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Abstract: Model predictive control (MPC) is a multi-objective control technique that can handle
system constraints. However, the performance of an MPC controller highly relies on a proper
prioritization weight for each objective, which highlights the need for a precise weight tuning
technique. In this paper, we propose an analytical tuning technique by matching the MPC controller
performance with the performance of a linear quadratic regulator (LQR) controller. The proposed
methodology derives the transformation of a LQR weighting matrix with a fixed weighting factor
using a discrete algebraic Riccati equation (DARE) and designs an MPC controller using the idea of a
discrete time linear quadratic tracking problem (LQT) in the presence of constraints. The proposed
methodology ensures optimal performance between unconstrained MPC and LQR controllers and
provides a sub-optimal solution while the constraints are active during transient operations. The
resulting MPC behaves as the discrete time LQR by selecting an appropriate weighting matrix in
the MPC control problem and ensures the asymptotic stability of the system. In this paper, the
effectiveness of the proposed technique is investigated in the application of a novel vehicle collision
avoidance system that is designed in the form of linear inequality constraints within MPC. The
simulation results confirm the potency of the proposed MPC control technique in performing a safe,
feasible and collision-free path while respecting the inputs, states and collision avoidance constraints.

Keywords: trajectory planning; MPC; LQR; LQT; inverse optimal control; collision avoidance

1. Introduction

MPC has been recognised as one of the most powerful multi-objective optimal control
techniques for a wide range of applications with its ability to formulate the system con-
straints as a finite-horizon constrained optimisation problem. MPC performance is highly
reliant on the weights on each objective but the challenge is that there is no systematic
procedure to select the weights to assure the best performance of MPC. Currently, suitable
weight selection is a time consuming procedure that requires a large number of trial and
error selections and many computer simulations [1–3]. The complexity increases with
an increase in the number of control objectives [4]. Hence, the necessity of developing
a precise tuning procedure for MPC weights has arisen. This has been investigated by
previous research works using different techniques [5,6]. For example, [6] presented a
solution for selecting weights in order to match the MPC as an LQR-based linear controller.
In this work, an LMI-based LQR approach was chosen by recasting the DARE in the LMI
form to calculate the weighting matrices of an unconstrained MPC. Although this approach
was found as a solution for MPC control parameters, the cost function was limited to have
zero cross state-space terms, such that only a few controllers could be matched. In [7], the
matching controller, i.e., the task of matching the MPC performance with the performance
of a favorite controller, has been addressed by presenting a systematic method to tune the
parameters of generalized unconstrained MPC for SISO systems [8]. In this approach the
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tuning parameters were calculated based on the desired closed-loop transfer function in
order to relate the tuning parameters to the desired specification of the system. However,
in this algorithm, a higher control horizon leads to a set of inequality bilinear constraints
in the unknown elements, which cannot be solved using convex optimisation for linear
MPC. In [9], the authors proposed an analytical tuning method for the Dynamic Matrix
Control (DMC) algorithm. DMC is one of the primary versions of MPC that utilizes the
step response of the plant, which can be approximated by the first-order plus delay time
(FOPDT) model. The proposed analytical method offers several advantages, such as low
computational cost and the conservative behaviour of the control system in chemical plants.
However, this approach fails to demonstrate the effectiveness of applying quadratic pro-
gramming solvers or additional adaptive mechanisms within the controller architecture.
Other tuning strategies have been investigated by researchers using intelligent learning
algorithms [10,11]. In [12,13], the authors implemented neural networks and fuzzy-based
decision making to tune the MPC parameters, without using the reference system model.
The authors of [1] proposed an automated strategy for an MPC-based motion cueing algo-
rithm optimized using a multi-objective genetic algorithm. This strategy found suitable
MPC weights, aiming to demonstrate the superiority of the proposed tuning strategy over
empirical tuning methods without the prior knowledge of the plant model. The general
idea behind auto-tuning using learning and neural network algorithms is that the tuning
parameters are updated along with the optimisation algorithm, and thus the solution is
always set to the optimal value. Moreover, it is not required to have a great amount of
knowledge about the system model to initialize the tuning procedure. However, it is
needed to operate two optimisation procedures per time step (optimisation required by
intelligent algorithms and additional optimisation required by the MPC controller) that
may require overhead computational time. In [14], the authors proposed a full review of
tuning strategies for different MPC formulations, such as dynamic matrix control, general-
ized predictive control and state-space representation of an MPC controller. Moreover, a
review on a few autotuning strategies is available in this work. The authors mentioned
that these strategies benefit from not having full knowledge of the model of the system
to initialize the tuning procedure. However, the major disadvantage of the autotuning
strategy is the computational overhead, which has to perform two optimizations compared
to offline tuning strategies. In [15], the authors proposed an evolutionary algorithm using a
non-dominated sorting genetic algorithm for a multi-objective optimisation problem within
an MPC framework. This method offers simple procedure to handle MPC constraints.
Moreover, this algorithm suggests a flexible representation of the decision variables that
expedite the controller performance. However, this algorithm suffers from computation
overhead, as it requires two optimisations per time step.

