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ARTICLE OPEN

Epigenome-wide association study of alcohol consumption
in N= 8161 individuals and relevance to alcohol use disorder
pathophysiology: identification of the cystine/glutamate
transporter SLC7A11 as a top target
Falk W. Lohoff 1,6✉, Toni-Kim Clarke2,6, Zachary A. Kaminsky3, Rosie M. Walker4, Mairead L. Bermingham4, Jeesun Jung1,
Stewart W. Morris4, Daniel Rosoff1, Archie Campbell 4, Miruna Barbu2, Katrin Charlet1, Mark Adams 2, Jisoo Lee1,
David M. Howard 2,5, Emma M. O’Connell1, Heather Whalley 2, David J. Porteous 4, Andrew M. McIntosh 2,7 and
Kathryn L. Evans 4,7

This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021

Alcohol misuse is common in many societies worldwide and is associated with extensive morbidity and mortality, often leading to
alcohol use disorders (AUD) and alcohol-related end-organ damage. The underlying mechanisms contributing to the development
of AUD are largely unknown; however, growing evidence suggests that alcohol consumption is strongly associated with alterations
in DNA methylation. Identification of alcohol-associated methylomic variation might provide novel insights into pathophysiology
and novel treatment targets for AUD. Here we performed the largest single-cohort epigenome-wide association study (EWAS) of
alcohol consumption to date (N= 8161) and cross-validated findings in AUD populations with relevant endophenotypes, as well
as alcohol-related animal models. Results showed 2504 CpGs significantly associated with alcohol consumption (Bonferroni p value
< 6.8 × 10−8) with the five leading probes located in SLC7A11 (p= 7.75 × 10−108), JDP2 (p= 1.44 × 10−56), GAS5 (p= 2.71 × 10−47),
TRA2B (p= 3.54 × 10−42), and SLC43A1 (p= 1.18 × 10−40). Genes annotated to associated CpG sites are implicated in liver and brain
function, the cellular response to alcohol and alcohol-associated diseases, including hypertension and Alzheimer’s disease. Two-
sample Mendelian randomization confirmed the causal relationship of consumption on AUD risk (inverse variance weighted (IVW)
p= 5.37 × 10−09). A methylation-based predictor of alcohol consumption was able to discriminate AUD cases in two independent
cohorts (p= 6.32 × 10−38 and p= 5.41 × 10−14). The top EWAS probe cg06690548, located in the cystine/glutamate transporter
SLC7A11, was replicated in an independent cohort of AUD and control participants (N= 615) and showed strong hypomethylation
in AUD (p < 10−17). Decreased CpG methylation at this probe was consistently associated with clinical measures including increased
heavy drinking days (p < 10−4), increased liver function enzymes (GGT (p= 1.03 × 10−21), ALT (p= 1.29 × 10−6), and AST (p= 1.97 ×
10−8)) in individuals with AUD. Postmortem brain analyses documented increased SLC7A11 expression in the frontal cortex of
individuals with AUD and animal models showed marked increased expression in liver, suggesting a mechanism by which alcohol
leads to hypomethylation-induced overexpression of SLC7A11. Taken together, our EWAS discovery sample and subsequent
validation of the top probe in AUD suggest a strong role of abnormal glutamate signaling mediated by methylomic variation in
SLC7A11. Our data are intriguing given the prominent role of glutamate signaling in brain and liver and might provide an important
target for therapeutic intervention.

Molecular Psychiatry; https://doi.org/10.1038/s41380-021-01378-6

INTRODUCTION
Alcohol use disorder (AUD) is a highly prevalent chronic relapsing
disorder characterized by impaired ability to control or stop
alcohol use [1]. Excessive alcohol use is a major risk factor for
various cancers and organ damage, including alcohol-associated

liver disease (ALD), and has been associated with cognitive
impairment and progressive white matter degeneration in the
brain. AUD has a complex pathophysiology and the exact
biological mechanisms by which alcohol influences AUD and
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related diseases are unclear but likely include epigenetic
mediation of environmental and genetic risk factors.
It is hypothesized that alcohol may influence disease outcomes

through epigenetic modifications: alcohol is known to affect the
acetylation and methylation of histones and the methylation of
DNA [2]. DNA methylation involves the addition of a methyl group,
donated by the metabolite, S-adenosylmethionine (SAM), to the C
of CpG dinucleotides. Chronic alcohol consumption (AC) leads to a
reduction in SAM, which can lead to hypomethylation across the
epigenome [3]. Alcohol also impacts the folate cycle that is
necessary for the generation of methionine for the synthesis of
methyl groups [4] and the highly reactive alcohol metabolite
acetaldehyde can induce inhibition of DNA methyltransferases,
the family of enzymes that catalyze CpG methylation, to reduce
methylation [5, 6]. Alcohol metabolism also acutely depletes
molecules needed for re-methylation by increasing reactive
oxygen species formation, which results in decreased production
of methionine and SAM [7].
Epigenome-wide association studies (EWAS) have identified

