trigger the Two-Photon-Excitation without
overheating the system.

Figure 1.3: Top: (left) Scheme for the linear excitation and
(right) Two-Photon-Excitation. The virtual state is marked
by a dashed line. Bottom: Spatial intensity profiles in the
center of the beam axis for the two cases. The left hand
side shows the intensity along the path, which is continuous
for single photon light sources and discontinuous for Two-

Photon light sources [12].

In comparison, single-photon laser light triggers fluorescence along
the whole laser path length with a higher intensity in the focus point (see
Figure1.4 left side). The intensity of the Two-Photon laser is many magni-
tudes higher in the focal point, and significantly lower everywhere else,
and so far triggering the fluorescence only in this specific area, the so
called voxel (see Figure1.4 right side). This gives the possibility to place
the laser spot very precisely not only horizontally but especially vertically.

Figure 1.4: flourescence caused by (left) UV-lamp and
(right) Two-Photon-Excitation [16]
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Two-Photon-Polymerization Technology

The high and nonlinear intensity is given by a high photon concentration
emitted by ultrafast pulsed lasers. The first setups were equipped with
Argon ion and titanium:sapphire (Ti:Sa) [17] crystal laser sourcewith high
output power. Nowadays different laser sources are available, like in this
example case a Yb:KGW (𝑌 𝑏3+ ∶ 𝐾𝐺𝑑(𝑊𝑂4)2) laser source (see Figure1.5).
The laser beam is guided through multiple tools where P and PP polar-
izing the Beam to operate as power unit, M are mirrors, a removable
power meter RPM to observe the output power, a telescope T expanding
the laser beam and finally an objective lens Obj to focus the beam to the
desired position. A LED light illuminates the sample from the bottom or
from above for real-time monitoring of the fabrication process, which is
projected onto a camera in the scanner and imagine system [18].

Figure 1.5: Example of 2PP-setup described here [18].

With such a setup the beam is guided to a specific point in the Sample,
which is placed inside the working distance of the used objective lens.
In this area it triggers the radical polymerization and creating a three-
dimensional voxel of polymerized material. When moving the beam along
a path in either X,Y or Z-direction the laser creates a string of polymerized
voxels along the way the beam was guided. This can either be done by
moving the sample in an XY-Plane or moving the laser beam above the
objective lens (Obj). For real-timemonitoring of the fabrication process, a
part of the beam is projected onto a camera in the scanner and imagine
system. Movement in Z-Direction is performed by moving the objective
lens (Obj) up and down. In this way the machine can perform a full three-
dimensional printing process.
A computer aided design (CAD) model is processed by a software and

translated into lines and layers, onwhich the laser beam is guided through
the resin. This forms the three dimensional structures step by step. By
combining the movement of the XY-plane and the galvo-scanners large
structures can be written in on single step without stitching single unit
cells next to each other, while keeping a fast processing speed and high
accuracy.
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1.2.4 Particle Size and Absorption vs. Transmittance
To guide the laser beam onto any imaginable point in the sample, the
sample itself needs to provide sufficient transmissivity. This is crucial as
when the beam is scattered, the photon concentration in the focal point
decreases until the photon density is not sufficient anymore to trigger the
Two-Photon-Absorption in the sample. In that case no more Two-Photon-
Polymerization is possible.
For Two-Photon Polymerization of ceramics ceramic particles need to

be dispersed in the liquid organic resin, which contains olefinic bonds
for the radical polymerization. When ceramic particles are mixed into
the transparent liquids the induced light is scattered. Every particle has
a surface to its surrounding matrix. The refractive index (𝑛) difference
between particle and matrix leads to a difference in the speed the light is
travelling and therefore in scattering [19].
Best example is ice: a block of ice is transparent because it is a homo-

geneous phase. Snow instead is opaque because a lot of ice-air surfaces
are scattering the light. Light scattering at particles the size of the wave-
length is described by the Mie-Scattering theory (see Figure1.6 left side).

Figure 1.6: Comparison of scattering mechanisms when
(left) the particles are larger and (right) the particles are

smaller than 1/10th of the wavelength 𝜆

Only if the particle size is significantly smaller than the light wave-
length the particles loose the ability to scatter the light and Rayleigh
scattering becomes the predominant scattering mechanism. The inten-
sity 𝐼 is reverse proportional to the 4th potention of the wavelength 𝜆
(𝐼 ∝ 𝜆−4) [20]. Meaning the light is passing the particles relatively un-
hindered. The approximate threshold, where the behavior is changing is
1/10th of the wavelength. With the particle size above that threshold, light
scattering is getting increasingly relevant. The same amount of particles,
but with a smaller size than 1/10th of the wavelength the resin becomes
transparent.
This effect is already used in industrial processes, for example the

forming of anti-reflecting coatings with silica nano-particles [21], where
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nano-sized particles enhance the transmittance of flat glass surfaces.
Additionally adsorption can play a role in reducing the transmittance.

This is mainly dependent on the electronic band structure of the material
and the material thickness[22, 23]. Light is absorbed and mostly trans-
formed into thermal energy. Ceramic materials are mostly white or when
mono-crystalline even transparent [24].
The main assumption from this chapter is, that the opacity of ceramic

resins is mainly caused by scattering, which can be prevented by choosing
particles of small size.

1.2.5 Viscosity of Particle Embedded Liquids
Next to the transmittance also the viscosity of liquids changes signifi-
cantly, when solid particles are introduced. The viscosity is in almost all
cases a non-static value, always depending on the way it is measured.
Only some materials, like oil, are so-called ”Newtonian liquids” (see Fig-
ure1.7a) [25], whose viscosity 𝜂 doesn’t change with the introduced shear
rate 𝛾 ̇. Starch solution is an example for dilatant materials (see Fig-
ure1.7c). The viscosity increases with increased applied force. Most
liquids, like water and polymers, behave the other way round. Their vis-
cosity decreases with higher applied force. This is called shear-thinning
behavior or pseudo-plastic behavior (see Figure 1.7b).

(a) Newtonian liquid (b) Pseudoplastic material (c) Dilatant material

Figure 1.7: Comparison of the viscosity 𝜂 of different mate-
rials in dependency of the shear rate 𝛾 ̇ [25]

Also photo-curable polymeric resins are shear-thinning materials and
the shear-thinning effect increases when particles are inserted. Addition-
ally the overall viscosity rises with the volume or mass fraction of parti-
cles. This effect decreases again, when the particles are smaller, well
dispersed and spherical [26].
This is important as ceramic filled photo-curable resins yield a volume

or mass fraction as high as possible. The higher the ceramic content
the better the sintering results. So a high solid solid content is desired
by maintaining a reasonable viscosity. If the viscosity reaches a very high
level, due to agglomerates or a too high solid loading, the diffusion driven
polymerization reaction is hindered or even stopped. Eventually, a high
viscosity complicates the resin handling, like re-coating and washing.
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1.2.6 Post-Processing and Sintering
After photo-curing the final ceramic structures is obtained after several
post processing steps. First the parts are washed from residual and un-
cured resin. Afterwards the polymer binder is removed with a heat treat-
ment, which is called debinding. The still separated ceramic particles
need to be sintered to form a strong ceramic structured. Therefore the
part is heated to temperatures where molecules on the surface of the par-
ticles start to diffuse and in that way the particles mend together. This is
crucial for the integrity and the mechanical strength of the final ceramic
parts [27].

1.2.7 Process Chain for Two-Photon-Polymerization of Ce-
ramics

All the above mentioned theoretical aspects lead to a process chain for
the Two-Photon-Polymerization of ceramics (see Figure1.8). The basis
are ceramic particles suspended in a liquid. To this a photo-curing agent
is added (1.). Then the photo-curing can be triggered (2.), in this case
induced with a Two-Photon laser. The photo-cured parts are dried (3) to
remove residual solvents and liquids, then debinded (4.) to remove the
photo-cured polymer chains, and finally sintered (5.) to form the strong
ceramic structure.

Figure 1.8: Scheme from ceramic filled liquid to sintered
ceramic body: 1. adding olefinic component, 2. photo-

polymerization, 3. drying, 4. debinding, 5. sintering

This results in certain requirements a photo-curable resin has to fulfill
to be successfully processed with the Two-Photon-Polymerization. The
resin needs to be:

• photo-curable with olefinic groups/double bonds

• containing ceramic particles smaller than 1/10𝜆

• reasonable low viscous

• transparent
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1.3 State of the Art
In the past a variety of studies have been performed to investigate the
stereolithogrpahy of ceramics. Stereolithography as one kind of additive
manufacturing is not limited to ceramic processing, but this overview fo-
cuses on studies only dealing with ceramic stereolithography (see Fig-
ure1.9).

Figure 1.9: Ceramic Stereolithography as one specific type
of additive manufacturing and its sub-categories

Ceramic stereolithography itself is a broad field. It can be divided
into two main groups, the single-photon-exitation processes using mainly
UV-lasers with either a sinlge beam or multi beam applications and Two-
Photon-Excitation processes equipped with pico- or femto-second-lasers
to induce the Two-Photon-Polymerization (see Figure1.9). All processes
come with different process and mainly resin requirements, which can be
translated more or less to the Two-Photon-Polymerization of ceramics.

1.3.1 Single-Photon-Excitation Stereolithography of Ceram-
ics

The Single-Photon-Process is widely used in Stereolithography technolo-
gies. The processes are tuned to fabricate ceramic parts out of opaque
ceramic filled resins. A typical setup for ceramic stereolithography con-
sists of a UV-lamp or laser with 125-300W power, an optical path with
X-Y-scanner, a basin with the liquid resin and a movable platform. To flat-
ten the surface usually a doctor blade or similar re-coating technologies
are used (see Figure1.10).
To gain slim and smooth single layers the layering is a crucial step

in this processes. Himmer [29] was the first to use a rolling and pressing
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Figure 1.10: SLA Figure 3: Schematic of stereolithography
application used by Griffith [28]

method to gain homogeneous and flat layers. Most available stereolithog-
raphy systems use a so-called doctor blade. The blade scrapes the new
layer over the last one. When rolling very thin layers (10-20 microns),
the doctor blade might more likely rip off the lower layers, if not adjusted
carefully. This limits the process in its Z-Resolution, but for a wide range
an applications this resolution is sufficient. Therefore the technology was
brought to many different materials and resin systems.

Water Based Slurries

The first ceramic stereolithography was performed using water based ce-
ramic slurries, similar to selective laser sintering slurries. The only addi-
tion is a photo-curable agent, mostly the water soluble acrylamide (AM)
to induce a photo-polymerization. In 1994 Griffith and Halloran [30] uti-
lized a 0,45-0,55vol% of silica particles in water with acrylamide (AM)
and N,N’-Methylene Bis-Acrylamide (MBAM). They succeeded to produce
a green body from a silica-slurry using an UV-Lamp and a mask with a
cure depth of about 300µm. The first fully additively manufactured and
sintered ceramic piece was published two years later also by Griffith and
Halloran [28].
The formulation consisting of water, silica and AM/MBAM is the most

studied. The refractive index (RI) of the solution is about 1,35-1,5, which
fits to silica particles with a RI of about 1,5. The viscosity is low, of about
1000mPa·s, evenwith a high solid content. With slurries of that kin curing
depths up to 300µm and resolutions of 100µm are possible [31, 32]. To
reduce delamination and surface roughness Tian [33] proposed to chose
inclination angles of maximum 30°, which limits the geometrical freedom
of the process.
Besides silica other ceramic species are printed using an aqueous slurry

containing AM/MBAM. Such have been reported for beta tricalcium phos-
phate (𝛽-TCP) [34] used as scaffolds [35]. Alumina structures, and its mod-
ified derivative zirconia toughened alumina (ZTA) [36], are strong and
dense ceramics and therefore of higher technical interest e.g. for mi-
cro mechanics [37, 38] (see Figure1.11). The same is true for Zirconia,
which is in use for example as dental bridges [39].
Major drawback of Water based slurries is the water itself. Water con-

sisting materials tend to dry out quickly if not stored or handled carefully.
This turns to be a problem when a water based ceramic resin is stored
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Figure 1.11: microgears (a) 400 µm and (b) 1mm largemade
from silica via SL in AM/MBAM aqueous solution [37]

in an open basin, where layers are applied on top of each other. The up-
per surface is drying very quickly resulting in an uneven distribution of
ceramic particles throughout the layers. Additionally water slurries turn
to have a low viscosity and the viscosity is hard to modify. A low vis-
cosity might be disadvantageous for the photo-polymerization, which is
more diffusion driven. With the low viscosity the radicals are diluted into
the un-illuminated areas reducing the resolution of the printing process.
To overcome those drawbacks a slurry is favorable, where the ceramic
particles are dispersed in an organic resin with adjustable viscosity.

Organic Based Slurries

Organic based slurries need to match the same requirements regarding
the homogeneous dispersion of the ceramic particles. In any case the
ceramic particles are milled with a ball mill, which are designed for water
slurries. Using them with organic photo-polymers and solvents require
careful handling and cleaning.
At first silica particles where used in organic photo-polymers due to

its low refractive index of 1,56, compared to other ceramics. It almost
matches the refractive indices of typical polymeric binders, like 1,6-Hexane-
diol-diacrylate (HDDA) [40, 41] of 1,456. This reduces the scattering through
the resin and is therefore favourable for establishing a new ceramic stere-
olithograohy technology. Sintered silica ceramic [42–45] were produced
using a organicmatrix withHDDA or amixture of (Hydroxyethylmethacry-
late) HEMA and Tetra-ethylene-glycol-diacrylate (TEGDA) [46].
Alumina has a higher refractive index of 1,7, which leads to more

scattering and therefore less curing depth in the resin. But as alumina
and other ceramic species are of higher technical interest than silica, re-
search is more focusing on producing those ceramics with stereolithog-
raphy. In 1999 Zhang [37] was the first to demonstrate stereolithogra-
phy of dense alumina parts out of HDDA with a resolution of 1,2 µm.
The solid content can be 40-60wt%[47–52] (see. Figure1.12). HDDA-
slurries are also used to form Barium Titanate [53] or piezoelectric PMNT
(0.65𝑃 𝑏(𝑀𝑔1/3𝑁𝑏2/3)𝑂3–0.35𝑃 𝑏𝑇 𝑖𝑂3) [54].
Next to HDDA other photo-curable polymers are studied as organic

binders like Acura SI-10 [55] and Polyethylene-glycol-diacrylate (PEG-DA)
[56]. Buerkle [57] for example fabricated dielectric alumina resonator
antennas, which demonstrates a wide range of possible applications of
additively manufactured alumina ceramic parts. Some researchers used
epoxy resins like Adika rascure HS662 to form porcelain parts [58] or
SiO2-TiO2 for photonic crystals [59]. The diversity of ceramic species to
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Figure 1.12: Difference of ceramic green and sintered alu-
mina parts made from an organic resin with SL [49]

print and applications is very high including silicon carbide (SiC) [60],
𝐵𝑎3𝑍𝑛𝑇 𝑎2𝑂9 (BZT) [61] as radio frequency devices, alumina [62–65], alu-
mina and zirconia for bandpass filters [66, 67], zirocnia [68–70], aluminum
nitride (AlN) [71] for the production of microchannel cold plates, barium-
titanate (BTO) [72], beta-tricalcium phosphate ((𝛽-TCP) combined with
Hydroxyapatite to produce implants [73], bioactive glass [74] and calcium
pyrophosphate (CPP-A) [75].
Ceramic stereolithography is a favorable technique to produce peri-

odic lattices. A very simple computer-aided design (CAD) model, be-
ing the smallest repetition unit, joined numerous times next or on top
of each other forms larger objects. By choosing different materials var-
ious electrical or optical applications can be addressed, like microwave
devices [76] out of alumina and zirconia, photonic crystals [77, 78] or lat-
tices with different refractive index [79].
The sintering behavior of the printed green parts is of high interest, as

the final mechanical properties are settled during the sintering step. Alu-
mina printed parts with CeramTec-technology e.g. prove to have same
internal structure as parts produced with traditional ceramic manufac-
turing [80]. Inserting nano-size ceramic particles has proven to increase
the sintering behavior [81, 82].
This first steps into ceramic stereolithography using either water based

or organic slurries are stereolithography technologies using one laser
spot to print line by line. This approach can perform precise structures
but is a rather time consuming process. To tune up this process up tech-
nologies were invented to illuminate a whole layer at a time instead of
guiding a laser spot across the layer, the so-called Multibeam or Dynamic
Mask technology.

