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Abstract  14 

Kinetoplastid parasites cause diverse neglected diseases in humans and livestock, with an urgent 15 

need for new treatments. Survival of kinetoplastids depends on their uniquely structured 16 

mitochondrial genome (kDNA), the eponymous kinetoplast. Here we report development of a 17 

high-content screen for pharmacologically induced kDNA loss, based on specific staining of 18 

parasites and automated image analysis. As proof-of-concept we screened a diverse set of 19 

~14,000 small molecules and exemplify a validated hit as a novel kDNA-targeting compound. 20 
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 23 

Introduction, methods, results and discussion combined 24 

Kinetoplastids cause diverse, life-threatening diseases in humans and their livestock, 25 

namely African sleeping sickness (1), Chagas disease (2) and the leishmaniases (3) in the former 26 

and animal trypanosomiasis in the latter (4). These diseases particularly affect populations in 27 

low- and middle-income countries in many parts of the world. Currently available drugs are 28 

unsatisfactory because they cause severe, and sometimes lethal, side-effects, they are difficult to 29 

administer, and resistance continues to emerge, necessitating the development of novel anti-30 

kinetoplastid therapies (5, 6).  31 

Although kinetoplastids have evolved distinct methods of infection and host immune 32 

evasion, they all share a unique biological feature: the organisation of their mitochondrial DNA 33 

(mtDNA, or kDNA in these organisms) in a peculiar structure that gave these organisms their 34 

name: the kinetoplast (7). The kDNA is extremely complex, containing hundreds of different 35 

classes of ‘guide RNA’-encoding minicircles of variable copy number which are essential for 36 

post-transcriptional RNA editing in these organisms (8–10). Together with dozens of 37 

maxicircles, which are the equivalent of mtDNA in other eukaryotes and encode subunits of the 38 

respiratory chain, F1FO-ATP synthase and mitoribosomes, thousands of minicircles form an 39 

interlinked network structure. The kDNA is thus intrinsically different from mammalian mtDNA, 40 

is essential for parasite survival (11, 12) and is a validated target for some current anti-41 
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 3 

trypanosomatid therapies (13–16), making it an attractive target for discovery of new, improved 42 

drugs (17, 18). 43 

Uniquely among kinetoplastids, the sole function of kDNA in bloodstream form T. brucei 44 

is the production of subunit a of the F1FO-ATPase (19), which in this stage of the parasite’s life 45 

cycle operates in reverse to maintain the mitochondrial membrane potential (20). The respiratory 46 

chain and oxidative phosphorylation - classical mitochondrial functions - are not functional in 47 

bloodstream stage T. brucei. Facilitated by this limited function, kDNA-independent mutants 48 

have evolved in T. brucei subspecies that cause trypanosomiasis in animals (19, 21, 22). 49 

Typically, kDNA independence in T. brucei is caused by a mutation in the nuclearly encoded 50 

subunit γ of the mitochondrial F1FO-ATPase (19). Importantly, kDNA independence has never 51 

been reported for those kinetoplastid parasites of humans and livestock that are currently 52 

responsible for by far the greatest disease and economic burden, i.e. Leishmania spp., T. cruzi, T. 53 

vivax and T. congolense. This remains to be the case despite decades of use of ethidium bromide 54 

(EtBr) and isometamidium chloride (phenanthridine compounds that strongly affect kDNA) for 55 

the treatment of African animal trypanosomiasis (14–16, 23–25). Loss of kDNA can apparently 56 

not be compensated for in these species, either because additional kDNA-encoded genes are 57 

essential (clearly the case for Leishmania and T. cruzi, which depend on a functional respiratory 58 

chain throughout their life cycle (26)), or because the mutations in F1FO-ATPase γ that can 59 

compensate for loss of kDNA in bloodstream T. brucei are not functional in these species. Novel 60 

anti-trypanosomatid therapies based on inhibition of kDNA maintenance are therefore attractive 61 