CpGs that are associated with AC [8–12] and AUD [13–16].
However, prior studies were somewhat limited by small sample
sizes and lower capture arrays [16]. In addition, only a few studies
exist linking AC and AUD EWAS data with detailed biological
validation [8, 13, 15, 17].
To address these gaps in the literature, we conducted the

largest EWAS analyses of AC in a single cohort of individuals (n=
8161) and followed up top findings in AUD-relevant phenotypes
using a translational cross-tissue/cross-phenotypic approach to
identify novel potential targets relevant to AUD.

MATERIALS AND METHODS
Cohorts
Generation Scotland: The Scottish Family Health Study (GS): GS is a family-
based cohort comprising 24,069 individuals recruited from the general
population of Scotland through General Practitioners/Primary Care
Physicians [18, 19]. As part of a preclinical questionnaire, participants
were asked about their drinking status (current, former, never) and current
drinkers were asked to report the number of units of alcohol consumed in
the previous week. Information regarding the typical number of units in
different drink types was available to help participants calculate weekly
intake [20]. Participants also reported their smoking status (never, former,
current) and level of smoking (cigarettes per day). DNA was extracted from
peripheral blood samples that were taken at the point of recruitment
(2006–2011). Ethical approval for the GS study was obtained from the
Tayside Committee on Medical Research Ethics (on behalf of the National
Health Service). Demographic information and additional information can
be found in Supplementary Tables S1–S11 and Supplementary Figs. 1–3.
Alcohol Use Disorder cohort 1: 539 participants (336 AUD, 203 controls)

were recruited from the National Institute on Alcohol Abuse and
Alcoholism (NIAAA) at the National Institutes of Health (NIH), USA. An
alcohol-dependence (AD) diagnosis was made using the Structured Clinical
Interview for Diagnostic and Statistical Manual of Mental Disorders (DSM)-
IV-TR (SCID-IV) [21]. AD diagnosed using the DSM-IV corresponds to a
moderate to severe AUD DSM-5 diagnosis [22]. Controls were recruited via
the NIAAA Clinical Program. Subjects completed several self-report
questionnaires and clinical assessments. Peripheral blood was obtained
for DNA methylation analyses. Participants provided written informed
consent in accordance with the Declaration of Helsinki and the study was
approved by the NIAAA Institutional Review Board. Additional cohort
information can be found elsewhere [15].
Alcohol Use Disorder cohort 2: 86 participants (43 AUD and 43 controls)

were recruited by the NIAAA for a separate study on fear conditioning and
extinction [23]. AUD was diagnosed according to the SCID-IV [21] with
alcohol specified as the drug of choice and AC reported in the past
30 days. Exclusion criteria included self-reported neurological symptoms,
chronic medication use (psychotropic or fluoxetine), DSM-IV diagnosis of
bipolar disorder, psychotic disorder, or additional substance dependence
other than nicotine or caffeine. Controls were screened for a history of
seizures relating to alcohol withdrawal or alcohol withdrawal scores ≥8 on
the Clinical Institute Withdrawal Assessment Alcohol Revised. Venous

blood was collected for DNA methylation analyses. Participants provided
written informed consent in accordance with the Declaration of Helsinki
and the study was approved by the NIAAA Institutional Review Board.

DNA methylation
Generation Scotland wave 1 (set 1): DNA methylation was assessed using
the MethylationEPIC BeadChip in whole-blood-derived DNA from 5200
individuals. Quality control was performed using ShinyMethyl v.1.18.0 [24]
to visually inspect the log median intensity of methylated vs. unmethy-
lated signal per array and remove outliers. WateRmelon v 1.26.0 [25] was
used to remove any samples in which ≥1% of CpG dinucleotides had a
detection p value in excess of 0.05, where probes with a beadcount of less
than 3 in more than 5 samples was observed, and any probes in which
≥0.5% of samples had a detection p value in excess of 0.05. Samples were
also removed if predicted sex did not match recorded sex, leaving
5087 samples available for analysis. Due to the presence of closely related
individuals within the wave 1 sample, M values were pre-corrected for
relatedness, array processing batch, and estimated cell counts.
Generation Scotland wave 2 (set 2): DNA methylation was assessed

