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Key Points 

 UAV-borne laser scanners (UAV-LS) can generate 3D data on forest structure 

necessary for mapping patterns in biomass and biodiversity 

 UAV-LS is costly to produce. Digital Aerial Photogrammetry (DAP) is a cheap 

alternative, but its utility over tropical forests is unclear 

 DAP cannot reliably measure tree height, yet if ground height is known, it can imitate 

UAV-LS measurements of canopy and vertical structure 
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Abstract  

Tropical forests are complex multi-layered systems, with the height and three-dimensional 

(3D) structure of trees influencing the carbon and biodiversity they contain. Fine-resolution 

3D data on forest structure can be collected reliably with Light Detection and Ranging 

(LiDAR) sensors mounted on aircraft or Unoccupied Aerial Vehicles (UAVs), however they 

remain expensive to collect and process. Structure-from-Motion (SfM) Digital Aerial 

Photogrammetry (SfM-DAP), which relies on photographs taken of the same area from 

multiple angles, is a lower-cost alternative to LiDAR for generating 3D data on forest 

structure. Here, we evaluate how SfM-DAP compares to LiDAR data acquired concurrently 

using a fixed-wing UAV, over two contrasting tropical forests in Gabon and Peru. We show 

that SfM-DAP data cannot be used in isolation to measure key aspects of forest structure, 

including canopy height (%Bias: 40 – 50%), fractional cover, and gap fraction, due to 

difficulties measuring ground elevation, even under low tree cover.  However, we find even 

in complex forests, SfM-DAP is an effective means of measuring top-of-canopy structure, 

including surface heterogeneity, and is capable of producing similar measurements of vertical 

structure as LiDAR. Thus, in areas where ground height is known, SfM-DAP is an effective 

method for measuring important aspects of forest structure, including canopy height, and 

gaps, however without ground data, SfM-DAP is of more limited utility. Our results support 

the growing evidence base pointing to photogrammetry as a viable complement, or 

alternative, to LiDAR, capable of providing much needed information to support the mapping 

and monitoring of biomass and biodiversity. 

Plain Language Summary 

Tropical forests support a diverse array of plant and animal species, and are highly 

productive, playing a vital role in the global carbon cycle.  Quantifying the height and density 

of these forests can help us better understand the amount of carbon and biodiversity they 

store. Generating such data over large areas is possible using Light Detecting and Ranging 

(LiDAR) scanners mounted on an aircraft or on Unoccupied Aerial Vehicles (UAVs), 

although these data are expensive to collect and process.  An alternative method is 

photogrammetry, which involves collecting several overlapping photographs of the same area 

from different viewpoints, from which we can generate a 3D reconstruction of the surface. 

This approach is much cheaper, potentially allowing us to map forests with greater frequency.  

However, we find this method cannot be used to measure key elements like tree height, due 
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to difficulties seeing, and thus estimating ground elevation. The forest canopy surface can be 

measured fairly well while measurements of vertical structure are broadly similar to LiDAR 

data. If ground height is known, then photogrammetry is a viable means of collecting 

important data on forest structure necessary for mapping carbon and biodiversity. 

1 Introduction  

Accurate and detailed measurements of forest structure are essential to improving our 

knowledge of a range of important ecosystem services and functions, including carbon 

storage, productivity, habitat quality and biodiversity. The recent proliferation of space- and 

air-borne platforms incorporating light detection and ranging (LiDAR) sensors will provide 

new insights into these variables due to their ability to map key aspects forest structure across 

large areas (10s km2), and at fine resolutions (≤1 m).   Forest structure can be characterised in 

different ways when measured from above using LiDAR, with common measurements 

including the horizontal distribution of vegetation across an area, such as its height, 

heterogeneity, fractional cover, and gap fraction, as well as the vertical distribution and 

density of plant material below the canopy surface. Retrieving this information is important 

for several reasons: first, measurements of tree height and fractional cover are essential 

components in models that estimate aboveground biomass (AGB) (Asner & Mascaro, 2014; 

Jucker et al., 2018a; Knapp et al., 2020). Measurements of 3D vertical forest structure are 

also important for estimating AGB (Meyer et al., 2013; Dubayah et al., 2020), and for 

understanding habitat characteristics and biodiversity patterns on the basis that structurally 

complex forests provide space for species with different specialisations and niches (Lopatin 

et al., 2016; Burns et al., 2020; Marselis et al., 2020; Schneider et al., 2020; Valbuena et al., 

2020).  These data are most commonly acquired using aircraft, however, high acquisition 

costs mean that data collection, particularly in more remote tropical forests, is typically done 

in an ad hoc manner, and rarely repeated (Xu et al., 2017). New space-borne LiDAR 

missions such as NASA’s Global Ecosystem Dynamics Investigation LiDAR (GEDI) are 

helping fill these key observation gaps by providing global measurements of forest structure, 

including new estimates of AGB, however coverage is sparse and collected at a coarse 

resolution compared to airborne platforms (separated 25m footprints, compared to cm 

diameter footprints), and the data collection is time-limited (Dubayah et al., 2020).    