(17, 18). 62 

Drug discovery efforts are typically either phenotypic or target-based (27, 28). While 63 

target-based campaigns have dominated efforts for decades, they often fail to produce new 64 
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 4 

therapeutic molecules due to the challenge of translating promising results from reductionist 65 

biochemical and cellular assays into robust efficacy in more complex in vivo models (29). In 66 

contrast, phenotypic screens are often more time-consuming and expensive, and the mode(s) of 67 

action behind any identified hits are usually unknown (29). However, both approaches are 68 

complimentary and can be used synergistically to fast-track the identification of target-specific 69 

compounds that can enter the cell and reach the associated intracellular organelles to induce the 70 

desired effect. This paper describes the design, implementation and validation of a phenotypic 71 

high-content screen (HCS) with automated image analysis for the discovery of hit compounds 72 

that specifically target kDNA maintenance, using Trypanosoma brucei brucei (hereafter referred 73 

to as T. brucei), a causative agent of animal trypanosomiasis, as a model system.  74 

HTS design and image analysis. To enable the discovery of target-specific compounds, 75 

our phenotypic screen uses a genetically engineered kDNA-independent bloodstream form T. 76 

brucei cell line which tolerates kDNA loss due to an L262P mutation in the nuclearly encoded 77 

subunit γ of the mitochondrial F1FO-ATPase (19). Non-specific cytocidal or cytostatic 78 

compounds, or more general inhibitors of mitochondrial function, which would be more likely to 79 

cause side effects in the host, can readily be identified in this genetic background.  80 

Our HCS has been optimized for use in a high throughput 384-well format (V-bottom, 81 

Greiner-Bio, #781280), using a Biomek FX liquid handler (Beckman) to dilute all compounds 82 

and subsequently adding L262P T. brucei cells using a VIAFLO multi-well plate liquid handler 83 

(Integra) in a class II biosafety cabinet. Briefly, 2.5 μl compound (at a concentration of 200 μM 84 

in culture medium with 2% dimethyl sulfoxide (DMSO)) were added to each well. Subsequently, 85 

47.5 μl of parasite culture in complete HMI-9 medium (30), supplemented with 20% (v/v) fetal 86 

calf serum, were seeded at 50 cells per well, giving a total volume of 50 μl with 1 x 10
3
 cells/ml 87 
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 5 

and a final compound concentration of 10 μM. Plates were incubated in an atmosphere of 5% 88 

CO2 at 37°C for 4 days (31). Following incubation, cells were stained with the cytoplasmic 89 

viability stain, 5(6)-carboxyfluorescein diacetate succinimidyl ester (CFDA-SE; CAS: 150347-90 

59-4) at 10 M for 15 mins at 37°C and, consecutively and without any washing steps, with 91 

Hoechst 33342 nucleic acid stain at 1 g/mL for 5 minutes at 37°C. Subsequently, cells were 92 

fixed with 2% (w/v; final concentration) formaldehyde, with vigorous mixing to avoid clumped 93 

cells, a step that is crucial for subsequent image analysis (Fig. 1A). After 24 h fixation at 4°C, 94 

cells were washed 3 times with phosphate-buffered saline by centrifuging plates at 1,000 x g for 95 

1 min to remove any remaining dye. Loss of cells during washing steps was minimised by using 96 

V-bottom plates and carefully adjusting fixed pipette positions for the Biomek FX liquid handler. 97 

Cells were then transferred into 384-well F-bottom plates for imaging (Greiner-Bio, #781986). 98 

The plates were centrifuged at 1,000 x g for 5 min prior to imaging acquisition at 40x 99 

magnification using an automated ImageXpress-XLS micro (Molecular Devices) HCS system. 100 

Each well was imaged across four different fields of view using DAPI (for Hoechst 33342 stain) 101 

and FITC (for CFDA-SE) filter sets. Image analysis was performed using the CellProfiler 3.1.9 102 

software (32). Briefly, nuclear DNA and kDNA were identified based on area size of Hoechst 103 

33342 positive objects, and viable cells were identified using the FITC channel (Fig. 1B, Fig. 104 

S1).  105 

HCS performance validation and pilot screen. Plates (n=2) were prepared as above, 106 

with even-numbered columns containing a negative control (0.1% DMSO) and odd-numbered 107 

columns containing 10 nM EtBr (in 0.1% (v/v) DMSO), a known inhibitor of kDNA 108 

maintenance, as a positive control (15). A ‘robust’ Z’ assay performance score of 0.725 was 109 

calculated (33, 34), indicating excellent performance (35). 110 
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 6 

To test the ability of our HCS to identify novel inhibitors of kDNA maintenance, 13,486 111 

compounds were screened, from a diverse set of chemical libraries: Prestwick Chemical Library 112 

