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a b s t r a c t

Deterioration in working memory capacity (WMC) has been associated with normal aging,

but it remains unknown how age affects the relationship between WMC and connectivity

within functional brain networks. We therefore examined the predictability of WMC from

fMRI-based resting-state functional connectivity (RSFC) within eight meta-analytically

defined functional brain networks and the connectome in young and old adults using

relevance vector machine in a robust cross-validation scheme. Particular brain networks

have been associated with mental functions linked to WMC to a varying degree and are

associated with age-related differences in performance. Comparing prediction perfor-

mance between the young and old sample revealed age-specific effects: In young adults,

we found a general unpredictability of WMC from RSFC in networks subserving WM,

cognitive action control, vigilant attention, theory-of-mind cognition, and semantic

memory, whereas in older adults each network significantly predicted WMC. Moreover,

both WM-related and WM-unrelated networks were differently predictive in older adults

with low versus high WMC. These results indicate that the within-network functional

coupling during task-free states is specifically related to individual task performance in

advanced age, suggesting neural-level reorganization. In particular, our findings support

the notion of a decreased segregation of functional brain networks, deterioration of

network integrity within different networks and/or compensation by reorganization as

factors driving associations between individual WMC and within-network RSFC in older
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adults. Thus, using multivariate pattern regression provided novel insights into age-related

brain reorganization by linking cognitive capacity to brain network integrity.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Decline in various cognitive and executive functions has been

recognized as a part of normal aging (Glisky, 2007; Salthouse

et al., 2003). In particular, age-related deterioration in work-

ing memory (WM) functionality, that is, the capability to

temporarily maintain, update and manipulate information,

has received increased attention (Braver & West, 2008). WM

decline has been addressed in a majority of cognitive aging

theories (Park & Festini, 2017) and is considered a source of

age-related deficits in a wide range of cognitive tasks

(Gazzaley et al., 2005; Park et al., 1996; Salthouse, 1991) and

social-affective behaviors (Moran, 2013; Opitz et al., 2012).

While the neural underpinnings of age-related deficits in

cognitive functions were found to be associated with activa-

tion differences in task-related brain networks (Cabeza et al.,

2016a; Hedden, 2007; Nielson et al., 2006), several findings

have demonstrated that age-related WM decline may in part

be accounted for by changes in resting-state functional con-

nectivity (RSFC) architecture of the brain (Charroud et al.,

2016; Jockwitz et al., 2017; Sala-Llonch et al., 2012). It re-

mains unclear, however, to which extent neuro-behavioral

features of aging manifest in individual differences in WM

capacity (WMC) associated with variations in interregional

coupling at rest across different cognitive networks. To

investigate how WM performance relates to other cognitive

systems in an aging population prone to WM decline is

particularly interesting as it has been shown that WMC is

strongly associated with variations among other executive

functions (Courtney, 2004; Miyake et al., 2000) as well as

constitutes an underlying executive function in a broad range

of higher-order cognitions including language comprehension

and reasoning (Kane et al., 2007). Hence, shared neuro-

behavioral variance can be expected among executive and

higher-order cognitive functions that are regulated by the

degree these functions depend on WMC. This interplay may

potentially be affected by variation in WMC in older adults

that associate with neural-level reorganization as previously

reported for age-related brain-behavior relationships (Grady,

2012; Sala-Llonch et al., 2015). It is, however, still unclear

which role RSFC within brain networks related to different

cognitive functions may play as a marker of individual WMC,

raising the question whether RSFC within these networks can

be considered (equally) informative about individual WMC

and how this relationship may change with age.

Here we addressed this question by taking a novel

approach leveraging the power of coordinate-based meta-

analyses (Eickhoff et al., 2016; Müller et al., 2018) to robustly

define regions of the brain that are consistently recruited

across dozens to hundreds of neuroimaging studies exam-

ining a particular mental function. In turn, in the commonly

used data-driven approach to define networks from whole-

brain RSFC data by means of independent component anal-

ysis (ICA), the mental functions associated with these net-

works are usually derived via reverse inference, as there is no

a priori knowledge about themental functions these networks

subserve (Poldrack, 2011). Although the ICA-based approach

has yielded stable and reproducible resting-state networks,

the networks are usually defined from the same data set as

used for the subsequent analysis (Cole et al., 2010). In contrast,

our meta-analytically derived network model approach offers

an a priori, unbiased definition of nodes forming a functional

network, among which RSFC may then be computed for in-

dividual participants (cf. Pl€aschke et al., 2017; Schilbach et al.,

2014; Varikuti et al., 2016). That is, meta-analyses provide

robust information on the most likely location of the brain

network subserving a task by integrating over task-activation

findings based on hundreds of participants. Such a network

can then be used to study individual RSFC connectivity pro-

files, which in turn can be linked to specific cognitive pro-

cesses. Given that mental functions should best relate to

interactions between multiple regions (Genon et al., 2018), we

assume that the pattern of within-network connectivity may

capture a substantial degree of inter-individual differences in

cognitive performance. Using machine learning (ML)ebased

regression methods, previous studies have successfully pre-

dicted cognitive performance from RSFC distributed across

the brain (Rosenberg et al., 2016) and revealed age effects in

the prediction of executive functions from connectivity pro-

files between specific resting-state networks (La Corte et al.,

2016). In the current work we employed the relevance vector

machine (RVM; Tipping, 2001) in order to identify the rela-

tionship between input features (here: RSFC within a pre-

defined functional network) and a continuous target variable

(here: WMC score). The capability of such an approach to

predict individual WMC in previously unseen subjects was

evaluated using a repeated cross-validation scheme, yielding

a scalar measure of average prediction performance for each

network. To investigate the relationship between functional

network integrity and WM performance and resolve the

above-mention question about network specificity (see also

Pl€aschke et al., 2017), we here examined five different meta-

analytically defined networks. To examine how these re-

lationships were affected by age, we compared prediction

performance in young and old samples. The five networks

comprised:WM (Rottschy et al., 2012), cognitive action control

(CogAC; Cieslik et al., 2015), vigilant attention (VigAtt; Langner

& Eickhoff, 2013), theory-of-mind cognition (ToM; Bzdok et al.,

2012), and semantic memory (SM; Binder et al., 2009). Impor-

tantly, theWMnetwork reflects consistent neural recruitment

during WM tasks that primarily demand recognition-related

processes, such as the n-back paradigm, rather than tapping
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free retrieval-under-interference processes as examined via

complex WM span tasks (Kane et al., 2007).