In recent years, Unoccupied Aerial Vehicles (UAVs) (Joyce et al., 2021) equipped 

with small, lightweight LiDAR sensors have become a viable alternative to LiDAR data 

collection via aircraft (Brede et al., 2019; Kellner et al., 2019; Yin & Wang, 2019).  The 
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unique combination of low flight altitudes (10s – 100 m) - which normally removes the need 

to notify national civil aviation authorities before operation - slower flight speeds, and a 

wider field of view mean that UAV-borne LIDAR is capable of producing 3D point clouds 

with sufficient density (100s – 1000 pts/m2  vs. 10s pts/m2 for aircraft) to allow individual 

tree crowns, and branches to be resolved (Brede et al., 2017, 2019; Kellner et al., 2019; Puliti 

et al., 2020a). Improvements in flight times (up to 1h) mean UAVs can now cover relatively 

large areas (1 - 10s km), and so provide an important bridge between fine-scale ground 

measurements, e.g. from Terrestrial Laser Scanning (Disney et al., 2018; Burt et al., 2021), 

and sparse and/or coarse resolution satellite data, the resolution of which is often too coarse 

(20 - 50 m +) to reliably capture small-scale patterns and changes associated with growth and 

mortality (Espírito-Santo et al., 2014; Assmann et al., 2020).   However, there remain 

potentially significant barriers to the widespread adoption of the technology, namely the 

capital cost of equipment, which includes the sensor itself, GPS-IMU hardware to accurately 

measure UAV position, as well as a UAV platform capable of carrying a relatively heavy 

payload (>3 kg), which itself may require special flights permissions, and/or trained, certified 

pilots to operate (Brede et al., 2017; Beland et al., 2019; Kellner et al., 2019).  Platform and 

sensor may be subject to import/export control regulations, while widespread restrictions on 

transportation of powerful batteries on commercial airlines creates logistical issues if the 

system is being applied outside the country of origin.    

To that end, alternative methods based on digital aerial photogrammetry (hereafter 

DAP) have been posited as a potential lower-cost source of fine-resolution 3D information on 

forest structure (Iglhaut et al., 2019; Puliti et al., 2020b) . The approach, which uses multiple 

images collected from different positions to construct a 3D model of the visible surface - a 

technique termed Structure from Motion (SfM) - can generate point cloud data similar to that 

obtained from LiDAR, but using hardware a tiny fraction of the cost and weight.  Its 

application has increased markedly over the past decade (Goodbody et al., 2019), due in part 

to the utility of consumer-grade imaging platforms and sensors, and the associated low cost 

of acquiring data, but also due to increases in computing capacity, and the availability of 

commercial and open-source software for processing what can often run to hundreds to 

thousands of images (Bayley & Mogg, 2020). This, combined with the ability to generate fine 

resolution orthomosaic images covering a whole study area, means that image-based methods 

are a potentially attractive alternative to more costly LiDAR data collection.   

However, as with LiDAR data, there are challenges to image-based methods that 

potentially limit its widespread usage, particularly over dense tropical forests. The first is that 
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optical images, without the penetration of the laser beams of LiDAR, mostly only collect 

information from the canopy surface, with information on lower strata or the ground only 

provided in rare canopy gaps. This creates known errors when estimating important variables 

such as tree height, due to difficulties in extracting the ground elevation (Roşca et al., 2018; 

Swinfield et al., 2019; Vaglio Laurin et al., 2019). A common solution is to use LiDAR 

derived ground elevations, with SfM-DAP used for repeat, or retrospective monitoring of 

canopy structure (St-Onge et al., 2008; Gobakken et al., 2015; Ali-Sisto & Packalen, 2017; 

Goodbody et al., 2019; Krause et al., 2019), although this negates many of the original 

attractions of using SfM-DAP over LiDAR. Secondly, tropical forests present a challenge for 

image and feature matching algorithms which rely on visual similarities between overlapping 

images to reconstruct the 3D surface model. For example, trees and dense vegetation, due to 

their complex shape and structure may appear very different between overlapping images, 

which coupled with potential movement (e.g. due to wind) and areas of occlusion (i.e. 

obscured/shadowed areas), can potentially lead to incomplete reconstruction and/or noisy 

point clouds (Cunliffe et al., 2021). Differences in lighting conditions, e.g. due to changing 

cloud cover, or the time of day the data was acquired, may also affect the consistency of 

image based point clouds, which is potentially problematic when conducting missions across 

large areas, or conducting repeat measurements over several days.    

  Although the benefits and challenges of structure-from-motion photogrammetry are 

well understood (Goodbody et al., 2019; Iglhaut et al., 2019) - having been widely applied 

for surveying over temperate forests - there remains limited data on how well it performs in 

tropical forests, and under what conditions it can begin to resemble information obtained by 

LiDAR.   For example, it is unclear how the retrieval of tree height, and other metrics vary 

depending on local forest structure, such as canopy cover or vegetation density (Wallace et 

al., 2016; Mlambo et al., 2017), and whether these errors are systematic, or primarily random 

in nature. Understanding the nature of these errors is important, as if they can be taken into 

account it may be that SfM-DAP is sufficient for many use cases where LiDAR (or no data 

collection at all) might have been the alternative. Further, as with LiDAR, the increasing use 

of UAVs provides new opportunities for SfM-DAP, given their ability to image the forest 

from a greater number of viewpoints, and potentially image beneath the canopy itself, 

reducing or removing the aforementioned challenges.  

To that end, in this paper we compare various forest structural metrics relevant to 

AGB estimation, and to our understanding of wider ecosystem function such as biodiversity 

and productivity.  These datasets were generated using extensive LiDAR and SfM-DAP data 
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collected concurrently using a UAV over two contrasting areas of tropical forest in Gabon 

and Peru. The scale of our datasets, which cover a larger area than previous comparisons, 

provides a novel basis for assessing the capacity of SfM-DAP, and where it can be 

successfully applied - information that is crucial in order to facilitate rapid, low-cost 

measurement and monitoring of tropical forests.  

