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Novel distributed beamforming algorithms for heterogeneous space
terrestrial integrated network

Xiaoyan Shi, Rongke Liu Senior Member, IEEE, and John S. Thompson Fellow, IEEE

Abstract—An integrated space-terrestrial network based on
the ultra-dense low-earth-orbit (LEO) satellite constellations has
been envisioned in both 5G and beyond 5G (B5G) networks.
This approach is a powerful solution to some key challenges
from Internet-of-Thing (IoT) services, such as the lack of link
capacity to deal with large data transfer or coverage in the remote
areas. This paper focuses on the beamforming design for the
transmissions from multiple LEO satellites, equipped with mas-
sive phased array antenna, to a large number of heterogeneous
terrestrial terminals. Superposition coding based beamforming
is efficient in dealing with the receiver heterogeneity, but at
the cost of higher computational complexity. Based on the dual
decomposition theory as well as deep-neural-networks (DNNs),
this paper proposes to combine the non-linear approximation
ability of DNNs with distributed algorithms. This combination
not only supports advanced non-orthogonal beamforming al-
gorithms for achieving superior throughput performance, but
also keeps the overall computational complexity low and enables
the beamforming process to be speed up dramatically through
parallel computing.

Index Terms—LEO satellites, beamforming, receiver hetero-
geneity, distributed algorithms

I. INTRODUCTION

Recent plans and actions of deploying very large low
earth orbit (LEO) satellite constellations such as SpaceX and
OneWeb [1], [2], have proven that the ultra-dense LEO satellite
network is not only a realizable concept but also an economic
one. Orbiting the earth at an altitude from 500 km to 2000 km,
LEO satellites provide communication with both vast cover-
age and low latency. Through interconnecting neighbouring
satellites with free space optical links [3], the ultra-dense
LEO satellite network establishes global connections with a
surprisingly low latency. Reference [4] shows this approach
remains competitive against optical fibre in the short range
and becomes superior to the terrestrial networks over distances
larger than 3000 km.

Benefiting from these powerful features, the LEO satellite
network serves as a promising way of complementing the ter-
restrial networks to address some key challenges coming from
the Internet of Things (IoTs) [6]. One area is the provision
of internet connection to place where the price of deploying
terrestrial infrastructure is prohibitively high. For example, in
the monitoring and management related applications in rural
areas, oceans or other remote terrains, the collected data is first
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uploaded to the satellites and then relayed to the core network
[10]–[12]. This paradigm is described in [13] as the Internet
of Remote Things. The other use case involves offloading
the IoT traffic from the congested terrestrial networks which
are usually densely deployed. In this case, the satellite serves
essentially as the high bandwidth backhaul links [14]. LEO
satellite networks offer promising solutions to the latency and
capacity requirements from these applications. For example as
studied in [4], [12] the LEO satellite network can satisfy the
stringent latency requirement of implementing the wide-area
situational awareness in the smart grid. Recent works [7]–[9]
demonstrate the adoption of the massive-MIMO (M-MIMO)
technique at the LEO satellite as one of the key techniques that
enable large system capacity to support rate hungry services,
such as the massive uploading of the sensor data, the proactive
caching of high-quality videos at the cellular base stations or
the augmented reality services [15], [16].

In this paper, we study the use of massive phased array
antennas at the LEO satellites to deliver Quality of Service
(QoS) guaranteed transmissions to a large number of outdoor
heterogeneous terrestrial terminals. The majority of the LEO
satellite receivers are located outdoors due to large path loss
from the satellite-ground channel. For example, in SpaceX [2],
its operating system is primarily designed for line-of-sight
(LOS) propagation. Without loss of generality, we consider
two classes of users, differentiated by their receiving capabili-
ties. One typical application of LEO satellites is to supplement
terrestrial backhaul links [14]. In this case, the ground users of
the satellites are 5G access points with directional antennas. In
the cases of typical IoT services, such as fetching the sensor
data to a private user directly through the satellite-to-ground
link [6], low cost receivers with a smaller antenna aperture are
more likely to be used.

The goal of this paper is to fully unlock the spatial multi-
plexing gain inherent to M-MIMO and at the same time avoid
the performance degradation due to the use of beamforming
in the highly ill-conditioned channels. This paper studies the
combination of beamforming and superposition coding, or
in a broader term, non-orthogonal multiple access (NOMA),
which superimposes the stronger and the weaker users’ signal
in the power domain and employs successive interference
cancellations (SICs) in 5G backhaul link receivers to separate
their information from the IoT transmissions. We formulate
the beamforming problem under the framework of a QoS
constrained optimization so as to provide a mechanism to deal
with services with different QoS requests, which is crucial for
some latency-sensitive IoT applications.

Applying NOMA in the downlink transmission means that
the stronger ground terminal gets extra more information from
the satellite than the weaker one. Thus the stronger terminal



may serve as a relay, passing data through terrestrial links
to the weaker one. Such cooperation between the satellite and
terrestrial wireless links requires cross-layer management such
as joint optimization over resource management in the wireless
access network and flow control in backhaul links [5]. We
present in this paper that the QoS constrained non-orthogonal
beamforming problem serves as an essential building block for
the cross layer optimization in the space-terrestrial integrated
network as envisioned in [6], [14].

To cater for the heterogeneous receivers in M-MIMO com-
munications, the combination between transmit beamforming
with superposition coding [17] or in another term MIMO
NOMA [18], has been studied extensively in cellular networks
[18]–[22]. In the area of LEO satellite communications, some
recent works have only considered M-MIMO but without
NOMA. In [8] and [9], assuming uniform receiving capability
among the ground terminals, downlink beamforming is opti-
mized such that signal-to-leakage-plus-noise ratio (SLNR) is
maximized. The solutions to the optimization can be written in
closed-form terms. However, once the receiver heterogeneity
and the QoS constraints are taken into account, no analytic
solution exists anymore and iterative algorithms with high
complexity are needed. This paper also differs from [8] and
[9] in that these works focus on dealing with challenges of
channel estimation brought by user mobility, while we assume
all ground terminals to have fixed locations and focus on
the design of beamforming algorithm to deal with receiver
heterogeneity.

One significant difference between M-MIMO applied to
cellular and satellite networks is that the number of radio
frequency (RF) chains is much higher in the satellite phased
array antenna, resulting in high computational complexity, e.g.
the phased array antenna for the LEO satellite proposed in
[23] contains 221 RF chains whereas in studies for terrestrial
networks [19]–[22], the number is seldomly more than 10 or
20. In cellular networks, zero-forcing or block diagonalization
is typically applied in digital beamformings without severely
compromising the performance due to channel sparsity, as
studied in [20]–[22]. However, this is not the case in LEO
satellite communications, where the high correlations between
neighboring users make zero-forcing dramatically degrade the
performance. This second issue prevents the use of channel
diagonalization in satellite communications with a massive
number of heterogeneous users to lower the high computa-
tional burden such as in [17].

Field-programmable gate arrays (FPGAs) and graphics pro-
cessing unit (GPU) provide superior distributed computing
ability, both of which serve as important ways to boost the
onboard processing power as pointed out by the European
Space Agency (ESA) roadmaps [31]. To exploit the great
potential of distributed computation for solving the NOMA
based beamforming problem, we propose novel iterative dis-
tributed algorithms based on dual relaxation techniques and the
augmented Lagrangian method [30]. To further lower the per
iteration complexity of the distributed algorithm, we further
resort to the outstanding nonlinear approximation ability of
the deep neural networks (DNNs) [38]–[40]. Unlike most of
the predecessor DNN related works in beamforming, which

directly output the beamformers from the trained DNNs, we
use DNNs to approximate the solutions to the subproblem
at each iteration of the distributed algorithm. The novel
contributions of this paper are introduced as follows:

1) Considering the receiver heterogeneity of the terrestrial
network, this paper proposes the application of NOMA
beamforming in the downlink transmission of the LEO
satellites networks, where a massive number of hetero-
geneous users are served with full frequency reuse. We
also propose to use the stronger terrestrial terminal as the
data relay for the weaker ones and show that the QoS
constrained beamforming problems are essential for the
corresponding cross-layer optimization.