In this paper, the inverse optimal control problem [16–18] of a discrete time linear
quadratic regulator (DLQR) is used for designing an MPC controller to perform collision
avoidance manoeuvres by selecting appropriate weighting matrices. In general, the DLQR
weights (Q, R) are used to solve the discrete algebraic Riccati equation (DARE) for discrete
time systems in order to find a solution (P) that is a real symmetric positive definite matrix.
Then, using P, an optimal state feedback control gain can be obtained from the DLQR
control law. However, these weighting matrices obtained from DLQR can also be used to
compute the controller of unconstrained MPC [6]. Therefore, using the aforementioned
concept, the objective of this paper is to design the weighting matrix Q of the DLQR in such
a way that Q can be used within the MPC framework, while assuring asymptotical stability
of the system [19]. DLQR and unconstrained MPC can be related through DARE, but using
the weighting matrix obtained from the inverse optimal control problem of DLQR in MPC
design cannot ensure solving the reference tracking problem. To overcome this problem, we
recast DLQR into a discrete time linear quadratic tracking (DLQT) problem [20] to design
the weighting matrix Q, which can be used for MPC design to ensure solving the reference
tracking problem. In order to do this, the dynamics of the vehicle and Ackerman pole-
placement criteria are considered in the formulation of Q selection through DLQT, which
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will be used in MPC design for a trajectory planning task. In order to highlight the practical
use of this analytical tuning technique, the proposed technique is implemented to generate
safe, admissible and collision-free trajectories for autonomous vehicle collision avoidance
systems. In this work, a collision avoidance system is formulated as a finite horizon
optimisation problem with vehicle dynamics, while the collision avoidance constraints
are formulated within the MPC algorithm. However, collision avoidance constraints are
generally non-convex in the context of trajectory planning, which limits the feasibility and
uniqueness of the solution of the optimisation problem. To tackle this problem, researchers
provide solutions such as convexification [21], changing the reference frame [22,23] and
affine linear collision avoidance constraints [24]. In this paper the collision avoidance
constraints are formulated in the form of linear affine constraints to perform trajectory
planning manoeuvres on a curve path. Moreover, in the formulation of the collision
avoidance constraints, the longitudinal position of the vehicle is excluded, allowing the
designers to reduce the state dimensions of the system. This is advantageous, as removing
a state from the system model helps in lowering the computational overhead for solving the
optimisation problem in MPC. The effectiveness of the entire framework for autonomous
collision avoidance system on a curved road is validated in a co-simulation platform where
a high-fidelity vehicle model is simulated in IPG-CarMaker while the proposed MPC
design is implemented in MATLAB/Simulink.

The contributions of this paper are summarised as follows: (i) Design of an analytical
tuning technique to perform a collision-free trajectory for autonomous vehicles, and (ii)
development of a mathematical framework to design convex constraints in order to perform
collision avoidance manoeuvres on a curved path.

2. Discrete Time Optimal Controller Design

In this section, the tuning strategy for designing the MPC controller with the appro-
priate selection of the weighting matrix Q is described. To design the tuning strategy, a
discrete time inverse optimal control problem is formulated using a linear time invariant
(LTI) system:

x̄(k + 1) = Ād x̄(k) + B̄du(k) (1)

The objective of this strategy is to design the Q matrix from a discrete time algebraic
Ricatti equation, which will ensure almost equal optimality between the DLQR and the
unconstrained MPC control problem. It is noted that in this design the weighting factor R
is chosen as a fixed value as in [19]. Moreover, the weighting matrix Q obtained from the
inverse DLQR problem should be designed in such a way that the closed-loop poles are
placed in the desired location within the unit circle by satisfying user-defined specifications
using Ackerman’s pole placement formula. It is noted that this design is a procedure for
finding the MPC weighting matrix Q by obtaining the sub-optimal solution from the DLQR
controller in the presence of the constraints.

In the following subsections a general discrete infinite linear quadratic regulator
problem is briefly overviewed and then a recast in DLQR as a discrete linear quadratic
tracking (DLQT) problem. Next, with the concept of the inverse DLQT control problem, a
strategy for designing an analytical approach to select the Q matrix for the MPC control
design will be discussed.

2.1. Discrete Time Linear Quadratic Regulator (DLQR)

To design the discrete time optimal controller, the standard infinite horizon quadratic
cost needs to be minimized, corresponding to the discrete time system model (1):

J =
∞

∑
k=0

x̄(k)QT x̄(k) + u(k)RTu(k) (2)
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where Q = QT ≥ 0 and R = RT =

[
10 0
0 9× 10−2

]
> 0. The solution of the DARE can be

obtained to minimize the performance index (2) and is given by:

P = Q + ĀT
d PĀd − ĀT

d PB̄d(R + B̄T
d PB̄d)

−1B̄T
d PĀd (3)

The discrete time optimal controller gain K̄ can be achieved using the matrix P =

PT =

P11 P12 P13
P21 P22 P23
P31 P32 P33

 > 0 calculated from (3) to minimizes the cost function (2). The

controller gain K̄ can be written as:

K̄ = (R + B̄T
d PB̄d)

−1B̄T
d PĀd (4)

which gives the control law:
u(k) = −K̄x̄(k) (5)

2.2. Discrete Time Linear Quadratic Tracking (DLQT)

In this paper, an augmented system is presented based on the system dynamic (1)
and the reference trajectory. The objective for the DLQT problem is to find the optimal
control law in such a way that the designed controller can be ensured to track the reference
trajectory for the linear system (1) within the predefined finite horizon performance index.
The augmented system becomes:

Xk+1 =

[
x̄k+1
rk+1

]
=

[
Ād 0
0 F

]
︸ ︷︷ ︸

Â

[
x̄k
rk

]
︸︷︷︸

Xk

+

[
B̄d
0

]
︸ ︷︷ ︸

B̂

u(k)
(6)

where F is assumed to be Hurwitz. This strategy is adopted from [20], and for the brevity
of the paper, an interested reader can refer to this technical paper for calculation of the
DLQT algebraic Riccati equation:

Q1 − P1 + ÂT P1 Â− ÂT P1B̂(R + B̂T P1B̂)−1B̂T P1 Â = 0 (7)

where Q1 is the weighting matrix for the augmented system (1):

Q1 =

[
Q 0
0 Q

]
(8)

and P1 is the solution of the algebraic Riccati equation:

P1 = PT
1 > 0 (9)

Then the control law can be written as:

u(k) = −(R + B̂T P1B̂)−1B̂T P1 ÂX(k) (10)

where the value of the controller gain is:

K̂ = (R + B̂T P1B̂)−1B̂T P1 Â (11)

For the reference tracking problem using MPC for the system (6), the Ricatti Equation (7)
holds. The Q matrix obtained from the DLQR problem can be used for the DLQT control
problem as shown in (8). Therefore, Q can be obtained by solving the inverse DLQR optimal
control problem to use it in the reference tracking problem from the DLQT approach. Hence,
we can use the Q matrix obtained from the inverse DLQR approach in the MPC control
problem, since the MPC reference tracking problem is equivalent to the DLQT control
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problem. The following section describes the system model that has been used for the MPC
tuning strategy.