 

Figure 1 – Location and extent of the two study areas in a) Peru (image centred on: -11.00,  

-69.72) and b) Gabon (image centre: -0.1480, 12.266), with base satellite imagery from 

Planet Labs (RapidEye and PlanetScope respectively).  For the Gabon site, the image extent 

is consistent with LiDAR data coverage and are presented on the same scale as the map of the 

Peru site. The photographs adjacent to each map give an insight to the forest structure at each 

site.  
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2 Methods  

2.1 Study region  

The two study areas are located in remote areas of Peru and Gabon, selected primarily due to 

their contrasting vegetation structures. The Peruvian site is centred on a small community 

(Communidad Nativa Bélgica) located approximately 40 km west of Iñapari in the Madre de 

Dios region. The area has a mean annual rainfall of ~1800 – 2200 mm, with a distinct dry 

season between June and October.  The area of interest covers approximately 20 km2 and 

comprises a mosaic of agricultural land, pasture, secondary, and mature forest (Figure 1). The 

vegetation is dominated by species in the genus Socratea, Matisia and Pseudolmedia, with 

tree densities ranging from ~500 – 600 stems/ha (counting stems >10 cm diameter at 1.3m).  

The site in Gabon is located in an active logging concession operated by Rougier Gabon, and 

covers 10 km2 with the vegetation consisting almost exclusively of mature forest, with more 

open patches located close to the track network (Figure 1). Tree density is markedly lower, in 

the range of 200 – 300 stems/ha, with tree species composition typically dominated by slower 

growing species, with denser wood, including those in the genus Coula, Coelocaryon, and 

Pentaclethra.  The area has a similar mean annual rainfall of 1900– 2100 mm with a short dry 

season from January – February, and another between June and September.   

2.2 Data acquisition  

Data were collected in July 2019 (Peru) and January 2020 (Gabon) using a DELAIR ( 

DT26X fixed-wing UAV equipped with a RIEGL miniVUX-1DL discrete-return LiDAR 

sensor (RIEGL Laser Measurement Systems GmbH, Horn, Austria), and a 36 MP RGB 

camera.  The LiDAR sensor operates in the near-infrared (905 nm), has a field of view ±23° 

off-nadir, and has laser beam divergence of 1.6 mrad with up to five returns from each pulse 

digitised.  The payload also includes an Applanix APX-15 IMU and L1/L2 GNSS receiver 

for PPK correction of the flight trajectory (Figure 2). The RGB camera has a horizontal and 

vertical field of view of ±20°, and ±17° off-nadir respectively, with an acquisition rate of 1 

image/second. A temporary GNSS base station (LEICA) was established at each site and 

initially left to collect data for 24 hours to derive an accurate and precise position. The 

receiver is set to record in sync (1 measurement/s) with the UAV, and was set to run for an 

hour before and after each day’s missions to allow PPK correction. A minimum of three 

Ground Control Points (GCPs) - square targets 1 – 2 m2 composed of alternating black and 

white material arranged in a checkerboard pattern – were placed across the road/ track 
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network to allow further correction of the flight trajectory and support co-registration during 

the processing of each mission. Additional marker points, such as buildings and other 

invariant objects (e.g. solar panels, road marker posts) were used to refine and check the 

accuracy of the final datasets.  These were geo-located using a secondary ‘rover’ GNSS 

receiver referenced back to the base station (Figure 2). 

 

Figure 2 – a) The UAV prepared for launch in Gabon, using conventional take-off and 

landing (CTOL) procedure aided by a catapult. (b) An example mission over the same study 

area with flight lines and an approximate image footprint. (c) A static GNSS receiver, the 

data from which is used to correct the flight trajectories, with additional refinements and 

corrections possible via ground control points (d + e), located across the study area, the 

location of which are measured using a ‘rover’ GNSS receiver. 

 

All flights were conducted in perpendicular lines and at a nominal altitude of 100 – 130 m 

above the ground surface with an average flight speed of 17 m/s (60 km/h). For the LiDAR, 
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this results in a swath width of 100 m, with an average flight line spacing of 25 m (based on a 

target 70 – 80 % side overlap), and a maximum laser beam footprint at ground level of 20 – 

30 cm, reducing to 10 – 15 cm at 50 m.  For the RGB data, the altitude and field of view 

mean each image covers an area ~80 x 70 m in size, with a side and front overlap of 70 and 

75% respectively meaning each area was imaged ~8 - 10x with a ground sampling distance 

(GSD) of 3 cm per pixel.  The flight parameters were chosen to maximise information 

content in both the LiDAR and SfM-DAP datasets; however for the latter, it should be noted 

that the degree of image overlap and the resultant GSD, whilst sufficient (see next section), 

should be considered the minimum when working over dense vegetation (Assmann et al., 

2019; Iglhaut et al., 2019).  

The data used in this study comprises a total of 15 missions conducted over the course 

of 7 days in Peru and 3 days in Gabon.  All data were principally collected in the morning 

between 8 am and 11 am in an attempt to obtain consistent light conditions between missions, 

and to avoid solar hotspots and the typically high temperatures (>30° C) after solar noon. 

However, given the size of the study area and the large distances travelled by the UAV from 

the operator (1 – 7 km), combined with the relatively long flight times (45 – 75 minutes), 

recording and controlling for light conditions was not possible meaning there are undoubtedly 

some differences within and between missions.  It is important to note that special 

permissions were sought and obtained for flying Beyond Visual Line of Sight (BVLOS), 

which may or may not be possible in certain contexts, particularly if flying close to 

population centres. 

2.3 Data processing  

The flight trajectories were reconstructed using the GNSS/ IMU measurements and adjusted 

using the differentially corrected base station data within the Applanix POSPac Software. 