2) To solve the NOMA beamforming problems with QoS
constraints, this paper designs a novel distributed beam-
forming algorithm based on dual relaxation and the aug-
mented Lagrangian method. The proposed beamforming
algorithm is implemented in a distributed way across the
different user pairs. Numerical simulations demonstrate
that given the same QoS constraints, the transmission
power can be significantly reduced using the proposed
NOMA beamforming methd.

3) To further reduce the per iteration computation complex-
ity of the proposed distributed algorithm, we use DNNs to
approximate solutions to the convex subproblem for the
distributed algorithm. A theoretical proof of convergence
for the distributed algorithm using approximate comput-
ing techniques is provided. Numerical demonstrations are
also presented to confirm our findings.

The structure of this paper is briefed as follows: in Section
II, the system model about the multi-antenna satellite downlink
communication is introduced. The QoS constrained beamform-
ing optimization with NOMA is formulated. The distributed
beamforming algorithm and a novel approximate computing
technique are proposed in Section III with detailed theoretical
analysis of the optimality and the computational complexity
for the proposed schemes. In Section IV, numerical simulations
are given to show the significant system performance gain as
well as the massive reduction of computational complexity
achieved by the proposed distributed NOMA beamforming
scheme. Section V draws the conclusions of this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section we first introduce the multi-antenna channel
models, the antenna architecture and the hybrid beamforming
for the downlink transmission of LEO satellite communica-
tions with heterogeneous ground receivers. We then formulate
the cross-layer optimization in the integrated space-terrestrial
network as a motivational case for the introduction of the ma-
jor problem of this paper, the QoS constrained beamforming
optimization with NOMA.

A. Channel Models for Multi-LEO Satellites Phased Array
Antenna Communications

The hybrid antenna structure allows for a combination of
analog beamforming and digital beamforming, realizing a
trade-off between the system capacity and the limited hardware



resources [24]. In this paper, each LEO satellite has a hybrid
structured phased array antenna with Ns elements and nr RF
chains, such as the one introduced in [25]. At the user end, a
planar array antenna with Nu elements and a single RF chain
is installed. In our scenario the ground terminal locations and
the trajectory of the satellites are fixed with LOS channels
available between the satellites and terrestrial receivers. The
existence of LOS channels are typically assumed in relevant
research works such as [8], [9] since the LEO satellite systems
are usually operated under LOS propagation, especially for
fixed ground terminals. This indicates that sufficient frequency
and time synchronization can be achieved so that the narrow
band channel gain between the mth satellite transmitter and
the kth ground user is represented as

Hsat
m,k =

Lk∑
l=1

am,k,lgm,k,lh
H
m,k,l

∆
≈

Lk∑
l=1

am,k,lgm,k,lh
H
m,k,(1)

where am,k,l is the complex channel gain, Lk is the number
of total paths and the array response vectors gm,k,l ∈ CNu ,
hm,k,l ∈ CNs are related to the angles-of-departure (AoDs)
θ = (θx, θy) and angles-of-arrival (AoAs) φ = (φx, φy) (θx,
φx are the azimuth angles and θy, φy are elevation angles in
the earth-centered earth-fixed coordinate system) respectively.
The approximation ∆ in (1) is due to the long transmission
range of satellite channels, resulting in very little difference
between AoDs of each paths. The large scale attenuation factor
am,k,l can be expressed as

am,k,l = Gtm,kG
r
m,k

√
Lm,k/ξm,k, Lm,k =

λc
4πdm,k

, (2)

where Gtm,k and Grm,k are the antenna gains of the transmitting
and receiving antenna elements respectively, λc is the carrier
frequency, dm,k is the distance between the transmitter and
the receiver, Lm,k is the path loss coefficient and ξm,k is the
rain attenuation coefficient. The subscript l is dropped in (2)
since the variations of Ls and ξs among different paths are
negligible due to the long transmission distance.

Fig. 1. Heterogeneous LEO Satellite Network with Hybrid Phased Array
Antenna.

Based on hybrid beamforming, combine the transmit-
ted signal from all M satellites for user k in sk =
[sH
k1, · · · , sH

kM ]H ∈ CMNs×1. Similarly, denote the aggregated
analogue and digital beamformer for user k respectively as
W = Diag ([W1, · · · ,WM ]) and dk = [dH

k1, · · · ,dH
kM ]H,

where Wm ∈ CNs×nr in the block diagonal matrix forms the
local analog beamforming codebook at the mth transmitter.

The entries of Wm are the phase shifts with a constant
modulus 1√

Ns
. The vector dkm is the digital beamformer at

the mth transmitter. Assuming a total number of Ntot ground
receivers, the whole transmitted signal can be represented as

W

Ntot∑
i

dixi = WDx. (3)

Denoting Hk =
[
Hsat

1,k, · · · ,Hsat
M,k

]
, the received signal at

user k can be expressed as

yk = vH
k HkW

dkxk +

Ntot∑
i6=k

dixi

+ zk, (4)

where vk ∈ CNu×1 is the receiver beamformer and zk ∼
CN (0, σk) is the complex normally distributed additive re-
ceiver noise.

B. Analog Beamforming and Motivational Problems

In this paper, the exact structure of the transmit antenna is
based on the one proposed in [23]. The total antenna elements
is divided into nr subarrays, each of which contains nsub =
Ns/nr antenna elements and is connected to an RF chain.
Denote the analog beamformer applied at the lth subarray by
wml ∈ Cnsub×1. Wm can be expressed as

Wm =


Wm1, 0, · · · , 0

0, Wm2, · · · , 0
...,

...,
. . . ,

...
0, 0, · · · , Wmnr

 . (5)

Follows the parameter setup in [23], Ns = nsub × nr =
(4 × 4) × (21 × 21), indicating that the analog beam formed
by the 4 × 4 analogue subarray is much wider than the
digital beam, which is formed by the combination of the 441
analogue subarrays. Therefore, we assume a predetermined
Wm = W̄m is applied to illuminate a fixed terrestrial area
Am, where the majority of the terrestrial receivers are based.

The Rician fading model has been widely accepted in the
literature for modeling the LOS satellite communication, as it
accurately models the coexistence of LOS and NLOS signal
components present in the satellite signals [41]. According to
Rician fading model, (1) can be rewritten as

Hsat
m,k = H̄m,k + H̃m,k. (6)

In the case of LOS communication, the deterministic LOS
component H̄m,k =

√
κkβk/(κk + 1)gm,k,1h

H
m,k has much

larger power than the scattering component H̃m,k =√
βk/(κk + 1)g̃m,kh

H
m,k. To characterize the dominance of

LOS component over the NLOS ones, typically the Rician
factor is set such as 10 log(κk) ≈ 10 dB [8] [9]. As
for the scattering component, g̃m,k ∼ CN (0,Σm,k) with
tr(Σm,k) = 1. We focus on the LOS case and devise
beamforming algorithms that are based on H̄m,k.

The LEO satellites are operated on fixed orbits. Satellite
orbits and visibility at a given location on earth can be
predicted accurately using standard software. Combined with



the real-time observations obtained from the Telemetry, Track-
ing and Control subsystem [42] which constantly monitors
the states of satellites, the trajectories of satellites can be
assumed to be available at the transmitter side so that accurate
information on H̄m,k can be predicted and gathered at one
satellite platform, which then employs its on-board processor
to solve the beamforming problem and disseminate dk,vk to
the corresponding transmitters and receivers.

We assume two types of heterogeneous receivers, with
σi,1 > σi,2. Each weaker ground terminal ti,1 is paired with
a stronger one ti,2 and there is a total of I pairs. A detailed
pairing method is out of the scope of this paper, but in the case
of satellite to ground LOS communication, a convenient way
of pairing is simply based on the distance between ti,1 and ti,2.
Terminals ti,1 and ti,2 are allocated with transit beamformer
di,1, di,2 and receiving beamformer vi,1,vi,2 to achieve QoSs
of ri,1, ri,2 b/s/Hz respectively. Likewise, Hi,1, Hi,2 represent
the channels for the weaker and the stronger terminals in group
i. We assume that Mnr ≥ Ntot = 2I .