Multibeam and Dynamic Mask technologies

All in the last section described techniques are processes using a sin-
gle beam. Multi-Beam or Dynamic Mask processes use a patterned light
distributed over the whole area of irradiation. The advantage is the si-
multaneous illumination of the whole layer at once, which leads to an in-
crease in building time. Those techniques are Large Area Maskless Pho-
topolymerization (LAMP), Digital Light Processing (DLP), Lithography-
based ceramic manufacturing (LCM) and Mask-Image-Projection- based
Stereolithography (MIP-SL).
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Figure 1.13: First reported pattern using a Dynamic Mask
in SL [83]

In 1986 Lee [83] presented the first single green layer by illuminating
the resin from the bottom of the petri dish with a mask (see Figure1.13).
The first green body was produced in 1996 [84, 85]. The printed ceramic
materials vary from alumina [86] to bioactive glass, such as hydroxyap-
atite and tricalcium[87], or yttria stabilized zirconia [88]. Switching the
laser by a Hg-lamp enhances the resolution and flexibility and reduces
the costs [89]. The process was advanced as Large Area Maskless Pho-
topolymerization (LAMP) in 2009 [90–92], where layers of 100 µm thick-
ness could be obtained, but still having a lower resolution than classical
stereolithography methods.

Figure 1.14: Scheme of the Digital Light Processing (DLP)-
process introduced in 2012 [93, 94]

In 2012, the patented Digital Light Processing (DLP) process was in-
troduced [93, 94] (see Figure1.14), which is a promising technology to
produce ceramic parts regarding processing speed, resolution and eco-
nomical aspects. It can process various ceramics like silica [95], alu-
mina [96] for dental applications [97], tri-calcium-phosphate (𝛽-TCP) [98],
lead-zirkonat-titanate (PZT) [99, 100], zirconia [101–106], silica-carbide
(SiC) [107, 108], calcium-phosphate (CaP) [109] and bioactive glass [110,
111] with a resolution of 40 to 25µm and a building volume range of



16 Chapter 1. Introduction

115x65x160mm[112]. The feature accuracy can be tuned up even further
using e.g. a soft-start exposure [113], where the light power is ramped
up and down to prevent overexposure.
With an optimal debinding and sintering strategy wall-thickness up to

20 mm can be stabilized [114]. In 2014 the Lithography-based Ceramic
Manufacturing (LCM)-technology by Lithoz GmbH was introduced [115–
118], which is optimized to process their own resins, but can also be ap-
plied to self made photocurable ceramic resins like zirconia fromHDDA[119],
alumina toughened zirconia [120, 121].

(a) setup scheme (b) printed parts

Figure 1.15: Mask-Image-Projection-based Stereolithogra-
phy MIP-SL proposed in 2015, difference between a alumina

green (a) and sintered body (b) [6]

In 2015 a similar method called Mask-Image-Projection-based Stere-
olithography (MIP-SL) [6]5 was presented, also a dynamic mask Stere-
olithography, with enhanced recoating technology to produce alumina,
zirconia and lead-zirconate-titatnate (PZT) parts (see Figure1.15).
As single beam applications alsomulti-beam/dynamicmask techniques

can address a great variety of ceramics and therefore their applications,
like Low Temperature Cofired Ceramics (LTCC) insulators and conductors
out of calcium borosilicate glass and silver [122], ore alumina parts for mi-
crofluidic or micromechanic [123] and lead-zirconate-titatnate (PZT) for
piezoelectric ceramic transducer [124, 125].

Table 1.1: Comparison of Single-Beam andMulti-Beam Tech-
nologies

Singlebeam Multibeam/Dynamic Mask
Minimal Resolution X/Y 1,2𝜇m 10𝜇m
Minimal Resolution Z 10𝜇m 100𝜇m
Possible ceramics all kinds all kinds
Process Time Medium Slow

In a direct comparison (see Table1.1) both techniques address the
same ceramic species and therefore the same ceramic applications. Main
advantage of Multibeam or Dynamic Mask setups is the much higher
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building speed, which enables a industrial like prototyping and small
stock production of small ceramic parts. For higher resolution or higher
precision single beammachines are still of advantage, evenwith the slower
building speed.
Both techniques can be applied far beyond manufacturing of ceramic

parts. When the photo-cured polymer matrix is not burned away a ce-
ramic/polymer composite occurs with favourable properties for different
applications.

Stereolithography of Ceramic/Polymer Composites

Ceramic/polymer composites can be obtainedwith any Stereolithography-
processes, either Singlebeam or Multibeam/Dynamic Mask and with ei-
ther water based or organic slurries. The only difference is to leave out
the debinding and sintering steps, leading to structured polymeric parts
with embedded ceramic particles. Those have an influence on the prop-
erties of the polymer. The solid loading of the photo-curable suspension
can be lower than of those to be sintered. The higher the solid loading,
the better is the sintering quality, but unless this step is left out the ce-
ramic particles can be introduced into the polymer in a wider solid con-
tent range. On the other hand side the polymers need to match other
requirements than just photo-curing properties and viscosity. They are
not burned away, so their mechanical or e.g. bio-compatibility for an im-
plant use come into focus.
Ceramic fillers enhance the thermo-mechanical properties of polymers [81],

and therefore can be used e.g. as dental crowns from UDMA/TEGDMA
with silica [126] or as piezoelectric transducers with quartz particles [127]
or lead-zirconate-titatnate (PZT) in Diacryl 101, SOMOS 6100, RPCure
200 AR or HDDA[128, 129], as photonic crystals with silica or titanium
in an epoxy resin [130, 131], syntactic foams of hollow glass microspheres
in epoxy or acryle [132], Hydroxyapatite (HA) powder in Polypropylene-
fumarate/diethyl-fumarate (PFF/DEF) for osteoblast cell scaffolds [133]
or in poly(D,L-lactide) [134], magnetite (Fe3O4) nanoparticles dispersed
in Envisiontec R11 to form flow sensors [135] (see Figure1.16) and alu-
mina in 1,6-Hexanediol-diacrylate (HDDA) [136].

Figure 1.16: a flow sensor and impeller CAD and b:
schematic of flow-sensor design made with embedded ce-

ramic particles in a photo-curable resin [135]
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Up to this point all mentioned slurries consist of ceramic particles dis-
persed in an organic or water-based photo-curable liquid and therefore
build a heterogeneous mixture. The particle size in all those studies is
mainly mentioned in the context of the viscosity and sintereing behavior.
Smaller particles reduce the viscosity and enhance the sintering behav-
ior. The transmittance is mostly secondary. The reduction of the par-
ticle size enhances the transmittance, but not up to a point, where the
slurries are completely transparent. And in this cases it is also not nec-
essary. The light, which induces the polymerization reaction, is maybe
scattered at the particle sites and therefore diffuse, but the photon en-
ergy is still enough, unless non-absorbing ceramic particles are used. So,
even though the light is scattered, it is still strong enough to induce the
photo-polymerization in the illuminated area. Only drawback is the re-
duced precision, but in many application, where ceramic parts of several
centimeter size are desired, the precision is negligible.
Truly transparent are organic polymers itself, but with silane chem-

istry it is possible to add e.g. silica atoms into the polymer backbone,
while keeping the transmittance. Those are so-called preceramic poly-
mers.

Preceramic Polymers shaped with Single-Photon Processes

Figure 1.17: Green body and pyrolyzed 3D ceramic structure
made from SiOC derived from a preceramic polymer [137]

Preceramic polymers are silica-based organics which lead to polymer
derived ceramics (PDCs) when pyrolized [138]. The preceramic polymers
have to be synthesized and give spezies like hyperbranched Poly(siloxysi-
lane) [139, 140] or methacrylated polyvinylsilazane (LM-PVS) and high
molecular weight methacrylated polyvinylsilazane (HM-PVS) [141]. They
are completely transparent, without any scattering centers. They can
be used in any Stereolithography apparatus to form for example SiCN
ceramics for Micro-Electro-Mechanical Systems (MEMS) [142], SiC/SiOC
from a mixture of silane and HDDA[143], or with the LCM technology
tro produce SiOC ceramic out of methyl-silsesquioxane preceramic poly-
mer [137] (see Figure1.17). The commercial available Ormocomp is a
predestined preceramic polymer with very good biocompatibility [144].
The preceramic polymers are limited to silica based ceramics, but

as like heterogeneous slurries particles of other ceramic species can be
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mixed into the preceramic polymer. For example, dispersing an alumina
powder in a commercial preceramic silica resin like XMA, TMA2 or THA2 [145],
alumina powder in a zirconia preceramic polymer to form zirconia tough-
ened alumina ZTA [146], or zincsulfid (ZnS) inserted in Ormocomp [147].
As preceramic polyers are highly transparenent they are favourable to

be used in high precision 3D-printing with Two-Photon-Polymerization.

1.3.2 Preceramic Polymers shaped with Two-Photon-Polymerization
Since its invention multi-photon polymerization has been studied with a
great range of materials [16] and preceramic polymers stand out with
their tunable viscosity and therefore high precision. The first steps to uti-
lize Two-Photon-Polymerization to obtain ceramic(-like) parts were made
in 2000 by the Fraunhofer-Institut für Silikatforschung in Germany [148,
149] introducingORMOCER® (OrganicallyModified Ceramics) and print-
ing the first structures with Two-Photon-Polymerization in 2003 [150].
They are structured to be used in different applications like wave guides [149],
photonic crystals [151, 152], stop gaps [153], optical surface gratings [154],
microneedles [155], tissue engineering scaffolds [156–159] (see Figure1.18)
and branched hollow fibers [160].

Figure 1.18: (a) Photonic crystals woodpile of S1813(b)
negative photoresist SU-8, (d-f) microneedles of ORMO-

CER®[156]

The resolution of the 2PP process with OrmoComp® can be tune down
to 1µm[161], especially when using a picosecound laser instead of a
femtosecond laser [162]. Further investigations lead to the exact knowl-
edge of the photo-initiator influence [163], the volume of the voxel and
its linear proportionality to the puls-width and temperature-dependend
diffusion [164]. Using medium numerical-aperture objectives enables the
printing ofmacroscopic structures larger than theworking distance [165].
Other commercial available preceramic polymers suitable for the Two-
Photon-Polymerization are for example TEGO RC 711 by Evonik [166],
SU-8 [167–169] or Ip-Dip by Nanoscribe [170, 171].
Besides commercial resins custom-made and polymerized preceramic

polymers can expand the properties and therefore the range of applica-
tions of the polymers. Examples are amixture ofmercaptopropyl-methylsiloxane
and vinylmethoxysiloxane for ultrastrong ductile ceramics [172, 173] or
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polysiloxane polymer to form photonic crystals [174] and poly(dimethyl-
siloxane) [175]. By reacting polyvinylsilazane and 2-isocyanoethylmethacrylate
a preceramic polymer capable of forming SiCN[176] is obtained. Zirco-
nia atoms can be introduced into the polymer backbone alongside silica
atoms and therefore enhancing the ceramic properties of the pyrolyzed
parts [177]. A Zirconia containing preceramic polymer is the SZ2080
which has proven to have a very low shrinkage and therefore a very high
precision to transfer a computermodel into a real structure [18, 178–180].
Helical structures out of OrmoComp® have been coated with a mag-

netic layer [181] to manipulate them in a magnetic field. Incorporat-
ing particles of any kind is another possibility to tune the properties of
Two-Photon-Polymerized preceramic polymers, as donewith piezoelectric
barium titanate nano-particles in OrmoComp®[182], Silica particles in
polyvinylsilazane [183] or silica/gold nanoparticles in Ip-Dip (Nanoscribe)
as so called micro-concrete [170]. On top it is reported to use three-
photon polymerization (3PP) with ORMOCER® to gain an even higher
resolution of 500nmand lower[184].
Two-Photon-Polymerization has its great strength in the freedom of de-

sign. Especially bio-inspired structures [185] are favourable to print for
tissue engineering scaffolds to grow cells in an bio-mimicking environ-
ment [156–159, 186, 187].
As a major drawback all those approaches are limited by the high silica

and organic content. The silica leads to glass-ceramic species which are
of less industrial interest than mechanical and chemical resistant oxide
ceramics like alumina-oxide. The high organic content is also disadvan-
tageous for the sintering behavior, as the probability of cracks rises with
the polymer content and wall thickness.

1.3.3 Comparison of the Technologies

Table 1.2: Comparison of all technologies

Single-Beam Multi-Beam 2PP
Minimal Resolution X/Y 1,2𝜇m 10𝜇m 500nm
Minimal Resolution Z 10𝜇m 100𝜇m 500nm
Possicle ceramics all kinds all kinds silica based
Process Time Medium fast slow

In a direct comparison, different excitation technologies can address
similar applications just in a different size range (see Table1.2). Single
Photon processes can print any kind of ceramic resin, either homoge-
neous (preceramic polymers) or heterogeneous but are reduced in their
Z-resolution by the applied slicing technology. The photo-curable ceramic
filled polymer is staged layer-by-layer (LbL) onto each other and photo-
cured one by one, meaning the thickness of the layer is the resolution
in Z-direction. The XY-resolution can be tuned to be rather high but still
lower than with a Two-Photon setup possible.
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To gain a micrometer to nanometer resolution in all three dimensions
a 2PP-setup is favorable. Major drawbacks are the more expensive setup
and the longer process time. On top, the process is so far limited to trans-
parent preceramic polymers to gain ceramic parts, as long as heteroge-
neous slurries are not transparent enough to pass the Two-Photon laser
beam through unscattered.

1.4 New Approach
This work is about a new approach to introduce all kinds of ceramic
species into Two-Photon-Polymerization besides silica-based preceram-
mic polymers. But this means to enhance heterogeneous slurries, where
solid ceramic particles are dispersed in a photo-curable organic or water-
based liquid, in that way, that it is transparent enough for the Two-Photon
laser (see Figure1.19).

Figure 1.19: Two-Photon-Polymerisation of Ceramics with
Heterogeneous slurries as new approach for ceramic stere-

olithography

By the laws of physics this is only possible, if the particle size of the
ceramics is reduced that far, that the scattering cross-section decreases
significantly. This assumptionwas proven to be rightful with ceramic pow-
der beds [188], where the matrix is air and the transmittance of the pow-
der bed could be increased by reducing the particle size down to some
hundreds of micrometer. The objection is to transfer this knowledge to
a heterogeneous photo-curable ceramic resin and adding a knew kind of
material system to the Two-Photon-Polymerization and additionally a new
area to ceramic stereolithography.
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Chapter 2

Experimental Section

In this chapter are listed the procedures and materials I used to first pre-
pare a photo-curable ceramic containing resin and how I characterized
its properties, second the Two-Photon-Polymerization aperture and how I
processed the ceramic resin with it and third the characterization meth-
ods of printed parts.