The corrected flight paths and laser data were combined using the RIEGL software package, 

RiPROCESS to generate the initial laser 3D point cloud. Residual errors in the flight 

trajectory, e.g. due to discrepancies in GPS tracking and elevation, were corrected using 

small buildings to guide additional adjustments to the relative position and orientation of 

individual flight lines/scans. The trajectories were further refined using the GCPs resulting in 

a final LiDAR-derived point cloud with a geometric accuracy of 1.8 cm.  The images were 

processed using the Pix4DMapper software (Pix4D, Lausanne, Switzerland; v. 4.4.12) and 

were sharpened prior to analysis.  The process is largely automated and broadly follows the 

guidance set out by the software provider based on the vegetation type, flight plan, and sensor 
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rig used.   A more detailed description of the theoretical principles and techniques can be 

found elsewhere (Westoby et al., 2012; Iglhaut et al., 2019), however in short, the processing 

chain first identifies points or sets of pixels with a distinctive and similar texture from sets of 

overlapping images.  We used a custom matching procedure which leveraged the accurate 

geolocation of the images to ensure pairs were selected based on triangulation of proximal 

images, as well as capture time. An iterative bundle adjustment then refines the initial camera 

parameters, using the corrected positions and orientations of each image as a starting point, to 

derive an initial point cloud consisting of key-points matched in different images.  The GCPs 

were then manually identified and marked in all available images to aid the optimisation 

before a multi-stereo algorithm generated a densified point cloud containing estimated 3D 

point positions.  All elevation data were calculated according to the ellipsoidal height (m), 

with the Peru processed in WGS84 UTM 19S and Gabon in the UTM 33S coordinate system 

respectively. Each flight was processed separately with all datasets merged before being 

exported. All subsequent processing of the points clouds was done using elements of the lidR 

package (V3.1.0; Roussel et al., 2020).  

Point clouds were filtered to remove outliers using a two-step approach; first, 

discontinuities in height profiles were used to identify and remove isolated clusters of points 

clearly separated, i.e. > 5 m difference in height, from the remainder of the point cloud, a 

feature that was more apparent in the image-based point clouds. The mean Euclidean distance 

between each remaining point and its 10 nearest neighbours was then calculated and if this 

value exceeded 2 m, the point was considered an outlier and removed.   Filtering was 

conducted in 0.25 ha (50 x 50 m) segments to limit topography affecting the height profiles. 

Point clouds were thinned using 10 cm voxels to account for differences in sampling intensity 

between areas, which will more likely affect the LiDAR data. The final voxelised LiDAR 

point clouds have a mean density of 220 pts m2 in Peru, and 240 pts m2 in Gabon, while for 

the DAP datasets, it is 210 and 140 pts m2 for Peru and Gabon respectively (Figure 2: Figure 

3).  We exclude areas with densities <10 pts m2 within a 10 x 10 m2 moving window, which 

includes areas towards edge of the dataset, and gaps between flight lines where data quality 

was deemed to be low, leaving a total area coverage of 1100 ha in Peru and 655 ha in Gabon.  

2.4 Forest Structural Metrics  

We selected a range of metrics considered important for area-based AGB estimation, and for 

measuring various aspects ecosystem structure and function. All datasets are gridded and 

presented in the main text at 20 m (0.04 ha) resolution, with the agreement of different data 
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sets assessed according to the Concordance Correlation Coefficient (CCC), the Mean Error or 

Bias, and the Root Mean Square Error (RMSE), expressed in both absolute terms and relative 

to the LiDAR derived values.  

The first variable we compare is mean Top-of-Canopy Height (TCH), and its spatial 

heterogeneity or Rugosity, both of which are key variables in the area-based estimation of 

AGB (Asner & Mascaro, 2014; Bouvier et al., 2015; Jucker et al., 2017; Knapp et al., 2020). 

Ground returns were identified by extracting the lowest returns within a 1 m grid, and then 

applying a cloth simulation filter (Zhang et al., 2016) to separate ground from non-ground 

points.  These were aggregated to create an average ground elevation for comparison. First 

returns were extracted (canopy surface elevation) and compared with the coincident ground 

elevations to generate an estimate of TCH, which along with canopy surface elevations, were 

averaged during the aggregation. The variation in surface height, sometimes referred to as 

rugosity, were calculated as the standard deviation of heights in each grid, although 

alternatives measures of spread have also been suggested and applied (e.g. Coefficient of 

Variation (CV) and Gini Coefficient) (Bouvier et al., 2015; Knapp et al., 2020). For these 

direct comparisons, no interpolation, or averaging was used with areas of no data excluded 

from all subsequent comparisons between methods and sensors.  

The second set of variables are related to tree canopy cover, and its inverse, canopy 

gap fraction, for which multiple definitions and measures exist.  Canopy cover, or the number 

and size of canopy gaps are a keystone, and widely used descriptor of ecosystem structure. 