The choice of these networks was based on our intent to

cover a range of functional systems that are functionally (and

neurally) either closely or only distantly related to WM (Chun,

2011; Diamond, 2013; Mutter et al., 2006; Nyberg et al., 2003;

Unsworth et al., 2014). WM, CogAC, and VigAtt networks are

representatives of executive function networks closely related

to WM, whereas ToM and SM networks are linked to higher-

order cognitive processes involving reasoning and language

comprehension (i.e., more distantly associated with WM).

Thereby, the ToM network is linked to social reasoning, and

the SM network is linked to semantic memory/processing and

associated with language comprehension (Martin & Chao,

2001; Van Overwalle, 2009). Given that several lower-level

sub-processes contribute to higher-level executive func-

tioning (Miyake et al., 2000; Müller et al., 2015), it may be

argued that networks associated with the former may predict

WMC better than do higher-order networks.

In addition, three WM-unrelated (“control”) meta-analytic

networks were included to assess whether WMC predictabil-

ity is specifically associated with the above-mentioned

cognitive networks closely or distantly related to WM. These

control networks were linked to task-negative, social-affec-

tive and introspective processes, as well as motor and sensory

processes. In particular, the three networks comprised (i) the

extended social-affective default network (eSAD; Amft et al.,

2015), (ii) a combined motor network associated with finger

tapping and prosaccade eye movements (Motor þ PS; Cieslik

et al., 2016; Witt et al., 2008), and (iii) a combined motor-

sensory network linked to finger tapping and hand stimula-

tion/somatosensory processing (Motor þ SS; Lamp et al., 2019;

Witt et al., 2008). These motor-sensory systems are strongly

interconnected compared to large-scale cognitive networks

with transitions between network boundaries, and converge

less with fronto-parietal cognitive areas (Cieslik et al., 2016;

Fox & Raichle, 2007; Yeo et al., 2011). While the coupling be-

tween the default-mode and WM networks has been associ-

ated with WM performance (Keller et al., 2015; Piccoli et al.,

2015), the eSAD network is strongly involved in social-

affective and introspective processes (Amft et al., 2015).

Hence, it may be positioned between (broadly) WM-linked

networks and WM-unrelated control networks. For all three

“control” networks, age-related functional connectivity

changes have been reported (Chan et al., 2017, 2014; Roski

et al., 2013; Wang et al., 2010). Furthermore, we combined all

individually investigated networks (related to cognitive action

control, vigilant attention, theory-of-mind cognition, and se-

mantic memory as well as eSAD) with the WM network to

assess the predictability of intra- and inter-network connec-

tivity. To further expand on this, we also examined predict-

ability based on a connectome-wide network of 264 functional

areas (Power et al., 2011), in order to compare the performance

of the whole-brain connectome with that of our “sparse”

functional networks and network combinations.

Previous findings and theories strongly suggest a general

factor involved in age-related cognitive decline across several

domains (Gazzaley et al., 2005; Mather, 2016; Moran, 2013; Park

et al., 1996; Salthouse, 1991), which can partly be attributed to

a general slowing in information processing (Salthouse, 1994,

1996). This, in turn, may possibly be related to a dedifferenti-

ation/decreased segregation of functional networks (Chan

et al., 2017, 2014; Goh, 2011; Roski et al., 2013; Sala-Llonch

et al., 2015). Alternatively, performance decline with age

might reflect a global age-related deterioration in network

integrity, observable across various functional networks

throughout the brain (Varangis et al., 2019; Zonneveld et al.,

2019). Either or both of these network-related changes

should result in less specific associations between perfor-

mance and RSFC within any given network in advanced age.

We therefore hypothesized similar predictive power across

different networks with advanced age, as compared to greater

network specificity in young adults, for whom we expected to

find better prediction performance in networks more closely

related to WM processing. Such an age-related “broadening”

(i.e., network non-specificity) of WMC predictability should

not only apply to distinct though related brain systems but

might as well extend to WM-unrelated networks.

2. Materials and methods

2.1. Sample

In the following we report how we determined our sample

size, all data exclusions (if any), all inclusion/exclusion

criteria, whether inclusion/exclusion criteria were established

prior to data analysis, all manipulations, and all measures in

the study. Resting-state functional magnetic resonance im-

aging (fMRI) data of 50 young (age range: 20e34 years) and 45

old (age range: 51e71 years) participants were acquired at the

Research Centre Jülich, Germany. For this explorative study,

we did not estimate predictability effect sizes a priori for

determining sample size. Participants did not report any

present or past psychiatric or neurological disorders

(including dementia), as assessed in a structured interview.

Older adults’ cognitive performance was age-adequate as

evaluated by the Mild Cognitive Impairment and Early De-

mentia Detection assessment (DemTect; Kalbe et al., 2004;

scores 13e18: age-adequate cognitive performance). None of

the participants showed clinically relevant symptoms of

depression as evaluated via the Beck Depression Inventory-II

(all BDI-II scores < 13; Beck et al., 1996). For further sample

characteristics, please see Table 1. Written informed consent

was obtained from all participants before entering the study,

which was approved by the ethics committee of the RWTH

Aachen University Hospital, Aachen, Germany.

2.2. Performance measures

2.2.1. Working memory span tasks: Corsi block-tapping
Visuo-spatialWMCwas assessed by the computerized version

of the Corsi block-tapping task (forward and backward ver-

sions) from the Schuhfried Test System (https://www.

schuhfried.com/test/CORSI; test forms S1 and S5). Here, par-

ticipants were presented with a spatial array of nine irregu-

larly arranged cubes on the monitor and observed a cursor

that tapped a sequence of cubes. After an acoustic signal,

participants were asked to re-tap the sequence either in the

same (forward) or reverse (backward) order. Starting with
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three block taps, sequence length increased after three runs of

a given length up to a maximum of 9 taps. The visuo-spatial

WM span scores (forward and backward) correspond to the

longest sequence correctly reproduced twice in a row.

2.2.2. Complex working memory span tasks: operation and
reading span
Complex verbal WMC was assessed by a shortened version of

the “operation and reading span tasks” (Oswald et al., 2015).

For each trial in the operation span task, participants were

first presented with an arithmetic equation, then had to

decide whether a presented answer is true or false. After each

trial, a letter was presented to remember for later recall. After

3 to 7 trials, a 4 � 3 letter matrix was presented, and partici-

pants were asked to recall the letter sequence by clicking on

the letters in the correct order. The reading span task was

similarly structured except for the distractor task presented

between letters, which consisted of sentences (approximately

10e15 words) for which participants had to decide whether or

not they made sense. In total, each of the five sequence

lengths (3e7 trials) was presented once in a pseudo-

randomized order per subtests. The verbal WM complex

span was then calculated by the average number of letters

recalled in the correct order across all trials of each subtest.