2.1 Materials
This study focus on the development of a ceramic stereolithography slurry
designed for the Two-Photon-Polymerization. In order to prepare a ce-
ramic composition for stereolithography, independent on the processing
technology, three major ingredients are needed, which are the following:

• photo-curable mono- or polymer with terminal olefinic groups/dou-
ble bonds;

• photo-initiators;

• ceramic particles;

The chosen ingredients for this three groups are described in the fol-
lowing.

2.1.1 Photo-Curable Water Soluble Monomers
As the approach for a new ceramic stereolithography slurry is water based
the introduced photo-curing agents need to be water soluble as well.
Acrylamide (AM) and N,N′-Methylene bis acrylamide (MBAM) (see Fig-
ure2.1), both purchased from Merck KGaA, are small molecules with ei-
ther one or two double bonds capable of being involved in radical poly-
merization. The amino functionality −𝑁𝐻 and −𝑁𝐻2 attach a proton from
water forming the ions 𝑁𝐻+

2 and 𝑁𝐻+
3 respectively. Thereby these com-

pounds become water soluble. Acrylamide itself with only one double
bond can form linear polymers, whereas the N,N′-Methylene bis acry-
lamide can form connections between single chains creating a cross-linked
polymer network.
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(a) Acrylamide (AM)
(b) N,N′-Methylene bis acrylamide

(MBAM)

Figure 2.1: water soluble photo-curable agents

2.1.2 Photo-Initiators
In this study Two-Photon initiators were used to suite different light sources;
namely 2,2-Dimethoxy-2-phenylacetophenone (DMPA) and 2,5-Bis[4-[N,N-
Bis-[2-(Acetyloxy)Ethyl]Phenyl]- Methylene]-(2E,5E)-Cyclopentanone (BA740).
2,2-Dimethoxy-2-phenylacetophenone (DMPA) (see Figure2.2), purchased

from Merck KGaA is an organic but poorly water soluble initiator being
cleaved mainly with UV-light. It was used for experiments with UV-Light
to analyze the resin properties before printing structures with the Two-
Photon-Polymerization.

Figure 2.2: 2,2-Dimethoxy-2-phenylacetophenone

DMPA cannot or just barely be triggered by the laser beam, which has
a different wavelength than UV-light, Therefore it isn’t a suitable photo-
initiator for the Two-Photon-Polymerization. To fit the wavelength area
of about 800nm initiators have been designed and provided by the Or-
ganic Chemistry Group II in Jena. One of them is 2,5-Bis[4-[N,N-Bis-[2-
(Acetyloxy)Ethyl]Phenyl]- Methylene]-(2E,5E)-Cyclopentanone (BA740) [189],
a organic soluble initiator with a very high Two-Photon-Absorption.

Figure 2.3: 2,5-Bis[4-[N,N-Bis-[2-(Acetyloxy)Ethyl]Phenyl]-
Methylene]-(2E,5E)-Cyclopentanone (BA740):

R=𝑁(𝐶𝐻2𝐶𝐻2𝑂𝑂𝐶𝐶𝐻3)2
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2.1.3 Ceramic Suspensions
In this study commercial suspensions with a high ceramic solid content
are chosen as ceramic particle source. The aim is to print alumina tough-
ened zirconia (ATZ), therefore the two main ceramic species alumina ox-
ide 𝐴𝑙2𝑂3 and zirconia oxide 𝑍𝑟𝑂2 further, referred as alumina and zirco-
nia respectively, are needed. Ceramic suspensions with either high solid
content of at least 40wt%̇ and low particle size of less than 200nm are
available of both species and described in the following (see Table2.1).

Table 2.1: Commercial available ceramic suspensions

Manufacturer Name Ceramic Weight
Percent-
age

Particle
size

[wt%] [nm]
Evonik Aerodisp

W440
𝐴𝑙2𝑂3 40 110

Nanostone 𝑍𝑟𝑂2 50 35

Those are the main ingredients of a ceramic slurry for stereolithogra-
phy purposes, which preparation is described in the following section.
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2.2 Methods
2.2.1 Slurry Preparation
The sol-based photo-curable ceramic resins are inspired by a water based
slurry recipe for ceramic stereolithography [34]. Zirconia and alumina
containing suspensions are mixed in a ratio of 80:20 (Zr:Al) to gain a sus-
pension with the right composition to build alumina toughened zirconia.
The mixed ceramic suspension is then mixed with acrylamide (AM) and
N,N’-methylene bisacrylamide (MBAM) in an AM/MBAM weight ratio of
of 10:1. The ceramic solid content can be adjusted from 10 to 70wt%.
AM and MBAM are directly dissolved in the ceramic suspension.
A photoinitiator suitable for the light source is added at 1wt% related

to the non-ceramic content to trigger the desired photo-reaction. This
can be either 2,2-Dimethoxy-2-phenylacetophenone (DMPA) for UV-light
and BA740 [189] for the Two-Photon laser.

2.2.2 Rheological Measurements
The fluid properties of the suspension is studied using a rheometer MCR
502 from Anton Paar GmbH. A sample is placed between a fixed base
and a spin-able instrument. When rotating or oscillating the instrument
the force can be measured, which is necessary to perform the desired
movement. From this force several parameters characterizing any kind
of material can be derived, such as the viscosity 𝜂 and the complex shear
modulus G* describing visco-elastic behavior.
For different materials a variety of measurement geometries exist (see

Figure2.4). Operated with a cone-plate configuration CP25-1 (see Fig-
ure2.4 middle) fluid materials are tested with a flow curve, where the
dynamic viscosity 𝜂 is measured dependent on the the shear rate from
0,1 to 200 𝑠−1 [42].

Figure 2.4: Rheometry geometries

In this study, photo-rheological properties are gained based on the
literature [190] with a parallel-plate configuration and a gap thickness
of 0,1mm (see Figure2.4 right side). The samples are pre-sheared for
60s with an amplitude of 𝜑 = 0, 1 𝑚𝑟𝑎𝑑 and an angular frequency of 𝜔 =
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200 𝑟𝑎𝑑/𝑠. Then the UV-Lamp (OmniCure S1500/2000, Excelitas Technolo-
gies Corp) is switched on to irradiate to illuminate the sample from the
bottom with an intensity of 𝐼 = 0, 14𝑚𝑊/𝑐𝑚2 while continuing the shear-
ing. Following the dynamic modulus G*, storage G’ and loss G” modulus
and dissipation factor 𝑡𝑎𝑛 𝛿 allows to observe the change in mechanical
properties during the liquid-solid transition while polymerizing.

2.2.3 Particle Size Measurements
As the main characteristic of ceramic slurries for stereolithogtaphy is the
particle size, all suspensions and slurries are characterized upon their
particle size with dynamic light scattering (DLS). The particle size always
gives a Gaussian or normal distribution with size values for the smallest
10%, described as the 𝑑10. 𝑑50 and 𝑑90 are the particle size from which
50% and 90% respectively are smaller than this value. Most important
in this study are 𝑑50 and 𝑑90, as they give the mean particle size and the
upper limit.
Sol-based suspensions and mixtures are analyzed using a Zetasizer

(Nano ZS90, Malvern Pananalytica GmbH). As result the intensity-weighted
hydrodynamic size of particles using dynamic light scattering (DLS) tech-
nology. It is based on the phenomenon when coherent and monochro-
matic laser light hits a particle it is scattered in an fluctuatingway. Recorded
with time intervals the pattern is changing due to the Brownian Move-
ment and the velocity of particles can be calculated, from which one
can derive the Stokes-Einstein equation of the hydrodynamic radius [191].
Depending on the particle size the scattering pattern is a different (see
Figure2.5).

Figure 2.5: Hypothetical dynamic light scattering of two
samples: Larger particles on the top and smaller particles

on the bottom[192]

2.2.4 Optical Measurements
Ceramic suspensions and slurries are characterized upon their optical
properties using a StellarNet Inc. BLACK-Comet C-50 spectrometer with
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an SL5 deuterium+halogen light source. Water is used as reference Fig-
ure2.6a). The samples are placed in cleavable cuvettes with layer thick-
nesses of 0,1mm (see Figure2.6b) to obtain information about the scat-
tering behavior at a very low medium thickness, which is in the range of
the Two-Photon-Polymerization structuring range.

(a) transmittance setup (b) cleavable cuvette

Figure 2.6: Transmittance measurement setup and cleav-
able cuvette

The transmittance is measured from 300 to 900nm. This widely covers
the range of interest around 780nm, the wavelength of the laser source
incorporated in the Two-Photon-Polymerization setup.

2.2.5 Two-Photon-Polymerization Setup
Three-dimensional printingwas performed using the Two-Photon-Polymerization
setup called Nanofactory from Femtika Ltd. [193] (see Figure2.7a). It
incorporates a erbium-doped fiber laser as light source, a C-Fiber 780
High Power (Menlo Systems GmbH) operating at 100 fs pulse duration,
100MHz repetition rate and 780nmwavelength. The laser passes a 63x1.4
numerical aperture immersion oil objective lens (Carl Zeiss AG). The po-
sitioning system combines linear stages (ANT130XY-160 (Aerotech Inc.))
for XY-plane, ANT130LZS-060, (Aerotech Inc.) for Z direction and galvo-
scanners for faster XY-moving (AGV-10HPO (Aerotech Inc.)) (see Fig-
ure2.7b).
Programming tasks and controlling of the process are performed by

3DPoli software (Femtika Ltd.) [179], which enables fast and stitchless
writing [193]. The software is transforming computer-aided design (CAD)
models into lines and layers, on which the laser beam is guided through
the resin forming three dimensional structures.

2.2.6 Two-Photon-Polymerization Procedure
An alumina oxide plate is used as the base for the sample with 2-3 layers
of sticky tape to form a spacer of 100-200µm. An area of a fewmillimeters
is cut into the tape to form a process area. Inside this cavity a drop of
photo-curable resin is placed, and subsequently covered by a thin glass
slide with a thickness of 30µm. The sample is placed below the objective
lens on the XY-stages with a drop of immersion oil between upper glass
slip and objective (see Figure2.8).
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(a) overall view (b) head with objective and stage

Figure 2.7: Direct Laser Writing Nanofactory

Figure 2.8: Scheme of experimental Setup to print photo-
curable ceramic resins
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The structures are produced inside the resin starting from the alu-
mina plate. In this study a SchwarzP triple periodic minimal surface [194]
serves as three-dimensional model (see Figure2.9a). One half space of
the SchwarzP cells is filled and single unit cells are placed next to each
other in all three dimensions generating a scaffold structure (see Fig-
ure2.9b). With this design a structure with high mechanical strength can
be obtained, while minimizing the material consumption and the build-
ing time. This Geometry was produced using in-house developed soft-
ware [195, 196] using the Standard Triangulation/Tesselation Language
(STL) format.

(a) Single SchwarzP cell original de-
sign with two half spaces

(b) Scaffold of 4x4x4 half filled
SchwarzP cells

Figure 2.9: SchwarzP geometry

2.2.7 Post Processing and Sintering
After polymerization each sample was washed from uncured material.
First the glass cover is removed and the alumina plates are placed in
a water bath for at least 24h. To avoid structure deformation and dam-
age the following drying procedure was applied: The water is exchanged
by 2-propanol (Chemsolute®, Th. Geyer) by placing the sample in so-
lutions following a concentration series, first 80:20 (water, 2-propanol),
then 60:40, 40:60, 20:80 and finally 100% 2-propanol. Afterwards critical
point drying (CPD) with an EM CPD300 from Leica Microsystems GmbH
is performed, where the 2-propnalol is gradually exchanged by liquid 𝐶𝑂2,
that is 100% miscible with 2-propanol. In the CPD the 𝐶𝑂2 is pressurized
and heated to reach it’s supercritical state (see Figure2.10), where no
phase transition occures anymore, and therefore no surface tension and
capillary forces can destroy fragile structures.



2.2. Methods 31

Figure 2.10: Carbon dioxide pressure-temperature phase di-
agram[197]

In the next step the organic and polymeric parts are removed to form a
fully ceramic structure. The samples undergo a debinding and sintering
regime starting with with two plateaus at 325°C and 375°C maintain-
ing the temperatures for 2h each, reaching those temperatures with a
heating ramp of 5 °C/min. This procedure leaves only the ceramic par-
ticles forming a ceramic green body. The particles need to be sintered
at 1450°C for 2h, with a heating ramp of 5 °C/min, to form a fully ce-
ramic body with it’s typical ceramic properties. Furthermore, the overall
heating program is depicted in Figure2.11.
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Figure 2.11: Sintering regime



32 Chapter 2. Experimental Section

2.2.8 Characterization and Visualization
Since Two-Photon-Polymerization written structures are printed with a
resolution of about 0,1nm to a few micrometer, a suitable method to
characterize and visualize the obtained ceramic structures is the scan-
ning electron microscopy (SEM). In this technique an electron beam is
scanned over the surface of the sample and the scattered electrons and
X-rays can be analysed due to their position and energy [198] (see Fig-
ure2.12).

Figure 2.12: Schematic of an SEM[199]

Prior analysis in an SEM (EVO MA10, Carl Zeiss GmbH) samples were
sputtered with either 15nm of gold for imaging or 15nm carbon for ele-
mental mapping using the electron dispersive X-ray analysis (EDS X-Ray
detector, Thermo Fischer Scientific).

2.3 Summary after Theoretical and Experimental
Section

In the literature are already described how slurries for ceramic stere-
olithography ought to be. Shortly, they need a high ceramic content
with homogenized ceramic particles while keeping a low viscosity. The
curing behavior depends on the chosen light source, meaning the diffi-
culty rises when choosing Two-Photon-Polymerization. A suitable ceramic
slurry needs a very small particle size.
The goal is the development of a slurry suitable for the Two-Photon-

Polymerization to open a new geometry and resolution to ceramic stere-
olithography. This includes the slurry preperation and testing, followed
by 3D-printing, post processing and finally analyzing and visualization to
check the outcome.
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Chapter 3

Results and Discussion

This chapter details the development of a water-based ceramic filled sus-
pension, to the smallest man-made ceramic structure via a ceramic filled
Two-Photon-Polymerization resin.

3.1 Development of a Photo-curable ATZ-Suspension
Commercial available sol-based ceramic suspensions were utilized as source
of nano-sized ceramic particles, alongside dispersed zirconia or alumina
at a solid fraction of 40 to 50wt% (particle sizes of 15 to 110nm). These
could then be mixed to form alumina toughened zirconia (ATZ)-slurries,
which possed zirconia and alumina particles in a Zr/Al-ratio of approxi-
mately 80:20 (wt%/wt%). The suitable ceramic suspensions chosen for
the mixture were an alumina suspension, Aerodisp W440 produced by
Evonik, and a zirconia suspension, fabricated byNanostone (see Table3.1).