The signal-to-noise-ratio (SINR) γi,j relates to ri,j such that

log(1 + γi,j) = ri,j . (7)

We define P(γ|Hi,1,Hi,2, i = 1, · · · , I) as the function which
is parameterized by the channel information. P maps the
QoSs into the minimum transmission power required at the
satellite transmitters. To ascertain the value P for a particular
γ amounts to solving the QoS constrained minimum power
beamforming optimization, which as will be formulated in
Section II-C, is the major optimization problem focused by
this paper. This type of optimization by itself is meaningful
in that the satellites are power limited and the services are
usually of a heterogeneous nature. We introduce a motivational
model below to further suggest that P also provides essential
knowledge for cross-layer optimization in the integrated space-
terrestrial network.

Although in practice there could be multiple links between
ti,1 and ti,2, without loss of generality (w.l.o.g), we use only
one link li to model the constraint of the terrestrial networks,
through which the stronger terminal and the weaker terminal
are connected. An upper transmission rate limit ci is ascribed
to li. Suppose the LEO satellite network is requested to
deliver a rate of rLEOi towards ti,1. The total flow can be
split such that the satellites respectively transmit at a speed
of ri,1 = rLEOi − ri,2 and ri,2 towards ti,1 and ti,2, with
the latter sub-flow being relayed through li from ti,2 to ti,1.
Denote the rate for terrestrial services that go through li as
rTERi , therefore ri,2 +rTERi ≤ ci. In contrast to rLEOi , which
is specified by the QoS request from the satellite user, we
assume that the terrestrial services generate elastic traffic, i.e.
rTERi is optimized to maximize the corresponding network
utility. One common metric widely used in the Network
Utility Maximization (NUM) literature [35] for quantifying
the network utility is the proportional fairness metric,

Ui
(
rTERi

)
= log(rTERi ), i = 1, · · · , I. (8)

Intuitively, the larger of the offloading data rate ri,2 at the
expense of lowering Ui is, the less transmission power P is
taken. The following global optimization problem is proposed

to characterize such a trade-off between maximizing Ui and
minimizing P ,

max
γ�0,rTER

i

I∑
i=1

Ui
(
rTERi

)
− wP(γ) (9)

s.t. ri,2 ≤ rLEOi (10)

ri,2 + rTERi ≤ ci, (11)
log(1 + γi,2) = ri,2, i = 1, · · · , I,

where w is the weighting factor, set by the operator to control
the relative importance of the transmission power with respect
to (w.r.t) Ui. To find the solution to (9), gradient based search-
ing algorithms are the state of the art methods. It has been well
documented in the NUM literature [35] that the gradient of the
network utility can be obtained efficiently in a decentralized
manner through primal decomposition. Therefore, to solve the
cross-layer optimization in (9), it is left only to compute the
gradient for P w.r.t γ, which as proved later in Subsection
III-A, is linked to solving the QoS constrained beamforming
problem, which will be introduced in the next section.

C. Minimum Power Beamforming Optimization with QoS
Constraints and NOMA

The mapping from SINRs to transmission power, i.e. P(γ)
can be written explicitly as the minimum power beamform-
ing optimization. Fixing the receiving beamformer vi,j =
v̄i,j , j = 1, 2, define the effective channel for each receiver
in pair i as h̃i,j = v̄H

i,jHi,jW̄, j = 1, 2. The QoS constrained
beamforming optimization can be formulated as

min
D

I∑
i=1

‖di,1‖2 + ‖di,2‖2 (12)

s.t. SINR1−1
i =

‖h̃H
i,1di,1‖2

ζi,1 + ‖h̃H
i,1di,2‖2 + σ2

i,1

≥ γi,1, (13)

SINR2−1
i =

‖h̃H
i,2di,1‖2

ζi,2 + ‖h̃H
i,2di,2‖2 + σ2

i,2

≥ γi,1, (14)

SINR2−2
i =

‖h̃H
i,2di,2‖2

ζi,2 + σ2
i,2

≥ γi,2, for i = 1 · · · I. (15)

The values SINR1−1
i and SINR2−1

i are respectively the SINRs
obtained at the weaker and the stronger users in group i for
decoding the weaker user’s message, whereas SINR2−2

i is
the SINR achieved at the stronger user when decoding the
stronger user’s message. Constraint (14) is set to ensure that
terminal ti,2 can decode and subtract out the weaker user’s
message using SIC. Scalars ζi,k, k = 1, 2 specify the inter-pair
interference. In reality, only signals transmitted to nearby pairs
of receivers would form non-negligible inter-pair interference.
This motivates us to use an approximation of ζi,k, such that

ζi,1 =
∑

j∈N (i)

‖h̃H
i,1dj,1‖2 +

∑
j∈N s(i)

‖h̃H
i,1dj,2‖2, (16)

ζi,2 =
∑

j∈M(i)

‖h̃H
i,2dj,1‖2 +

∑
j∈Ms(i)

‖h̃H
i,2dj,2‖2. (17)



where the threshold parameter η is used to control
the accuracy of the approximation, sets N (i) =
{j | ‖h̃H

i,1dj,1‖2/(‖h̃i,1‖‖dj,1‖) > η, j 6= i}, and similarly
N s(i) = {j | ‖h̃H

i,1dj,2‖2/(‖h̃i,1‖‖dj,2‖) > η, j 6= i} are
defined as the indexes of users that form non-negligible
interference to the weaker user i. Similar definitions are
applied to M and Ms to specify respectively the clusters of
the weaker and the stronger users which generate interfering
signals against stronger users.

D. Joint Uplink and Downlink MIMO optimization

Fix the digital beamformers di,j = d̄i,j for i =
1, · · · , I, j = 1, 2. The effective channel for the reception of
the signal intended for tk,l at ti,j can be written as

ĥi,jk,l = Hi,jW̄d̄k,l. (18)

In cases where it is clear which receiver we are referring to, the
superscript of ĥi,jk,l will be dropped. At the weaker terminal ti,1,
choose the receiving beamformer from the discrete codebook
V , such as

max
v∈V

SINR1−1
i (19)

=
‖vHĥi,1‖2∑

k 6=i ‖vHĥk,1‖2 +
∑I
k=1 ‖vHĥk,2‖2

. (20)

The design of V is discussed in more detail in Section III-D.
At the stronger terminal ti,2, v is chosen such that

max
v∈V

SINR2−2
i (21)

=
‖vHĥi,2‖2∑I

k=1 ‖vHĥk,1‖2 +
∑
k 6=i ‖vHĥk,2‖2

(22)

s.t.
‖vHĥi,1‖2∑

k 6=i ‖vHĥk,1‖2 +
∑I
k=1 ‖vHĥk,2‖2

≥ γi,1. (23)

While satisfying the SIC constraint, the optimization from (21)
will produce the receiving beamformer at ti,2 that maximizes
SINR2−2

i . Through the iterations of solving the transmit and
the receive beamforming optimization problems of (12), (19)
and (21), the transmission power is minimized while still
meeting the QoS constraints in (13)-(15).

III. OPTIMIZATION PROBLEM ANALYSIS AND
DECENTRALIZED IMPLEMENTATION

In this section, we first analyze the optimality for (12) as
well as its role in solving the cross-layer optimization (9).
Then we concentrate on the design of the decentralized algo-
rithm for solving (12). It is worth noting that the derivation of
the distributed algorithm proposed in this paper does not rely
on specific assumptions on channel models or the existence of
LOS component. Finally, a novel complexity reduction method
based on DNNs is proposed.