using the MethylationEPIC BeadChip in whole-blood-derived DNA from
4574 unrelated individuals. Individual in wave 2 were unrelated to
individuals in wave 1. Similar quality control criteria were applied to wave 2
[26], which left 4450 samples for analysis. The data were normalized using
the dasen function in wateRmelon v 1.26.0 [25] and normalized M values
produced using the getM function.
Alcohol Use Disorder cohorts: DNA methylation data from whole blood

samples were assessed using the MethylationEPIC BeadChip microarray.
Methylation data were processed using the wateRmelon package [25] and
any probes that were predicted to cross-react and/or that failed QC were
removed. The dasen method in the wateRmelon package was used to
quantile-normalize methylated and unmethylated intensities in the red
and green channels separately, followed by beta-value calculation.

EWAS analyses
Generation Scotland: in wave 1, each CpG was fitted as the dependent
variable and, using linear regression models run in the limma R package,
tested for their association with log-transformed (+1) units of alcohol per
week. Age, sex, smoking status, pack years, and the first 20 principal
components from the corrected M values were fitted as fixed effect
covariates. The same approach was used for the GS wave 2 data, but batch
and estimated cell counts (CD4, CD8, granulocytes, B and NK cells) were
fitted as fixed effect covariates as these were not adjusted for in the
normalization process. Probes were excluded if there were any individuals
with missing data at that CpG.
In wave 1 there were 4301 current drinkers available with methylation

data after QC and 3860 current drinkers available in wave 2. Meta-analysis
of these two datasets was performed using sample-size weighted p value
based analysis in METAL [27] (n= 8161). There were 731,208 CpGs
available after QC across both waves available for meta-analysis and a
Bonferroni correction (0.05/731,208) was used to define epigenome-wide
significance (p ≤ 6.8 × 10−8). Sensitivity analyses were carried out by
running an EWAS of AC in never smokers. There were 2218 never smokers
available for analysis in wave 1 and 2020 in wave 2 (current and former
smokers excluded). The same statistical model was used for the EWAS,
although smoking status and pack years were not fitted.

Identification of differentially methylated regions
Differentially methylated regions (DMR), defined as regions containing
2-30 CpG sites separated by ≤500 bp, were identified using the dmrff.meta
function implemented in the dmrff R package [28]. CpGs with unadjusted
EWAS meta-analysis p values ≤ 0.05 and methylation changes in a
consistent direction were used for DMR analysis and DMRs with a
Bonferroni-adjusted p value ≤ 0.05 declared statistically significant.

Gene annotation
The GENE2FUNC function in FUMA (https://fuma.ctglab.nl) [29, 30] was
used to provide biological annotation. FUMA interrogates sets of
differentially expressed genes (DEG): sets of genes which are more (or
less) expressed in a specific tissue compared to other tissue types based on
GTEx RNA-seq data. Hypergeometric tests were used to evaluate whether
the differentially methylated genes were overrepresented in DEG sets from
the 30 general and 54 specific tissue types in the GTEx v8 database.
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Two-sample Mendelian randomization analyses
We performed bidirectional two-sample MR analyses of AD and AC using
publicly available GWAS summary-level data from the Psychiatric
Genomics Consortium (PGC) and the GWAS and Sequencing Consortium
of Alcohol and Nicotine Use (GSCAN), respectively, both meta-analyzing
cohorts of predominantly European ancestry. Both GWAS studies have
existing ethical permissions from their respective institutional review
boards and include participant informed consent and included rigorous
quality control.
For purposes of the PGC GWAS, AD was defined as meeting criteria of

the DSM-IV (or DSM-IIIR in one instance) diagnosis of AD (cases N= 8485;
controls N= 20,657) [31]. AC was measured in terms of drinks per week
(DPW) across 28 cohorts (N= 537,249): given the disparate measurement
methods across cohorts (binned, normalized, etc.), the data were log-
transformed; the effect estimate is, therefore, measured in log-transformed
DPW [32]. For the analysis of AC on AD, we included all SNPs associated
with AC at p < 5 × 10−8 and pruned with the stringent pairwise linkage
disequilibrium (LD) r2 < 0.001 (to ensure validity and statistical indepen-
dence), leaving 37 SNPs. For the analysis of AD on AC, we included all SNPs
associated with AD at p < 5 × 10−6 and again pruned with the stringent
pairwise LD r2 < 0.001 (to ensure validity and statistical independence),
leaving 18 SNPs. We extracted summary statistics for the bidirectional
instruments for AC and AD, from the AD and AC GWASs, correspondingly,
then harmonized effect alleles, and removed SNPs that were palindromic
with intermediate allele frequency (Supplementary Table S12a, b).
We report results from IVW MR and complementary MR–Egger,