Table 3.1: Commercial available ceramic suspensions con-
taining alumina and zirconia

Manufacturer Name Ceramic Weight
Percent-
age

Particle
size

[wt%] [nm]
Evonik Aerodisp

W440
𝐴𝑙2𝑂3 40 110

Nanostone 𝑍𝑟𝑂2 50 35

The particle size and transmittance of these two suspensions were in-
vestigated to provide insights into their properties, with an emphasis on
investigating sample transmittance, which is of the upmost importance
to Two-Photon-Polymerization.
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3.1.1 Zirconia-Sol: Particle Size and Transmittance
The hydrodynamic particle size, measured with DLS, of the zirconia sus-
pension was peaking at 35nm (see Figure3.1) with only a very small frac-
tion of particles above 100nm. This measure was independent on the
particle mass fraction, as the particles did not agglomerate, as long as
the suspension contained a sufficient amount of water.
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Figure 3.1: intensity weighted hydrodynamic particle size of
the zirconia suspension measured with DLS

This particle size lead to a high transmittance (see Figure3.2) at 0,1mm,
around 90% along awide wavelength range, only decreasing from 400nm
downwards. Around 780nm, the wavelength of the Two-Photon laser, the
transmittance was at 90% and therefore with the investigated distance
of 0,1mm sutiable for the Two-Photon-Polymerization.
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Figure 3.2: Transmittance of the zirconia suspension at
0,1mm thickness

The particles size of the zircona suspension favoured good optical prop-
erties for the Two-Photon stereolithography, as the zirconia suspension
held high transmittance together with a sufficient ceramic content.
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3.1.2 Alumina-Sol: Particle Size and Transmittance
The particle size of the alumina containing suspensions, measured with
DLS, was significantly higher than the zirconia suspensions (see Figure3.3),
with a peak at 110nm.
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Figure 3.3: Intensity weighted hydrodynamic particle size of
the alumina suspension measured with DLS

At 0,1mm layer thickness the transmittance (see Figure3.4) was re-
duced to 80%, and was going down to 0% at lower wavelengths. The re-
duction of the transmittance was stronger dependent on the wavelength
than in case of the zirconia suspension, which stayed at a transmittance
of more than 80% almost throughout the whole wavelength range.
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Figure 3.4: Transmittance of the alumina suspension at
0,1mm thickness

The particle size and therefore also the transmittance already showed
that the alumina suspension was more likely less sufficient for a highly
transparent photo-curable resin suitable for the Two-Photon-Polymerization.
It needed to be tested how this influenced a mixed ATZ-suspension with
a rather small weight fraction of alumina particles of 20wt%.
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3.1.3 Preparation of an ATZ-Suspension
At first a water based ATZ-suspension, containing alumina and zirconia
particles in the right weight ratio, were obtained by mixing the zirconia
and alumina suspensions with each other.

3.1.4 Particle sSize of the ATZ-Suspension
Mixing two different suspensions from different suppliers with different
particle sizes and weight fractions, may have lead to agglomerations or
sedimentation. The resulting particle size distribution Figure3.5 showed
two peaks corresponding to the two original particle species. No agglom-
eration occured, as no particles larger than 200nm could be observed.
This demonstrated the miscibility of the suspensions without agglomera-
tion forming.
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Figure 3.5: intensity weighted hydrodynamic particle size of
the mixed ATZ-suspension measured with DLS

The intensity-weighted particle size showed a larger amount of alu-
mina than zirconia in themixture, even though it was the other way round.
However, this had to be related to the measuring technique dynamic light
scattering (DLS) [200], were larger particles scatter more and therefore
give a larger signal as higher intensity. This distorted the intrinsic as-
sumption of more particles should scatter more and shows the large in-
fluence of the reduced scattering when particles are getting smaller than
1/10 𝜆 of the incoming light.

3.1.5 Transmittance of the ATZ-Suspension
The transmittance of pure alumina and zirconia suspenions are shown in
Figure3.6). Both suspensions became less transparent with lower wave-
length, but with a greater decrease in the alumina suspension, despite
their similar ceramic content (50wt% compared to 40wt%, respectively).
Alumina has a refractive index of 1,7 (n(𝐴𝑙2𝑂3)=1,7682 [201]) and zirconia
a much higher refractive index of 2,1 (n(𝑍𝑟𝑂2)= 2,1588 [202]). Predicting
the transmittance behavior only relying o the refractive index, alumina
should show higher transmittance than zirconia. The only explanation to
this irregularity is the particle sizes.
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Figure 3.6: Transmittance of the alumina and zirconia sus-
pensions at 0,1mm thickness

The transmittance of the alumina and zirconia mixture with 65wt%
at 0,1mm layer thickness showed the common behavior of a decreasing
transmittance with lower wavelength (see Figure3.7), as all ceramic sus-
pensions have shown. The transmittance was reduced from above 65%
down to 0%, with a lower decreasing transmittance as the pure alumina
suspension. At 780nm the transmittance was above 60%.
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Figure 3.7: Transmittance of the mixed ATZ-suspension at
0,1mm thickness

Particle sizes were 110nm for the alumina suspension and 35nm in
zirconia. Operating with a 780nm 2PP-laser means that the zirconia par-
ticles were smaller than the hurdle of 1/10th of the laser wavelength. In
that case the scattering cross-section is reduced significantly, falling even
more with 𝐼 ∝ 𝜆−4. Alumina particles were larger with scattering remain-
ing a dominant mechanism. The zirconia particles therefore blended in
with the surrounding water, and did not interact with the 780nm light at
all, outdoing the refractive index dependency of scattering.
The combined suspension, with 80wt% of zirconia and 20wt% of alu-

mina with 65wt% mass fraction, held a transmittance of 60% at 0,1mm.
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This finding implied that that the larger alumina particles reduce the
transmittance of the mixture but still transmitted a sufficient amount of
photons through the suspension to trigger the Two-Photon-Polymerization.
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3.2 Preparation of the Photo-Curable ATZ-Slurry
The aforementioned mixed ceramic suspension consisted only of ceramic
particles, water and stabilizing agents. Twomajor ingredients for a photo-
curable slurry were still missing: a photo-reactive agent and a photo-
initiator. These needed to be added while sustaining the low viscosity of
the suspension for easy handling and keeping a sufficient high ceramic
content in the slurry, at least 50wt%, to ensure a sufficient sintering qual-
ity of the printed parts.

3.2.1 Getting the right Mixture II
To transform the water-based ATZ-suspensions into a photo-curable resin
an olefinic water soluble substances was added, in this case Acrylamid
(AM) and N,N’-Methylenebisacrylamide (MBAM). They are both water
soluble and inhere one or two double bonds respectively, which are needed
to perform radical polymerization during the printing process. AM with
only one olefinic group is building up long chains, while MBAM with its
two terminal double bonds connects the growing chains and forms a sta-
ble polymer network.
AM/MBAM in a 10:1 (wt%) ratio was added to the concentrated ATZ-

suspension in that way, that the final mixture had a ceramic solid content
of 50wt%.
It turned out that the best recipe is the following:

• 1g ATZ-Suspension (65wt%)

• 0,2g AM

• 0,02g MBAM

AM and MBAM were diluted in the liquid suspension until the suspen-
sion is clear again. A photo-initiator was additionally added at 1wt% re-
lated to the non-ceramic content. In this case the suspension has 50wt%
of ceramic particles and 50wt% of water, AM and MBAM. The whole sus-
pension weighed 1g ATZ-suspension + 0,2g AM+ 0,02gMBAM= 1,22g.
0,61g was half of that, the non ceramic content. 0,0061g or 6,1mg cor-
responded to 1wt% and is the amount of photo-initiator, which was added
at the end.
The rheological behavior of this mixture ought to be investigated in

the next section.
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3.2.2 Rheology of the Photo-Curable ATZ-Suspension
The viscosity and photo-curing behavior of the photo-curable ATZ-suspension
needed to be investigated. The visco-elastic properties during the photo-
curing needed to be tested as well.

3.2.3 Viscosity
The viscosity of photo-curable suspensions used in stereolithography pro-
cesses shouldn’t exceed 3000mPa·s [28, 30]. Above that resins become
paste-like, which might impair the processing and handling of the sus-
pensions in the machines.
The flowcurve of the ATZ-suspension with 50wt% showed a shear thin-

ning behavior from >10 down to 0,1Pa·s from a shear rate of 50 s−1, stay-
ing far below the limit (see Figure3.8).
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Figure 3.8: Flowcurve of photo-curable ATZ-Suspension

The viscosity of the photo-curable resin is in a sufficient area for the
Two-Photon-Polymerization and did not require further adjustment.

3.2.4 Photo-Curing Behavior
The photo-curing behavior of the ATZ-suspension was investigated by fol-
lowing the storagemodulus𝐺’ of the dynamic modulus𝐺∗ = 𝐺’+𝑖⋅𝐺″ while
the resin is illuminated with an UV-light. The storage modulus serves as
representative of the elastic part in the resin, which is increasing with the
ongoing polymerization-reaction, when the polymer networks are formed.
The storage modulus of the photo-curable ATZ-suspension increases

by several magnitudes to 106 Pa in a few seconds after the UV-lamp was
switched on (see Figure3.9), revealing a fast and effective curing behav-
ior.
Here two mechanisms assure a fast photo-polymerization with rather

strongmechanical properties. At first the photo-polymerization of AM/MBAM
is rather quick. The molecules are small and the matrix is low viscous.
The diffusion rate is therefore high, leading to a fast photo-curing pro-
cess. As secondary advantage the embedded ceramic particles transform
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Figure 3.9: Evolution of storage modulus 𝐺’ after switching
on an UV-lamp

the photo-cured polymer into a composite material, giving the polymer a
higher mechanical strength [203].
On the basis of this experimental findings the photo-curing behavior

of the water based ATZ-containing resin could be predicted as fast and
efficient enough for the Two-Photon-Polymerization [204].
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3.3 Two-Photon-Polymerization of ATZ
The Two-Photon-Polymerization is a process of multiple steps including
sample preparation, printing, washing and other post processing steps
and analyzing (see Chapter2). To form ceramic parts additional steps,
dealingwith debinding and sintering, are added after the post-processing.
This transforms the printed polymer networks with embedded ceramic
particles into a fully ceramic body.
Steps for Two-Photon-Polymerization of ceramics:

1. Sample preparation

2. 2PP-Printing

3. Post-processing (washing, drying)

4. Ceramic forming (debinding, sintering)

3.3.1 Two-Photon-Printing of the ATZ-Suspension
As described in Chapter3 the photo-curable water based suspensions con-
taining alumina and zirconia particles was places in a cavity on an alumina
plate as basis for the printing process. With a spacer tape and a cover
glass a rectangular printing window was formed of a few millimeters size
and 100-200µm thickness. All samples were prepared that way.
Before printing complex structures the optimal operation parameters

for the process must be found. Most important are the writing speed and
introduced power as well as the right geometry and its slicing (distance
between layers) and hatching (distance between single lines) strategy.
This process is crucial to obtain a fitting parameter field and to gain re-
producible printing results.
A geometrical model, like a Standard Triangulation/Tesselation Lan-

guage (STL)-file, is translated into the four main writing parameters (see
Table3.2), which have different influences on the outcome of the writing
process.
Increasing the power of the laser also increases the focal point result-

ing in a broader polymerization zone and therefore a wider line. Increas-
ing the speed on the other hand decreases the power per time leading
to less polymerization and therefore slimmer lines. Additionally placing
the lines to close to each other leads to over-polymerization, which has
the same effect as writing with to high power or to low speed. When the
distance between the lines is to wide the single lines do not overlap at all
and therefore cannot form any structural integrity.
In all upcoming experiments a single SchwarzP unit cell, which is half

filled, served as model (see Figure2.9a). To find the main four parameters
those single cells were printed next to each other in a two-dimensional
array in the XY-Plane varying either power and speed or slice and hatch.
For the first array the slicing was set to 0,99µm and hatching to 0,1µm,
which are medium standard parameters for the Nanofactory. Then the
power was varied from 2mW to 20mw in 2mW steps and speed from
500µm/s to 4500µm/s in 500µm/s steps, resulting in an array of 10x9
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Table 3.2: Writing parameters and their influence

Parameter Effect
writing speed • fast →less power per time,

under-polymerization
• slow →more power per time,
over-polymerization

power • high →over-polymerization
• low →under-polymerization

slicing (distance between slices) • high →no connection between
layers, instability
• low →high overlap, over-

polymerization
hatch (distance between single
lines)

• high →no connection between
single lines, instability
• low →hight overlap, over-

polymerization

single SchwarzP cells. Those limits are inside the recommended param-
eter window of the machine.
The scanning electronmicroscopy (SEM) image showed only 5x9 SchwarzP

cells (see Figure3.10), implying the cells written with less than 12mW
were missing. Meaning the photo-curable ATZ-suspensions needed a cer-
tain threshold energy to trigger the photo-polymerization. Even with
12mW some cells were not stable. The clearest appearance showed the
cells written with a power of 18 to 20mW and at high speed of 3500
to 4500µm/s. One parameter-set used for the next experiments was a
power of 20mW and a speed of 5000µm/s, as this combination gives the
best printing quality at the highest printing speed.
A second array was printed varying slice and hatch, both from 0,1 to

1,9µm in steps of 0,2µm, resulting in a 10x10 array of printed SchwarzP
cells .
As with the previous array also this group of printed cells was incom-

plete (see Figure3.11). At large slice and hatch values only a few stack
of lines were visible or even missing completely. Meaning at this line dis-
tances no stable geometries can be formed, because the lines and slices
were not connected to each other. In Figure3.12a this was especially vis-
ible as with rising hatch distance the structures collapsed. An optimal
area was at slice distance of 0,3 to 0,5µm and hatch of 0,3 to 0,7µm.
With lower slice and hatch the structures are over-polymerized. Also the
structures were very clear when only one parameter is tuned to a high
value (see Figure3.12b), while the other is kept low, like the pairing of
0,9µm slicing and 0,1µm hatching.
For further experiments, where the goal is to print larger structures, a

slice and hatch pair is favourable with higher slicing distance. The larger
the slicing distance the less layers are needed to form a three-dimensional
structure and therefore less time consuming. From this point of view the
parameters of 0,99µm slicing and 0,1µm hatching were chosen.
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Figure 3.10: Array of half filled SchwarzP cells with varying
Power and Speed

Figure 3.11: Array of half filled SchwarzP cells with varying
Slice and Hatch
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(a) Detail of the slice and hatch array of
collapsing structures with rising hatch

distance
(b) 45° side few of the slice and hatch

array

Figure 3.12: Before

With this parameter set larger structures were printed on a alumina
substrate, e.g. scaffolds comprised of 4x4x4 single half filled SchwarzP
cells (see Figure2.9b) with an edge length of 50µm. Those can be added
subsequently next to each other to form 2x2 or 3x3 arrays, leading to scaf-
folds of different sizes. After the printing process the alumina plate, with
the structure on top, was taken from the printer, the cover glass is lifted
and the residual resin is washed away to free the scaffold. Afterwards
they were dried, debinded and sintered.
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3.3.2 The Effect of Air Drying on Sintered Structures writ-
ten with 2PP

The first sintering experiments were performed on samples, which were
air dried after printing. It turned out the sintering performance of the
small structure was rather good (see Figure3.13). Contrary to the as-
sumption that small structures are torn apart, by the forces occurring
during the debinding or the sintering process. They turned out to be
crack free and completely intact. It seems that the very high surface to
volume ratio of this tiny structures favoured a smooth degassing while
debinding. But on the other hand side the structures were heavily dis-
torted, far away from the original geometry, which seemed to be mainly
due to contraction.