A. Optimality of the QoS Constrained Minimum Power beam-
forming with NOMA

Introduce the dual variables µi,1, µi,2, µi,3 for constraints
(13),(14) and (15). The corresponding Lagrangian function can
be written as

L(d, µ) =

I∑
i=1

{
dH
i,1Pidi,1 + µi,1σ

2
i,1 + µi,2σ

2
i,2

}
+

I∑
i=1

{
dH
i,2Qidi,2 + µi,3σ

2
i,2

}
, (24)

where Pi and Qi are N by N matrices with N = MNs.
To write these two matrices explicitly, we further introduce
the definitions Nc(i) = {j|i ∈ N (j), j = 1, · · · , I}, N s

c (i) =
{j|i ∈ N s(j), j = 1, · · · , I} forNc(i),N s

c (i) and likewise for
Mc(i),Ms

c(i). Denote the cardinality of set N̂c(i) = Nc(i)∪
N s
c (i) and M̂c(i) =Mc(i)∪Ms

c(i) respectively such as ni,1
and ni,2. Finally we obtain

Pi =
∑

j∈Nc(i)

µj,1h̃j,1h̃
H
j,1 +

∑
j∈Mc(i)

(µj,2 + µj,3)h̃j,2h̃
H
j,2

−µi,1
γi,1

h̃i,1h̃
H
i,1 −

µi,2
γi,1

h̃i,2h̃
H
i,2 + I, (25)

Qi =
∑

j∈N s
c (i)

µj,1h̃j,1h̃
H
j,1 +

∑
j∈Ms

c(i)

(µj,2 + µj,3)h̃j,2h̃
H
j,2

−µi,3
γi,2

h̃i,2h̃
H
i,2 + µi,1h̃i,1h̃

H
i,1 + µi,2h̃i,2h̃

H
i,2 + I (26)

By minimizing (24) w.r.t d and then maximize over the dual
variables , the dual optimization of (12) is

max
µ

q(µ) =

I∑
i=1

µi,1σ
2
i,1 + (µi,2 + µi,3)σ2

i,2, (27)

Pi,Qi ∈ SN+ for i = 1, · · · , I, (28)
µ ≥ 0. (29)

Notice that (27) forms a semidefinite programme, also known
as a linear matrix inequalities (LMI) program. Various types
of interior points algorithms are well known to solve such
problems efficiently [26]. However, with a large amount of
users requiring to be served in real time, (27) with high-
dimensional Pi, Qi and a large number of user pairs I , needs
to be solved in real time, which is very challenging.

Proposition 1: Problems (12) and (27) achieve the same
optimal value, i.e. strong duality holds for (12). The optimal
duals for (27), µ∗i,1, µ

∗
i,2, µ

∗
i,3, i = 1, · · · , I , are identical

with those for the optimization problem (71) (introduced in
Appendix A).

Proof: See Appendix A.
Based on Proposition 1, the Karush–Kuhn–Tucker (KKT)
point of (12) is the optimum solution, although (12) is non-
convex. We can first solve its dual (27), which is concave.
Based on the optimal duals µ∗, the optimal primal variables
d∗ can be traced back according to the optimality conditions,
such as illustrated in Appendix B.

With Proposition 2, we show that the gradient information
∂P/∂γ is related to the optimal dual variables for (27).



Proposition 2: Given a fixed receiving beamformer v̄i,j for
i = 1, · · · , I, j = 1, 2, provided h̃i,1, h̃i,2, i = 1, · · · , I are
linearly independent from each other, the gradient of P(γ) is
computed as

∂P/∂γi,1 = −µi,1 − µi,2, ∂P/∂γi,2 = −µi,3, i = 1, · · · , I.

Proof: See Appendix C.
In the gradient based searching algorithm to solve (9), in
order to obtain the gradient information w.r.t γ, (27) needs
to be solved at each iteration of the sub-gradient algorithm.
Therefore, it is important to have a low-complexity solution for
(27) so that real-time solutions to the cross-layer optimization
in (9) can be obtained.

B. Decentralization through double dual relaxation

Inspired by [27], we decentralize the dual problem (27)
through constraint relaxation and dual decomposition. For each
Pi and Qi, introduce their local versions Plo

i , Qlo
i that are

matrices of the following optimization variables

µli =
[
µi,1, µi,2, µi,3,µ

l
i,1,µ

l
i,2

]
, (30)

where µli,1 represents the local copies for all the related
µj,1, j ∈ N̂c(i), and µli,2 represents µj,2 +µj,3 for j ∈ M̂c(i).
The number of the elements in µli is therefore ni = 3+ni,1 +
ni,2. The relaxed dual problem with matrices Plo

i , Qlo
i can be

written explicitly as

max
µl

i

I∑
i=1

µi,1σ
2
i,1 + (µi,2 + µi,3)σ2

i,2 (31)

s.t. Plo
i ,Q

lo
i ∈ SN+ , for i = 1, · · · , I, (32)

µli ≥ 0. (33)

The local copies, µli,1, µli,2 are made to be connected globally
following the equations below,

µli,k,1 = µk,1, k ∈ N̂c(i), (34)

µli,k,2 = µk,2 + µk,3, k ∈ M̂c(i), (35)

where µli,k,1, µ
l
i,k,2 are entries of µli,1 and µli,2. The original

dual problem (27) is now decomposed into I separate LMI
programs with global linear constraints, i.e. (34), (35), written
in vector form such as µli,1 = µgli,1,µ

l
i,2 = µgli,2, or

I∑
i

Aiµ
l
i = b, (36)

where b is a zero column vector, Ai ∈ Rn0×ni with n0 =∑I
i=1(ni,1 + ni,2).
It is now possible to apply the dual decomposition technique

to the global constraints (34) and (35), i.e. ascribing dual
variables to these constraints and forming the corresponding
dual problem to (31). Notice that the optimality of the original
problem would be preserved after the dual decomposition since
(31) is convex and the duality gap is zero between the original
convex problem and its dual problem [26].

Numerical experiments indicate that two of the popular dis-
tributed algorithms, subgradient descent [28] and Alternating

Direction Method of Multipliers (ADMM) [29] actually fail to
converge. We propose a distributed version of the augmented
Lagrangian method that succeeds in solving problem (31). The
augmented Lagrangian function for (31) is

Λρ(µ,λ) =

I∑
i=1

(
Fi(µ

l
i) +

2∑
s=1

(
λT
i,s(µ

l
i,s − µgli,s)

−ρ
2
‖µli,s − µgli,s‖

2
))

, (37)

where ρ > 0, λi,s, s = 1, 2, are the duals for the corresponding
linear constraints, i.e. satisfying the complementary condition
at the optimal point as

λi,k,1(µli,k,1 − µk,1) = 0, k ∈ N̂c(i), (38)

λi,k,2(µli,k,2 − µk,2 − µk,3) = 0, k ∈ M̂c(i). (39)

Fi(µ
l
i) is the indicator function

Fi(µ
l
i) =

{
µi,1σ

2
i,1 + (µi,2 + µi,3)σ2

i,2, Plo
i ,Q

lo
i ∈ SN+ ,

−∞, otherwise.
(40)

The distributed algorithm is implemented such as described in
Algorithm 1. The total process is divided into computations
at I nodes in parallel. One node corresponds to one pair of
users. The objective function of (41) is a quadratic function

Algorithm 1 Distributed Algorithm for NOMA beamforming
1: Initialization: Set initial values for λi,k = λt=0

i,k , k = 1, 2

and for µli = µl,t=0
i , i = 1, · · · , I, t = 1.

2: At each node i, for i = 1, · · · , I , compute the solution
µ̂l,t−1
i for the following problem

max
µl

i

Λi(µ
l
i) +

∑
n∈X1(i)

(
λn,i,1(µln,i,1 − µi,1) +

ρ

2
(µln,i,1−

µi,1)2
)

+
∑

n∈X2(i)

(
λn,i,2(µln,i,2 − µi,2 − µi,3) +

ρ

2
(µln,i,2 − µi,2 − µi,3)2

)
(41)

s.t. Plo
i ,Q

lo
i ∈ SN+ (42)

µli ≥ 0. (43)

with X1(i) = N (i) ∪N s(i), X2(i) =M(i) ∪Ms(i).
3: At each node i for i = 1, · · · , I , update µli according to

µl,ti = µl,t−1
i + τ(µ̂l,t−1

i − µl,t−1
i ). (44)

4: At each node i, for i = 1, · · · , I , update λ according to

λti,k = λt−1
i,k + ρτ(µl,ti,k − µgl,ti,k ), for k = 1, 2. (45)

Increase t by 1 and return to Step 2 until convergence
condition is met.

of µli with

Λi(µ
l
i) = µi,1σ

2
i,1 + (µi,2 + µi,3)σ2

i,2+
2∑
s=1

(
λT
i,s(µ

l
i,s − µgli,s)−

ρ

2
‖µli,s − µgli,s‖

2
)
. (46)



According to [30], the convergence is guaranteed as long as
τ ∈ (0, 1

2 ) in (44) and (45). More theoretical and numerical
results on the convergence will be provided in the next section
as well as in the simulation results.