2.2.3. Composite working memory capacity score
As we aimed to assess global WMC, we aggregated all three

test scores (Corsi forward and backward scores, complex span

score) into a composite WMC score per subject by expressing

individual performance per test as a fraction of the theoreti-

cally maximal score for this test and summing these values.

The intercorrelations and age-controlled partial correlation

between the single WMC subscores were calculated. Differ-

ences in WMC scores between young and old adults were

assessed by independent-sample t-tests, the relationship be-

tween WMC and age by a Pearson correlation analysis.

2.3. fMRI data acquisition and processing

Whole-brain fMRI data were collected using a 3-T MR scanner

(Tim-TRIO, Siemens Medical Systems) with a T2*-weighted

echo-planar imaging (EPI) sequence (200 volumes; TR:

2200 msec; TE: 30 msec; flip angle: 80�; voxel size:

3.1 � 3.1 � 3.1 mm3; 36 axial slices; inter-slice gap: .47 mm).

During fMRI data acquisition, participants were instructed to

lie still, close their eyes, let their mind wander and not fall

asleep (confirmed at debriefing). After discarding initial four

EPI volumes to allow for field saturation, images were pro-

cessed using SPM12 (www.fil.ion.ucl.ac.uk/spm) involving EPI

unwarping (using additionally acquired field maps), two-pass

affine realignment for motion correction, spatial normaliza-

tion to the MNI-152 template brain provided by SPM12 using

the “unified segmentation” approach (Ashburner & Friston,

2005), as well as spatial smoothing with a 5-mm FWHM

Gaussian kernel.

The above-mentioned five cognitive brain networks

examined here comprised, to varying degrees, common and

distinct brain regions. For instance, the WM, CogAC, VigAtt,

and SM networks included peak coordinates in the inferior

frontal gyrus, parietal regions, and midline structures. All but

the SM and ToM networks included the anterior insula, while

the SM and ToM networks were the only ones to include

temporal regions and the mid-orbital gyrus. Moreover, only

the SM network exhibited a strong left lateralization, pre-

sumably due to its involvement in language. In contrast, the

ToM network uniquely included the right posterior temporo-

parietal junction. Subcortical structures were only part of

the WM, CogAC, and VigAtt networks (see Fig. 1, Table SI for

an overview and Table SII for detailed network coordinates

and corresponding brain regions).

RSFC within each of the meta-analytically defined net-

works was computed by first extracting the BOLD-signal time

course of each node as the first eigenvariate of all voxels

located within a 6-mm sphere around the meta-analytic peak

voxel and conforming to the CanLab gray-matter mask

(https://canlabweb.colorado.edu). In order to reduce spurious

correlations, variance explained by (i) the six movement pa-

rameters obtained during preprocessing, (ii) their derivatives

(each modeled as first- and second-order effects), as well as

(iii) the mean white-matter and cerebrospinal-fluid signal

time courseswere statistically removed from each node's time

series (Ciric et al., 2017; Satterthwaite et al., 2013), which has

been shown to yield reliable estimates of within- and

between-network connectivity (Varikuti et al., 2016). More-

over, this approach ensures that less gray-matter-specific,

motion-unrelated variance of BOLD-signal fluctuations of

neural origin will be removed from the data (Chen et al., 2012),

as compared to global signal regression. Subsequently, time

series were high-pass filtered retaining frequencies above

.01 Hz.

Although we regressed out motion-related variance such

that afterwards the correlation between RSFC andmotionwas

Table 1 e Sample characteristics.

Normal Aging Sample N (males) Age (years) Head Movement (DVARS) DemTect BDI-II WMC

Young 50 (27) 26 ± 3 1.25 ± .25 e 6 ± 5 1.93 ± .24

Old 45 (24) 62 ± 5 1.57 ± .41* 16 ± 2 5 ± 5 1.60 ± .29*

WMC Low 24 (9) 61 ± 5 1.51 ± .46 16 ± 2 6 ± 5 1.40 ± .26

WMC High 21 (15) 62 ± 6 1.63 ± .34 17 ± 2 4 ± 5 1.82 ± .09*

Note. All values (except n) represent mean ± SD.

DVARS, derivative of root mean squared variance over voxels (head movement parameter).

DemTect, Mild Cognitive Impairment and Early Dementia Detection; BDI-II, Beck Depression Inventory II.

WMC, working memory capacity score.

*Significantly different between groups at p < .05.

c o r t e x 1 3 2 ( 2 0 2 0 ) 4 4 1e4 5 9444

http://www.fil.ion.ucl.ac.uk/spm
https://canlabweb.colorado.edu
https://doi.org/10.1016/j.cortex.2020.08.012
https://doi.org/10.1016/j.cortex.2020.08.012


near zero, we conducted further analyses to follow up on this

important issue, given thatmotion-related artifacts in resting-

state fMRI data can lead to spurious functional connectivity.

In particular, two additional RSFC denoising procedures were

separately applied: First, global signal regression was per-

formed (Ciric et al., 2017; Power et al., 2018; Satterthwaite

et al., 2013). Second, data censoring was applied to remove

data points in each time series that were contaminated by

motion (using the method proposed by Afyouni & Nichols,

2018) and to account for spuriously inflated RSFC of short-

distance connections and spuriously decreased RSFC of

long-distance ones (Ciric et al., 2018).

Pair-wise functional connectivity was computed as Fisher's
Z-transformed Pearson correlation between the first eigen-

variate of the time series of each network's nodes. Connec-

tivity values were then adjusted (via linear regression) for

effects of age, gender and movement based on the derivative

of root mean squared variance over voxels (DVARS) within

each age group to avoid predictions based on spurious

between-subject differences (Duncan & Northoff, 2013; Power

et al., 2012; Satterthwaite et al., 2013). Analogously, WMC

scores were adjusted for effects of age and gender within each

age group.