This information is important when assessing the ability of different datasets to correctly 

detect non-stand replacing disturbances, such as low intensity logging, or monitor smaller 

changes related to tree growth and mortality (Asner et al., 2013; White et al., 2018; 

Goodbody et al., 2020; Dalagnol et al., 2021).   The first metric we compare is Tree 

Fractional Cover, defined as the proportion of the ground surface covered by the vertical 

projection of the tree canopy, based on a 1 m CHM and a fixed height threshold of 10 m. This 

has been used as a predictor of basal area for use in AGB estimation (Coomes et al., 2017; 

Jucker et al., 2018b; Fischer et al., 2019), and as a proxy for disturbance impacts on tree 

structure (Almeida et al., 2019).  An alternative measure is Canopy Closure (sensu. Jennings 

et al., 1999), defined as the proportion of the sky hemisphere obscured by vegetation from a 

single point on the ground and measured here as the proportion of the total points in each grid 

cell above the same 10 m canopy height threshold.   Given data were collected from multiple 

viewpoints, this metric is better suited to fractional cover when comparing LiDAR and DAP, 

and the extent to which the sub-canopy or ground surface is likely to be visible.    
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In this context, we also created datasets describing gap fraction, which includes 

information on gap size given that smaller, isolated canopy gaps are unlikely to allow 

sufficient illumination of the sub-canopy.  We used the methods contained in the ForestGapR 

package (Silva et al., 2019), with the same fixed canopy height threshold of 10 m used to 

separate tree canopies from gaps (Fixed Gap Fraction) (Dalagnol et al., 2021), but with an 

additional minimum size threshold of 10 m2, and a maximum of 2 ha to exclude small 

isolated gaps and naturally open areas respectively. Small linear gaps (~10 m2), e.g. between 

tree crowns, were removed as they often connected large canopy gap openings meaning their 

calculated size is misleading, and led to true gaps exceeding maximum size threshold.  We 

also applied a variable height threshold (sensu White et al., 2018; Dalagnol et al., 2021) 

classifying an area as a gap if its canopy height is less than 50% of the corresponding 

maximum height within a 50 x 50 m (0.25 ha) window (Variable Gap Fraction).  This 

measure is better for capturing small discontinuities or temporal changes in tree canopy cover 

(Dalagnol et al., 2021), particularly where disturbance impacts are minimal, or have been 

obscured via regrowth in the sub-canopy.  In both cases, a smoothed digital surface model 

(DSM) was generated at 1 m resolution to avoid no-data areas in the image-based point 

clouds being incorrectly labelled as a gap, based on the ‘pitfree’ method from Khosravipour 

et al., (2014).  For this, ground returns were interpolated using the 20 nearest neighbouring 

points, located within a 50 m radius to create a 1 m Digital Terrain Model (DTM) which was 

subtracted from the DSM to create a smoothed top-of-canopy height model (CHM).  

The final set of variables describe vertical forest structure and the ability of different 

methods to capture the variation and number of canopy layers. Each metric is applied to the 

vertical point cloud profiles separated in to 1 m height bins (Figure 3).  The first of these is 

the Vertical Complexity Index (VCI) or Entropy, which measures the diversity and the 

evenness of points within a vertical profile based on the Shannon Diversity Index (‘entropy’ 

function; lidR), with higher values (0 - 1) reflecting a more uniform distribution of points. 

The next set of metrics are the Relative Height (RH) percentiles, which refer to the heights 

within a vertical profile at which a given percentage of points are located below that value. 

We extracted the 5th – 95th percentiles, and from these calculated the Canopy Ratio 

(Schneider et al., 2020), which is measured as: (RH95 – RH25) / RH95 and describes both 

the ratio between vegetation depth and height, and the skew in point densities.  High values 

typically result from a more complex forest structure (i.e. caused by multiple canopy layers), 

and are considered a good indicator of habitat quality for plants and animals (Schneider et al., 
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2017, 2020; Burns et al., 2020).  These, and other metrics that use RH data also form a key 

part of models for estimating AGB (Meyer et al, 2013; Dubayah et al, 2020).   

 

3 Results  

3.1 LiDAR-based measurement of forest structure  

Forest structure varied markedly across, and between the two study regions, with top-of-

canopy heights (TCH) in Gabon reaching 35 – 50 m in areas with a fractional cover > 50%, 

compared to 25 – 40 m in Peru (Figure 3; Figure 4).   Despite their relatively low stature, the 

Peruvian forests are more structurally complex, with vertical profiles capturing the known 

sub-canopy layer 10 – 15 m in height (Figure 1; Figure 3), and metrics describing vertical 

structure also indicating a greater density and more even spread of vegetation (Figure 3f-h). 

These patterns contrast sharply in Gabon where there is typically a single dominant tree layer 

varying little in height (Figure 3a-c).  The relatively low variation in tree height means fewer 

areas are identified as gaps, as detected using the variable height method, with 7% of the 

forest area in Gabon identified as such (log transformed mean size: 91 m2), compared to 20% 

in Peru (113 m2) (Figure 4; Figure 6). Canopy gaps measured using a fixed height threshold 

(10 m) were rare, comprising <5% of the forest area at either site, and by definition were 

correlated with tree fractional cover meaning these are not considered further.  
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Figure 3 – Comparison of key metrics describing forest structure across the study areas in 

Gabon and Peru as measured by the LiDAR sensor.  Measurements of surface rugosity (b), 

and Relative Height (g) are expressed relative to the corresponding mean top of canopy 

height.  Outliers are not included
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Figure 4 -   A comparison of canopy height models (CHM) across a 9 ha patch of forest obtained via LiDAR, and the DAP based points clouds, 

with tree heights estimated using both the LiDAR derived DTM, and using the estimated ground elevations from the DAP data directly.  Red 

polygons indicate gaps detected via the Variable Gap method, i.e. areas where canopy height is <50% of the maximum height within a 50 x 50 m 

moving window.  Transects delineated in the LiDAR CHM show the location of 3D vertical profiles in Figure 5.
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 1 

Figure 5 – Example 3D LiDAR point cloud profiles, with black lines showing the SfM-DAP 2 