weighted median, and weighted mode MR methods to assess potential
causality between AC and AD: consistency of results across methods
strengthens an inference of causality [33] (Supplementary Table S13 and
Supplementary Fig. S4A, C). To evaluate potential heterogeneity, we used
the MR–Egger intercept test [34], the Cochran heterogeneity test [35], and
the Mendelian randomization pleiotropy residual sum and outlier (MR-
PRESSO) global test to identify and remove outlier SNPs to correct
potential directional horizontal pleiotropy and resolve detected hetero-
geneity. We used the Steiger directionality test to test the causal direction
between the hypothesized exposure and outcomes [36]. In addition, we
used leave-one-out analyses to assess whether high leverage points have
high influence (Supplementary Fig. S4B, D). Our analysis was carried out
using TwoSampleMR, version 5.5 [33] and MR-PRESSO, version 1.0 [37] in
the R environment, version 4.0.2.
Since sample overlap between the PGC and GSCAN GWAS cohorts was

minimal (0.8%), and instrument strength considered strong (mean F
statistic, AD, 24.5, AC, 74.0, exceeding conventional threshold 10),
considerable weak instrument bias is not expected (Supplementary
Table S12a, b) [38]. We found evidence of an association between genetic
liability for AC and increased risk for AD (odds ratio = 5.55 per standard
deviation increase in log-transformed DPW, 95% CI, 2.65–11.62, p= 5.41 ×
10−6); however, we did not find evidence of an association in the reverse
direction between genetic liability of increased risk for AD and AC (beta=
0.008, 95% CI, −0.003 to 0.18, p= 0.17) (Supplementary Table S13). The
associations were similar in magnitude and direction across the four
complementary MR methods (Supplementary Fig. S4A, C), with no residual
heterogeneity, bias due to pleiotropy, or apparent points of high leverage
have high influence (Supplementary Fig. S4B, D).

AUD methylation risk score analyses using LASSO regression
DNA methylation predictors were trained on the Generation Scotland
quality controlled, pre-normalized beta values using the R package
biglasso. Probes were restricted to only those available on the Illumina
450 K array in order to maximize the use of the methylation predictor in
other cohorts that may only have 450 K data. AC in current drinkers was
first residualized for age, sex and ten genetic principal components and
then penalized regression applied using the “cv.biglasso” function and ten-
fold cross-validation. Non-zero coefficients from this model, with the
lambda value corresponding to the mean square error, were taken to
create methylation risk scores (MRS) for AC in the two independent AUD
cohorts.
For each individual in AUD Cohorts 1 and 2, an AUD risk score was

generated by taking the sum of the product of 519 DNA methylation beta
values and 519 supplied model coefficient values. Using the pROC package
in R, the prediction accuracy was assessed by calculating the area under
the receiver operator characteristic curve (AUC) against the AUD diagnostic
status as defined above.

Analysis of cg06690548 in the National Institute on Alcohol
Abuse and Alcoholism (NIAAA)
The sample consists of 615 participants, 372 with AUD and 243 healthy
controls (HC). All participants provided a blood sample that was used for
genome-wide DNA methylation analysis and clinical biomarker collection,
including the liver function tests for GGT, ALT, and AST. The lipid
measurements for low-density lipoprotein cholesterol (LDL-C), high-density
lipoprotein cholesterol (HDL-C), total cholesterol, and triglycerides (TG)
were measured using standard procedures in mg/dL. Participants
completed the DSM-IV-TR SCID-IV to determine an AD diagnosis.
Participants also completed self-report questionnaires including the
Timeline Followback, a measure of alcohol intake over the previous
90 days, and the Fagerström test for nicotine dependence. All participants
completed screening assessments where information on their demo-
graphics and recent drinking history was collected. A subset of 86 (43 AUD
and 43 HC) participants from the sample was recruited for a study on fear
conditioning and extinction in AUD [23]. All study participants were
recruited to the NIAAA at the NIH, USA. All participants provided informed
written consent in accordance with the Declaration of Helsinki and were
compensated for their time. The study was approved by the Institutional
Review Board of the NIAAA.
DNA methylation levels from whole blood samples were assessed using

an Infinium MethylationEPIC BeadChip microarray (Illumina Inc., San Diego,
California) according to the manufacturer’s protocol. The wateRmelon
package in R was used to process the raw data. After cross-reactive probes
and probes that failed quality assessment were removed, a scale-based
correction was applied for Illumina type I relative to type II probes. We
used a quantile normalization approach to make methylated and
unmethylated intensity values identical and then quantified the β-value
using the ratio of intensities between methylated and unmethylated
alleles. The β value of cg06690548 located in promoter of SLC7A11 was
extracted for further analysis [39].
To examine differences in methylation of cg06690548 between AUD and