2.4. RVM features and prediction

RSFC values for all connections within a given network and

subject represent individual features from which the indi-

vidual WMC score were predicted using RVM (Tipping, 2001;

Tipping & Faul, 2003) as implemented in the SparseBayes

package (version 2.0 Matlab R2017b; http://www.

relevancevector.com). To estimate the generalizability of the

RVMmodels, a 10-fold cross-validation schemewas employed

(see Fig. 2 for a schematic analysis workflow). The available

data (subjects) were randomly split into 10 equally sized

subgroups. In each cross-validation fold, a RVM was trained

on 9 of these and then used to predict the WMC score of the

left-out split (i.e., the subjects not used during training). Input

features (¼ all RSFC values of a given network) and target

variables were scaled to zero mean and unit SD based only on

the training sample as to avoid any leakage. Deconfounding of

input features and targets (as described above) was done once

outside the cross-validation as recently proposed as the

optimal strategy for prediction studies on individual pheno-

types from RSFC (Pervaiz et al., 2020). To ensure the robust-

ness of performance evaluation against the initial folds, the

cross-validation procedure was repeated 250 times using in-

dependent splitting. These analyses were performed for each

network separately in young (n ¼ 50) and old (n ¼ 45) adults to

investigate age-related differences in predictive performance.

To examine whether residual movement-related effects may

be a relevant contributor to WMC predictability, additional

analyses were conducted with including DVARS as a predictor

in the models (see supplementary method section for details).

Prediction accuracy (i.e., the ability of a given network's
RSFC pattern to predict individual WMC scores) was indi-

cated by the mean Pearson's correlation (r) and mean abso-

lute error (MAE) between the real and predicted WMC scores

computed first within each of the 10-folds and subsequently

across all 250 cross-validation replications. To test whether

performance was significantly different from zero, one-

sample t-tests were performed on the 250 correlation co-

efficients, correcting for multiple comparisons over the

assessed networks using Bonferroni's method. In addition,

we only considered those predictions relevant that were at

least of a medium effect size (i.e., r� .24, corresponding to

Cohen's d � .5). When WMC predictability was significant in

either the young or old group, group differences were calcu-

lated using independent-sample t-tests (Bonferroni-corrected

for the number of networks). To evaluate effect sizes of group

Fig. 1 e Nodes of meta-analytically defined networks.
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differences, Fisher's Z-transformed mean correlation co-

efficients of the young and old groups were subtracted from

each other. Subsequently, Cohen's q served for effect size

interpretation (Cohen, 1988).

Moreover, to statistically examine differences in prediction

performance between significantly predictive networks

within each group, paired-sample t-tests were performed on

prediction accuracies obtained from the 250 cross-validation

replications of the RVMs (significance threshold: p < .05,

Bonferroni-corrected for the number of comparisons). For a

given network to be considered notably different, its predic-

tion accuracy needed to differ to an at least small degree

(Cohen's q) frommost of the other networks (i.e., from at least

6 out of 8 networks).

To examine a potential performance dependence of

WMC predictability from network-based RSFC in advanced

age, the older sample was median-split into high- and low-

WMC subgroups (post-hoc to the prediction analyses). The

prediction accuracies (r) were calculated within each sub-

group, and significance tests were conducted as described

above.

Given the inherent sparsity of RVM prediction models,

induced by forcing feature weights to be zero to indicate

irrelevant network connections, the remaining non-zero

(i.e., contributing) connections in each RVM model were

inspected to determine which connections of a given

network were predictive of individual WMC scores. Con-

nections used in at least 90% of the total 2500 predictive

models per network are reported as the most frequently

used and, therefore, most consistently predictive connec-

tions and are visualized with the BrainNet Viewer (Xia et al.,

2013).

3. Results

3.1. Working memory capacity

WMCwas significantly lower in the older sample compared to

the young sample (t ¼ 6.07, p < .001) and the variance did not

differ (F ¼ .69, p ¼ .21; see Table 1 and Fig. 3). This is corrob-

orated by a significant negative correlation betweenWMC and

age in the entire sample (r ¼ �.48; p < .001). The correlations

between all three WMC subscores were significant in the

entire sample with and without removing the effects of age.

Fig. 2 e Schematic exemplary analysis workflow: Working memory capacity (WMC) is predicted from resting-state

functional connectivity in the WM network in the old sample. r / MAE: mean Pearson correlation coefficient/mean absolute

error between real and predicted scores across 250 cross-validation repeats.

Fig. 3 e Working memory capacity (WMC) plotted against

age for young (in blue) and old (in gray) participants. Mean

WMC (horizontal line) ± SD (bounded box) for the young

sample was 1.93 ± .24 and for the old one: 1.60 ± .29.

c o r t e x 1 3 2 ( 2 0 2 0 ) 4 4 1e4 5 9446

https://doi.org/10.1016/j.cortex.2020.08.012
https://doi.org/10.1016/j.cortex.2020.08.012


This suggests that age had very little influence on the rela-

tionship between single subscores (Table SIII).

3.2. Working memory capacity predictability from
network RSFC

3.2.1. Young and old sample
All cognitive networks significantly predicted WMC in the

older group:WM: rold ¼ .35;MAE¼ .30; cognitive action control

(CogAC): rold ¼ .37; MAE ¼ .28; vigilant attention (VigAtt):

rold ¼ .33; MAE ¼ .33; theory-of-mind cognition (ToM):

rold ¼ .52; MAE ¼ .24; and semantic memory (SM): rold ¼ .43;

MAE ¼ .27. All four control networks significantly predicted

WMC in the older group: extended social-affective demand

(eSAD): rold¼ .45;MAE¼ .27; finger tapping and prosaccade eye

movements (Motor þ PS): rold ¼ .24; MAE ¼ .34; finger tapping

and somatosensory processing (Motor þ SS): rold ¼ .52;

MAE ¼ .24; connectome-wide network (Connectome):

rold ¼ .42; MAE ¼ .27. The Fig. 4 and Table 2 provide an over-

view of the averaged prediction accuracies of the RVM results.

The Fig. 5 summarizes the scatter plots of real and predicted

WMC scores based on each network. Furthermore, Table SIV

provides the detailed statistics on the WMC predictability

from each network's RSFC. When compared to all other eight

predictive networks in the older group, the ToM network

showed significantly better predictability (between-network

comparison of prediction performance r at p < .001: WM:

t ¼ 21.39; CogAC: t ¼ 19.53; VigAtt: t ¼ 24.81; SM: t ¼ 13.04;

Motor þ PS: t ¼ 34.79; Connectome: t ¼ 12.86). In contrast, only

the predictability of the Motor þ PS network combination was

significantly lower (WM: t ¼ �13.68; CogAC: t ¼ �15.72; VigAtt:

t ¼ �10.69; ToM: t ¼ �34.79; SM: t ¼ �22.68; eSAD: t ¼ �24.03;

Motor þ SS: t ¼ �32.67; Connectome: t ¼ �22.06), whereas the

Motor þ SS combination exhibited significantly better pre-

dictability (WM: t ¼ 21.41; CogAC: t ¼ 18.79; VigAtt: t ¼ 22.59;

SM: t ¼ 11.52; Motor þ PS: t ¼ 32.67; Connectome: t ¼ 12.76 [see

Table SV]).