DTM, and the grey lines the DAP DSM for the same area.  3 

 4 

3.2 Comparison of LiDAR and DAP metrics  5 

Many of the broad patterns in forest structure observed on the ground, and in the LiDAR 6 

data, are also apparent in the SfM-DAP derived point clouds (Figure 4; Figure 6). 7 

Measurements of surface elevation and its variability/ rugosity showed good correspondence 8 

(CCC: 0.99), varying by maximum 1 - 2 m between methods (Figure 4; Figure 7).  However, 9 

the ability of SfM-DAP to extract information from lower in the canopy, including ground 10 

returns (CCC: 0.42), becomes increasingly limited in areas with higher canopy cover (>70%), 11 

which comprise the majority of both study areas. Consequently, we find large, but variable 12 

differences in TCH (Figure 7), with individual estimates lower by an average of 6 m (RMSE: 13 

11.6 m) in Gabon, and 8 m (RMSE: 10.0 m) in Peru, equivalent to an 18% (SD: 36%) and 14 

40% (26%) underestimation of TCH relative to the LiDAR estimates (Figure 8).  For Peru, 15 

the relative bias on TCH was consistent up to 80 - 90% cover, after which estimates decrease 16 

rapidly, falling to <50% of the LiDAR measurements (Figure 8).  An almost identical pattern 17 

was observed in Gabon, with errors increasing exponentially as canopy closure exceeds 90%, 18 

however over-estimation of TCH was also common (Figure 5), resulting in more comparable, 19 

but highly variable estimates in the small number of areas with moderate tree cover (<80%).   20 

Areas with higher surface rugosity were associated with progressively more comparable 21 
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estimates of TCH, likely through reductions in occlusion and greater illumination of the sub-22 

canopy, however, we found no trend with increasing gap fraction, or gap size (Figure 8).   23 

 24 

 25 

Figure 6 –The four panels to the left (a,b,e,f), show the vertical point density profiles (1 m 26 

height bins) from the LiDAR, and DAP derived point clouds, averaged across each study 27 

area, and separated by Canopy Closure (%).  The data were extracted within 20 x 20 m grids, 28 

with the values in square brackets the percentage of each study area with the corresponding 29 

canopy closure. The remaining four panels on the right (c, d, g, h) show the averaged RH 30 

profiles for the LiDAR data (c, g), with heights expressed as a proportion of the TCH in each 31 

grid cell, and the difference to the DAP data (d,h). 32 

 33 

 34 
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 35 

Figure 7– The absolute difference between the LiDAR and SfM-DAP derived estimates of 36 

forest structure from across the study areas in Gabon (red) and in Peru (blue).  The x-axis 37 

limits encompass up to 95% of the data at either study site.  Summary statistics include the 38 

mean error, or bias, for each dataset, and is shown by the vertical hatched lines.  The inset 39 

tables present the mean bias in relative terms (to the mean of the LiDAR data), and the 40 

RMSE in absolute and relative terms.  41 

 42 

These differences in ground elevation, and therefore TCH, have clear implications for 43 

other metrics that use this information in their derivation (Figure 7e - l); indeed, there is a 44 

tendency for DAP to overestimate both the variable gap fraction (%Bias: Gabon = 40%; Peru 45 

= 37%) and the size of these gaps (200%; 91%), and to underestimate tree fractional cover (-46 

15%; -40%) and canopy closure (-7%; -29%).  As with TCH, larger discrepancies were 47 

typically in areas with lower surface rugosity, and high canopy closure, due to the associated 48 
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negative bias on tree heights (Figure 8).  We find a similar skewed distribution for metrics 49 

describing vertical structure, including vertical complexity/ entropy, and RH values (Figure 50 

7), however for each, the overall bias was relatively small with estimates typically within 10-51 

20 % of the LiDAR derived values (Figures 5 – 7). In general, the RH values for mid- to 52 

upper canopy (RH50 – RH95) are similar between methods, although the greater density of 53 

ground returns in the LiDAR results in greater divergence lower in the canopy profile (Figure 54 

6).  Crucially, we find that incorporating the LiDAR ground elevations in to the DAP point 55 

clouds reduced the overall bias in tree fractional cover, canopy closure and gap fraction 56 

(Figure 8).  However, there are differences that canopy height cannot account for, with DAP 57 

predicting gaps where none, or few exist in the LiDAR data.  Importantly, we find the RH 58 

values, and the Vertical Complexity Index, were broadly unaffected by the inclusion of a 59 

more accurate DTM (Figure 8), indicating such information can be extracted independent of 60 

LiDAR with a similar degree of precision and accuracy.  61 

 62 
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63 

Figure 8 – The differences between the SfM-DAP and LiDAR measurements (y-axis) of 64 

horizontal and vertical structure as a function of various descriptors of tree canopy structure, 65 

created using the LiDAR point clouds (x-axis). Here, differences are expressed according to 66 

the relative error, or %Bias, with the exception of Variable Gap Fraction and Canopy Closure 67 

which is the absolute difference (Figure 7).  The solid lines refer to the SfM-DAP data used 68 

in isolation, while the hatched lines show the trend using the LiDAR DTM corrected SfM-69 

DAP data. The relative bias was smoothed using a LOESS (locally weighted scatterplot 70 

smoothing) procedure.  The error bars encompass half of the SD to better display both the 71 

average trend, and the range of estimates for a given context, with the upper and lower 72 

bounds also smoothed using LOESS.    73 
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4 Discussion  74 