3. System Model

In this paper, a kinematic vehicle model is used to capture the vehicle model in MPC [25].
This model assumes no slip between the tyre and the road, and is found to be a suitable model
for trajectory planning for the application of collision avoidance manoeuvres [26,27]. Under
the assumption of small angles approximation [28] the vehicle bicycle model is:

ξ̇ = vx (12)

ẏ = vxψ +
lr

l f + lr
vxδ f (13)

v̇x = ax (14)

ψ̇ =
vxδ f

l f + lr
(15)

where ξ and y are the longitudinal and lateral displacement of the vehicle in inertial
coordinates, respectively, ψ is the inertial heading angle of the vehicle, vx is the longitudinal
velocity of the vehicle, l f is the distance of the front axle from the centre of gravity (C.G),
and lr is the distance of the rear axle from C.G. The control inputs are the steering angle δ f
and longitudinal acceleration ax. For a given nominal velocity vx,nom, the system in (12),
(13), (14), (15) can be expressed using an LTI system using the compact notation given
below:

ẋ = Ax + Bu (16)

where x , [ξ, y, vx, ψ]T ∈ X ⊆ R4 is the state vector and u , [δ f , ax]T ∈ U ⊆ R2 is the
input vector with X and U are polyhedron regions used as state and input constraints,
respectively. The structure of the system matrix A and input matrix B are as follows:


ξ̇
ẏ
v̇x
ψ̇

 =


0 0 1 0
0 0 0 vx,nom
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

A


ξ
y
vx
ψ

+


0 0

vx,nomlr
(lr+l f )

0

0 1
vx,nom
(lr+l f )

0


︸ ︷︷ ︸

B

[
δ
ax

]
(17)

where vx,nom is the nominal longitudinal velocity of the vehicle, which is chosen in the
same way as the initial speed of the vehicle [3]. Then system (16) is descretised with a
sampling time ts to obtain the linear time invariant discrete system shown below:

x(k + 1) = Adx(k) + Bdu(k) (18)

where Ad = eAts =


1 0 ts 0
0 1 0 vx,nomts
0 0 1 0
0 0 0 1

 and Bd = Bts =


0 0

vx,nomlrts
L 0
0 ts

vx,nomts
L 0


As the dynamics of the state ξ in system (17) depends only on v, it is possible to further

simplify the system for trajectory generation:

x̄(k + 1) = Ād x̄(k) + B̄du(k) (19)

where x̄ = [y, v, ψ]T is the system states, u = [δ f , ax] is the system inputs, and matrices
Ād and B̄d are obtained by extracting the appropriate rows and columns of Ad and Bd,
respectively, in (17).
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4. Selection of Weighting Matrix Q for MPC Design

In order to obtain the appropriate Q matrix, for designing an MPC-based reference
tracking controller, we have chosen Q = diag(Q11, Q22, Q33) for system (19) and the
optimal control gain K̄ with a fixed weighting factor R. For the reference tracking problem,
MPC can be recast as a DLQT problem as described in Section 2.2. Therefore, it can be
inferred that the weighting matrix Q obtained from the inverse DLQT problem will provide
almost the same controller gain for MPC, which is described in the following Theorem.

Theorem 1. MPC will ensure the reference tracking for system (19), guaranteeing the sub-
optimality of the DLQT control problem by satisfying (2)–(5) with QT

1 = Q1 ≥ 0, RT = R > 0
and PT

1 = P1 > 0, where Q1 = diag(Q, Q), R1 = diag(R, R) and the controller gains
K̂ = diag(K̄, K̄) with Q = diag(Q11, Q22, Q33), and P1 = diag(P, P) where P will be as (3)

and K̄ =

[
k1 k2 k3
k4 k5 k6

]
, respectively.

Proof. Equation (3) can be recast as a DLQR problem:

Q = P− ĀT
d PĀd + ĀT

d PB̄d(R + B̄T
d PB̄d)

−1B̄T
d PĀd (20)

where P = PT =

P11 P12 P13
P21 P22 P23
P31 P32 P33

 > 0, R =

[
R1 0
0 R2

]
> 0 and

Q = QT =

Q11 Q12 Q13
Q21 Q22 Q23
Q31 Q32 Q33

 ≥ 0. The corresponding control law (4) can be written as:

K̄ =

[
k1 k2 k3
k4 k5 k6

]
= (R + B̄T

d PB̄d)
−1B̄T

d PĀd (21)

Since the input B̄d matrix in (19) includes only three non-zero elements, the three
components of controller gains (k2, k4, k6) will be zero, and the rest of the gains will be non-
zero elements. The following section describes the system model required for designing
the weighting matrix within the MPC controller.

Now, using (19), (21) and the matrices (P,Q,R) in (20) yields the diagonal and off-
diagonal elements of the Q matrix as shown in (25)–(27) and

Q12 = −k2

[
P11

vlrts

L
+ P13

vts

L

]
− P12tsk5 (22)

Q13 = vtsP11 −
[
k3

[
P11

vlrts

L
+ P13

vts

L

]
+ P12tsk6

]
(23)

Q32 = vtsP12 −
[
[
vlr
L

ts(vtsP11 + P13)