In contrast, in the young group none of the networks was

significantly predictive of WMC, only slight trends were

observed for the WM: ryoung ¼ .17 and ryoung ¼ .16 for the SM,

Motor þ PS and Connectome networks. Using global signal

regression (compared to white-matter and cerebrospinal-fluid

signal removal) resulted in an increase in the specificity of

predictability across networks mainly linked to a decrease in

prediction accuracy (see Table 3). Although global signal

regression has a particular impact on WMC predictability in

the old group, for which potential motion-unrelated sources

are discussed later, additional analyses controlling for

movement-related artifacts in RSFC data did not corroborate

that residual motion effects unduly influenced WMC predict-

ability in the old group (see Table SVI for RVM results based on

data for which preprocessing included censoring as well as

Table SVII for results of analyses that included DVARS as a

predictor). Moreover, neither the predictiveness from intra-

and inter-network connections nor from the entire con-

nectome demonstrated substantial improvements over that

of individual functional networks (see Table SVIII and Table 2).

We observed significant age-related differences in WMC

predictability for all networks with effect sizes ranging from

small to large: Cohen'q: WM ¼ .19; CogAC ¼ .38; VigAtt ¼ .40;

ToM ¼ .55; SM ¼ .30; eSAD ¼ .54; Motor þ SS ¼ .46 and

Connectome ¼ .29 (p < .001; see Table 2 and Table SIX).

Moreover, the analyses of high- versus low-WMC partici-

pants of the older subsample revealed that overall predict-

ability in the elderly might have been mainly driven by low-

WMC older adults for the majority of networks: WM: rold_low-

¼ .37, rold_high ¼ .22; CogAC: rold_low ¼ .41, rold_high ¼ .19; VigAtt:

Fig. 4 e Bar plot of prediction accuracies expressed as mean (error bars: SD) Pearson correlations (r) between real and mean

predicted working memory capacity (WMC) scores across 250 cross-validation repeats for the young (in blue) and old (in

gray) sample. * significant (p < .001) predictions/group differences. WM, working memory; CogAC, cognitive action control;

VigAtt, vigilant attention; ToM, theory-of-mind cognition; SM, semantic memory; eSAD, extended social-affective default;

Motor þ PS, motor þ prosaccades; Motor þ SS, motor þ somatosensory.
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rold_low ¼ .40, rold_high ¼ .18; ToM: rold_low ¼ .33, rold_high ¼ .30;

SM: rold_low ¼ .49, rold_high ¼ .29; Motor þ PS: rold_low ¼ .28,

rold_high ¼ �.02; Motor þ SS: rold_low ¼ .40, rold_high ¼ .24 (see

Table 4, Table SX for additional predictions based on intra-

and inter-network connectivity, Tables SXI and SXII for

statistics).

3.2.2. Relevance of single connections
As RVMs generate sparse solutions, we could identify specific

connections within each of the cognitive networks that were

frequently used by the prediction models (i.e., in at least 90%

of the 2500 [10 foldings � 250 repeats] models per network),

hence representing consistent and potentially relevant con-

tributions to predicting WMC. In the older group, these

frequently used connections were as follows (see Figure SI):

for the WM network, the connection between left inferior

frontal gyrus and left thalamus, and for the ToM network, the

connection between right superior medial gyrus/frontal pole

and left angular gyrus/temporo-parietal junction. For the

CogAC, VigAtt and SM networks, none of the connections met

our criteria. For all the networks the percentages of connec-

tion usage across models are displayed in Fig. 6.

4. Discussion

We examined whether and to what degree individual RSFC

patterns in any of eight meta-analytically defined functional

brain networks and a connectome-wide network predicted

WMC in previously unseen young and old participants using

ML-based regression analysis with the aim to investigate age-

related differences (young vs old adults). Our results demon-

strate that individual WMC could be predicted from all five

cognitive WM-related networks (r �.33) with the highest ac-

curacy of r ¼ .52 (ToM network), whereas predictability from

WM-unrelated networks varied with differential degree, with

the Motor þ PS network showing the lowest significant pre-

dictability (r¼ .24) in the older group. In the young group, none

of the networks was predictive. WMC predictability across

networks in the old groupwas primarily linked to lowerWMC.

4.1. Age differences in WMC predictability

In the old sample, individual WMC could be similarly well

predicted from the RSFC patterns of the WM network and

networks both closely related to WM (i.e., CogAC and VigAtt)

and distantly related to WM (i.e., ToM and SM). This demon-

strates that the interregional coupling in a task-unconstrained

state within robustly defined brain networks recruited for

executive functions and higher-order cognitive tasks contains

information about individual WM performance. Moreover,

WM-unrelated networks associated with task-negative, so-

cial-affective and introspective processes (eSAD), finger tap-

ping and prosaccade eye movements (Motor þ PS), or finger

tapping and somatosensory processing (Motor þ SS) also

predicted WMC in advanced age. Thus, the strength of func-

tional coupling (at rest) between these regions (defined by

consistent activation during tasks) is associated with WM

abilities tested outside the MRI scanner. The similarity to

which WMC is predicted across different networks, related or

unrelated to WM, is potentially linked to a decreased segre-

gation of functional brain networks in advanced age (Chan

et al., 2014, 2017), which in turn may be related to the often

proposed neural-level dedifferentiation with aging (i.e., a

declining specificity of neuro-functional systems; Goh, 2011;

Grady, 2012; Sala-Llonch et al., 2015). The fact that networks

become less segregatedwith agemay lead to a situationwhere

predictive information on individual WMC can be extracted

from a broad range of networks. Alternatively, this “broad-

ened” predictability of WMC may reflect widespread age-

related changes that lead to similarly reduced network

integrity within different networks (Varangis et al., 2019;

Zonneveld et al., 2019), through which all the networks

sampled here come to contain reasonably predictive infor-

mation on performance.

While all of the cognitive networks may be expected to

relate to some degree to WM, given some shared neural and

behavioral variance between WM and other executive and

cognitive processes, it should be noted that the predictive

capacity of the CogAC and VigAtt networks was not primarily

driven by their partial spatial overlap with regions of the WM

network (Camilleri et al., 2017; Müller et al., 2015). That is,

spatial similarity does not automatically lead to a similar

pattern of RSFCeperformance associations (see Fig. 6). The

significant predictability of WMC in the old sample from the

RSFC patterns of multiple networks (WM, CogAC, VigAtt, ToM,

SM, eSAD, Motor þ PS and Motor þ SS) extends previous aging

research that revealed age differences in univariate associa-

tions between WM performance and RSNs (Charroud et al.,

2016; Jockwitz et al., 2017; Sala-Llonch et al., 2012).