In this study, we examined to what extent information on 3D forest structure obtained via 75 

digital aerial photogrammetry and structure-from-motion techniques (SfM-DAP) can 76 

replicate that obtained from a LiDAR sensor. These datasets were obtained simultaneously 77 

using an Unoccupied Aerial Vehicle (UAV), which due to their ability to fly low and image 78 

the same area from multiple oblique viewpoints, have the potential to provide a much 79 

improved and novel basis for evaluating the capacity of image-based methods. We compared 80 

various metrics of canopy and vertical forest structure demonstrated as important for 81 

aboveground biomass (AGB) estimation, and/or for measuring various aspects of ecosystem 82 

structure and function, including proxies for habitat quality and biodiversity.  These data 83 

were collected over two contrasting areas of tropical forest; one in central Gabon, where 84 

forests are typically characterised by a single layer of relatively tall trees (TCH: 30 – 50 m), 85 

and the second in Peru, where the forests are structurally more complex, with multiple 86 

canopy layers (TCH: 25 – 40 m). 87 

We show that SfM-DAP derived point clouds cannot be used in isolation to generate 88 

accurate estimates of top-of-canopy height (TCH) - a central variable in LiDAR-AGB 89 

allometric models (Asner & Mascaro, 2014; Jucker et al., 2018a; Knapp et al., 2020) – due to 90 

the difficulties in extracting accurate estimates of ground elevation. Our results broadly echo 91 

the conclusions of previous studies, including those working in tropical forests (Swinfield et 92 

al., 2019; Vaglio Laurin et al., 2019), leading to suggestions that image-based methods are 1) 93 

only permissible in more open forest stands, e.g. those with < 50 - 60% canopy cover 94 

(Wallace et al., 2016; Mlambo et al., 2017), or 2) only suitable for conducting measurements 95 

in areas with existing digital elevation models (DTMs), such as those obtained via LiDAR 96 

(White et al., 2013; Goodbody et al., 2019; Vaglio Laurin et al., 2019).  In this paper, we 97 

examined both of these assertions due to the scale of our datasets (100s ha), and the varying 98 

vegetation types and densities present within the two study areas.   99 

Overall, the size of the underestimation on TCH was highest at the site in Peru, where 100 

estimates were 40% lower than the LiDAR values, compared to 20% in Gabon. The size of 101 

the underestimation in TCH increased markedly in areas where canopy closure exceeded 102 

80%, which account for large proportion of the forest area at both study sites.  However, even 103 

in more open areas, there still exists large, and, inconsistent differences (40 – 50% RMSE) 104 

between the SfM-DAP and LiDAR derived estimates of tree height, even in areas with low 105 

to, non-existent tree cover, or in areas with larger canopy gaps. That these differences are 106 
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inconsistent is important as it prevents bias-correction of the TCH based on a local LiDAR 107 

(or other tree height) dataset. In Peru, the presence of a clear sub-canopy, and relatively dense 108 

ground vegetation layer seemingly precludes accurate ground detection using SfM-DAP.  In 109 

Gabon, the estimates were more comparable, particularly in the relatively small number of 110 

more open forest patches, albeit with greater tendency for SfM-DAP to overestimate tree 111 

height.  Observations of the imagery suggests the combination of tall trees, lower surface 112 

rugosity, and by extension, the lower gap fraction creates insufficient illumination, and thus 113 

darker patches resulting in lower estimates of ground elevation (White et al. 2018).   Our 114 

results, and interpretation diverge from those detailed by Swinfield et al. (2019), who showed 115 

that DAP systematically underestimated TCH among recovering secondary forests in 116 

Indonesia, and presented a simple linear model to correct these estimates.  Adopting a similar 117 

approach is complicated by the comparatively weak, and variable correspondence between 118 

measures of TCH, which when coupled with the non-linear effect of canopy closure, and 119 

influence of surface rugosity, suggests that a more complex model would be required to 120 

properly account for these uncertainties across these landscapes.   Other potential sources of 121 

random error/ variation in the data include the intensity and angle of solar illumination when 122 

the data was acquired (Gobakken et al., 2015; Roşca et al., 2018), which is hard to control for 123 

in tropical forests, or when collecting measurements over large areas due to frequent and 124 

rapidly changing cloud cover.   This complexity is acknowledged in Swinfield et al. (2019), 125 

who notes that local refinement and calibration of the model would be required along with 126 

the collection of independent height data, likely from LiDAR, which would largely negate the 127 

need for a corrective model assuming ground data can be reliably obtained across the area of 128 

interest.   129 

However, despite the clear, and widespread difficulties in measuring ground 130 

elevation, SfM-DAP can be an effective method for retrieving information on top-of canopy 131 

structure including surface elevation and heterogeneity (St-Onge et al, 2008; Gobakken et al, 132 

2015; Roşca et al, 2018; Swinfield et al, 2019).  This is important as it suggests that in areas 133 

where an accurate DTM is available, for example, from a previous (but non-repeatable) 134 

airborne or UAV LiDAR campaign, SfM-DAP can be used to reliably extract information on 135 

canopy height, heterogeneity and fractional cover, all of which are key predictor variables in 136 

commonly applied area-based LiDAR-AGB allometric models (Asner & Mascaro, 2014; 137 

Jucker et al., 2018a; Knapp et al., 2020).  However, the need for an accurate DTM negates 138 

many of the unique benefits of using SfM-DAP over LiDAR. For that reason, Giannetti et al., 139 

(2018) developed new models for predicting stem volume in Italy and Norway using DTM-140 
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independent variables alone, producing estimates with similar accuracy to LiDAR data, even 141 

in areas with steep terrain. The creation and testing of models that do not require a DTM 142 

would be an important addition to the literature and should allow data collection in areas 143 

where more expensive LiDAR (or no data collection at all) might have been the alternative. 144 