Figure 3.13: Sintered structure, which was air dried

One Assumption is, that the drying after the printing process has a
high influence on the geometry. The resin is water based and still inhibits
up to 25wt% of water, which needs to be removed before debinding and
sintering. Water has a high surface tension, which generates great forces
upon the structures, in that micrometer range, during drying. Therefore
the next samples were critical point dried (CPD) before debinding and
sintering.
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3.3.3 The Effect of Critical Point Drying on Sintered Struc-
tures written with 2PP

The CPD is a method to avoid surface tension during drying processes.
This should decrease the contraction of the structure and should con-
serve the original geometry better than drying in air. A closer look at
scaffolds after CPD reveals that the distortion of the structure was much
smaller with controlled critical point drying (see Figure3.14a). The scaf-
folds shrinked, but in an uniform way in the XY-plane. The first layer
of cells was attached to the surface of the alumina plate and therefore
couldn’t shrink and slide in the XY-plane during drying as the upper lay-
ers. This lead to a pyramid like shape of the structure.

(a) Top view (b) Side view at 45°

Figure 3.14: Critical point dried and sintered structure

The structure was not distorted as heavily as the air dried sample, but
another problem became visible. This structure consisted of four scaf-
folds with 4x4x4 single unit cells and the intersection between the single
scaffolds formed a intended breaking point (see Figure3.14b). In this
case the G-Code was programmed in that way, that the 4x4x4 scaffolds
were printed one by one and next to each other, so-called stitching. In
this way an overlap was created between the single scaffolds and formed
an intersection with different properties than in the rest of the volume.
In the region of the intersection the ceramic particles are very likely sep-
arated by the optical tweezers effect [205]. Such heterogeneous region
shrink differently during drying, debinding and sintering causing cracks.
This was very visible in the structure as cracks were between the single
scaffolds and some parts were completely missing.
This might be resolved by changing the G-Code to write without stitch-

ing, in this case by preparing a new STL-file consisting of 10x10x4 single
unit cells (see Figure3.15).
An un-sintered scaffold could be obtained, without cracks and mini-

mally distorted. The surface was smooth with small grains of either poly-
mer or ceramic particles.
After sintering the shape of the scaffold stayed similar to the un-sintered

one (see Figure3.16). The pyramid shape was the same only the surface
and the pores appeared different. The pores of the sintered ceramic struc-
ture were wider and the surface was smoother, but with visible ceramic
crystalites of different sizes (see Figure3.16b). One might assume the
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(a) Top view (b) Side view at 45

Figure 3.15: A structure, which is critical point dried and
written without stitching

different crystalites were either pure zirconia or alumina oxide, where
the small grains should be alumina, as it is only present at 20wt%. That
also means, that even though the original particles in the resin are much
smaller than this chunks and grains, 35nm for zirconia and 110nm for
alumina, the different ceramic species did not mix during any step of the
process leaving an heterogeneous ceramic structure.

(a) whole structure (b) detail

Figure 3.16: A structure, which is critical point dried, writ-
ten without stitching and sintered

The different scale bars show, that the sintered structure were as half
as long as the non-sintered one (comparing Figures3.15a3.16a). That
means, the structure shrinked uniformly during debinding and sintering.
The distortion of the structure is left by the different shrinking capability
of the parts near to the alumina surface than in the volume during drying.
Neither the shrinkage during drying nor during debinding and sintering
can be fully prevented. One possibility to geometrically overcome the
shrinkage is to place the desired structure on top of another, which serves
as shrinking buffer or support structure (see Figure3.17). In this way the
desired SchwarzP scaffold can shrink uniformly in all three dimensions.
To sum this up, the transfer of a computer aided geometry into a Two-

Photon-Polymerization written structure depends on all post-processing
steps. Especially drying influences the outcome of the sintered structure.
During drying the structure looses up to 25wt%. This leads to the first
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Figure 3.17: Un-distorted scaffold on top of a destroyed sup-
port structure

and harshest shrinkage. It can be controlled by e.g. using a automatic
CPD-dryer set up with very mild operation conditions. This results into
a dry polymer with embedded ceramic particles, which are not visible at
the surface.
As a second step the structure looses the organic polymer during the

debinding, approximately another 25wt%. The mechanisms distorting
the structure are almost the same as during drying, but can be controlled
with a slow heating ramp up to the debinding temperature to prevent fast
burning of the polymer. When the polymer is burned away the structures
are sintered, by melting the ceramic particles onto each other, which
again results in a shrinkage of up to 25%. The printed structures from the
water based ATZ-suspension run through many shrinking occasions, each
a risk for the structure to be damaged. But with taking each shrinking
step into account a highly accurate ceramic structure with a resolution of
few micrometer in all three dimensions could be obtained with the Two-
Photon-Polymerization.
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3.3.4 The Ceramic Character
The scanning electron microscopy (SEM) revealed the surface structure
of the scaffold showing smaller and larger crystalytes of ceramics. The
elemental composition of the whole structure and single crystalites were
investigated utilizing energy-dispersive X-ray spectroscopy (EDX).
Table3.3 shows the atomic distribution of a whole scaffold, whichmostly

contains zirconia, alumina and oxygen forming the two ceramic species of
alumina oxide 𝐴𝑙2𝑂3 and zirconia oxide 𝑍𝑟𝑂2. The ratio between alumina,
zirconia and oxygen was correct to form alumina toughened zirconia with
a ratio of 𝑍𝑟𝑂2:𝐴𝑙2𝑂3 of 80:20. This proved the fully ceramic consistence
of the scaffold. The carbon fraction showed a leftover fraction from the
debinding process.

Table 3.3: Atomic composition of a 2PP-printed ATZ-scaffold
gained via Energy-Dispersive X-Ray Spectroscopy (EDX)

Element Weight% Atom%
C 5.14 14.56
O 26.26 55.81
Al 4.57 5.76
Zr 64.03 23.87

The prove of the ceramic character of the structures was given, but
the atomic composition of the single crystallites was still unclear.

3.3.5 Atomic Composition of Single Crystallites
The different atomic composition of the scaffolds was visualized using the
back scattering detector in the scanning electron microscopy (SEM). The
energy of the scattered electrons is dependent on the atomic number,
where heavier elements scatter more and produce a larger brightness
than lighter elements. As Alumina has the periodic number 13 and the
zirconia the number 40, areas with mainly zirconia are brighter than alu-
mina oxide crystallites.

(a) Secundary electron image (b) Back scattering image

Figure 3.18: Comparison of scanning electron microscopy
pictures obtained with secundary and back scattered elec-

trons
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Figure3.18 showed the same area of the sintered scaffold either pro-
duced with secondary electrons and with back scattered electrons. The
back scattering image reveals a high contrast between the smaller and
the larger grains, where the larger chunks were rather bright and the
small grains almost black. This strengthens the assumption, that the
small grains consisted mainly of alumina and the larger ones mainly of
zirconia.

Figure 3.19: Back scattering image overview of single
points, where an EDX-spectrum was taken

Taking a closer look at the different grains (see Figure3.19) and taking
an EDX-spectrum revealed their different atomic composition. The spec-
trum of point1 was taken from one of the dark and small grains showing
a high content of alumina (see Figure3.20a), whereas the EDX spectrum
of point 7 showed almost 100% of zirconia.
This showed, that alumina and zirconia particles were almost not mix-

ing during the whole process, on the contrary even building pure alu-
mina or zirconia oxide crystallites. With the back scattering images lines
are visible in the zirconia grains (see Figure3.18b). This effect is called
crystal twinning[206] and occurs during crystal growth. This indicates
that the ceramic particles were not only sintering together but grew crys-
tals during the sintering process, which were then sintered together and
formed an heterogeneous but three dimensional ceramic micro-structure
of unknown properties.
The printing experiments and the post processing analysis proved the

Two-Photon-Polymerization of technical ceramic like ATZ was possible
utilizing the water based heterogeneous and even though transparent
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(a) EDX-spectrum of point1 (b) EDX-spectrum of point2

Figure 3.20: EDX spectra of different grains on the ATZ-
scaffold

ATZ-suspension. The resulting structures are printed with a high resolu-
tion in all three dimensions and could be sintered to fully ceramic struc-
tures without distortion of the geometry.

q.e.d.
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Chapter 4

Conclusion and Outlook

4.1 Conclusion
This work is a proof of concept. My experience in Two-Photon-Polymerization
added with expertise in ceramic manufacturing by my supervisors helped
me to develop this new resin. From the literature and previous experi-
ments we knew, that a classic approach to generate a ceramic resin suit-
able for the Two-Photon-Polymerization with e.g. milling will not be suc-
cessful, as the particles cannot be milled small enough. Only opaque mix-
tures are generated, which cannot assure the transmission of the Two-
Photon laser. But the transparency of the resin is crucial for a successful
Two-Photon process. Only alternative are preceramic polymers, but those
are limited mainly to silica due to their chemical composition.
Ceramic particles with the right particle size lower than 150nm have

been found in commercial available sol-based ceramic suspensions, in-
habiting all sorts of ceramic species. In this study alumina and zirco-
nia were chosen to produce alumina toughened zirconia (ATZ). The ce-
ramic particles are dispersed in water. The suspensions need to be trans-
ferred into a photo-curable mixture by adding photo-reactive chemicals,
in this case acrylamid (AM) and N,N’-Methylenebisacrylamide (MBAM),
and a suitable photo-initator, preferably BA740 as a special initiator for
the Two-Photon-Polymerization. The resulting mixture is of right viscos-
ity and photo-curable with UV-light and therefore also printable with the
Two-Photon-Polymerization.
During and after the printing process a few steps have to been taken

into account to prevent the final structure from collapsing and cracking.
When those processes are dialed in a micro-structured ceramic objects
can be obtained and analyzed. Those are still minimally distorted due to
the different shrinkage between bottom and top, but apart from that very
much represent the desired geometry.
The ceramic character of the structure could be proven using Energy-

dispersive X-ray spectroscopy (EDX), which also revealed an interesting
behavior of the ceramic particles during sintering. The two different ce-
ramic species, alumina and zirconia, unmix and form uniform either alu-
mina or zirconia grains of very large size. On might assume the sintering
conditions can be tuned even further.
Together all the experiments result in a positive proof of concept:

printing ceramics from a heterogeneous photo-curable resin with the unique
Two-Photon-Polymerization is achieved. Ceramic structures are printable
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of very high precision, which cannot be achieved with any other manufac-
turing technique. This opens a totally new field of applications for tech-
nical ceramics. And the only basic material requirement for this process
is a suspension of stabilized ceramic nano-particles.
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4.2 Outlook
The positive proof of concept opens new doors for ceramic additive man-
ufacturing but also leaves some unsolved problems and unresolved ques-
tions.
The particle behavior in the slurry, while printing and during drying,

debinding and sintering is still unknown, especially as ceramic species
tend to unmix. Furthermore the Scanning Electron Microscopy (SEM)-
images, combined with Energy-dispersive X-ray spectroscopy, reveal the
surface and the chemical composition of the structures, but deliver no
information about the inner structure of the parts and the pore size.
Those questions might be answered utilizing different analyzing tech-

niques like micro–computed tomography (µCT) or layer-wise SEM-images
produces with a Focused Ion Beam (FIB) to reveal the inner structure. A
thin layer of the structure can be further investigated with Transmission
electron microscopy (TEM). This might show how the particles are sin-
tered together and if the structures are actually hollow.
The greatest challenge is to transfer the computer aidedmodel into the

structure without any distortion. The parts shrink about 75% in length
during drying, debinding and sintering. A good shape fidelity might be
hard to achieve, but there might be a few ways to deal with the distortion.
Either the distortion is calculated into the STL-file or support structures
are introduced, which take up the tensions during shrinking.
The resin itself could also reduce the shrinkage by generating resins

with higher ceramic content or by decreasing the amount of low viscous
solvents, e.g. the water. Doing so would increase the reactivity and the
stability of the slurry, as it is no more in danger of drying out. Additionally
a higher solid content in the resin should lead to less shrinkage during
drying, debinding and sintering.
A great variety of ceramic species could be additively manufactured

in this micro-scale. Starting from technical ceramics of great mechani-
cal strength like alumina and zirconia oxide with all kind of derivatives.
Those could be printed into micro-mechanics, micro-fluidics or medical
scaffolds. Piezoceramic species like lead zirconate titanate (PZT) could be
printed into micro-actuators and therefore build movable ceramic parts
in that very small scale. Micro- and nano-structured meshes or scaffolds
of all sorts of ceramics could be introduced as filter meshes with tunable
pore size or as geometrical basis for catalysis in extreme conditions. Lust
but not least, bio-ceramics like hydroxyapatites (HAP) or beta tricalcium
phosphate (𝛽-TCP) and also zirconia could be printed into implants with
a specific designed surface to increase the ingrowth by mimicing natural
structures.
All those applications might benefit from the possibility to print ce-

ramic materials as well as from the special properties of the Two-Photon-
Polymerization, especially with its geometrical freedom. Compared to al-
most all other 3D-printing technologies, where objects are printed layer-
wise, the Two-Photon-Polymerization is theoretically capable of all ge-
ometries and three-dimensional printing paths imaginable.
Two-Photon-Polymerization of ceramics is not the cure of all prob-

lems. It is especially not capable of printing macro-sized structures in



a centimeter- or meter-range, but it adds a new dimension to the print-
ing of technical ceramic structures. The bread and butter, so to say, are
micro-applications, which are, true till today, the future in all technologies
to save money, time and resources.
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4.3 Publications
4.3.1 Conference Talk
Johanna Sänger, Dr. Brian R. Pauw, Prof. Jens Günster, two-photon-
polymerization of ATZ ceramic - a proof of concept, October 28-30, 2020

4.3.2 Scientific Paper
Johanna C. Sänger, Brian R. Pauw, Heinz Sturm, Jens Guenster, First time
additively manufactured advanced ceramics by using two-photon poly-
merization for powder processing.Open Ceramics Volume 4, November
2020, 100040[207]

4.3.3 Patent
Johanna C. Sänger, Jens Günster,Herstellung von Keramikstrukturen mit-
tels additiver Fertigung ohne Schichtauftrag durch lichtinduziertes Ver-
netzen in einer Flüssigkeit mit nanosuspendierten Partikeln, Deutsche
Patentanmeldung Nr. 102020129911.7

Johanna C. Sänger, Verfahren zur Überführung nano-suspendierter Keramik-
Partikel aus demwässrigenMedium in ein organisches photovernetzbares
Medium zum Erlangen eines transparenten keramischen Schlickers mit
definierter Nano-Parikelgröße, Deutsche PatentanmeldungNr. 102020129910.9

“Ceterum censeo Carthaginem esse delendam.”

Cato





59

Bibliography

[1] Franck Doreau, Christophe Chaput, and Thierry Chartier. “Stere-
olithography for manufacturing ceramic parts”. In: Advanced En-
gineering Materials 2.8 (2000), pp. 493–496.

[2] Andrea Zocca et al. “Additive manufacturing of ceramics: issues,
potentialities, and opportunities”. In: Journal of the American Ce-
ramic Society 98.7 (2015), pp. 1983–2001.

[3] James D Cawley. “Solid freeform fabrication of ceramics”. In: Cur-
rent Opinion in Solid State andMaterials Science 4.5 (1999), pp. 483–
489. issn: 1359-0286. doi: https://doi.org/10.1016/S1359-0286(99)

00055-8. url: http://www.sciencedirect.com/science/article/pii/

S1359028699000558.
[4] Standard Terminology for Additive Manufacturing Technologies.