HC, a logistic regression model was utilized with adjustments for age, sex,
and race. In addition, a linear regression model was used with liver
function enzymes, lipid measurements, and total drinks after natural log
transformation to satisfy normality as a dependent variable and
cg06690548 as an independent variable. Age, sex, race, and AUD diagnosis
as covariates were adjusted for. Number of drinking days and heavy
drinking days were analyzed using a poisson regression model with the
same covariate adjustments. All analyses were performed using Statistical
Analysis System (version 9.4; SAS Institute Inc., Cary, NC). Significant
differences were determined statistically at p < 0.05.

Targeted mRNA analysis of liver tissues from rodents fed an
alcohol liquid diet and controls
Two-month-old Sprague–Dawley male rats were obtained from Charles
River (Kingston, NY). The animals were housed in a room with a 12 h/12 h
light/dark cycle and had continuous access to food and water before the
beginning of the experiment. The rats were given water and a nutritionally
balanced liquid diet as the sole source of calories in their home cages (ad
libitum). The detailed composition of alcohol liquid diet and experimental
paradigm were stated in Lee et al. [40]. Briefly explaining, the rats received
5% of ethanol during a 5-day acclimation period, and liquid diet that
contained 12% of ethanol was thereafter given for 6 weeks for the alcohol
groups. For the control group, mixture of sweetener and sucrose was used
for an isocaloric match to the alcohol liquid diet. All animal experiments
were approved by the NIAAA Animal Care and Use Committee. All
procedures were performed in accordance with the guidelines of the NIH
Guide for the Care and Use of Laboratory Animals.
Rat tissues were homogenized in TRI Reagent® (Zymo Research Corp)

with ceramic beads using Precellys 24 Homogenizer at 4–8 °C. RNAs were
isolated using Direct-zol™ RNA MiniPrep kit according to manufacturer’s
instruction (Zymo Research Corp). cDNAs were prepared using High-
Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific) from
those isolated RNAs. Real-time quantitative polymerase chain reaction
(PCR) was run in ViiA™ 7 Real-Time PCR System using TaqMan Gene
Expression Assays (SLC7A11: Rn01495125_m1, Thermo Fisher). The
expression levels of target genes were normalized to the housekeeping
gene (Glyceraldehyde-3-phosphate dehydrogenase: Rn01775763_g1,
Thermo Fisher) and calculated based on the comparative cycle threshold
Ct method (2−ΔΔCt). The data were expressed as mean ± SEM, and sample
number represents the number of animals. Mann–Whitney U test was used
for non-normally distributed data. The data analysis was performed using
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GraphPad prism 8.0 (GraphPad Software Inc., San Diego, CA, USA).
Significant differences were determined statistically at p < 0.05.

Targeted human postmortem brain mRNA analysis
Postmortem tissues were obtained from the New South Wales Tissue
Resource Centre at the University of Sydney, Australia. Brain tissues from
11 males with AUD and 13 male controls were analyzed for prefrontal
cortex (PFC). All AUD subjects had alcohol detected in blood and were also
daily smokers at the time of death. Total RNA was extracted from male
postmortem frozen brain tissue, using the RNeasy Lipid Tissue mini Kit
(Qiagen). One microgram total RNA was reverse-transcribed using Super-
Script® III First-Strand Synthesis SuperMix for qRT-PCR (Invitrogen). Real-
time quantitative PCR was run in ViiA™ 7 Real-Time PCR System using
TaqMan Gene Expression Assays (SLC7A11: Hs00204938_ml, Thermo
Fisher). The data were expressed as mean ± SEM, and sample number
represents the number of individuals. Mann–Whitney U test was used for
non-normally distributed data. The data analysis was performed using
GraphPad prism 8.0 (GraphPad Software Inc., San Diego, CA, USA).
Significant differences were determined statistically at p < 0.05.