In addition, not finding any substantial improvement in

predictiveness from intra- and inter-network connectivity

over individual networks suggests, first, that it is not the sheer

(higher) number of features that determines prediction per-

formance here, and second, that it is not the connectivity

between the different networks that provides higher

Table 2 e Predictability of individual working memory capacity based on functional connectivity in nine brain networks.

Networks

WM CogAC VigAtt ToM SM eSAD Motor þ PS Motor þ SS Connectome

ryoung .17 .01 �.06 .03 .16 �.05 .16 .12 .16

rold .35* .37* .33* .52* .43* .45* .24* .52* .42*

Cohen’s q .19 .38 .40 .55 .30 .54 .08 .46 .29

Pearson correlations between real and predicted working memory capacity (WMC) scores in the young (ryoung) and old (rold) sample. Cohen’s q:

effect size of age group differences in correlations (<.1: no effect; .1 e .3: small effect; .3 e .5: medium effect; >.5: large effect).

*Significant (p < .001) predictions with at least medium effect size (r � .24, corresponding to Cohen’s d � .5).
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Fig. 5 e Predictability of individual workingmemory capacity (WMC) based on functional connectivity patterns in nine brain

networks. Scatter plots show real against mean predicted WMC scores across 250 cross-validation repeats (error bars: SDs)

for young (denoted in blue) and old (denoted in gray) participants. For significant prediction accuracies (r: Pearson

correlations between real and predicted scores), a linear regression line and a gray bounded line indicating the mean

absolute error (MAE) were added.
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Fig. 5 e (continued).
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Fig. 5 e (continued).
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information content with respect to WMC. In line with this,

even the connectome-based prediction, which rests on an

even higher number of connections, was not superior, sug-

gesting that no additionally predictive information can be

distilled from a functionally agnostic, though spatially

comprehensive, brain-wide representation of RSFC, as

compared to sparse but functionally meaningful brain net-

works. Alternatively, finding no substantial improvement in

predictiveness for the whole-brain connectome might partly

also be due to a less favorable feature-to-sample ratio.

The generally low predictability of WMC in young adults

based on the networks investigated here (chosen according to

theoretical considerations as detailed in the introduction) in-

dicates that RSFC patterns within these networks do not hold

information on individual WM performance in younger age.

While this remains somewhat surprising, particularly for the

WM network, it may be attributable to the differences in task

demands between WM paradigms used in the scanner (and

hence defining the meta-analytic network) and the WMC

score employed here (Kane et al., 2007). This assumption

would reinforce the notion of a higher specificity in

brainebehaviour relations in young adults, as compared to a

less segregated and/or altered integrity situation among the

elderly, leading to a more global predictability of cognitive

capacities from a broad range of brain networks (cf. Ward

et al., 2015). Alternatively, this observation could also simply

mean that young adults reconfigure their networks in task

states more extensively to meet task-specific demands and,

therefore, RSFC patterns at rest are less predictive, whereas

task and rest configurations are more similar to, or predictive

of, each other in advanced age. Ultimately, the overall low

predictability, with only slight predictive trends for some

networks, indicates a lack of shared variance between RSFC

and WMC. Accordingly, young adults appear to not exhibit

typical network-based RSFC patterns that correspond to

certain WMC levels, at least in the functional networks

investigated in relation to the composite WMC score used

here.

The better overall prediction in the older group might be

related to factors of age-related neural decline that include

brain atrophy and white-matter degeneration (Allen et al.,

2005; Cabeza et al., 2016b; Cox et al., 2016), which may be

related to altered network integrity and, hence, altered

within-network processing efficiency. Together these may

lead to brain organizational changes that strengthen the as-

sociation betweenWMCand the integrity of brain networks as

assessed by RSFC. This suggests that the composite WMC

score contains information related to advanced age. Hence,

the high predictability across networks in older adults may, in

part, result from age-related neural reorganization that is

associated with performance and includes RSFC changes

across different networks (Sala-Llonch et al., 2015). These age-

related changes in older adults were then picked up by the

prediction models, leading to better prediction performance.

Importantly, predictability across networks differed between

low- and high-WMC older adults. Differential age-related

neural plasticity may be related to low versus high WM abili-

ties represented by reorganization mechanisms linked to a

decreased segregation of functional brain networks. This

seems to be associated with reduced functional specificity

across networks and/or reduced network integrity within

different networks as well as, possibly, compensation through

reorganization. Each reorganizational process may manifest

itself in altered patterns of within-network RSFC, which may

drive associations between networks' RSFC patterns and

WMC. The higher predictability across cognitive networks

(closely or distantly linked toWM) aswell as task-negative and

motor-sensory networks (WM-unrelated) in older adults with

Table 3 e Predictability of individual working memory capacity based on functional connectivity in nine brain networks -
global signal regression.

Networks

WM CogAC VigAtt ToM SM eSAD Motor þ PS Motor þ SS Connectome

ryoung .12 0 .06 .09 .18 �.19 .11 .16 .20

rold .40* .27* .26* .42* .33* .32* .39* .36* .43*

Cohen’s q .30 .28 .21 .36 .16 .52 .30 .22 .26

Pearson correlations between real and predicted workingmemory capacity (WMC) scores in the young (ryoung) and old (rold) sample. *Significant

(p < .001) predictions with at least medium effect size (r � .24, corresponding to Cohen’s d � .5).

Table 4 e Predictability of individual working memory capacity based on functional connectivity in nine brain networks in
low- and high-WMC older adults.

Networks

WM CogAC VigAtt ToM SM eSAD Motor þ PS Motor þ SS Connectome

rold_low (n ¼ 24) .33* .34* .25* .37* .41* .42* .28* .45* .35*

rold_high (n ¼ 21) .08 .12 .23 .33* .21 .18 �.02 .31* .26*

Cohen’s q .26 .23 .02 .05 .22 .27 .31 .16 .10

Pearson correlations between real and predicted workingmemory capacity (WMC) scores in the old sample with low (rold_low) and high (rold_high)

WMC. Cohen’s q: effect size of differences in correlations between networks in low and high WMC older adults (<.1: no effect; .1 e .3: small

effect; .3 e .5: medium effect; >.5: large effect).