One simplification can be made about Algorithm 1. Due
to the decentralized implementation, the channel vectors con-
tained in Plo

i , Qlo
i , which dictate the dimensions of the matrix

inequality in the sub problem (41), can be projected onto
another sub-space through QR decomposition,

Hl
i =

[
h̃i,1, h̃i,2,H

l
i,1,H

l
i,2

]
= QiRi, (47)

where the jth column of Hl
i,1 contains h̃j,1, j = N̂c(i)|j , the

jth column of Hl
i,2 contains h̃j,2, j = M̂c(i)|j . Ri is a square

matrix. Its a total of 2+ni,1 +ni,2 columns can be substituted
in (32). This results in a dimension change in the inequality
constraint from 2I to 2 +ni,1 +ni,2. For multi-beam satellite
networks, a large number of users are served while the number
of adjacent interfering users is a lot smaller, indicating that I
is typically much larger than ni,1 + ni,2.

C. Complexity Reduction through Approximation Methods for
Convex Optimizations

In Algorithm 1, the most computational burden lies in solv-
ing the subproblem (41), denoted as Pi, while the complexity
requested in other operations such as in (44), (45), is trivial.
Problem Pi is strongly convex. The barrier method, which
is a typical type of interior point algorithm, can be used to
deal with the linear matrix inequality constraints in Pi [26].
A detailed implementation is given in Algorithm 2.

Algorithm 2 The barrier method for the local LMI constrained
problem
Initialization: Given ε > 0, α > 1, ω = ωt=0 > 0 and a strictly
feasible µli = µl,t=0

i , i.e. Plo
i (µl,t=0

i ),Qlo
i (µl,t=0

i ) ∈ SN+ .
Repeat:

1: t = t+ 1.
2: Use any descent method to solve the following uncon-

strained problem with µl,t−1
i as the starting point

max
µl

i

ωt−1qi(µ
l
i) + φi(µ

l
i), (48)

where qi(µli) is the objective function in (41), φi is the
barrier function

φi = log

(
det Plo

i det Qlo
i

ni∏
k=1

µli|k

)
. (49)

3: Update: µl,ti = µ∗i .
4: Stopping criterion: Loop ends if 1/ωt−1 < ε.
5: Increase ω: ωt = ωt−1α.

Algorithm 2 consists of two loops: the outer loop where ω is
incrementally increased and the inner loop where an iterative
searching algorithm is applied to solve (48). Projecting the
channel vectors in Plo

i and Qlo
i onto the column space of

Ri from (47), each iteration of the descent method in (48)
can be greatly simplified, since now Plo

i ,Q
lo
i ∈ S

2+ni,1+ni,2

+ .

Newton’s method is typically used as the descent method for
(48) and the cost of one iteration is order (ni,1 + ni,2)4.
The original dual problem (27) (before implementation in
a distributed fashion) is also LMI program. When solved
by the barrier method similar to Algorithm 2, the cost of
each iteration is order I4, which is much higher compared
to (ni,1 + ni,2)4 in the scenarios of multi-beam satellite
communications.

To further reduce the complexity, we propose to use some
approximation methods that, while produce only the approxi-
mations of the solutions generated by Algorithm 2, have lower
complexity. Before delving into the actual approximation tech-
nique, the impact of approximation error, i.e. (µ̂li,approx− µ̂li),
on the convergence property of Algorithm 1 needs to be
understood. First introduce Ti = diag(τ, · · · , τ) ∈ Rni×ni

and T = diag(τ, · · · , τ) ∈ Rn0×n0 . The residual constraint
violation at each iteration in Algorithm 1 is computed such as

r(µl,t) =

I∑
i

(Aiµ
l,t
i − b). (50)

Denote the corresponding Lyapunov function as

φ(µl,t,λt) =

I∑
i=1

ρ‖µl,ti − µl,∗i ‖
2
T−1

i

+
1

ρ
‖λ̄t − λ∗‖2T−1 ,

(51)

with λ̄t = λt + ρ(I−T)r(µl,t), (52)

where the matrix norm is computed according to ‖x‖M =√
xHMx, µl,∗i and λ∗ are the optimal points for µl,ti and

λt respectively. We prove in Theorem 1 that with certain
restrictions on the approximation error, (51) reduces to zero
as the number of iterations increases and µl,ti converges to the
optimum. To use a simpler notation, we drop the superscript
l in the local optimization variable µl,ti in the rest part of this
section. Denote [Ai]j as the jth row of Ai. Define dj as the
number of i = 1, · · · , I such that [Ai]j 6= 0. dj is known as
the degree of the linear constraints. In the case of our problem
(36), dj = 2 for all j.

Assumption 1: Denote µti,n and µ̂ti,n as the noisy versions
(with approximation error) of µti and µ̂ti respectively. The
following two equations connect these variables such as

µti,n = µti + eti,1(µ̂t−1
i − µt−1

i ), (53)

µti,n = µti + eti,2µ̂
t−1
i , (54)

where the magnitudes of eti,1, e
t
i,2 are bounded above such as

∀t, i, |eti,1| ≤ εi,1, |eti,2| ≤ ε2. (55)

Theorem 1: Under Assumption 1 and provided that c1 =
ρ(1− τ − ε2i,1/τ), c2 = ρ(τ − 2τ2 − 2c)− ρ2ε22/τ are strictly
positive, where c > 0, the primal variables µti and the dual λt

produced at each iteration of Algorithm 1, with µ̂ti computed
approximately, converge to the primal and dual optimal points
µ∗i ,λ

∗ of problem (31) respectively.



Proof: Based on the magnitude restriction on the approx-
imation error in Assumption 1, we can obtain

‖µti,n − µ∗i ‖2T−1
i

= ‖µti + eti,1(µ̂t−1
i − µt−1

i )− µ∗i ‖2T−1
i

(56)

≤ ‖µti − µ∗i ‖2T−1
i

+ ε2i,1‖µ̂t−1
i − µt−1

i ‖
2
T−1

i

, i = 1, · · · , I.
(57)

Similarly, we have

‖λ̄tn − λ∗‖2T−1 = ‖λt−1 + ρr(µt + eti,2µ̂
t−1)‖2T−1 (58)

≤ ‖λ̄t − λ∗‖2T−1 + ρ2‖ε2r(µ̂t−1)‖2T−1 . (59)

According to equation (38) in [30], there exists κ > 0 such
that the exact Lyapunov function values from the successive
two iterations, without approximation error, can be written in
the inequality below

φ(µt,λt) ≤ φ(µt−1,λt−1)− ρ
I∑
i

‖µ̂t−1
i − µt−1

i ‖
2
I−Ti

− ρ‖r(µ̂t−1)‖2T−D−2C − 2κ‖µ̂k − µ∗‖2, (60)

where D = diag(d1τ
2, · · · , dn0

τ2) and C = diag(c, · · · , c)
is any diagonal matrix with strictly positive diagonal elements.
Adding (56), (58) to (60), we have

φ(µtn,λ
t
n) ≤ φ(µt,λt) (61)

+

I∑
i

ε2i,1‖µ̂t−1
i − µt−1

i ‖
2
T−1

i

+ ρ2‖ε2r(µ̂t−1)‖2T−1

≤ φ(µt−1,λt−1) +

I∑
i

(
ε2i,1
τ
− ρ(1− τ)

)
‖µ̂t−1

i − µt−1
i ‖

2

+

(
ρ2ε22
τ
− ρ(τ − 2τ2 − 2c)

)
‖r(µ̂t−1)‖2 − 2κ‖µ̂k − µ∗‖2.