+
v
L

ts(vtsP13 + P33)]k2 + (vtsP12 + P23)k5

] (24)

respectively. Since matrix Q is diagonal, all of the off-diagonal elements are equal to zero,
i.e., Q12 = Q13 = Q32 = 0. Therefore, using these conditions and gains k2 = k4 = k6 = 0,
the elements of the P matrix can be obtained, i.e., (22) yields (32). Using (32) in (23) yields
(29), and using (32) in (24) results in (33). Now, using the elements (32), (33), (29) and
the R, Bd matrices in (21), Equations (34)–(36) will hold. Finally, by solving (34)–(36),
Equations (28), (30) and (31) can be obtained. It is noted that the gain matrix K̄ needs to
be specified such that the closed-loop poles of the system (18) would be inside the unit
circle. In this paper, Ackerman’s pole placement formula is used to obtain the gains (K̄)
by specifying the closed-loop pole location inside the unit circle. This method solves the
solution of the Riccati equation to generate optimal weights using an LQR controller. The
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generated gains are then used in the MPC controller, which inherits all of the properties and
optimal solutions from the LQR controller when MPC constraints are not active. However,
when the constraints are active, the solution of the Riccati equation in LQR provides a
sub-optimal solution for MPC, as it satisfies the constraints of the Quadratic Programming
(QP) problem indirectly. In other words, the set of states x̄(k) where the matching occurs is
the polyhedron, where the unconstrained optimizer (i.e., unconstrained MPC, therefore
the DLQR controller) satisfies the constraints of the QP problem [6].

Q11 = (P11
vlr

lr + l f
ts + P13

v
lr + l f

ts)k1 (25)

Q22 = P22tsk5 (26)

Q33 = −vtsP13 + [
vlr

lr + l f
ts(vtsP11 + P13) +

v
lr + l f

ts(vtsP13 + P33)] (27)

P13 =
− R1k1vts

L [
k3vts

L +(1− vts
L )]

v4t4s k1
L3 [

vlr tsk3
L −lr−vts ](1−

lr k3
L )− v3t3s

L2 [(1− vlr tsk1
L )(1− vts

L )(1− lr k3
L )]+

v2 lr t2s
L (

lr k3
L −1)

v3t3s k1k3
L3

(28)

P11 = −
P13

v
L tsk3

vlr
L tsk3 − vts

(29)

P33 =
P11[

vts lr
L −

k1v2l2
r t2

s
L2 ]− k1R1 + P13[

vts
L −

v2lrt2
s k1

L2 ]

k1v2ts2

L2

(30)

P22 =
R2k5

ts− ts2k5
(31)

P12 = 0 (32)

P23 = 0 (33)

k1 =
P11vlrts

L + P13vts
L

R1 +
v2l2

r t2
s P11

L2 +
[

P13vlr ts
L +

P33vts
L ]vts

L

(34)

k3 =
P11v2lrts

L + P13
[vtsP13+P33]vts

L

R1 +
P11v2t2

s
L2 +

[
P13vts

L +
P33vts

L ]vts
L

(35)

k5 =
P22ts

R2 + P22t2
s

(36)

k2 = k4 = k6 = 0 (37)

5. Constraint Design

In this section, the mathematical framework for computing the collision avoidance
constraints that are used to plan trajectories on curved roads is presented. In the absence of
traffic vehicles, a convex region is designed to ensure that the planned vehicle trajectories
remain within the boundaries of the road. On the other hand, in the presence of obstacles,
a convex region is designed to ensure that the planned trajectories remain within the road
boundaries and maintain a safe distance from the obstacle. A detailed explanation of the
aforementioned constraints designs is presented in the following subsections.

5.1. Road Boundary Constraints

Using the edges of a curved road as constraints within the MPC framework re-
sults in non-convex constraints, which is not suitable for a Quadratic Programming (QP)
framework [29]. Consequently, boundary constraints are designed by assuming that the
road segment in the immediate vicinity of the subject vehicle is part of a straight road
(Figure 1). The edges of the virtual straight road are obtained by calculating the points
P1 and P2 in Figure 1. These virtual straight lines can be constructed using the generated
points P1 and P2, followed by the slope equal to the heading angle of the upper and lower
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road boundaries. Moreover, the equation of these lines can be formulated in the form of
linear inequality constraints, which can ensure that the planned trajectories lie within the
edges of this virtual road. The point P1 is located at the intersection of the left (outer) road
edge with an imaginary line passing through the subject vehicle’s centre of gravity (C.G)
and perpendicular to the subject vehicle’s longitudinal axis. The equations of the outer
lane boundary and the intersected line are:

youter = f (xouter) (38)

aouterξ + boutery + couter = 0 (39)

where (38) is the equation of the outer lane boundary, (39) is the equation of the intersected
line perpendicular to the outer lane boundary, and the parameters aouter, bouter and couter in
Equation (39) are the coefficients of the intersected line. The line passing through P1 with a
slope equal to the reference path heading angle ψre f forms the outer edge (left line) of the
virtual straight road (blue line in Figure 1) with the following equation:

mouterξ − y + P1y −mouterP1x < 0 (40)

where mouter is the slope of the equation of the outer edge road and (P1x, P1y) are coordinate
positions of point P1. From Equation (12) it is evident that the evolution of ξ depends on
the longitudinal velocity of the vehicle. Therefore, the predicted longitudinal position ξ can
be estimated using the initial position ξ0 and the predicted velocity for the entire prediction
horizon Np using the equation bellow:

ξ̄(j) =
[

ξ0 +
j

∑
i=1

(v̄(i) · ts)

]
; j = 1, 2, ..., Np (41)

ξ0 is the current longitudinal position of the subject vehicle and v̄ is the predicted
nominal velocity. The equation above is substituted into Equation (40) to formulate the
generalized constraint equation for Np; different constraint equations given below:

mouter

[
ξ0 +

j

∑
i=1

(v̄(i) · ts)

]
− y(j)−mouterP1x + P1y < 0 (42)

where the predicted nominal velocity and predicted lateral position can be obtained from
the prediction model in MPC. For different values of j in (41), Equation (42) represents the
outer edge of the virtual straight road constraint, which solely depends on two states of the
vehicle (longitudinal velocity and lateral position of the vehicle). Similarly, the line passing
through P2 with a slope ψre f forms the right (inner) edge of the virtual straight road. The
inner edge of the virtual straight road can be expressed as:

yinner = f (xinner) (43)

ainnerξ + binnery + cinner = 0 (44)

where (43) is the equation of the inner lane boundary and (39) is the intersected line
perpendicular to the inner lane boundary. Consequently, in the same way as the upper
bound, the lower hyperplane can be defined as:

minner

[
ξ0 +

j

∑
i=1

(v̄(i) · ts)

]
− y(j)−minnerP4x + P4y > 0 (45)
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ψ

ξ

y

P1

P2

X

Y

Figure 1. The hyperplanes (blue lines) indicate the constraints for optimization. The points on the
borders are the projection of the centre line of the subject vehicle on the borders.