*Significant (p < .001) predictions with at least medium effect size (r � .24, corresponding to Cohen’s d � .5).
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lower WMCmay be related to a stronger association such as a

blurring of functionally distinct network systems almost

exclusively linked to declined performance. This might

represent reorganization mechanisms related to a decreased

segregation of functional brain networks (e.g., a tighter link

between cognitive, task-negative andmotor-sensory systems)

manifested in altered patterns of within-network RSFC, and

may drive associations with lower WMC scores.

Alternatively, the high predictability across networks

might be linked to widespread age-related changes leading to

a weakening of within-network connectivity associated with

an increase in networks’ susceptibility to interference and,

hence, performance deterioration (Stevens et al., 2008;

Varangis et al., 2019; Zonneveld et al., 2019). These alterations

may lead to a similarly reduced network integrity in distinct

networks, which are linked to low WMC. Either way or in

combination, this suggests that especially very low perfor-

mance levels in the old subsample are predictable from RSFC

across networks possibly because the network changes are so

pronounced that they cannot be compensated during WM-

related task-demands. As a consequence, reduced WM func-

tioning may result from this decreased network segregation

and/or reduced network integrity due to a loss of effective

neural communication. Such a decrease in functional speci-

ficity of multiple brain systems has previously been shown to

have a negative impact on WM functioning (Chan et al., 2017,

2014; Goh, 2011). These assumptions are based on graph-

theoretical analyses of major RSNs demonstrating that aging

is concomitant with a loss in distinctiveness of functionally

specific networks (Geerligs et al., 2015) and decline in episodic

Fig. 6 e Illustration of the frequency with which connections were used in each of the nine functional brain networks for

predicting working memory capacity (WMC) in the old sample.

Displayed are only nodes with a ‘’relevant’’ connectivity (edge) value attached to them. Color indicates the percentage of use

across 2500 cross-validation repeats per network (ranges are indicated with the color bars).

Augmented reality app support for this figure can be downloaded under https://osf.io/wru83/ or via .

For further information please see supplement.
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memory performance (Chan et al., 2014). In response to

detrimental neuro-functional changes with age such as less

segregated networks, older adults may also show compensa-

tory neural reorganization to maintain cognitive functioning,

including altered RSFC patterns associated with increased

neural efficiency in particular systems (Cabeza et al., 2018).

Concretely, we found RSFC patterns associated with high

WMC for the ToM network, rather distantly related to WM but

linked to higher-order social cognition, and for a control

network involved in motor and somatosensory processing

(Motor þ SS). The association between higher WMC and

significantly better predictiveness of the higher-order social-

cognition network (compared to other cognitive networks) but

significantly lower predictability frommotor-sensory systems

(Motor þ PS: rold_high ¼ �.02, Motor þ SS: rold_high ¼ .31;

compared to the higher predictability of motor-sensory net-

works in lower performers Motor þ PS: rold_low ¼ .28, Motor þ
PS: rold_low ¼ .45) may be related to network configurations

more responsive to neuroplastic adaptation to improve

cognitive functions (Gallen et al., 2016; Iordan et al., 2018).

Hence, network configurations in older adults with higher

WMC may constitute a marker for compensatory re-

configuration that may be relevant for (and thus predictive

of) task performance, counteracting the neuro-functional

deterioration of cognitive systems in advanced age. Alterna-

tively, this pattern of results may indicate the beginning of

neural-level dedifferentiation with aging, at an as-yet less

pronounced stage of decline than exhibited in old adults with

low WMC. In turn, RSFC patterns associated with declined

WMC may indicate a marker for less efficient network con-

figurations during WM task performance (and possibly other

cognitive functions that depend on WMC) potentially due to

less segregated network systems (Chan et al., 2014; Grady,

2012) and/or altered network integrity (Varangis et al., 2019;

Zonneveld et al., 2019).

Eventually, the pattern of our results suggests that normal

aging is accompanied by some rather global brain reorgani-

zation, broadly affecting brain systems linked to various

functions including WMC (Pl€aschke et al., 2017). Accordingly,

brain systems involved in executive functions and other

higher-order cognitive functions, as well as perceptuo-motor

systems would be affected by this age-related reorganiza-

tion, which seems to share some variance with normal age-

related WMC decline.

4.2. Contribution of network connections to WMC
predictability in advanced age

In the older group, the most consistently informative con-

nections (i.e., used > 90% throughout all prediction models) of

the WM and ToM networks may, at least in part, account for

inter-individual differences in WMC. In particular, the

connection between the left inferior frontal gyrus (p. oper-

cularis) and the left thalamus of the WM network may play a

potential role in gating access toWMwithin the basal ganglia-

thalamo-cortical loops (B€ackman et al., 2006; Nyberg &

Eriksson, 2016; Schroll et al., 2012). Within the ToM network

the most prominent connection is located between the right

superior medial gyrus/frontal pole (FP) and the left angular

gyrus/temporo-parietal junction (AG/TPJ). The AG/TPJ has

been associated with the retrieval of verbal material impli-

cated in verbal WM, whereas the FP has been associated with

the planning and organization of future actions. Both regions

may hence subserve cognitive processes that overlap between

ToM and WM. Therefore, this connection's strength may

reflect a substrate of the crucial interplay between retrieval of

verbal information and the planning of task execution asso-

ciated with WM tasks.

The observed key connections seem to play a relevant role

in the corresponding network at rest, suggesting that older

adults with low WMC (potentially related to less segregated

systems/deteriorated network integrity) might recruit these

networks differently in demanding task settings than do older

adults with larger WMC (possibly linked to compensatory

reorganizational adaptations; see Fig. 3, Table 4 and Figure SI).

4.3. Conceptual considerations and outlook

Using ML in an out-of-sample prediction framework, we

investigated the association between WMC and the multi-

variate intrinsic coupling pattern within functional brain

networks and its modulation by age, which extends results of

previous univariate approaches examining the relationship

between cognitive decline and RSFC in advanced age

(Andrews-Hanna et al., 2007; Sala-Llonch et al., 2012). We

would like to highlight that our predictions are based on RSFC

in meta-analytically defined functional networks, which of-

fers the key advantage of being able to relate WMC to partic-

ular well-circumscribed functional systems, allowing for a

specific interpretation of functionally distinct brain

networkeWMC associations revealed by ML-based

predictions.