(62)

Take the summation of k = 1, 2, · · · for both sides of the
inequality (62)

∞∑
t=0

[ I∑
i

c1‖µ̂t−1
i − µt−1

i ‖
2 + c2‖r(µ̂t−1)‖2

+2κ‖µ̂t − µ∗‖2
]
≤ φ(µ0,λ0). (63)

Since c1 > 0, c2 > 0 and φ(µ0,λ0) is of finite value,
µ̂t converges to its optimal point. Furthermore, λt will also
converge to the optimum as φ is monotonically decreasing and
bounded below.

D. Deep Learning Based Methods for Approximating Convex
Optimizations

To approximate the subproblem (41) in Algorithm 1, we
employ deep neural networks (DNNs), which are feedforward
networks with multiple hidden layers [33], for its well-known
extraordinary ability of approximating non-linear mappings in
high dimensions.

Problem (41) can be parameterized by considering its objec-
tive function and constraints respectively. Note that although
the objective function is quadratic w.r.t µli, the coefficients for

the second-order terms are actually fixed. Therefore, an ni-
dimensional vector poi suffices to parameterize the objective
function. As for the constraints, note that Plo

i ,Q
lo
i depend on

the QoS thresholds γi,1, γi,2 and the effective channels,

h̃ti,j = v̄H
i,jH

t
i,jW̄

t, j = 1, 2, (64)

where t is added to indicate the temporal variability. Since
this paper focuses on the LOS cases, Ht

i,j is dominated by
the channel geometry and the rain attenuation factor ξs in
(2). Assuming that the weaker and the strong user within
our group are subject to the same ξs from the satellites, we
can parameterize Ht

i,1W̄
t,Ht

i,2W̄
t by phi = [t, ξ], where ξ

includes the rain attenuation factors for all effective satellites
(remember that W̄t is predetermined).

In order for the beam-edge terminal to be served by multiple
satellites, beam-splitting can be added to the design of the
codebook V for receiving beamformers. The total antenna
elements are split into two parts, Nu = Na

i,1 + N b
i,1, each

generated a beam towards [φx,ai,1 , φ
y,a
i,1 ] such as

va(Na
i,1, φ

x,a
i,1 , φ

y,a
i,1 ) = (65)[

[1, . . . , ejπ[(nx−1) cosua
i,1+(ny−1) cos vai,1],

. . . , ejπ[(Nx,a
i,1 −1) cosua

i,1+((Ny,a
i,1 −1) cos vai,1]

] 1√
Nu

,

where cosu = sinφx cosφy cos v = sinφx sinφy . and
the other beam vb(N

b
i,1, φ

x,b
i,1 , φ

y,b
i,1 ) is expressed in a similar

way. The receiving beamformer vi,1 = [va,vb] can thus be
parameterized by pv,1i = [Na

i,1, φ
x,a
i,1 , φ

y,a
i,1 , N

b
i,1, φ

x,b
i,1 , φ

y,b
i,1 )].

In practice, va,vb may respectively point towards two LEO
satellites if the ground terminal is on the edge of the beam, or
va,vb may degenerate into one analogue beam if the terminal
is closer to the beam center. To simplify the parameterization
and without loss of generality, a fixed uplink beamforming
scheme will be assumed. The optimization (41) at node i can
thus be modeled as the mapping fi from pi to µ̂i

µ̂i ← fi
(
poi ,pi = [γi,1, γi,2,p

h
i ]
)
. (66)

Note that poi varies between iterations of Algorithm 1, while
the other ones in pi stay the same.

We then introduce the network structure of the DNNs used
for approximating fi. A natural choice for the input layer is
to use both poi , pi. However, inspired by Theorem 1 and the
fact that (41) is computed consecutively, i.e. µ̂t−1

i is generated
after adding perturbations to po,t−2

i of the previous iteration
that produced µ̂t−2

i , we propose to approximate the following
mapping instead

∆µ̂t−1
i ← gi

(
p
′

i = [∆po,t−1
i ,po,t−2

i ,pi]
)

(67)

s.t. µ̂t−1
i = ∆µ̂t−1

i + µ̂t−2
i , (68)

where ∆po,t−1
i = po,t−1

i − po,t−2
i . Since gi only outputs the

difference, the exact value of µ̂t=0
i at the first iteration of

Algorithm 1 should be computed via Algorithm 2. The DNNs
work as nonlinear regressors ĝi(p

′

i;θi) ≈ gi(p
′

i), where θi
contains parameters for DNN. Note that ĝi needs to be trained
for every one of node i = 1, · · · , I due to our choice of
the parameterization. This significantly increases the manual



labor in the process of network training. On the positive side,
compared to more general type of parameterization, our choice
requires lower generalization capacity from the DNNs.

The hidden layers are set as fully connected ones, with
ReLU function ReLU(a) = max(0, a) as the activation
functions. At the output layer, we choose to generate the
prediction of one entry of ∆µ̂ti, i.e.

∆µ̂ti|j ← ĝi,j(p
′

i;θi, πi,j), for j = 1, · · · , ni, (69)

where πi,j is the classification policy, according to which
∆µ̂ti|j is mapped into discreet classes. At each node, a total
of ni networks are requested to predict the entire ∆µ̂ti. We
use Softmax function to process the output of the DNN.
The DNN works as a multinomial classfier or a Softmax
Regression classifier, predicting the class with the highest
estimated probability.

From Assumption 1, the approximation error is related to
µ̂t−1
i . However, at iteration t, µ̂t−1

i is not yet available. We
turn to integrate the DNN with the prior information from
µ̂t−2
i , due to the correlation between µ̂t−2

i and µ̂t−1
i , in the

following heuristic manner

∆µ̂t−1
i |j ←

{
ĝi,j(p

′

i;θi, π
1
i,j) µ̂t−2

i |j ≤ ci,j ,
ĝi,j(p

′

i;θi, π
2
i,j) µ̂t−2

i |j > ci,j .
(70)

In Fig. 2, an example is provided where the 4th entry of
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Fig. 2. Classifications of different granularity are related to the prior
information on µ̂t−2

i .

∆µ̂t−1
i has been shown to vary with significantly different

ranges as µ̂t−2
i |4 takes ranges of different values, suggesting

that when µ̂t−2
i < 2.5e − 3, a finer classification on ∆µ̂t−1

i

can be used to reduce the approximation error. The major pro-
cedures for the generation of the training data are summarized
as follows:

1) Generate data samples of the problem parameters p
′

i =
[∆po,t−1

i ,po,t−1
i ,pi]. The QoS bounds log(1 + γi,1) are

set to be sampled from {0.25, 0.5, 0.75, 1} (bit/s/Hz). The
LOS channel matrix Ht

i,j is sampled at a rate of 1 second
among a period of ∆t ≈ 43s, with rain attenuation
factor ξs sampled from {0,−2.5,−5} (dB). Denote the
feasible set for pi as D. Samples set D according to
the even distribution. For each pi, implement Algorithm
1 with its subproblem (41) solved through Algorithm 2,
during which the parameter samples for ∆po,t−1

i ,po,t−1
i

are obtained.
2) To ascertain the label for each p

′

i, the corresponding
solution µ̂ti is first obtained by solving (41) through stan-
dard convex optimization algorithms, such as Algorithm

2. Based on the prior knowledge about the relationship
between µ̂t−2

i |j and ∆µ̂t−1
i |j , such as the presented in

(70), ∆µ̂t−1
i = µ̂t−1

i − µ̂t−2
i will then be classified into

a total of 33 classes.

IV. NUMERICAL SIMULATIONS

In this section, performance comparisons are provided be-
tween various beamforming schemes for heterogeneous multi-
antenna LEO satellite networks, demonstrating the benefits
from solving the original QoS based optimization problem
(12). In the second part, numerical experiments covering key
features of the proposed distributed algorithms, such as the
convergence property, and the computational complexity will
be given.