To decouple the orientation of the virtual straight road with the subject vehicle’s
orientation, the edges are parameterised using ψre f . It is noted that, this technique is
suitable to be implemented for different range of curvature of the road. Moreover, it can be
ensured that the optimization problem in MPC will always be feasible, and guarantee the
convexity on the curve road.

5.2. Collision Avoidance Constraints

As mentioned above the collision avoidance constraints are designed to ensure the
subject vehicle evades the obstacle vehicle without any collisions. In literature it is com-
mon to design ellipsoids/rectangles around the obstacle to obtain the collision avoidance
constraints [30,31]. However, these techniques result in non-convex optimisation problem
which limits the uniqueness and feasibility of the solution of the optimisation. In this
paper, the collision avoidance constraints are generated using two lines entitled as forward
collision avoidance constraints (FCC) and rear collision avoidance constraints (RCC) as
shown in Figure 2. This technique is inspired from [24], where the collision avoidance
constraints are used for only straight driving conditions. The purpose of generating the
FCC is to prevent front end collision while performing a collision-free lane change and the
purpose of the RCC is to prevent rear end collision while returning to the original lane.
The activation of FCC is when the subject vehicle is behind the lead vehicle while RCC
is activated when the subject vehicle crosses the lead vehicle. In this framework, three
points (P3, P4, P5) are required to generate collision avoidance constraints. These points can
be calculated by intersecting virtual longitudinal and lateral axis of the lead vehicle (grey
and yellow lines respectively) with a circle centred at the lead vehicle’s geometrical center,
which provides the location of the points P3, P4, and P5. The following subsections explain
the procedure for generating collision avoidance constraints.

Y

X

ψL

xL

Lx

W

P4

P3

P5yL

Figure 2. Schematic to construct forward and rear collision avoidance constraints line. Note: ψL is
lead vehicle orientation, Lx and W indicate the safety distance from the lead vehicle.
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5.2.1. Forward Collision Avoidance Constraints

The virtual line on the road segment representing FCC is the line that passes through
the points (P3x, P3y) and (P4x, P4y) in Figure 3. Points (P3x, P3y) are obtained as a result of
the intersection of the longitudinal axis of the lead vehicle (grey line in Figure 2):

aLonxL + bLonyL + cLon = 0 (46)

with a circle centred at the the lead vehicle geometrical centre and radius of Lx + lrL:

(x− xL)
2 + (y− yL)

2 = (Lx + lrL)
2 (47)

where Lx is the safety distance, which can be defined as Lx = vxt + Lc. The longitudinal
velocity of the subject vehicle expressed as vx, t is the desired time gap of the subject vehicle
when approaching the lead vehicle, and finally Lc is the lead vehicle length. Moreover, the
parameters lrL, aLon, bLon, cLon represent the distance of the centre of gravity of the vehicle
to the rear wheels and coefficients of the intersected line, respectively. It is noted that at
every time instant of MPC optimization, Lx is updated according to the current value of
the subject vehicle velocity (vx). For generating FCC, another set of points is required
(P4x, P4y). These points are generated by means of the intersection of the lateral axis of the
lead vehicle (yellow line in Figure 2) with a circle of radius W:

(x− xL)
2 + (y− yL)

2 = W2 (48)

the parameter W = 1
2 Wc + WL, where Wc is the width of the subject vehicle and WL is the

lane width plus the distance from the subject vehicle to the centre line of the road [24].
After defining two sets of points, it would be trivial to find the equation of the line for
forward collision avoidance constraints, where the final equation will be:

mFCC · ts︸ ︷︷ ︸
aFCC

[ j

∑
i=1

(v̄(i))
]
+ ( −1︸︷︷︸

bFCC

)y + P1y −mFCCP1x + mFCC · ξ0︸ ︷︷ ︸
cFCC

> 0 (49)

where mFCC is the slope of the forward collision avoidance constraint. The generated FCC
divides the (x, y) plane into two regions. Region 1: aFCCx + bFCCy + cFCC > 0, which is
the safe region, and Region 2: aFCCx + bFCCy + cFCC < 0, which represents the unsafe
region. FCC forces the vehicle to be in a safe region while performing a lane change on a
curved/straight road. Moreover, (49) represents a linear affine constraint approximation,
which can be formulated in QP format.

Y

X

W

Lx

ψL

(P3x, P3y)

(P4x, P4y)

FCC

(xL, yL)

(ξ, y)

Figure 3. Schematic used to calculate the FCC. Note: orange car—subject vehicle; green car—lead
vehicle; red line—RCC; Lx and W indicate the safety distance from the lead vehicle.
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5.2.2. Rear Collision Avoidance Constraints

Similar to FCC, RCC can be generated by following similar steps. The procedure for
calculating the intersection point P3 is identical to FCC, thus resulting in generating the
equation of the RCC line (Figure 4):

mRCC · ts︸ ︷︷ ︸
aRCC

[ j

∑
i=1

(v̄(i))
]
+ ( −1︸︷︷︸

bRCC

)y + P3y −mRCCP3x + mRCC · ξ0︸ ︷︷ ︸
cRCC

< 0 (50)

It is noteworthy that the aforementioned collision avoidance constraints can be
adopted for the scenarios where (i) the subject vehicle needs to change a lane while
performing the collision avoidance manoeuvre, and (ii) where more traffic members are
present on the road that require multiple hyperplanes.

Remarks

• One of the benefits of the proposed approach lies in the fact that there is only one
parameter to be tuned (desired time gap) and the rest of the parameters are based on
the geometry of the lead vehicle.