ASTM ASTM F2792-2012. 2012.
[5] Jon Excell and Stuart Nathan. “The rise of additive manufactur-

ing”. In: The engineer 24 (2010).
[6] Xuan Song et al. “Ceramic fabrication usingmask-image-projection-

based stereolithography integrated with tape-casting”. In: Journal
of Manufacturing Processes 20 (2015), pp. 456–464.

[7] Nannan Guo and Ming C Leu. “Additive manufacturing: technol-
ogy, applications and research needs”. In: Frontiers of Mechanical
Engineering 8.3 (2013), pp. 215–243.

[8] Charles W Hull. “Apparatus for production of three-dimensional
objects by stereolithography. 1986”. 1986.

[9] Thierry Chartier et al. “Stereolithography process: influence of the
rheology of silica suspensions and of the medium on polymeriza-
tion kinetics–cured depth and width”. In: Journal of the European
Ceramic Society 32.8 (2012), pp. 1625–1634.

[10] Ewa Andrzejewska. “Free-radical photopolymerization of multi-
functional monomers”. In: Three-DimensionalMicrofabricationUs-
ing Two-Photon Polymerization. Elsevier, 2020, pp. 77–99.

[11] Ewa Andrzejewska. “Photopolymerization kinetics of multifunc-
tional monomers”. In: Progress in Polymer Science 26.4 (2001),
pp. 605–665. issn: 0079-6700. doi: https://doi.org/10.1016/S0079-

6700(01)00004-1.
[12] John T Fourkas. “Fundamentals of two-photon fabrication”. In: Three-

Dimensional Microfabrication Using Two-photon Polymerization.
Elsevier, 2020, pp. 57–76.

[13] Maria Göppert-Mayer. “Über elementaraktemit zwei quantensprün-
gen”. In: Annalen der Physik 401.3 (1931), pp. 273–294.



60 Bibliography

[14] Miłosz Pawlicki et al. “Zweiphotonenabsorption und das Design
von Zweiphotonenfarbstoffen”. In:Angewandte Chemie 121.18 (2009),
pp. 3292–3316.

[15] W Kaiser and CGB Garrett. “Two-photon excitation in Ca F 2: Eu
2+”. In: Physical review letters 7.6 (1961), p. 229.

[16] Christopher N LaFratta et al. “Multiphoton fabrication”. In: Ange-
wandte Chemie International Edition 46.33 (2007), pp. 6238–6258.

[17] ShojiMaruo, OsamuNakamura, and Satoshi Kawata. “Three-dimensional
microfabricationwith two-photon-absorbed photopolymerization”.
In: Opt. Lett. 22.2 (1997), pp. 132–134. doi: 10.1364/OL.22.000132.

[18] Linas Jonušauskas et al. “Mesoscale laser 3D printing”. In: Optics
express 27.11 (2019), pp. 15205–15221.

[19] Eugene Hecht. Optics. 2002. isbn: 978-0321188786.
[20] CE Barnett. “Some Applications of Wave-length Turbidimetry in

the Infrared.” In: The Journal of Physical Chemistry 46.1 (1942),
pp. 69–75.

[21] S. Eskin et al. “Antireflective coatings based on SiO2 nanoparti-
cles”. In: InorganicMaterials 48 (Oct. 2012). doi: 10.1134/S0020168512100019.

[22] Max Born and Emil Wolf. Principles of optics: electromagnetic the-
ory of propagation, interference and diffraction of light. Elsevier,
2013.

[23] Thomas G. Mayerhöfer and Jürgen Popp. “Beer’s law derived from
electromagnetic theory”. In: Spectrochimica Acta Part A: Molecu-
lar and Biomolecular Spectroscopy 215 (2019), pp. 345–347. issn:
1386-1425. doi: https://doi.org/10.1016/j.saa.2019.02.103. url:
http://www.sciencedirect.com/science/article/pii/S1386142519302252.

[24] Jens Klimke and Andreas Krell. “OPTISCHEKERAMIKENMIT SPEZ-
IFISCHEINGESTELLTERSPEKTRALER TRANSMISSION”. In: (2015).

[25] Thomas G Mezger. Applied rheology: with Joe flow on rheology
road. Anton Paar, 2015.

[26] Rajinder Pal. Rheology of particulate dispersions and composites.
Vol. 136. CRC Press, 2006.

[27] Salmang H. and Scholze H. KERAMIK. Springer-Verlag Berlin Hei-
delberg, 2007, 313ff. doi: 10.1007/978-3-540-49469-0.

[28] Michelle L Griffith and John W Halloran. “Freeform fabrication of
ceramics via stereolithography”. In: (1996).

[29] T Himmer, T Nakagawa, and H Noguchi. “Stereolithography of ce-
ramics”. In: International Solid Freeform Fabrication Symposium,
Austin, TX (1997), pp. 363–369.

[30] Michelle L Griffith and John W Halloran. “Ultraviolet curing of
highly loaded ceramic suspensions for stereolithography of ceram-
ics”. In: Proc. Solid Freeform Fabr. Symp. 1994, pp. 396–403.

[31] Weizhao Zhou, Dichen Li, and Hui Wang. “A novel aqueous ce-
ramic suspension for ceramic stereolithography”. In: Rapid Proto-
typing Journal (2010).



Bibliography 61

[32] Zhangwei Chen et al. “Curing characteristics of ceramic stere-
olithography for an aqueous-based silica suspension”. In: Proceed-
ings of the Institution of Mechanical Engineers, Part B: Journal of
Engineering Manufacture 224.4 (2010), pp. 641–651.

[33] Xiaoyong Tian et al. “Study on the fabrication accuracy of ceramic
parts by direct stereolithography: Ceramic parts can be prepared
using stereolithography by building composite parts from ceramic
powder-loaded resins, followed by simultaneous polymer pyrolysis
and ceramic sintering. This paper describes a systematic study
into the influence of several parameters on the accuracy of such
parts”. In: Virtual and Physical Prototyping 7.3 (2012), pp. 195–
202.

[34] Weiguo Bian et al. “Design and fabrication of a novel porous im-
plant with pre-set channels based on ceramic stereolithography
for vascular implantation”. In:Biofabrication 3.3 (2011), p. 034103.

[35] Weiguo Bian et al. “Fabrication of a bio-inspired beta-Tricalcium
phosphate/collagen scaffold based on ceramic stereolithography
and gel casting for osteochondral tissue engineering”. In: Rapid
Prototyping Journal 18.1 (2012), pp. 68–80.

[36] Haidong Wu et al. “Fabrication of dense zirconia-toughened alu-
mina ceramics through a stereolithography-based additive manu-
facturing”. In: Ceramics International 43.1 (2017), pp. 968–972.

[37] Xiang Zhang, XN Jiang, and Cheng Sun. “Micro-stereolithography
of polymeric and ceramic microstructures”. In: Sensors and Actu-
ators A: Physical 77.2 (1999), pp. 149–156.

[38] Haidong Wu et al. “Effect of the particle size and the debinding
process on the density of alumina ceramics fabricated by 3D print-
ing based on stereolithography”. In: Ceramics International 42.15
(2016), pp. 17290–17294.

[39] Qin Lian et al. “Additive manufacturing of ZrO2 ceramic dental
bridges by stereolithography”. In:Rapid Prototyping Journal (2018).

[40] C Sun and X Zhang. “Experimental and numerical investigations
onmicrostereolithography of ceramics”. In: Journal of Applied Physics
92.8 (2002), pp. 4796–4802.

[41] Cheng Sun and Xiang Zhang. “The influences of the material prop-
erties on ceramic micro-stereolithography”. In: Sensors and Actu-
ators A: Physical 101.3 (2002), pp. 364–370.

[42] C Esposito Corcione et al. “Silica moulds built by stereolithogra-
phy”. In: Journal of materials science 40.18 (2005), pp. 4899–4904.

[43] Carola Esposito Corcione et al. “Free form fabrication of silica
moulds for aluminium casting by stereolithography”. In: Rapid
Prototyping Journal (2006).

[44] Chang-Jun Bae and John W Halloran. “Integrally cored ceramic
mold fabricated by ceramic stereolithography”. In: International
Journal of Applied Ceramic Technology 8.6 (2011), pp. 1255–1262.



62 Bibliography

[45] Chang-Jun Bae and JohnWHalloran. “Influence of residual monomer
on cracking in ceramics fabricated by stereolithography”. In: In-
ternational journal of applied ceramic technology 8.6 (2011), pp. 1289–
1295.

[46] Frederik Kotz et al. “Three-dimensional printing of transparent
fused silica glass”. In: Nature 544.7650 (2017), pp. 337–339.

[47] Chandrashekhar V Adake, Prasanna Gandhi, and Parag Bhargava.
“Fabrication of ceramic component using constrained surface Mi-
crostereolithography”. In: Procedia Materials Science 5 (2014),
pp. 355–361.

[48] C Hinczewski, S Corbel, and T Chartier. “Ceramic suspensions
suitable for stereolithography”. In: Journal of the European Ce-
ramic Society 18.6 (1998), pp. 583–590.

[49] C Hinczewski, S Corbel, and T Chartier. “Stereolithography for the
fabrication of ceramic three-dimensional parts”. In: Rapid Proto-
typing Journal (1998).

[50] Tv Chartier et al. “Stereolithography of structural complex ce-
ramic parts”. In: Journal of materials science 37.15 (2002), pp. 3141–
3147.

[51] Ankur Goswami et al. “Optimization of rheological properties of
photopolymerizable alumina suspensions for ceramic microstere-
olithography”. In: Ceramics International 40.2 (2014), pp. 3655–
3665.

[52] X Shan et al. “Development of a Manufacturing Process for Ce-
ramic Microstructures by Using Micro Photoforming (1st Report)-
Principle of the Process and Photoforming Experiment”. In: JOURNAL-
JAPANSOCIETY FORPRECISIONENGINEERING 61 (1995), pp. 420–
420.

[53] Jae Hyuk Jang et al. “Preparation and characterization of barium
titanate suspensions for stereolithography”. In: Journal of the Amer-
ican Ceramic Society 83.7 (2000), pp. 1804–1806.

[54] David I Woodward et al. “Additively-m anufactured piezoelectric
devices”. In: physica status solidi (a) 212.10 (2015), pp. 2107–
2113.

[55] Jia-Chang Wang. “A novel fabrication method of high strength alu-
mina ceramic parts based on solvent-based slurry stereolithogra-
phy and sintering”. In: International Journal of Precision Engineer-
ing and Manufacturing 14.3 (2013), pp. 485–491.

[56] Arnaud Bertsch, Sébastien Jiguet, and Philippe Renaud. “Micro-
fabrication of ceramic components by microstereolithography”.
In: Journal of micromechanics and microengineering 14.2 (2003),
p. 197.

[57] Amelia Buerkle, Karl F Brakora, and Kamal Sarabandi. “Fabrica-
tion of a DRA array using ceramic stereolithography”. In: IEEE
Antennas andWireless Propagation Letters 5 (2006), pp. 479–482.



Bibliography 63

[58] Noriyuki SATOH et al. “Firing shrinkage of porcelain-resin com-
posites prepared by laser lithography”. In: Dental materials jour-
nal 18.4 (1999), pp. 444–452.

[59] Hiromi Mori, Soshu Kirihara, and Yoshinari Miyamoto. “Fabrica-
tion of three-dimensional ceramic photonic crystals and their elec-
tromagnetic properties”. In: Journal of the European Ceramic So-
ciety 26.10-11 (2006), pp. 2195–2198.

[60] Rujie He et al. “Fabrication of SiC ceramic architectures using
stereolithography combined with precursor infiltration and pyrol-
ysis”. In: Ceramics International 45.11 (2019), pp. 14006–14014.

[61] Nicolas Delhote et al. “Ceramic layer-by-layer stereolithography
for the manufacturing of 3-D millimeter-wave filters”. In: IEEE
transactions on microwave theory and techniques 55.3 (2007),
pp. 548–554.

[62] Karl F Brakora and Kamal Sarabandi. “Integration of single-mode
photonic crystal clad waveguides with monolithically constructed
ceramic subsystems”. In: IEEE Antennas and Wireless Propaga-
tion Letters 8 (2008), pp. 433–436.

[63] Thierry Chartier et al. “Influence of irradiation parameters on the
polymerization of ceramic reactive suspensions for stereolithogra-
phy”. In: Journal of the European Ceramic Society 37.15 (2017),
pp. 4431–4436.

[64] Hongyu Xing et al. “Preparation and characterization of UV cur-
able Al2O3 suspensions applying for stereolithography 3D print-
ing ceramic microcomponent”. In: Powder technology 338 (2018),
pp. 153–161.

[65] Zhanwen Xing et al. “Effect of plasticizer on the fabrication and
properties of alumina ceramic by stereolithography-based addi-
tivemanufacturing”. In:Ceramics International 44.16 (2018), pp. 19939–
19944.

[66] Nicolas Delhote et al. “Narrow Ka bandpass filters made of high
permittivity ceramic by layer-by-layer polymer stereolithography”.
In: 2006 European Microwave Conference. IEEE. 2006, pp. 510–
513.

[67] Nicolas Delhote et al. “Large experimental bandpass waveguide in
3D EBG woodpile manufactured by layer-by-layer ceramic stere-
olithography”. In: 2007 IEEE/MTT-S InternationalMicrowave Sym-
posium. IEEE. 2007, pp. 1431–1434.

[68] Jinxing Sun, Jon Binner, and Jiaming Bai. “Effect of surface treat-
ment on the dispersion of nano zirconia particles in non-aqueous
suspensions for stereolithography”. In: Journal of the European
Ceramic Society 39.4 (2019), pp. 1660–1667.

[69] Hongyu Xing et al. “Study on surface quality, precision and me-
chanical properties of 3D printed ZrO2 ceramic components by
laser scanning stereolithography”. In:Ceramics International 43.18
(2017), pp. 16340–16347.



64 Bibliography

[70] Keqiang Zhang et al. “Photosensitive ZrO2 suspensions for stere-
olithography”. In: Ceramics International 45.9 (2019), pp. 12189–
12195.

[71] Nicholas R Jankowski et al. “Stereolithographically fabricated alu-
minum nitride microchannel substrates for integrated power elec-
tronics cooling”. In: 2008 11th Intersociety Conference on Ther-
mal and Thermomechanical Phenomena in Electronic Systems.
IEEE. 2008, pp. 180–188.

[72] Xuan Song et al. “Piezoelectric component fabrication using projection-
based stereolithography of barium titanate ceramic suspensions”.
In: Rapid Prototyping Journal (2017).

[73] VK Popov et al. “Laser stereolithography and supercritical fluid
processing for custom-designed implant fabrication”. In: Journal
of Materials Science: Materials in Medicine 15.2 (2004), pp. 123–
128.

[74] Zhengmao Li et al. “Stiff macro-porous bioactive glass–ceramic
scaffold: Fabrication by rapid prototyping template, characteriza-
tion and in vitro bioactivity”. In: Materials Chemistry and Physics
141.1 (2013), pp. 76–80.

[75] Marina Talib, James A Covington, and Aminat Bolarinwa. “Charac-
terization of fabricated three dimensional scaffolds of bioceramic-
polymer composite via microstereolithography technique”. In: AIP
Conference Proceedings. Vol. 1584. 1. American Institute of Physics.
2014, pp. 129–135.

[76] Thierry Chartier et al. “Fabrication ofmillimeter wave components
via ceramic stereo-andmicrostereolithography processes”. In: Jour-
nal of the American Ceramic Society 91.8 (2008), pp. 2469–2474.