A. Superposition Coding based Beamforming for Heteroge-
neous Multi-user LEO Satellite Networks

The network geometry, such as the altitude and number
of satellites per plane, is set according to the plan adopted
in the Starlink project [2]. The major parameters for the
simulations are given in Table I. As seen in Fig. 3, we focus

TABLE I
MAJOR SIMULATION PARAMETERS

Parameters Values
Satellites per Plane 66

Altitude 550 km
Ka-band carrier frequency 30 GHz

Rician factor 10 log(κ) = 10 dB
Satellite Array Antenna Configuration [23]

Terrestrial Receiver Antenna 8 × 8 rectangular array antenna
Number of pairs of users I 1080

Penalty para. for Lagrangian term ρ 1
Interference threshold for (16), (17) η 0.001

Combining para. in (44) τ 1/3

on a portion of the entire global network, which consists
of three satellites SAT1,SAT2,SAT3 in the same orbit with
the time-invariant pre-planned analog beamforming patterns
W̄t = W̄. We assume each satellite is equipped with at
least two phased array antennas prescribed in Table I (or
two collocated satellites, each equipped with one antenna).
Every adjacent 121 subarrays of the satellite are put into one
group, within which the subarrays point towards the same
direction. Six analogue beams Wi,j , j = 1, · · · , 6 per satellite
are generated to cover the neighboring area. The distance
between the adjacent analogue beams is around 300 km.

We investigate a period of ∆t ≈ 43s, during which the
satellites fly over and provide service to a terrestrial area within
250km ≤ x ≤ 1500km, 250km ≤ y ≤ 750km, as shown in
Fig. 3. The area is under a complete coverage over the period
of ∆t. Suppose the stronger terminals, ti,2 are distributed
uniformly within the area, with a minimum distance of 20
km. Terminal ti,2 is paired with a weaker terminal ti,1, that
uniformly distributed around ti,1 with a maximum distance of
10 km. Suppose that σi,1/σi,2 = 4, due to for example larger
antenna aperture at ti,2.

In Fig. 4, we compare the performance of various types
of beamforming schemes with that achieved by the optimal



Fig. 3. Satellite topology with the pre-planned analog beam pattern.

solution to (12), which is denoted as Superposition Coding
Beamforming (SCBF). The QoS requirement by the stronger
user, i.e. ri,2, is assumed to be twice as large as that for
the weaker user ri,1. Fig. 4 presents the total transmission
power achieved using different schemes under a range of QoS
requirements. OPBF TDMA represents optimal beamforming
combined with time division multiplexing (TDM), i.e. where
ti,1, i = 1, · · · I and ti,2, i = 1, · · · I are put into 2 groups,
each served in different time frames. Users within the same
group are applied with the optimal linear beamforming [36].
Likewise, ZFBF TDM denotes zero forcing beamforming
combined with TDM. The time sharing coefficient τts means
that 1/τts of the time is for the transmission to ti,1. SC ZFBF
is a low-complexity heuristic solution to (12) where only one
digital beam is allocated to each user pair, i.e. the stronger
and the weaker users’ signals are superimposed within the
same digital beam. The digital beams in SC ZFBF are orthog-
onal to each other. The SCBF ZFBF represents the scheme
proposed in [17] that the channels are first diagonalized by
applying zero-forcing beamforming across the paired users
and the SCBF technique is then applied to only ti,1, ti,2.
Note that SCBF ZFBF and ZFBF TDM perform poorly when
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Fig. 4. Performance comparison between various beamforming schemes,
ri,2 = 2ri,1 for all i, t = ∆t/2.

compared to others, due to the fact that the ZFBF operations in
these two schemes are inefficient in dealing with the inter user
interference. SCBF achieves superior performance with around

a 3dB gain on average over the sub-optimal solution. The
spectrum efficiency versus the transmission power curve stays
almost unchanged during the period of ∆t, demonstrating that
while the satellites move rapidly, the QoS can be maintained
with a stable power budget.

Notice that with the chosen spatial distribution of the
terrestrial terminals, each analogue beam in average transmits
to a total of 60 pairs of users simultaneously. Due to the power
limited nature of the broadband satellite communication, in
practice the operating point for LEO satellites with a massive
array antenna is most likely around points with lower SE, such
as 1 or 2 bit/s/Hz which combined with the multiplexing gain
creates a total of 60-120 bit/s/Hz for each analog beam.

B. Computation Reduction through Decentralized Algorithms
and Convex Optimization Approximation methods

To approximate (41), we train 2 types of DNNs for each
pair of users with two different network scales. While the
dimensions of the input pi vary with different i, for each type
of DNNs, we use a uniform structure of hidden layer and
output layer that contains enough generalization capacity: for
DNN 1, 512×264×1324×664×33 (11 layers including the
output layers) and for DNN 2, 264×1324×664×33 (10 layers).
For the training of each individual DNN, the high-level API,
Keras, is used for training and testing the DNNs based upon a
dataset of 50,000 sampling points. DNN 1 requires around 2

TABLE II
DNN RELATED PARAMETERS

Parameters DNN 1 DNN 2
Number of layers 12 11

Regularization coefficient 0.05e-3 0.1e-3
Number of multiplications M1 = 246,246 M2 =111,078
Approximation error εi,1 εi,1 < 0.25 εi,1 < 0.31
Approximation error ε2 ε2 < 0.12 ε2 < 0.2
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Fig. 5. Convergence of implementing Algorithm 2 with the solution of (41)
approximated by DNNs.

times more multiplication operations than DNN 2 and achieves
better approximation accuracy, which is characterized in Table
II through different upper bounds on εi,1 and ε2, which are



related to the two types of approximation error defined in (53)
and (54). Note that according to Theorem 1, the convergence
for the algorithm is guaranteed with the implementation of
either DNN 1 or DNN 2, since for either DNN 1 or DNN 2,
the conditions required in Theorem 1 for the convergence, i.e.
c1 = ρ(1−τ−ε2i,1/τ) > 0, c2 = ρ(τ−2τ2−2c)−ρ2ε22/τ > 0,
are strictly satisfied.

To solve the dual problem (27), the respective per itera-
tion complexity for the centralized solver, i.e. the interior-
point method, the exact solving of Algorithm 1 with (41)
solved by Alg. 2, as well as the two approximated version
is given in Table III, where mi is the number of iterations
requested in the inner loop of Algorithm 2. In the case of
our experimental setting, n = 3I = 3240 and in average
ni,j = 26, ni = 55,mi = 195, both Algorithm 1 and the
approximated versions have an order of magnitude less per it-
eration complexity than the centralized algorithm. It should be
noted that the per iteration complexity improvement provided
by using DNNs comes at the expense of high computational
cost involved in training a total number of I DNNs. Changes
made to the analog beamforming pattern Ŵ or to the terrestrial
terminals, such as locations and parameters of antennas, would
lead to a need for retraining corresponding DNNs.

TABLE III
PER ITERATION COMPLEXITY COMPARISON

Algorithms per Iteration Complexity
Interior-point method n2

∑I
i (n2

i,1 + n2
i,2)

Alg. 1 with (41) solved by Alg. 2
∑I

i mi(ni,1 + ni,2)4

Alg. 1 with DNN 1 M1
∑I

i ni

Alg. 1 with DNN 2 M2
∑I

i ni

We next investigate the number of iterations for convergence
requested by the centralized and the decentralized algorithms
respectively. The number of iterations required in the interior-
point method is bounded by O((

∑I
i (ni,1 + ni,2))0.5) [26].

To show the convergence property of Algorithm 1 and its
approximated versions, in Fig. 5, we present how µi,3s con-
verge within less than 100 iterations (3 dual variables µi,3s
are shown due to the space limitation). The solid line is the
exact implementation of Algorithm 1 with (41) solved by
Algorithm 2 exactly. The other two are generated respectively
by Algorithm 1 with DNN 1 and DNN 2 approximating the
solutions to (41). Recall that from Proposition 1, the sum of
the dual variables equals to the objective value of the original
problem, i.e. the total transmission power. Therefore from Fig.
5 it can be seen that the small differences between the optimal
dual variables obtained from the centralized method (denoted
with the asterisks) and those from the distributed algorithms
ensure the latter schemes would have negligible performance
degradation in contrast to the centralized optimal solution.
From experimental results with the network setup in Table I,
Algorithm 1 on average needs 2 to 3 times more iterations for
convergence than the centralized interior-point method. Since
the per iteration complexity of the latter is over 100 times
higher, the overall complexity of Algorithm 1 is much lower
than that requested by the centralized method. Algorithm 1
can further be speed up by up to I times through parallel

computing processor, such as GPU Nvidia GTX 680, which
has 1536 cores running at 1 GHz, and is evaluated in [32] as
an efficient way of boosting the onboard processing power.
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Fig. 6. Distribution of the number of iterations for convergence requested by
Algorithm 1 and its approximated versions.