• The design of the collision avoidance constrains is based on basic mathematical
operation; therefore the aforementioned constraints for each traffic vehicle can be
generated without any major computation overhead. Thus, it is suitable for real time
implementation.

• Reducing a state dimension in the system model helps in bringing down the computa-
tion requirement for solving the optimisation problem.

It is noted that by using boundary constraints and the appropriate FCC/RCC based
constraints, a convex region representing safe zones on a curved road is generated that
forces MPC to plan a safe and collision-free trajectory on the road.

X

Y

RCC

LxW

(P4x, P4y) (P5x, P5y)

ψL

(xL, yL)

(ξ, y)

Figure 4. Schematic used to calculate RCC. Note: orange car—subject vehicle; green car—lead
vehicle; Lx and W indicate the safety distance from the lead vehicle.

6. Trajectory Planning Controller

In general, autonomous highway driving involves motion planning and control of
a subject vehicle in order to maintain the velocity and keep the vehicle away from lane
boundaries while avoiding possible collisions. The choice of manoeuvre to perform is the
result of the decision-making process with the objective of following the desired trajectory
xre f , yre f (Section 6.1) while respecting physical and design limitations of the subject vehicle.
In this section, using the definition of the linear model in (16) and linear system constraints
in Figure 5, a constrained linear quadratic optimal control problem is formulated over a
prediction horizon Np.
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LQR weight transformation

(22)− (24)

Q

Trajectory planner
(51)− (52)

Vehicle
actuation

ξ∗, y∗, v∗x, ψ
∗

ξ, y, vx, ψ

Reference
generator

ψref

yref

LV states

Figure 5. Closed-loop framework for collision avoidance Note: LV indicates lead vehicle.

6.1. Reference Trajectory Generator

The reference trajectory generator provides the longitudinal position xre f (s) and lateral
positions yre f (s) as well as the orientation (ψre f (s)) of the road for the vehicle to follow.
The generated paths are parametrized by curvature as a function of the distance s along
the path. The equation of curvature can be formulated as follows:

κ =
ẋre f ÿre f − ẏre f ẍre f

(ẋ2
re f + ẏ2

re f )
3
2

(51)

The reference trajectories are formulated using the clothoids method, which is ex-
pressed by Fresnel integrals [32,33]. The trajectories are parametrized by curvature κ as a
function of distance s along the path as follows:

xre f (s) =
∫ s

0
cos ψre f (x)dx (52)

yre f (s) =
∫ s

0
sin ψre f (x)dx (53)

where (52) and (53) are constructed using the polynomial integration method of the Fresnel
function applied to clothoid [34], and ψre f is calculated as follows:

ψre f (s) = 2 tan−1(
yre f ,n − yre f ,n−1

xre f ,n − xre f ,n−1
) (54)

where (xre f ,n), yre f ,n, n = 1...N are the sequence of N, the sampled points on the
trajectory [35].

6.2. Trajectory Planning: MPC

For the trajectory planning using linear MPC, the system states and inputs are sub-
jected to the following state and input constraints:

x̄ ∈ X̄ , u ∈ U (55)

where X̄ = {x̄ ∈ R3 : x̄min≤x≤x̄max} ⊂ R3 and U = {u ∈ R2 : umin≤u≤umax} ⊂ R2

are states and inputs of the polytope admissible regions (subscripts min and max are the
minimum and maximum of the corresponding values). The following cost function is
formulated:

J =
Np−1

∑
k=0

[‖ x̄re f − x̄t+k|t ‖2
Q + ‖ ut+k|t ‖2

R]

+ ‖ x̄re f − x̄t+N|t ‖2
P

(56)

where x̄t+k|t is the predicted state trajectory at time t + k obtained by applying the control
sequence U∗t = [uT

t , . . . , uT
t+N−1]

T to the system (18), starting from an initial state of ξt|t.



Sensors 2021, 21, 4296 13 of 21

The parameter Np ∈ N+ is the prediction horizon, whereas Q ∈ R3×3, P ∈ R3×3 and
R ∈ R2×2 are weighting matrices. The performance index in (56) consists of the stage
cost, input cost and the terminal cost, respectively. The desired state x̄re f represents the
reference state for the subject vehicle and is defined as x̄re f = [yre f , vxre f , ψre f ]

T . It is noted
that in this paper, vxre f is taken as the initial value of the subject vehicle’s velocity. The
following constrained optimization problem, for each sampling time, is formulated as:

min
Ut
J (ut; x̄(t), x̄re f ) (57)

subject to (18), (42), (45), (49), (50), (55)
In this framework, at every time step, the problem (57), under the constraints (18),

(42), (45), (49), (50), (55) are calculated based on the current state x(t), over a shifted time
horizon. The optimal control input is calculated as u∗(x̄(t)) = U∗t (0), which is a solution
to the problem (57). As the sets X̄ and U are convex, then the MPC problem (57) is solved
as a standard QP optimisation problem. All of the steps required to design the proposed
MPC controller can be seen in Algorithm 1, and the closed-loop form is illustrated in
Figure 5. The following demonstrates the numerical results to show the efficacy of the
proposed control strategy.

Algorithm 1 Trajectory planning

1: initialize:
2: vdes ← desired longitudinal velocity from user
3: procedure GENERATE TRAJECTORY
4: top:
5: Use Equation (3) to create matrix Q
6: K̄ ← Ackerman pole placement formula as (4) and calculate K̄
7: P← Obtained K̄ in (28)–(37) and generate P
8: Q← Obtained P and substitute (19) in (25)–(27) to calculate Q
9: loop:

10: x̄re f ←generate target states as
11: x̄ ←current state vector
12: getRoadBoundaryConstraints as (38) (39)–(45)
13: getCollisionAvoidanceConstraints as (46)–(50)
14: u∗ ← solve MPC with generated Q from top with fixed R
15: x∗ ← Apply optimal input u(k) as (12)–(15)
16: if user request to change vdes then
17: goto initialize.
18: else
19: goto loop.