Despite the close correspondence in surface heights, the results of this study also 145 

demonstrate some potentially important, albeit minor differences between the surface models 146 

(DSM) obtained from LiDAR and SfM-DAP data, particularly in the detection of canopy 147 

gaps.  Prior to this study, the relative capacity of SfM-DAP data to capture canopy gaps in 148 

complex tropical forests had not been investigated and compared to LiDAR data. Again, the 149 

results show that incorporating an accurate DTM greatly reduces the bias on measures of 150 

canopy gap fraction, resulting in broadly consistent estimates between methods, thus 151 

highlighting the capacity of SfM-DAP to capture these data.   However, the results also 152 

suggest a tendency for SfM-DAP to detect openings in areas where the LiDAR data does not, 153 

or where the detected gaps are small (<100 m2). Although these differences are minor, they 154 

are potentially important when considering the ability to capture and monitor changes 155 

associated with small-scale logging, or mortality (Dalagnol et al., 2021).  The results may be 156 

improved upon by increasing the front- and side-overlap in the imagery to 80 – 85% (e.g. by 157 

increasing altitude, and/or flying slower), which may result in better reconstructions by 158 

increasing the ground sampling distance and potential number of matches, particularly in 159 

areas where the vegetation is more uniform, like in Gabon where the SfM-DAP surface 160 

models were more variable relative to LiDAR. That being said, our data could also be 161 

considered optimal, given the accurate geolocation of the images through PPK correction 162 

which may not be possible with lower cost platforms and sensors. The use of ground control 163 

points (GCPs) should improve reconstructions, however this also requires survey grade 164 

GNSS receivers to differentially adjust the data, and their placement in dense forest areas can 165 

be challenging. It is therefore possible that the quality of the DSMs produced by SfM-DAP 166 

will be lower in some cases.   167 

The final set of comparisons were for metrics describing vertical structure.  We 168 

posited that UAVs may provide new insights into the capacity of DAP to capture the vertical 169 

profile due to their ability to fly low (relative to aircraft), and view the forest from multiple 170 

oblique angles.  Indeed, we find that each measure of vertical structure, most notably the 171 

Relative Height percentiles, and associated metrics, were similar, and in some near identical 172 

between methods, with values from the DAP point clouds within 5% of the LiDAR derived 173 

values.  This novel finding most likely reflects that even with UAV-borne LiDAR, a small 174 
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proportion of total returns are located close to, or at the ground surface (1 – 10 pts m2), which 175 

although critical for estimating ground elevation, results in a small difference in RH 176 

percentiles compared to SfM-DAP, which principally captures the outer envelope of the 177 

forest.   For many, if not all ecological applications, errors of this size (< 10 %) may be 178 

considered acceptable, suggesting that DAP may be used as a direct substitute for LiDAR 179 

data, for example, as part of calibration models estimating AGB (Meyer et al., 2013; Qi et al., 180 

2019), or perhaps more applicable, for mapping and understanding patterns in plant and 181 

animal diversity (Burns et al., 2020; Schneider et al., 2020).   Again, there are some caveats 182 

to this interpretation, namely, that RH metrics and others based on vertical point profiles, are 183 

sensitive to the LiDAR sensor (e.g. power, beam divergence), and platform (e.g. flight speed, 184 

height) used to collect the data.  Similarly in the case of SfM-DAP, methods used to generate 185 

image-based point clouds may differ significantly between software, and versions, although 186 

any sensitivity is hard to predict as the underlying algorithms are proprietary and a black box 187 

to the scientific community.  These differences may be minor, however it is proposed that 188 

metrics derived from SfM-DAP data should only be transferred to existing models in areas 189 

where correspondence to the data underpinning the original model is already established, as 190 

demonstrated by Tompalski et al., (2019).  191 

Overall, our results help to reinforce the ever growing body of literature pointing to SfM-192 

DAP as a viable alternative to LiDAR for the extraction of key metrics of forest structure, 193 

particularly in areas with existing data on ground elevation.  The decision on whether to 194 

apply SfM-DAP based methods must consider not only the costs of data acquisition and 195 

processing, but also the potential uncertainties in the approach, and the full value of the 196 

information provided.   Although it is clear from our results that some area-based metrics are 197 

likely to be comparable between methods, it is important to note that LiDAR is capable of 198 

generating more detailed information on forest structure, including models of crown structure 199 

and depth, and the segmentation of individual trees, even in relatively dense forests (Brede et 200 

al., 2017). This is significant when considering the relative importance of area-based vs 201 

individual-based methods of mapping aboveground biomass in dense tropical forests.   202 

Current data suggests that area-based methods tend to out-perform more complex attempts to 203 

segment and model individual trees in tropical forests, largely due to difficulties in separating 204 

overlapping tree crowns, and detecting lower vegetation (Coomes et al., 2017). However, the 205 

increasing use of UAVs equipped with powerful LiDAR sensors, including the one used here, 206 

means we now have the potential produce similar levels of detail to Terrestrial Laser 207 

Scanners (TLS), certainly for the upper canopy, which coupled with improvements to tree 208 
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segmentation algorithms (Ferraz et al., 2020; Williams et al., 2020), have the potential to 209 

allow a more direct, or accurate estimation of canopy and/or tree volume, and thus AGB.    210 

As such, we assert that LiDAR should remain the preferred source of information on forest 211 

structure, however, in areas with existing terrain models, we show that SfM-DAP can be used 212 

to generate much-needed information on forest structure needed to better understand 213 

vulnerable and understudied forested ecosystems around the globe. 214 
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