RESULTS
EWAS of alcohol consumption
We used two discovery cohorts: Generation Scotland wave 1 (N=
5087 after QC) and Generation Scotland wave 2 (N= 4450 after
QC). A final sample for a meta-analysis comprised N= 8161
individuals. Details can be found in the eMethods. There were
4301 current drinkers in the wave 1 EWAS and 3860 current
drinkers in wave 2, the mean AC in each wave was 10.7 (SD= 11.2)
and 10.9 (SD= 11.0) units per week, respectively. Additional
descriptive and demographic variables for each wave are
presented in Supplementary Table S1. Meta-analysis across the
two waves (N= 8161) identified 2504 CpGs that were associated
with AC (p ≤ 6.8 × 10−8). The top 20 CpGs are shown in Table 1 and
all epigenome-wide significant CpGs from the meta-analysis are
listed in Supplementary Table S2 and depicted as a Manhattan
plot in Fig. 1. A detailed table of the top 20 CpGs and their
association in wave 1 and wave 2 is shown in Supplementary
Table S3.
Pearson’s correlation between the EWAS effect sizes from wave

1 and wave 2 across all CpGs was r= 0.138 (95% CI=
0.135–0.140). When restricting the CpGs to those with a p value
of ≤5.0 × 10−5 in either the wave 1 or wave 2 EWAS, the
correlation of effect sizes was r= 0.828 (95% CI= 0.819–0.837).
For CpGs that reached epigenome-wide significance in either
wave 1 or wave 2, the correlation between effect sizes increased
to 0.90 (95% CI= 0.887–0.911) (Fig. 2).
Due to the substantial comorbidity between alcohol use and

smoking, and the strong impact of smoking on DNA methylation,
sensitivity analyses were performed in both wave 1 and wave 2 in
the subset of individuals who had never smoked. Across all CpGs
in wave 1 the correlation between effect sizes in the total alcohol
EWAS and the non-smokers EWAS was r= 0.713 (95% CI=
0.712–0.714). Restricting to the CpGs associated with alcohol use
with a significance cut off of p ≤ 5.0 × 10−5 the correlation

Table 1. Top 20 CpGs associated with alcohol consumption in the meta-analysis (N= 8161) along with gene annotations, full gene names,
chromosome, and base-pair position of the CpG (Ensembl (v92)).

CpG Chrom bp Gene Gene name/description Direction Z score p

cg06690548 4 139162808 SLC7A11 Cystine/glutamate transporter – −22.06 7.75E–108

cg06088069 14 75895604 JDP2 Jun dimerization protein 2 – −15.849 1.44E–056

cg06644515 1 173834831 GAS5 Growth arrest-specific 5 – −14.445 2.71E–047

cg12825509 3 185648568 TRA2B Transformer-2 protein homolog beta – −13.61 3.54E–042

cg11376147 11 57261198 SLC43A1 Large neutral amino acids transporter small
subunit 3

– −13.35 1.18E–040

cg14476101 1 120255992 PHGDH Phosphoglycerate dehydrogenase – −13.34 1.33E–040

cg18120259 6 43894639 LOC100132354 – −13.226 6.19E–040

cg26457483 1 120256112 PHGDH Phosphoglycerate dehydrogenase – −13.185 1.07E–039

cg12116137 17 1576449 PRPF8 Pre-mRNA-processing-splicing factor 8 ++ 12.92 3.48E–038

cg03497652 16 4751569 ANKS3 Ankyrin Repeat and Sterile Alpha Motif Domain
Containing 3

++ 12.49 8.12E–036

cg25124205 6 125519976 TPD52L1 Tumor protein D53 – −12.187 3.65E–034

cg15837522 8 117892654 – −12.021 2.74E–033

cg16113793 18 21451607 LAMA3 Laminin subunit alpha 3 ++ 11.96 5.78E–033

cg01538969 6 30624636 DHX16 Putative pre-mRNA-splicing factor ATP-dependent
RNA helicase

++ 11.731 8.80E–032

cg10254445 1 37197260 – −11.684 1.54E–031

cg21912872 12 68055270 DYRK2 Dual specificity tyrosine-phosphorylation-regulated
kinase 2

– −11.462 2.06E–030

cg08228578 12 57624193 SHMT2 Serine hydroxymethyltransferase – −11.428 3.04E–030

cg02711608 19 47287964 SLC1A5 Neutral amino acid transporter B(0) – −11.211 3.61E–029

cg12973487 19 1623075 TCF3 Transcription factor 3 ++ 11.177 5.30E–029

cg01307228 10 90152007 RNLS Renalase – −11.03 2.76E–28

Fig. 1 Manhattan plot showing EWAS of alcohol consumption
meta-analysis. Line defines the threshold for epigenome-wide
significance (p ≤ 6.8 × 10−8).
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increased to r= 0.961 (95% CI= 0.958–0.964). Similarly, in wave 2,
the correlation across all CpGs was r= 0.722 (95% CI=
0.712–0.714) and r= 0.961 (95% CI= 0.959–0.964) when restrict-
ing to CpGs significant at p ≤ 5.0 × 10−5 (Supplementary Fig. S1).
The 2504 CpGs associated with AC in the meta-analysis mapped