[77] Soshu Kirihara and Toshiki Niki. “Three-dimensional stereolithog-
raphy of alumina photonic crystals for terahertz wave localiza-
tion”. In: International Journal of Applied Ceramic Technology 12.1
(2015), pp. 32–37.

[78] Shibin Chen et al. “Effective fabrication method of 3D ceramic
photonic crystals with diamond structure”. In: Rapid Prototyping
Journal (2012).

[79] Karl F Brakora, John Halloran, and Kamal Sarabandi. “Design of
3-D monolithic MMW antennas using ceramic stereolithography”.
In: IEEE transactions on antennas and propagation 55.3 (2007),
pp. 790–797.

[80] Fardad Azarmi and Ali Amiri. “Microstructural evolution during
fabrication of alumina via laser stereolithography technique”. In:
Ceramics International 45.1 (2019), pp. 271–278.

[81] T Hanemann et al. “From micro to nano: properties and potential
applications of micro-and nano-filled polymer ceramic composites
inmicrosystem technology”. In: IEE Proceedings-Nanobiotechnology.
Vol. 151. 4. IET. 2004, pp. 167–172.



Bibliography 65

[82] Matthias Gurr et al. “Acrylic nanocomposite resins for use in stere-
olithography and structural light modulation based rapid proto-
typing and rapidmanufacturing technologies”. In:Advanced Func-
tional Materials 18.16 (2008), pp. 2390–2397.

[83] HD Lee et al. “Photopolymerizable binders for ceramics”. In: Jour-
nal of materials science letters 5.1 (1986), pp. 81–83.

[84] Susanna C Ventura et al. “A new SFF process for functional ce-
ramic components”. In: 1996 International Solid Freeform Fabri-
cation Symposium. 1996.

[85] S Ventura et al. “Freeform fabrication of functional silicon nitride
components by direct photo shaping”. In:MRSOnline Proceedings
Library Archive 625 (2000).

[86] P Falkowski and P Elert. “Application of water-thinnable photopoly-
merizable resin for shaping of microreactors-preliminary results”.
In: Archives of Metallurgy and Materials 56.4 (2011), pp. 1177–
1183.

[87] Young-Joon Seol et al. “A newmethod of fabricating robust freeform
3D ceramic scaffolds for bone tissue regeneration”. In: Biotechnol-
ogy and Bioengineering 110.5 (2013), pp. 1444–1455.

[88] Soshu Kirihara. “Creation of functional ceramics structures by us-
ing stereolithographic 3D printing”. In: Transactions of JWRI 43.1
(2014), pp. 5–10.

[89] S Monneret et al. “Microfabrication of freedom and articulated
alumina-based components”. In:Microsystem Technologies 8.6 (2002),
pp. 368–374.

[90] Kiran Kambly. “Characterization of curing kinetics and polymer-
ization shrinkage in ceramic-loaded photocurable resins for large
area maskless photopolymerization (LAMP)”. PhD thesis. Georgia
Institute of Technology, 2009.

[91] John W Halloran et al. “Photopolymerization of powder suspen-
sions for shaping ceramics”. In: Journal of the European Ceramic
Society 31.14 (2011), pp. 2613–2619.

[92] Tao Wu and Suman Das. “Theoretical modeling and experimen-
tal characterization of stress development in parts manufactured
through large areamaskless photopolymerization”. In: Solid Freeform
Fabrication SymposiumProceedings. Univ. Tex Austin. 2012, pp. 748–
60.

[93] Jürgen Stampfl et al. “Fabrication and moulding of cellular mate-
rials by rapid prototyping”. In: International Journal of Materials
and Product Technology 21.4 (2004), pp. 285–296.

[94] Ruth Felzmann et al. “Lithography-based additive manufacturing
of cellular ceramic structures”. In: Advanced Engineering Materi-
als 14.12 (2012), pp. 1052–1058.

[95] Zhuo Tian et al. “Fabrication and properties of a high porosity h-
BN–SiO2 ceramics fabricated by stereolithography-based 3D print-
ing”. In: Materials Letters 236 (2019), pp. 144–147.



66 Bibliography

[96] Kozo Yokota and Shigeyuki Takahara. “Fabrication of three-dimensional
dense alumina ceramics by DLP stereolithography”. In: Journal of
the Society of Powder Technology, Japan 53.8 (2016), pp. 492–498.

[97] Marion Dehurtevent et al. “Stereolithography: a new method for
processing dental ceramics by additive computer-aided manufac-
turing”. In: Dental materials 33.5 (2017), pp. 477–485.

[98] Qin Lian et al. “Oxygen-controlled bottom-upmask-projection stere-
olithography for ceramic 3D printing”. In: Ceramics International
43.17 (2017), pp. 14956–14961.

[99] Hamid Chabok et al. “Ultrasound transducer array fabrication based
on additive manufacturing of piezocomposites”. In: ASME/ISCIE
2012 International Symposium on Flexible Automation. American
Society ofMechanical Engineers Digital Collection. 2012, pp. 433–
444.

[100] Hamid Reza Chabok et al. “Development of a digital micro-manufacturing
process for high frequency ultrasound transducers”. In: 2010 IEEE
International Ultrasonics Symposium. IEEE. 2010, pp. 666–669.

[101] GeraldMitteramskogler et al. “Light curing strategies for lithography-
based additive manufacturing of customized ceramics”. In: Addi-
tive Manufacturing 1 (2014), pp. 110–118.

[102] David Anssari Moin, Bassam Hassan, and Daniel Wismeijer. “A
novel approach for custom three-dimensional printing of a zirco-
nia root analogue implant by digital light processing”. In: Clinical
oral implants research 28.6 (2017), pp. 668–670.

[103] Zhuoqun Han et al. “A Novel ZrO2 Ceramic Suspension for Ce-
ramic Stereolithography”. In: IOP Conference Series: Materials
Science and Engineering. Vol. 678. 1. IOP Publishing. 2019, p. 012021.

[104] Rongxuan He et al. “Fabrication of complex-shaped zirconia ce-
ramic parts via a DLP-stereolithography-based 3D printingmethod”.
In: Ceramics International 44.3 (2018), pp. 3412–3416.

[105] Huang Jan Hsu, Shyh Yuan Lee, and Cho Pei Jiang. “Development
of Maskless-Curing Slurry Stereolithography for Fabricating High
Strength Ceramic Parts”. In: Applied Mechanics and Materials.
Vol. 575. Trans Tech Publ. 2014, pp. 214–218.

[106] Yanhui Li et al. “Cure behavior of colorful ZrO2 suspensions dur-
ing Digital light processing (DLP) based stereolithography pro-
cess”. In: Journal of the European Ceramic Society 39.15 (2019),
pp. 4921–4927.

[107] Guojiao Ding et al. “Stereolithography-based additive manufactur-
ing of gray-colored SiC ceramic green body”. In: Journal of the
American Ceramic Society 102.12 (2019), pp. 7198–7209.

[108] Guojiao Ding et al. “Dispersion and stability of SiC ceramic slurry
for stereolithography”. In:Ceramics International 46.4 (2020), pp. 4720–
4729.



Bibliography 67

[109] Yun-Hee Lee et al. “Photocurable ceramic slurry using solid cam-
phor as novel diluent for conventional digital light processing (DLP)
process”. In: Journal of the European Ceramic Society 39.14 (2019),
pp. 4358–4365.

[110] Passakorn Tesavibul et al. “Processing of 45S5 Bioglass® by lithography-
based additive manufacturing”. In: Materials Letters 74 (2012),
pp. 81–84.

[111] Robert Gmeiner et al. “Stereolithographic ceramic manufacturing
of high strength bioactive glass”. In: International Journal of Ap-
plied Ceramic Technology 12.1 (2015), pp. 38–45.

[112] Ruth Felzmann et al. “Lithography-based additive manufacturing
of customized bioceramic parts formedical applications”. In:Biomed.
Eng. ACTAPRESS, Innsbruck, Austria (2013).

[113] Xiangquan Wu et al. “Effects of soft-start exposure on the curing
characteristics and flexural strength in ceramic projection stere-
olithography process”. In: Journal of the European Ceramic Soci-
ety 39.13 (2019), pp. 3788–3796.

[114] Markus Pfaffinger et al. “Thermal debinding of ceramic-filled pho-
topolymers”. In: Materials Science Forum. Vol. 825. Trans Tech
Publ. 2015, pp. 75–81.

[115] Martin Schwentenwein and Johannes Homa. “Additive manufac-
turing of dense alumina ceramics”. In: International Journal of Ap-
plied Ceramic Technology 12.1 (2015), pp. 1–7.

[116] Adrián de Blas Romero et al. “Lithography-based additive manu-
facture of ceramic biodevices with design-controlled surface to-
pographies”. In: The International Journal of Advanced Manufac-
turing Technology 88.5-8 (2017), pp. 1547–1555.

[117] Martin Schwentenwein, Peter Schneider, and JohannesHoma. “Lithography-
based ceramic manufacturing: a novel technique for additive man-
ufacturing of high-performance ceramics”. In: Advances in Sci-
ence and Technology. Vol. 88. Trans Tech Publ. 2014, pp. 60–64.

[118] JohannesHoma andMartin Schwentenwein. “A novel additiveman-
ufacturing technology for high-performance ceramics”. In: Ceram
Eng Sci Proc. Vol. 35. 6. 2015, pp. 33–40.

[119] Mario Borlaf et al. “Development of UV-curable ZrO2 slurries for
additive manufacturing (LCM-DLP) technology”. In: Journal of the
European Ceramic Society 39.13 (2019), pp. 3797–3803.

[120] Eric Schwarzer et al. “Process development for additive manufac-
turing of functionally graded alumina toughened zirconia compo-
nents intended for medical implant application”. In: Journal of the
European Ceramic Society 39.2-3 (2019), pp. 522–530.

[121] Walter Harrer et al. “Fractography of zirconia-specimens made
using additive manufacturing (LCM) technology”. In: Journal of
the European Ceramic Society 37.14 (2017), pp. 4331–4338.

[122] WR Zimbeck et al. “Automated fabrication of ceramic electronic
packages by stereo-photolithography”. In: MRS Online Proceed-
ings Library Archive 625 (2000).



68 Bibliography

[123] Chrristope Provin et al. “Three-Dimensional Ceramic Microcom-
ponents Made Using Microstereolithography”. In: Advanced Ma-
terials 15.12 (2003), pp. 994–997.

[124] Prabhjot Singh et al. “Additive manufacturing of PZT-5H piezo-
ceramic for ultrasound transducers”. In: 2011 IEEE International
Ultrasonics Symposium. IEEE. 2011, pp. 1111–1114.

[125] Mark Cheverton et al. “Ceramic polymer additive manufacturing
system for ultrasound transducer”. In: Proceedings of solid freeform
fabrication symposium. 2012, pp. 863–875.

[126] Mariola Sadej and Ewa Andrzejewska. “Silica/aluminum oxide hy-
brid as a filler for photocurable composites”. In: Progress in Or-
ganic Coatings 94 (2016), pp. 1–8.

[127] Shingo MATSUO, Fumio WATARI, and Noboru OHATA. “Fabrica-
tion of a functionally graded dental composite resin post and core
by laser lithography and finite element analysis of its stress re-
laxation effect on tooth root”. In: Dental materials journal 20.4
(2001), pp. 257–274.

[128] O Dufaud and S Corbel. “Stereolithography of PZT ceramic sus-
pensions”. In: Rapid Prototyping Journal (2002).

[129] Olivier Dufaud, Philippe Marchal, and Serge Corbel. “Rheological
properties of PZT suspensions for stereolithography”. In: Journal
of the European Ceramic Society 22.13 (2002), pp. 2081–2092.

[130] Soshu Kirihara, Yoshinari Miyamoto, and Kenji Kajiyama. “Fabri-
cation of Ceramic–Polymer Photonic Crystals by Stereolithogra-
phy and Their Microwave Properties”. In: Journal of the American
Ceramic Society 85.6 (2002), pp. 1369–1371.

[131] Soshu Kirihara et al. “Fabrication of electromagnetic crystals with
a complete diamond structure by stereolithography”. In: Solid State
Communications 121.8 (2002), pp. 435–439.

[132] Thibault Roques-Carmes et al. “Stereolithography fabrication and
characterization of syntactic foams containing hollow glass micro-
spheres”. In: Russian Chemical Reviews 78.4 (2009), p. 375.

[133] JinWoo Lee et al. “Development of nano-andmicroscale composite
3D scaffolds using PPF/DEF-HA and micro-stereolithography”. In:
Microelectronic Engineering 86.4-6 (2009), pp. 1465–1467.

[134] A Ronca, L Ambrosio, and Dirk W Grijpma. “Preparation of de-
signed poly (D, L-lactide)/nanosized hydroxyapatite composite struc-
tures by stereolithography”. In:Acta biomaterialia 9.4 (2013), pp. 5989–
5996.

[135] Simon J Leigh et al. “A miniature flow sensor fabricated by micro-
stereolithography employing a magnetite/acrylic nanocomposite
resin”. In: Sensors and Actuators A: Physical 168.1 (2011), pp. 66–
71.

[136] Christophe Provin and SergeMonneret. “Complex ceramic-polymer
composite microparts made by microstereolithography”. In: IEEE
transactions on electronics packaging manufacturing 25.1 (2002),
pp. 59–63.



Bibliography 69

[137] Erika Zanchetta et al. “Stereolithography of SiOC ceramic micro-
components”. In: Advanced Materials 28.2 (2016), pp. 370–376.

[138] Paolo Colombo et al. “Polymer-derived ceramics: 40 years of re-
search and innovation in advanced ceramics”. In: Journal of the
American Ceramic Society 93.7 (2010), pp. 1805–1837.

[139] Qing-Fa Si et al. “Synthesis and characterization of ultraviolet-
curable hyperbranched poly (siloxysilane) s”. In: Journal of Poly-
mer Science Part A: Polymer Chemistry 43.9 (2005), pp. 1883–
1894.

[140] Jie Kong et al. “Synthesis and UV-curing behaviors of novel rapid
UV-curable polyorganosilazanes”. In: Polymer 47.5 (2006), pp. 1519–
1525.

[141] Tuan Anh Pham et al. “Inorganic polymer photoresist for direct
ceramic patterning by photolithography”. In: Chemical Communi-
cations 39 (2007), pp. 4021–4023.

[142] Li-Anne Liew et al. “Fabrication of SiCN MEMS by photopolymer-
ization of pre-ceramic polymer”. In: Sensors and Actuators A: Phys-
ical 95.2-3 (2002), pp. 120–134.

[143] Yoram de Hazan and Dirk Penner. “SiC and SiOC ceramic articles
produced by stereolithography of acrylate modified polycarbosi-
lane systems”. In: Journal of the European Ceramic Society 37.16
(2017), pp. 5205–5212.

[144] Tiina Sikanen et al. “Hybrid ceramic polymers: New, nonbiofoul-
ing, and optically transparent materials for microfluidics”. In: An-
alytical chemistry 82.9 (2010), pp. 3874–3882.

[145] A Greco, A Licciulli, and A Maffezzoli. “Stereolitography of ce-
ramic suspensions”. In: Journal of Materials Science 36.1 (2001),
pp. 99–105.

[146] A Licciulli et al. “Laser stereolithography of ZrO2 toughened Al2O3”.
In: Journal of the European Ceramic Society 25.9 (2005), pp. 1581–
1589.

[147] Valtteri Kalima et al. “UV-curable ZnS/polymer nanocomposite for
replication of micron and submicron features”. In: Optical Mate-
rials 31.10 (2009), pp. 1540–1546.