7. Numerical Results

In this section, a simulation environment is used to investigate the ability of the
proposed trajectory planning architecture to perform a collision avoidance manoeuvre. The
scenarios used to perform this are: (1) an obstacle avoidance when the subject vehicle (SV)
is 300 m behind the stationary lead vehicle (LV), and travelling at 80 km h−1 on a two-lane
one-way curved road with a radius of 750 m, (2) a collision avoidance manoeuvre with
a moving obstacle under different road surface friction conditions. It is noted that the
chosen curved road is approximately equal to the tightest corner allowed in highways [36].
The simulation results for the proposed closed-loop architecture were obtained using the
MATLAB IPG CarMaker co-simulation environment.

Moreover, it was assumed that the dimension of the road, lane limits and LVs states are
available to the SV, and the initialisation parameters are tabulated in Table 1. Additionally,
to evaluate the efficacy of the proposed algorithm, MPC was initialized with a prediction
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horizon equal to 14 and low time gap (t = 0.8) when designing the constraints for imitating
more extreme manoeuvres to perform a collision avoidance scenario.

The discrete linear quadratic tracker (6) is used to obtain the proper weighting matrix
Q in MPC to perform the collision avoidance manoeuvre. The value of the generated
matrix Q corresponding to the proposed MPC design is Q = diag(1.53, 0.023, 34.06). It is
noted that the simulation results relating to the proposed MPC design was compared with
a generic MPC controller where the values of the Q matrix have been generated through
a trial and error procedure (which will be referred to as manual tuning for the rest of the
paper) to demonstrate the superiority of the proposed control algorithm.

It is noted that the choice of manual tuning of Qmanual was based on trial and error
and the result of many simulations in order to select a set of suitable values to perform
trajectory planning with Qmanual = diag(5, 1e−1, 230). Moreover, in both cases the value of
the weighting matrix R was equally chosen be to R = diag(10, 9× 10−2).

Table 1. Design Parameters.

Symbols Value Value

Road Geometry

Nlanes 2 -
wlane 5 m

Subject Vehicle

l f 1.144 m
lr 1.2060 m

Lead Vehicle

lLv,l 4.1 m
lLv,w 1.7 m

Controller Parameters

ts 0.1 s
Np 14 -

closed-loop poles (5e−1, 0.6, 0.95) -

System

X −[500, −11.1,1.5] ≤ x ≤ [500,27.7778,1.5] -
U −[0.0698, 3] ≤ u ≤ [0.0698,3] -

7.1. Collision Avoidance with Static Obstacle

The result of the obstacle avoidance scenario with the assumption of a high friction
surface, using the proposed MPC design, is demonstrated in Figure 6. This figure shows
the actual trajectory of the vehicle where the SV starts to change the lane 30 m from the
lead vehicle and converges to the original lane shortly after a collision-free path is detected,
while staying within the road boundaries. Moreover, it can be seen that the vehicle respects
the collision avoidance constraints by maintaining the safety margins from the lead vehicle
during the collision avoidance manoeuvre for all sub-manoeuvres. The result in Figure 6
indicates that the proposed structure generated a consistent trajectory with no overshoot
while maintaining the safety margins to the lead vehicle during both lane changes.

For further analysis of the performance of the proposed collision avoidance system,
the evolution of the states and control inputs of the SV over time is shown in Figure 7.
A particular feature of the collision avoidance manoeuvre is that the vehicle starts the
manoeuvre close to 11 s where the steering wheel angle for the lateral motion shows a
smooth response without having high-frequency oscillation. However, steering action after
returning to the original lane is more aggressive and the activation of the input constraints
can be observed in this figure. This action suggests that for a successful collision avoidance
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and accurate reference tracking, large steering action is required on the reverse behaviour,
where the SV attempts returning to the original lane. Another key point is the two states
of the SV, heading-angle and longitudinal velocity, which demonstrate smooth evolution
without having any oscillation during either of the lane changes while maintaining the
SV’s pose directionality. It can be seen that the velocity of the vehicle decreases rapidly
while the first lane change manoeuvre is being performed. The reverse behaviour (i.e.,
increasing the velocity while performing the lane change) is visible right after evading the
lead vehicle. This is reminiscent of a real-world collision avoidance manoeuvre, where
the vehicle decelerate when an obstacle is detected to prevent a possible collision, and
accelerates after evading the obstacle, which shows the efficacy of the proposed control
structure.

Figure 6. Simulation result: SV and LV (red vehicle) trajectories. Note: FCC and RCC collision
avoidance constraints represented as blue dashed lines to provide a safe region between SV and LV.

Figure 7. Simulation results: Steering wheel, heading angle (red line indicates the reference heading
angle), longitudinal velocity, longitudinal acceleration, lateral acceleration, and yaw-rate for a
collision avoidance maneuver.

Moreover, the longitudinal acceleration also shows a smooth profile without any oscil-
lation during deceleration and acceleration for both of the lane changes while respecting
the system constraints. Similarly, the bottom subplot in Figure 7 demonstrates the lateral
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acceleration and yaw-rate of the SV, which shows a smooth profile without having high
oscillation for both of the lane changes. It is noted that the absolute maximum value of
lateral acceleration is 2.3 m s−2, which demonstrates that the vehicle does not reach its
limits of handling. This can be observed by investigating the yaw-rate profile, which the
maximum absolute value reaches at about 0.18 rad s−1, indicating that the vehicle operates
in the linear region of the tire.