to 1510 unique genes, 1409 of which were found to have a
recognized Ensembl (v92) ID. The GENE2FUNC function in FUMA
[29, 30] was used to provide biological annotation of these genes.
For the general tissue types, the differentially methylated genes
were overrepresented amongst those genes normally expressed
at low levels in the pancreas, heart and liver (Supplementary
Fig. S2). For the specific tissue types, the alcohol-associated
differentially methylated genes were significantly enriched for
genes amongst those expressed at lower levels in sub-regions of
the above tissues plus sub-regions of the brain (Supplementary
Fig. S3). Gene Ontology (GO) biological processes (Supplementary
Table S4), Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways (Supplementary Table S5), and curated gene sets
(Supplementary Table S6) were also tested for enrichment using
FUMA. The top two significant GO processes were locomotion and
regulation of intracellular signal transduction. The top KEGG
pathways enriched for differentially methylated genes were the
regulation of the actin cytoskeleton and pathways in cancer. The
curated gene sets that showed most significant enrichment for
our differentially methylated genes included a set of genes down
regulated in erythroid progenitors from fetal liver in a mouse
model knock-out of KLF1 [41] and a set of genes upregulated in
the brain of patients with Alzheimer’s disease [42].
DMR, spanning 2 or more CpGs, were also identified. Five

hundred and thirty-six DMRs ranging from 2–9 CpGs in length
were found to be associated with AC using the meta-analysis p
values (Supplementary Table S7). The most significantly associated
region spanned 2 CpGs in the first intron of the PHGDH gene, a
region also identified in the single CpG analysis. The largest DMR
was located on chromosome 16 and spans 9 CpGs (1243 bp) at the
MYC-associated zinc finger protein (MAZ) locus (p= 1.9 × 10−4),
this region has a single CpG associated at the level of individual
probes (cg03527802, p= 4.2 × 10−9).
The EWAS catalog (http://www.ewascatalog.org/) was used to

cross-reference the 2504 CpGs significantly associated with AC
with the wider literature (Supplementary Table S8). Overlap was
found with 56 individual studies with traits including those related
to AC [43], development and ageing (in liver, brain, and blood

tissue) [42, 44–48], smoking [49–51], cancer [52, 53], the immune
system [54, 55], and metabolic phenotypes [56–58].

Two-sample Mendelian randomization analyses of alcohol
consumption and AUD
We next investigated whether identified AC EWAS signals might
be relevant to AUD pathophysiology, and to establish the validity
of an AC derived MRS as a biomarker for AUD risk (see below). We
therefore used publicly available GWAS summary-level data to
conduct bidirectional two-sample Mendelian randomization ana-
lyses to formally determine whether there was evidence for a
causal relationship between AC and AUD. Conceptually, Mende-
lian randomization has similarities with randomized controlled
trials, with randomization of genetic variants occurring at meiosis
[59, 60]. This approach is an additional strategy for strengthening
causal inference when randomized controlled trials are impractical
or unethical [61–63].
We found evidence of an association between genetic liability

for AC and increased risk for AUD (odds ratio = 5.55 per standard
deviation increase in log-transformed DPW, 95% CI, 2.65–11.62,
p= 5.41 × 10−6); however, we did not find evidence of an
association in the reverse direction, i.e., between genetic liability
for increased risk for AUD and AC (beta = 0.008, 95% CI, −0.003 to
0.18, p= 0.17) (Supplementary Tables S12a, b and S13). The
associations were similar in magnitude and direction across the
four complementary Mendelian randomization methods (Supple-
mentary Fig. S4A, C), with no residual heterogeneity, bias due to
pleiotropy, nor apparent points of high leverage (Supplementary
Fig. S4B, D).

DNA methylation risk scores (MRS) for alcohol consumption
and AUD diagnosis
Having determined that there is evidence for a relationship
between genetic liability for AC and AUD diagnosis, we developed
a DNA MRS for AC and tested prediction of an AUD diagnosis in an
independent cohort. LASSO regression of the Generation Scotland
methylation data selected 519 CpGs to create a MRS for AC. The
full list of CpG and their corresponding weights are listed in
Supplementary Table S9. The MRS was then used to predict AUD
in two independent cohorts of mixed ethnicity collected in the
USA (AUD cohorts 1 and 2, Supplementary Tables S10 and S11). In
cohort 1, the prediction scores were significantly associated with
AUD status in a linear model adjusted for age, sex, and race (b=