Finally, we analyze the complexity reduction offered by
using DNNs to approximate the subproblem (41) in Algorithm
1. By traversing different network realizations (obtained via
generating the QoS thresholds γ as well as the locations
of terrestrial receivers randomly), the average number of
iterations for convergence is obtained. Fig. 6 shows the his-
togram of the number of iterations for convergence, based on
implementations of the three decentralized algorithms in 200
different network realizations. Compared to the exact running
of Algorithm 1, the ones with DNN approximations use
around 50 more iterations to converge. The extra iterations are
compensated for by the much lower per iteration complexity
of the DNN based methods. By using DNN 2, which produces
a less accurate approximation than DNN 1, around 40 more
iterations are needed, which is again a fair trade since DNN
2 has only half the multiplications in DNN 1.

V. CONCLUSIONS

Focused on the downlink transmissions from multiple LEO
satellites to a massive number of heterogeneous terrestrial
receivers, this paper studies beamforming algorithms in order
to exploit the multiplexing gain as well as the array gain
endowed by M-MIMO. To cater for the difference between the
receiving capability of the IoT devices and the conventional
wireless terminals, we pairs the heterogeneous receivers and
combine transmit beamforming with superposition coding.
The corresponding QoS constrained beamforming optimiza-
tion is solved with novel distributed algorithms combined with
deep learning techniques. The results show that our proposed
method can improve the throughput performance (around 3
dB gain at the tested operational points) compared to other
candidate schemes. At the same time w.r.t the centralized
interior-point algorithm, we can reduce the overall computa-



tional complexity and speed up processing dramatically by
using parallel computations.

APPENDIX A
PROOF OF PROPOSITION 1

Based on the technique used in [17], with certain fixed
phase rotations {φi} we can construct the convex optimization
problem (71), such that the solution set of it includes the
optimal solution to the original problem (12).

min
D

I∑
i=1

(
‖di,1‖2 + ‖di,2‖2

)
(71)

s.t. γ−0.5
i,1 |h̃

H
i,1di,1| ≥

∥∥∥∥h̃H
i,1Di,1

σi,1

∥∥∥∥ , (72)

γ−0.5
i,1 |h̃

H
i,2di,1e

jφi | ≥
∥∥∥∥h̃H

i,2Di,2

σi,2

∥∥∥∥ , (73)

γ−0.5
i,2 |h̃

H
i,2di,2| ≥

∥∥∥∥h̃H
i,2Di,3

σi,2,

∥∥∥∥ , for i = 1, · · · , I, (74)

where ‖h̃H
i,1Di,1‖2 = ζi,1 + ‖h̃H

i,1di,2‖2, ‖h̃H
i,2Di,2‖2 =

ζi,2 +‖h̃H
i,2di,2‖2, ‖h̃H

i,2Di,3‖2 = ζi,2. Problem (71) is convex
since both of its objective function and constraints are convex.
Strong duality therefore holds for (71), meaning the dual
problem of (71) has the same optimal value as (71) or zero
duality gap.

We then prove that the dual problem of the convex problem
(71) is identical with that of the original problem (12), which
completes the proof of the strong duality for problem (12).
Introduce a set of strictly positive scalars such as

si,1 = γ−0.5
i,1 |h̃

H
i,1di,1|+

∥∥∥∥h̃H
i,1Di,1

σi,1

∥∥∥∥ , (75)

si,2 = γ−0.5
i,1 |h̃

H
i,2di,1e

jφi |+
∥∥∥∥h̃H

i,2Di,2

σi,2

∥∥∥∥ , (76)

si,3 = γ−0.5
i,2 |h̃

H
i,2di,2|+

∥∥∥∥h̃H
i,2Di,3

σi,2,

∥∥∥∥ , for i = 1, · · · , I.(77)

With the scalars introduced above, the Lagrangian for problem
(71) can be written as

Lc =

I∑
i=1

{
‖di,1‖2 + ‖di,2‖2 +

qi,1
si,1

(
γ−1
i,1 |h̃

H
i,1di,1|2 (78)

−
(
|h̃H
i,1Di,1|2 + σ2

i,1

))
+
qi,2
si,2

(
γ−1
i,1 |h̃

H
i,2di,1|2

−
(
|h̃H
i,2Di,2|2 + σ2

i,2

))
+
qi,3
si,3

(
γ−1
i,2 |h̃

H
i,2di,2|2

−
(
|h̃H
i,2Di,3|2 + σ2

i,2

))}
.

Since si,j > 0, j = 1, 2, 3, we can substitute qi,j/si,j with
µi,j > 0 in (78), showing that the two lagrangian functions,
(24) and (78), are essentially the same. Therefore the dual
problem for (12) and the dual problem for (71) are identical
with each other.

APPENDIX B
FINDING THE PRIMAL OPTIMAL POINT FROM THE OPTIMAL

DUAL VARIABLES

Based on Proposition 1, the KKT point for (12) is the
optimal solution. We can derive the optimal primal variables
d∗i,1,d

∗
i,2 from the KKT optimality condition. From the sta-

tionarity condition for Lagrangian function:

d∗i,1 =

[
I +

∑
j∈Nc(i)

µj,1h̃i,1h̃
H
i,1+

∑
j∈Mc(i)

(µj,2 + µj,3)h̃i,2h̃
H
i,2)

]−1
1

γi,1

(
2∑
k=1

µi,kh̃i,kh̃
H
i,k

)
d∗i,1,

= Aid
∗
i,1, (79)

d∗i,2 =

[
I +

∑
j∈N s

c (i)

µj,1h̃i,1h̃
H
i,1+

∑
j∈Ms

c(i)

(µj,2 + µj,3)h̃i,2h̃
H
i,2 + µi,1h̃i,1h̃

H
i,1 + µi,2h̃i,2h̃

H
i,2

]−1

µi,3
γi,2

h̃i,2h̃
H
i,2d

∗
i,2 = Bih̃i,2(h̃H

i,2d
∗
i,2). (80)

Based on (79), d∗i,1 aligns with the eigenvector vi,1 of Ai

corresponds to eigenvalue 1, i.e.,

d∗i,1 = xi,1vi,1, (81)

where xi,1 is the scalar waiting to be ascertained. Similarly
from (80), d∗i,2 can be written as

d∗i,2 = xi,2vi,2, (82)

where vi,2 = Bih̃i,2. Substituting (81), (82) in the primal
feasibility conditions (13) and (14), the systems equations on
xi,1, xi,2 can be obtained.

APPENDIX C
PROOF OF PROPOSITION 2

∂P(γ) is identical with the sub-gradient of v(u) at point
u = 0, which is the optimal value function for the perturbed
beamforming optimization problem (71) (adding small pertur-
bation u to γ). The perturbed second-order conic constraints
(72), (73) and (74) can be represented in the form of

G(d,u) ∈ K, (83)

where G maps d,u to K, which is the closed second-order
cone. Take (72) as an example,

Gi,1(d, ui,1) =

[
(γi,1 + ui,1)−0.5|h̃H

i,1di,1|
h̃H
i,1Di,1

]
. (84)

From Theorem 4.2 in [37], as long as the constraint qualifi-
cation Slater condition is met, i.e. there exists d̄ such that

G(d̄,u = 0) ∈ int(K), (85)

∂v(0) can be obtained through the optimal dual variables. In
our case, since all the channels are independent of each other,
there always exist feasible solution such that (72), (73) and
(74) are strictly satisfied,thus (85) is met.
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