Remarkably, our prediction performance of about r ¼ .40 in

the older group based on sparse single functional networks, as

opposed to whole-connectome approaches, can compete with

WM performance predictions from combined measures of

structural and functional imaging (alpha span and digit

backwards: r ¼ .35) in a sample of 132 older adults (Y. Wang

et al., 2013). Furthermore, our observed prediction perfor-

mance is quite noteworthy given the relatively small sample

size in the groups and the application of a robust and rather

conservative approach to testing model generalizability (viz.,

250 repetitions of a 10-fold cross-validation scheme), than

using the optimistic leave-one-out approach known to be

prone to overfitting (Varoquaux et al., 2016). However, for the

young sample we cannot exclude that the absent to low pre-

dictability might also be related to the moderate sample size.

Besides, it needs to be acknowledged that the meta-analytical

networks were derived from imaging studies primarily done

in young andmiddle-aged adult samples. Therefore, it is likely

that networks defined from studies in older samples would

reveal age-specific differences in network topology. For

instance, additional regionsmight turn out to be implicated in

altered network configurations linked to reorganizational

processes in advanced age and, hence, may result in differ-

ences in brainebehavior associations between young and

older adults (Burianov�a et al., 2013). As such, the observed age-

related prediction differences may also reflect topological

differences in network architecture between age groups.

Nevertheless, because the meta-analyses defining the
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networks comprised samples with varying mean age and age

range, we would argue that they reflect the normative defi-

nition of the spatial network layout, even if this means a

certain bias against the average network layout that may

develop in advanced age.

Despite proper state-of-the-art removal of variance related

to potential confounds (Ciric et al., 2017; Pervaiz et al., 2020;

Power et al., 2012; Satterthwaite et al., 2013) as well asmotion-

related control analyses, we cannot entirely exclude that the

alteration in WMC predictability when applying GSR may in

part be related to residual motion-related effects. However,

the global signal may contain neural signal of interest that is

unduly removed, which in turn may have contributed to

reduced predictability. In line with this, recent evidence

points to the need to be especially cautious with applying GSR

when comparing groups with different noise characteristics,

as in young versus older adults, or with varying neural

network structures (Murphy & Fox, 2017).

Given that multiple functional networks were predictive of

WMC and the connectome-wide network showed similar

predictability, we cannot rule out that RSFC between regions

distributed across the entire brain (i.e., outside our pre-

defined networks) is a marker for WMC in advanced age.

Support for this notion stems from data-driven whole-brain

approaches, demonstrating that RSFC between regions

outside the well-known attention-related network can be

crucial to predict sustained-attention performance

(Rosenberg et al., 2016). This may similarly apply to WMC,

particularly in younger adults. Moreover, we cannot exclude

that factors of non-neural origin such as physiological

changes linked to aging and their impact on the hemody-

namic signals (D’Esposito et al., 2003; West et al., 2019) may

have contributed to our findings. Hence, the relationship be-

tween RSFC and cognition in aging definitively demands

further investigation with the aim of precise predictions on a

single-subject level. One of the highlights is the use of the

RVM, which offers the advantage of a better localization and

interpretability of connections that mainly drove the pre-

dictions by providing considerably sparse solutions with su-

perior generalizability (Tipping, 2001; Y. Wang et al., 2010).

Therefore, a more detailed evaluation of the neural mecha-

nisms driving the predictions can be achieved.

Compared to previous studies addressing such age-related

brain-behavior relationships in a data-driven way (Charroud

et al., 2016; Wang et al., 2013), our approach offers the

chance to improve our understanding of how and to what

degree individual differences in particular cognitive functions

(here: working memory) are represented and potentially

implemented by particular features (here: RSFC) of a priori

defined functional networks. Using meta-analytically derived

functional networks in combination with performance pre-

diction, we can evaluate whether particular features of net-

works known to be involved in certain cognitive functions do

in fact contribute to inter-individual behavioral variation in

this function, and how this is affected by age. As we have

shown, individual RSFC patterns do not always translate into

individual performance levels (here: WMC), and the average

level of predictability per group also seems to be related to the

specificity of the predictability across networks: With both

overall low predictability (in young adults) and overall rather

high predictability (in older adults), specificity is low, which

appears like floor and ceiling effects, respectively.

Although our data and analyses do not reveal the specific

mechanisms underlying the generally better WMC predict-

ability in advanced age, the network-specific analyses allowed

us to reveal that normal aging is linked to a non-specific (i.e.,

network-independent) pattern of RSFCeperformance re-

lationships that spans across rather distinct networks. This

would not have been possible with previous approaches based

on the whole-brain connectome, which even in young sam-

ples often yielded patterns of RSFC among widely distributed

and (seemingly) unrelated brain regions to be predictive of a

given behavioral or cognitive feature (Finn et al., 2015;

Rosenberg et al., 2016). Overall, the present study may answer

asmany questions as it raises new ones, but we hope that this

will spur future research to unravel the neural mechanisms

driving these predictions and their age-related differences.

We argue that our approach of combining meta-analytically

defined functional networks with multivariate pattern-

regression using a robust cross-validation scheme provided

new insights into aging-related brain reorganization by link-

ing WMC to brain network integrity.

5. Conclusion

We investigated whether and to what degree the RSFC pat-

terns of eight functional brain networks and a connectome-

wide network predict individual WMC in young and old

adults. By using ML-based regression modeling in a robust

cross-validation scheme, age differences in predictability

were examined. The comparison of prediction performance in

young and old participants revealed differences in

brainebehavior associations.

While a general unpredictability of the networks’ connec-

tivity patterns was observed in young adults, each network

predicted WMC in older adults, suggesting neurobiological

adaptation related to WM task demands predictable from

resting-state interregional coupling. In advanced age, a

similar degree of predictive power across diverse networks

suggests different possibilities or combinations of neural-level

reorganization such as a decreased segregation of functional

networks, brain-wide alterations in network integrity and/or

compensatory connectivity changes as common factors un-

derlying inter-individual variation in WMC. Our results thus

offer novel insights into age-related reorganization of func-

tional brain networks linked to low and high WMC. Finally,

our study underlines the value of RSFC as a marker for indi-

vidual WMC in advanced age and potentially as a source for

examining neural mechanisms linked to cognitive deteriora-

tion by using ML-based prediction.

Transparency and openness promotion (TOP)
guidelines

Our participants did not consent to sharing their data with
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orate with the principal investigators, e.g., through a

formal collaboration agreement. Thus, data are not
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dependent analysis and verification. Access can be granted

only in accordance with ethical procedures governing the

reuse of sensitive data, which would involve requesting

permission to share the study data from the local ethics
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Aachen, Germany. Further, if permission is granted, each
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We did not use experimental stimuli or presentation code
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