(Prestwick Chemical; 1,280 compounds), Screen-Well PKE library (Enzo Biochem; consisting 113 

of protease (53), kinase (80) and epigenetic (43) inhibitors), and BioAscent 12K diverse 114 

chemical libraries (BioAscent Discovery Ltd; 11,970 compounds). The Prestwick Chemical 115 

library was designed to represent broad pharmacological diversity of all FDA-approved small 116 

molecule drug classes and consists of drugs with known pharmacology, toxicology and 117 

pharmacokinetic properties to support repurposing of existing drugs. The BioAscent 12K 118 

compound library is a subset representing the chemical diversity of a 125,000-compound parent 119 

library, enabling subsequent expansion of screening hits to explore structure-activity 120 

relationships. All compounds were screened at a final concentration of 10 M in ‘0.1% (v/v) 121 

DMSO in a 384-well format, where the first four columns had alternating positive (EtBr) and 122 

negative (DMSO) controls. Additionally, the PKE and Prestwick Chemical libraries were also 123 

screened at a lower final concentration of 1 M because both libraries have been reported to lead 124 

to the identification of potent inhibitors in different phenotypic screening assays at this lower 125 

dose which may better reflect on-target rather than off-target activity observed at higher doses 126 

(36, 37). The screens were performed in 5 batches (48 plates in total), with a ‘robust’ Z’ assay 127 

performance score (34) ranging from 0.63 to 0.9 between batches. The HCS identified 152 128 

compounds with a reduced ratio of kDNA per nucleus (Z-score < -2; Fig. 2 and Table S1). 129 

Separate results for nucleus and kDNA counts for all wells are shown in Fig. S2. 130 

Hit validation. For the top 50 compounds, based on ranking by kDNA/nucleus ratio 131 

(excluding all compounds that had less than 50 DNA objects per well) and a Z-score < -2 (Table 132 

S1), we manually reviewed the microscopy images for evidence of complete kDNA loss. Ten 133 
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 7 

candidates (Table S1) were cherry-picked for follow-up analysis based on consistently observed 134 

loss of kDNA from cells treated with these compounds and on their commercial availability. 135 

Purchased compounds were dissolved in DMSO, and their potency against wild type (WT) T. 136 

brucei cells was evaluated using an adapted 3-day Alamar Blue method (19). Only two 137 

compounds, (S)-propranolol hydrochloride and 1-(1-Adamantyl)-4-[(2-methoxy-4,5-138 

dimethylphenyl)sulfonyl]piperazine (AMDSP, BioAscent code BCC0052412) were sufficiently 139 

potent at the highest concentration that could be tested (due to limited solubility in water) to 140 

permit calculation of IC50 values for WT cells of 16-22 µM and 1.6-2.3 µM, respectively (95% 141 

confidence intervals, Table S1; the other 8 compounds did not significantly effect growth of WT 142 

cells in the Alamar Blue assay). Next, we assessed the specificity of these two compounds as 143 

inhibitor of kDNA maintenance. This specificity is indicated by the selectivity for killing of 144 

kDNA-dependent (‘WT’) and kDNA-independent (‘L262P’), but otherwise isogenic T. brucei 145 

cells. The most specific compound reported to date is EtBr, with a selectivity index of ~300 in 146 

the modified Alamar Blue assay (38). One the two compounds tested, AMDSP (Fig. 3A), 147 

reproducibly affected the viability of WT T. brucei cells at a lower concentration compared to 148 

L262P cells (Fig. 3B). The IC50 for WT cells was 1.9 M, while the IC50 for L262P cells was 149 

estimated to be in the range of 8 M (the value could not be determined more precisely due to 150 

poor compound solubility in DMSO at higher than 12.5 mM stock concentration). To investigate 151 

the time required for AMDSP to affect growth, we performed growth curves in WT and L262P 152 

cells at a final compound concentration of 12.5 M in 0.1% (v/v) DMSO (Fig. 3C and 3D). After 153 

3 days of AMDSP treatment, growth of WT cells was much more severely inhibited compared to 154 

L262P cells. No growth was observed between days 3 and 4 for one of the WT replicates (Fig. 155 