To show the need for the proposed MPC design to perform the collision avoidance
manoeuvre, we compared the performance of the proposed framework with the MPC
design using manual tuning. Figure 8 demonstrates the lateral and heading angle errors for
both the analytical tuning and manual tuning of the MPC. In this analysis, the lateral error
ey is defined as the lateral distance of the centre of gravity of the vehicle (subject vehicle)
from the desired path and eψ is defined as the difference between the actual orientation of
the vehicle and the desired heading angle, which are defined as [37]:

ey = (yCG − yre f ) cos ψre f − (xCG − xre f ) sin ψre f (58a)

eψ = ψ− ψre f (58b)

The top figure shows the heading angle error, which shows similar behaviour for both
the proposed MPC design and manual tuning. It can be seen that the directionality of
that vehicle is maintained during the collision avoidance manoeuvre for both cases with
minimum discrepancy with the maximum error of 0.15 rad. The bottom figure represents
the lateral displacement error for the collision avoidance manoeuvre. The main difference
can be observed after performing the collision avoidance manoeuvre, where the error in
the analytical tuning strategy almost converges to zero, whereas the conventional tuning
reaches about 30 cm. This figure confirms that the proposed strategy is able to success-
fully maintain the directionality of the vehicle during the collision avoidance manoeuvre
while performing better reference tracking with minimum tracking error compared to
conventional trial and error tuning.

For further illustration of the effectiveness of the proposed MPC design, we compared
the performance index value of the proposed technique with the MPC design using manual
tuning to investigate the level of optimality between the two procedures. This can be seen
in Figure 9, where the performance index (J ) indicates the minimized value of the cost
function in (56). It can be inferred that the proposed MPC design gives an improvement in
J of more than 70% over the manual tuning between 11 s and 15 s, where the performance
index is at its maximum, and for the rest of the manoeuvre the performance index for
the analytical tuning is still significantly improved compared to the trial and error tuning.
For the simulation purposes, the performance index for both methods was analysed for
the straight driving scenario. This analysis can be seen in Figure 10, where the perfor-
mance index is significantly enhanced by the proposed MPC design, which resulted in an
improvement close to 80% compared to manual tuning.

7.2. Collision Avoidance with Moving Obstacle and Different Surface Friction Conditions

In this section, the efficacy of the proposed algorithm is examined under different
values of surface friction. Moreover, the collision avoidance manoeuvre is performed with
the presence of a moving vehicle, which resembles a real world driving scenario in the
simulation environment. The SV is traveling at 80 km h−1 located 300 m behind the LV,
and the LV is traveling at 40 km h−1 under different values of surface friction conditions
ranging from 0.3 to 0.5. Then the system plans the trajectory at each sampling time while
applying FCC and RCC constraints based on the position of the subject vehicle and the
moving vehicle. Figure 11 illustrates the collision avoidance simulation with an assumption
of the lowest friction surface condition (µ = 0.3).
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Figure 8. Lateral error ey and heading error eψ for analytical and manual tuning approach.

Figure 9. Performance index for both automatic tuning and manual tuning on curved driving
condition.
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Figure 10. Performance index for both automatic tuning and manual tuning on straight driving
condition.

Figure 11. Simulation results: Steering wheel, heading angle (red line indicates the reference heading
angle), longitudinal velocity, longitudinal acceleration, lateral acceleration, and yaw-rate for a
collision avoidance manoeuvre.

It is shown that while the SV vehicle was able to smoothly overtake the moving LV
vehicle, it experienced some overshooting when merging back to the original lane. This
is due to the sudden and harsh steering actuation of the SV vehicle after performing the
first lane change from the LV vehicle. Nevertheless, this amount of actuation is essential in
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order to maintain the directionality of the vehicle under low surface friction conditions.
The results shown in Figure 11 also illustrate that the maximum lateral acceleration reached
about 3.5 m s−2, where the value indicates that the vehicle operates in the linear region of
the tire and does not reach its limit of handling. However, this simulation demonstrated
some oscillations as the SV vehicle steered back to the original lane, which can be seen in
the yaw-rate profile, where its value reached about 0.26 rad s−1. Overall, the simulation
results indicate that the vehicle respected the collision avoidance constraints and was able
to safely converge back to the original lane and follow the desired trajectory on a curved
path.

Finally, a parametric analysis was carried out to verify the effectiveness of the proposed
framework after performing the collision avoidance manoeuvre. In this analysis, the
maximum error between lateral displacement (Figure 12) from the trajectory planner and
actual vehicle response was tested in order to investigate the tracking capability of the
algorithm under different road surface conditions. It is noted that in this analysis the
comparison is made between the proposed analytical MPC and generic MPC controller.
The lateral displacement error (ey) for analytical tuning increases gradually when lowering
the surface friction. This figure indicates a peak deviation of 0.05 m at a 0.3 surface friction,
which shows major superiority over manual tuning, which reaches about 0.44 m with
the same friction value. This trend is similar for the rest of the friction values, which
demonstrates the effectiveness of the proposed control algorithm to improve vehicle
handling while performing the collision avoidance manoeuvre.

Figure 12. Lateral displacement error over different friction surfaces.

8. Conclusions

In this paper, we have presented an MPC-based collision avoidance framework by
means of an analytical tuning methodology. The main contribution of this paper lies in the
derivation of the transformation of a discrete time LQR weighting matrix Q to generate
the MPC weighting matrix. The importance of analytical tuning was investigated next,
with results showing that it not only improves the tracking error, but can also minimize the
performance index compared to manual tuning of MPC. Moreover, the analytical tuning
design was then tested under various friction conditions to investigate the efficacy of the
proposed algorithm. The results show that while the manual tuning of MPC is effective,
the analytical tuning can achieve better performance that is close to the optimal solution
while performing a collision avoidance manoeuvre. The numerical results obtained in the
Simulink/IPG Carmaker co-simulation environment indicated that the proposed technique
fulfills the safety considerations and generates a feasible and collision-free trajectory on
a curved road. This work offers a number of suggestions for future research directions.
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(1) The weighting matrix calculation was based on the gain matrix K̄ in (4), which needed
to be specified such that the closed-loop poles remain inside of the unit circle. However,
the selection of the poles was chosen using Ackerman’s pole placement method. This
approach can be extended by means of reinforcement learning in future research. In this
way, the position of the poles inside of the unit circle can be adjusted depending on different
operating conditions, such as variations in surface friction. (2) A path tracking controller
can be integrated as a lower-level controller to capture the vehicle dynamics to improve
the stability and handling of the vehicle in extreme driving conditions.
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