[148] K-H Haas. “Hybrid Inorganic–Organic Polymers Based on Organi-
cally Modified Si-Alkoxides”. In: Advanced Engineering Materials
2.9 (2000), pp. 571–582.

[149] Ruth Houbertz et al. “Inorganic–organic hybrid polymers for infor-
mation technology: from planar technology to 3D nanostructures”.
In: Advanced Engineering Materials 5.8 (2003), pp. 551–555.

[150] J Serbin et al. “Femtosecond laser-induced two-photon polymer-
ization of inorganic–organic hybrid materials for applications in
photonics”. In: Optics letters 28.5 (2003), pp. 301–303.

[151] Ruth Houbertz et al. “Schnelle Herstellung photonischer Kristalle:
Echtzeit-3D-Lithographie mit Hybridpolymeren”. In: Physik in un-
serer Zeit 36.6 (2005), pp. 278–285.



70 Bibliography

[152] A Ovsianikov, A Ostendorf, and BN Chichkov. “Three-dimensional
photofabrication with femtosecond lasers for applications in pho-
tonics and biomedicine”. In:Applied Surface Science 253.15 (2007),
pp. 6599–6602.

[153] Jiafang Li, Baohua Jia, and Min Gu. “Engineering stop gaps of
inorganic-organic polymeric 3D woodpile photonic crystals with
post-thermal treatment”. In:Optics express 16.24 (2008), pp. 20073–
20080.

[154] Thomas Woggon et al. “Nanostructuring of organic-inorganic hy-
brid materials for distributed feedback laser resonators by two-
photon polymerization”. In: Optics express 17.4 (2009), pp. 2500–
2507.

[155] AOvsianikov et al. “Two photon polymerization of polymer–ceramic
hybrid materials for transdermal drug delivery”. In: International
journal of applied ceramic technology 4.1 (2007), pp. 22–29.

[156] Aleksandr Ovsianikov et al. “Two-photon polymerization technique
for microfabrication of CAD-designed 3D scaffolds from commer-
cially available photosensitive materials”. In: Journal of tissue en-
gineering and regenerative medicine 1.6 (2007), pp. 443–449.

[157] Sabrina Schlie et al. “Three-dimensional cell growth on structures
fabricated from ORMOCER® by two-photon polymerization tech-
nique”. In: Journal of biomaterials applications 22.3 (2007), pp. 275–
287.

[158] ADoraiswamy et al. “Two photon induced polymerization of organic–
inorganic hybrid biomaterials formicrostructuredmedical devices”.
In: Acta Biomaterialia 2.3 (2006), pp. 267–275.

[159] Elli Käpylä et al. “Direct laser writing and geometrical analysis
of scaffolds with designed pore architecture for three-dimensional
cell culturing”. In: Journal of Micromechanics and Microengineer-
ing 22.11 (2012), p. 115016.

[160] Matthias Bieda, Felix Bouchard, and Andrés F Lasagni. “Two-photon
polymerization of a branched hollow fiber structure with prede-
fined circular pores”. In: Journal of Photochemistry and Photobi-
ology A: Chemistry 319 (2016), pp. 1–7.

[161] E Kapyla, S Turunen, and M Kellomaki. “Two-photon polymeriza-
tion of a polymer-ceramic hybrid material with a low-cost Nd: YAG
laser: preliminary resolution study and 3D fabrication”. In: Micro
and Nanosystems 2.2 (2010), pp. 87–99.

[162] Elli Käpylä et al. “Investigation of the optimal processing param-
eters for picosecond laser-induced microfabrication of a polymer–
ceramic hybrid material”. In: Journal of Micromechanics and Mi-
croengineering 21.6 (2011), p. 065033.

[163] Emely Harnisch et al. “Optimization of hybrid polymer materials
for 2PP and fabrication of individually designed hybrid microop-
tical elements thereof”. In: Optical Materials Express 5.2 (2015),
pp. 456–461.



Bibliography 71

[164] Bo Tan, Krishnan Venkatakrishnan, and Alexander Makaronets.
“Effects of pulsewidth on two-photon polymerization”. In:Designed
Monomers and Polymers 16.2 (2013), pp. 145–150.

[165] T Stichel et al. “Two-photon polymerization setup enables exper-
imental mapping and correction of spherical aberrations for im-
provedmacroscopic structure fabrication”. In:Optics letters 41.18
(2016), pp. 4269–4272.

[166] Laura Brigo et al. “3D nanofabrication of SiOC ceramic structures”.
In: Advanced Science 5.12 (2018), p. 1800937.

[167] Andreas Ostendorf and Boris N Chichkov. “Two-photon polymer-
ization: a new approach to micromachining”. In: Photonics spectra
40.10 (2006), p. 72.

[168] Braulio Cardenas-Benitez et al. “Pyrolysis-induced shrinking of
three-dimensional structures fabricated by two-photon polymer-
ization: experiment and theoretical model”. In: Microsystems &
nanoengineering 5.1 (2019), pp. 1–13.

[169] Naoto Tsutsumi et al. “Influence of baking conditions on 3D mi-
crostructures by direct laser writing in negative photoresist SU-8
via two-photon polymerization”. In: Journal of Laser Applications
29.4 (2017), p. 042010.

[170] Yang Li et al. “Functional micro-concrete 3D hybrid structures fab-
ricated by two-photon polymerization”. In: Opto-Electronic Engi-
neering 44.04 (2017), pp. 393–399.

[171] Jens Bauer et al. “Approaching theoretical strength in glassy car-
bon nanolattices”. In: Nature materials 15.4 (2016), pp. 438–443.

[172] Jens Bauer et al. “Additive Manufacturing of Ductile, Ultrastrong
Polymer-Derived Nanoceramics”. In:Matter 1.6 (2019), pp. 1547–
1556.

[173] Christopher M Spadaccini. “Ultrastrong, Ductile Ceramic Lattices
Span anOrder ofMagnitude in Size”. In:Matter 1.6 (2019), pp. 1445–
1446.

[174] M Straub et al. “Complex-shaped three-dimensional microstruc-
tures and photonic crystals generated in a polysiloxane polymer
by two-photon microstereolithography”. In:Optical Materials 27.3
(2004), pp. 359–364.

[175] Christopher A Coenjarts and Christopher K Ober. “Two-photon
three-dimensional microfabrication of poly (dimethylsiloxane) elas-
tomers”. In: Chemistry of materials 16.26 (2004), pp. 5556–5558.

[176] Cheol Woo Ha, Prem Prabhakaran, and Kwang-Sup Lee. “Versa-
tile applications of three-dimensional objects fabricated by two-
photon-initiated polymerization”. In:MRSCommunications 9.1 (2019),
pp. 53–66.

[177] B Bhuian et al. “Investigation of the two-photon polymerisation of
a Zr-based inorganic–organic hybrid material system”. In: Applied
Surface Science 252.13 (2006), pp. 4845–4849.



72 Bibliography

[178] Aleksandr Ovsianikov et al. “Ultra-low shrinkage hybrid photosen-
sitive material for two-photon polymerization microfabrication”.
In: Acs Nano 2.11 (2008), pp. 2257–2262.

[179] Linas Jonušauskas et al. “Optically clear and resilient free-form
𝜇-optics 3D-printed via ultrafast laser lithography”. In: Materials
10.1 (2017), p. 12.

[180] Maria Farsari and Boris N Chichkov. “Two-photon fabrication”. In:
Nature photonics 3.8 (2009), pp. 450–452.

[181] Famin Qiu et al. “Noncytotoxic artificial bacterial flagella fabri-
cated from biocompatible ORMOCOMP and iron coating”. In: Jour-
nal of Materials Chemistry B 2.4 (2014), pp. 357–362.

[182] Attilio Marino et al. “Two-photon lithography of 3D nanocomposite
piezoelectric scaffolds for cell stimulation”. In: ACS applied mate-
rials & interfaces 7.46 (2015), pp. 25574–25579.

[183] Tuan Anh Pham et al. “Three-dimensional SiCN ceramicmicrostruc-
tures via nano-stereolithography of inorganic polymer photore-
sists”. In: Advanced Functional Materials 16.9 (2006), pp. 1235–
1241.

[184] MFarsari, G Filippidis, and C Fotakis. “Fabrication of three-dimensional
structures by three-photon polymerization”. In:Optics letters 30.23
(2005), pp. 3180–3182.

[185] Gordon Zyla et al. “Generation of bioinspired structural colors
via two-photon polymerization”. In: Scientific reports 7.1 (2017),
pp. 1–9.

[186] PS Timashev et al. “3D in vitro platform produced by two-photon
polymerization for the analysis of neural network formation and
function”. In:Biomedical Physics &Engineering Express 2.3 (2016),
p. 035001.

[187] Anastasia Koroleva et al. “Osteogenic differentiation of humanmes-
enchymal stem cells in 3-D Zr-Si organic-inorganic scaffolds pro-
duced by two-photon polymerization technique”. In: PloS one 10.2
(2015).

[188] Thomas Mühler et al. “Strategies for the selective volume sinter-
ing of ceramics”. In: Journal of Materials Research 29.17 (2014),
pp. 2095–2099.

[189] Leander Poocza et al. “Optimized Photoinitiator for Fast Two-Photon
Absorption Polymerization of Polyester-Macromers for Tissue En-
gineering”. In:Advanced EngineeringMaterials 19.3 (2017), p. 1600686.

[190] G Allen Brady and JohnWHalloran. “Stereolithography of ceramic
suspensions”. In: Rapid Prototyping Journal 3.2 (1997), pp. 61–65.

[191] Roland Winter and Frank Noll. Methoden der biophysikalischen
Chemie. Springer-Verlag, 2013, pp. 152–158.

[192] Wikimedia Commons. An example of Dynamic Light Scattering.
2010. url: https://commons.wikimedia.org/wiki/File:DLS.svg.

[193] Linas Jonušauskas et al. “Stitchless support-free 3D printing of
free-formmicromechanical structures with feature size on-demand”.
In: Scientific reports 9.1 (2019), pp. 1–12.



Bibliography 73

[194] Hermann Amandus Schwarz. “Über ein die Flächen kleinsten Flächen-
inhalts betreffendes Problem der Variationsrechnung”. In: Gesam-
melteMathematische Abhandlungen. Springer, 1890, pp. 223–269.

[195] Sven Fritzsche. “Scaffold Structures”. In: (2020).
[196] J.C. Dinis et al. “Open Source Software for the Automatic Design

of Scaffold Structures for Tissue Engineering Applications”. In:
Procedia Technology 16 (2014), pp. 1542–1547.

[197] Wikimedia Commons. Phase diagram of CO2 (carbon dioxide). X
axis is temperature in kelvin; Y axis is pressure in bar. 2010. url:
https://commons.wikimedia.org/wiki/File:Carbon_dioxide_pressure-

temperature_phase_diagram.svg.
[198] Patrick Echlin et al. Advanced scanning electron microscopy and

X-ray microanalysis. Springer Science & Business Media, 2013.
[199] Wikimedia Commons. Diagram of a scanning electron microscope

with English captions. 2010. url: https://commons.wikimedia.org/

wiki/File:Schema_MEB_(en).svg.
[200] ChristopherMHoo et al. “A comparison of atomic forcemicroscopy

(AFM) and dynamic light scattering (DLS) methods to character-
ize nanoparticle size distributions”. In: Journal of Nanoparticle Re-
search 10.1 (2008), pp. 89–96.

[201] Raymond L. Kelly. “Program of the 1972 Annual Meeting of the
Optical Society of America”. In: J. Opt. Soc. Am. 62.11 (Nov. 1972),
pp. 1336–1336. doi: 10 . 1364 / JOSA . 62 . 001336. url: http : / / www .

osapublishing.org/abstract.cfm?URI=josa-62-11-1336.
[202] D. L. Wood and K. Nassau. “Refractive index of cubic zirconia sta-

bilized with yttria”. In: Appl. Opt. 21.16 (Aug. 1982), pp. 2978–
2981. doi: 10.1364/AO.21.002978. url: http://ao.osa.org/abstract.

cfm?URI=ao-21-16-2978.
[203] Huinan Liu and Thomas J Webster. “Mechanical properties of dis-

persed ceramic nanoparticles in polymer composites for ortho-
pedic applications”. In: International journal of nanomedicine 5
(2010), p. 299.

[204] G Allen Brady and JohnWHalloran. “Stereolithography of ceramic
suspensions”. In: Rapid Prototyping Journal (1997).

[205] Dongliang Gao et al. “Optical manipulation from the microscale to
the nanoscale: fundamentals, advances and prospects”. In: Light:
Science & Applications 6.9 (2017), e17039–e17039.

[206] Hans Jürgen Rösler. Lehrbuch der Mineralogie. 4. durchgesehene
und erweiterte Auflage. Deutscher Verlag für Grundstoffindustrie
(VEB), 1987, pp. 86–87. isbn: 3-342-00288-3.

[207] Johanna C. Sänger et al. “First time additively manufactured ad-
vanced ceramics by using two-photon polymerization for powder
processing”. In: Open Ceramics 4 (2020), p. 100040. issn: 2666-
5395. doi: https://doi.org/10.1016/j.oceram.2020.100040. url:
http://www.sciencedirect.com/science/article/pii/S2666539520300407.




	Abstract
	Acknowledgements
	Introduction
	Motivation
	Theory
	Stereolithography a Additive Manufacturing Technology
	Radical Polymerization
	Two-Photon-Polymerization a Stereolithography Technology
	Two-Photon-Absorption (2PA)
	Two-Photon-Polymerization Technology

	Particle Size and Absorption vs. Transmittance
	Viscosity of Particle Embedded Liquids
	Post-Processing and Sintering
	Process Chain for Two-Photon-Polymerization of Ceramics

	State of the Art
	Single-Photon-Excitation Stereolithography of Ceramics
	Water Based Slurries
	Organic Based Slurries
	Multibeam and Dynamic Mask technologies
	Stereolithography of Ceramic/Polymer Composites
	Preceramic Polymers shaped with Single-Photon Processes

	Preceramic Polymers shaped with Two-Photon-Polymerization
	Comparison of the Technologies

	New Approach

	Experimental Section
	Materials
	Photo-Curable Water Soluble Monomers
	Photo-Initiators
	Ceramic Suspensions

	Methods
	Slurry Preparation
	Rheological Measurements
	Particle Size Measurements
	Optical Measurements
	Two-Photon-Polymerization Setup
	Two-Photon-Polymerization Procedure
	Post Processing and Sintering
	Characterization and Visualization

	Summary after Theoretical and Experimental Section

	Results and Discussion
	Development of a Photo-curable ATZ-Suspension
	Zirconia-Sol: Particle Size and Transmittance
	Alumina-Sol: Particle Size and Transmittance
	Preparation of an ATZ-Suspension
	Particle sSize of the ATZ-Suspension
	Transmittance of the ATZ-Suspension

	Preparation of the Photo-Curable ATZ-Slurry
	Getting the right Mixture II
	Rheology of the Photo-Curable ATZ-Suspension
	Viscosity
	Photo-Curing Behavior

	Two-Photon-Polymerization of ATZ
	Two-Photon-Printing of the ATZ-Suspension
	The Effect of Air Drying on Sintered Structures written with 2PP
	The Effect of Critical Point Drying on Sintered Structures written with 2PP
	The Ceramic Character
	Atomic Composition of Single Crystallites


	Conclusion and Outlook
	Conclusion
	Outlook
	Publications
	Conference Talk
	Scientific Paper
	Patent


	Bibliography