3C, open red circles). The cumulative growth curve for the other replicate indicated a slight 156 
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 8 

increase in cell numbers between days 3 and 4 (Fig. 3C, filled red circles). However, by 157 

microscopy, we found no intact and motile WT cells after 4 days for either WT replicate, even 158 

after concentration of the culture by centrifugation, while L262P cells survived. Hence, it is more 159 

likely that the apparent increase for one of the WT replicates was caused by counting of cell 160 

debris in the Coulter machine. Moreover, we observed a substantial increase in the proportion of 161 

cells with complete loss of kDNA (0K1N cells) in WT and L262P cells after 2 or 3 days of 162 

exposure to 12.5 µM AMDSP (Fig. 4A). Interestingly, loss of kDNA was more severe for WT 163 

cells than for L262P cells. This could suggest a reduced uptake of AMDSP in L262P cells, 164 

perhaps caused by the lower mitochondrial membrane potential in these cells (39). In further 165 

support of an effect of AMDSP on kDNA maintenance, for the proportion of WT cells that had 166 

retained at least some kDNA after AMDSP-treatment, we observed a significant kDNA reduction 167 

in size compared to control cells (Fig. 4B), while the size of the nucleus was not affected (Fig. 168 

S3). 169 

Altogether, these data confirm that an important part of the mode of action of AMDSP in 170 

trypanosomes is interference with kDNA maintenance. The data are consistent with the dynamics 171 

of growth inhibition and effects on kDNA of other compounds that preferentially target this 172 

structure, such as EtBr (39–41), although, unsurprisingly, potency and selectivity of this primary 173 

hit are much lower. Nonetheless, AMDSP may represent a promising starting point for hit-to-174 

lead development. The compound is composed of piperazine, benzene and adamantane rings 175 

with a tertiary sulfonamide group. Adamantane derivatives, such as the well-studied drug, 176 

amantadine (1-amino-adamantane), show good pharmacokinetics in humans, are licensed drugs 177 

for the treatment of Parkinson’s disease, and in the past had been used for the treatment of 178 

influenza, until emergence of resistance halted its application for this purpose (42). Moreover, 179 
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 9 

the discovery of amino-adamantane derivatives with trypanocidal activity (43) has spurred 180 

efforts for the recent development of more potent adamantane-benzene derivatives (44). 181 

Piperazine-based anti-helminthic drugs (45) have also gained interest in drug design studies 182 

because of their trypanocidal activity (46). The exact mechanism(s) by which the described 183 

derivatives affect trypanosomatids remains unknown but, based on our findings, effects on 184 

kDNA should be explored. Furthermore, similarity searches with AMDSP of the full BioAscent 185 

library suggest up to 150 related compounds that could be tested against trypanosomatids in the 186 

future to explore structure-activity relationships. 187 

Identification of other anti-trypanosomatid compounds with unknown mode of 188 

action. In addition to a novel inhibitor of kDNA maintenance, we also identified compounds that 189 

strongly affected the viability of the kDNA-independent T. brucei cell line used for screening 190 

and that therefore must act via a different mechanism. To find such trypanocidal or trypanostatic 191 

hits, we first corrected for positional growth effects in our plates using the median polish 192 

normalisation method (47, 48) (Fig. S4). Median polish normalisation was performed in Spotfire 193 

software (PerkinElmer) using the High Content Profiler package to remove row and column 194 

biases. This method uses the row and column medians to identify the row and column effect on 195 

the data. We then scored for hits affecting T. brucei viability based on less than 10 total nuclei 196 

per image with Z-scores < -1. We identified 337 hits, corresponding to a hit rate of 2.5% (Table 197 

S2; Fig. S5, left panel). These include 31 compounds from the Prestwick Chemical Library that 198 

inhibited trypanosome growth at both 10 M and 1 M (double underline in Table S2), 199 

suggesting a good starting potency for any lead development efforts. Incidentally, among the 200 

compounds tested in our proof-of-concept screen were 9 compounds with known anti-201 

trypanosomatid activity (49). Seven of these compounds were among the hits with a Z-score < -1 202 
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 10 

(highlighted in Table S2, right panel in Fig. S5). This further confirms the robustness of our HCS 203 

assay and suggests that, as an additional benefit, the outputs from this assay could also be used 204 

for the identification of anti-trypanosomatid compounds with a mode-of-action unrelated to 205 

kDNA maintenance.  206 

In conclusion, we successfully established and validated a scalable, kDNA maintenance 207 

based phenotypic HCS with automated image analysis, using an engineered kDNA-independent 208 

T. brucei cell line as a kinetoplastid model system. A proof-of-concept screen of diverse small 209 

compound libraries identified and validated a novel compound affecting kDNA maintenance in 210 

T. brucei. To the best of our knowledge, this is the first HCS specifically designed to identify 211 

inhibitors of kDNA maintenance. Furthermore, we identified other anti-trypanosomatid 212 

compounds with activity in the low micromolar range (but with unknown molecular targets) that 213 

could be useful starting points for trypanosomatid drug development. In the future, the screen 214 

could be further optimised by trying to address the positional growth effects in plates and by 215 

developing machine learning algorithms that can lower the rate of false-positive hits and detect 216 

more subtle changes in kDNA, nuclear DNA and cell morphology. 217 
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 369 

Figure legends 370 

 371 

FIG 1. High-content screening (HCS) strategy to identify compounds inhibiting kDNA 372 

maintenance in T. brucei. (A) Representative fluorescence microscopy images of T. brucei 373 

using the HCS staining protocol. From left to right: Hoechst 33342 staining of trypanosome 374 

nuclei and kDNA (in magenta), CFDA-SE cytoplasmic viability stain (in green), phase contrast, 375 
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and merged images. (B) Schematic representation of the image analysis pipeline using 376 

CellProfiler. First, nuclei and kDNA were identified from the Hoechst 33342 staining (upper left 377 

panel). Next, nuclei and kDNA were separated by classifying stained objects according to area 378 

size (upper right and lower right panels; nuclei ≥ 60 area size in arbitrary units, green in lower 379 

right panel; kDNA < 60 area size, magenta in lower right panel; bin width = 20 with bin centre 380 

ranging from 0 to 200). Finally, viable cells were identified using the CFDA-SE cytoplasmic 381 

viability stain (lower left panel). Each well was imaged at four different, non-overlapping 382 

positions.  383 

 384 

FIG 2. HCS result and hit selection. Tested compounds were ranked based on the decrease of 385 

kDNA/nucleus ratio in imaged wells (Z-score < -2 (dashed black line)), resulting in 152 hits (see 386 

also Table S1). Images of the top 50 hits (based on ranking by decrease in kDNA/nucleus ratio) 387 

were then re-examined using ImageJ software. Ten compounds were selected for follow-up 388 

analysis, based on complete loss of kDNA observed and on commercial availability (highlighted 389 

by the black triangles).  390 

 391 

FIG 3. Hit validation. (A) Structure of AMDSP (BCC0052412). (B) Dose-response curves for 392 

the effect of AMDSP on growth of kDNA-dependent (WT, black squares) and kDNA-393 

independent (L262P, red squares) bloodstream form T. brucei. (C) Cumulative growth curves of 394 

bloodstream form T. brucei cells cultured in the presence (dashed lines) and absence (solid lines, 395 

filled circles) of 12.5 µM AMDSP (red) or 10 nM EtBr (blue). Growth curves in the presence of 396 

solvent only are shown as controls (0.1% DMSO, black). Cell numbers were determined with a 397 
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Coulter counter. (D) Comparison of cumulative cell numbers in (C) after 96 h between WT and 398 

L262P cells. Student unpaired t-test, p < 0.00005 (****). All experiments were performed in 399 

triplicate; in addition, the effect of AMDSP on WT and L262P cells was tested on two separate 400 

occasions (Test 1 and Test 2). 401 

 402 

FIG 4. AMDSP effects kDNA maintenance. (A) Loss of kDNA (0K1N cells = cells with no 403 

kinetoplast and one nucleus) assessed by DAPI staining and microscopy after 2 days (D2) and 3 404 

days (D3) of culturing in the presence or absence of 12.5 µM AMDSP. Statistical significance of 405 

differences was assessed with the Student unpaired t-test; P ≤ 0.05 (*), P ≤ 0.01 (**), P ≤ 0.001 406 

(***). (B) The relative amount of kDNA in 1K1N cells (cells with 1 kinetoplast and 1 nucleus) 407 

after 2 days of culturing was assessed by DAPI staining and quantitation of kinetoplast versus 408 

nucleus fluorescence intensity. Statistical significance of differences was assessed with the 409 

Mann-Whitney test; P < 0.001 (***) for AMDSP at 12.5 µM in 0.1% DMSO (n = 90) versus 410 

0.1% DMSO (n = 90); P < 0.001 (***). All experiments were performed in triplicate. 411 

  412 
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