Fig. 2 Correlation of effect sizes (beta) for CpGs in the wave 1 and wave 2 EWAS. CpG sites associated with alcohol consumption with a p
value ≤ 5 × 10−5 in either wave 1 or wave 2 are shown in red. CpG sites associated with alcohol consumption with a p value ≤ 6.8 × 10−8 in
either wave are shown in blue. For ease of plotting, cg06690548 is excluded due to its larger effect size in the EWAS (cg06690548: wave 1 beta
=−0.069; wave 2 beta=−0.106).
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0.59+ 0.042, F= 97.71, R2= 0.42, df= 4/533, p= 6.32 × 10−38),
and predicted AUD status with an AUC of 0.81 (95% CI: 0.77–0.84,
Fig. 3). In cohort 2, a similarly significant association with AUD
status was observed in a linear model, controlling for age, sex and
race (b= 0.88+ 0.096, F= 20.07, R2= 0.64, df= 7/78, p= 5.41 ×
10−14). Prediction of AUD status using the prediction score
achieved an AUC of 0.92 (95% CI: 0.86–0.99, Fig. 3). Although
cohort 2 was a smaller sample, there were stricter inclusion and
exclusion criteria for assignment of case-control status, which may
explain the increased discriminatory power of the predictor in this
cohort. Additional analyses separated by ethnicity and sex
revealed similar AUC (Supplementary Table S14).

SLC7A11 cg06690548 methylation and AUD
We next tested whether blood-based methylation for the top CpG
from our discovery EWAS of AC was also associated with clinically
diagnosed AUD in an independent cohort (see Supplementary
Table S15 for details). Probe cg06690548 was significantly
hypomethylated in AUD patients (n= 372) compared to HC
(n= 243) after adjustment for age, gender, and ethnicity (p=
4.1E–17; mean cg06690548 methylation 0.75 (0.004) for the AUD
group and 0.81 (0.002) for the controls by a logistic regression
model after adjustment for age, gender, and ethnicity). Investiga-
tion of the AUD and control samples also showed that AC,
including indications of severity, such as the number of drinking
days and heavy drinking days, was associated with hypomethyla-
tion of the CpG site cg06690548 (Table 2).

cg06690548 methylation and liver and lipid profiles
Given the strong association of alcohol related phenotypes with
CpG sites located close to SLC7A11, we next examined whether
reduced cg06690548 methylation was associated with clinically
relevant liver- and lipid-related phenotypes. In the total sample of
615 participants, decreased level of cg06690548 methylation was
associated with significantly increased levels of the liver enzymes
GGT (beta=−5.46; p= 1.03E–21), ALT (beta=−2.08; p=
1.29E–06), and AST (beta=−2.50; p= 1.97E–08) as seen in Table 2.
In addition, hypomethylation at cg06690548 was associated with
increased total cholesterol (beta=−0.37; p= 0.0082) and TG
levels (beta=−1.47; p= 3.07E–05) but was not associated with
LDL-C or HDL-C levels.

Hepatic SLC7A11 expression in a liquid diet rat model
Given the association of SLC7A11 methylation with AUD and
hepatic and lipidemic phenotypes, we next investigated whether
chronic alcohol intake influenced the level of SLC7A11 expression
in the liver of alcohol-fed rats. In this rat model, it was previously
shown that chronic alcohol exposure induced hepatocellular
injury, hepatic inflammation, and TG accumulation [40]. In line
with the association analyses, chronic alcohol exposure signifi-
cantly increased SLC7A11 mRNA levels in the rat liver (p= 0.0006)
(Fig. 4A). In order to further investigate the effects of promoter
DNA methylation at SLC7A11 on expression, we downloaded
publicly available datasets of rat liver generated by MeDIP-Seq
(GSE53518) and Affymetrix Rat Genome 230 2.0 Arrays

Fig. 3 AUD methylation risk score analyses in AUD cohorts. Receiver operating characteristic curves for the methylation risk score
prediction of AUD in Cohort 1 (A left) and in Cohort 2 (B right).

Table 2. Association of SLC7A11 cg06690548 methylation with clinical phenotypes, liver enzymes, and lipids.

Total sample (N= 615) AUD-only subset (N= 372)

Variables Beta SE STAT p value Beta SE STAT p value

Total drinks −1.31 0.80 −1.63 0.104 −1.17 0.55 −2.15 0.0325

Number of drinking days −0.84 0.07 118.53a <0.0001 −0.86 0.08 117.29a <0.0001

Heavy drinking days −1.15 0.08 195.09a <0.0001 −1.09 0.08 172.10a <0.0001

GGT −5.46 0.55 −9.95 1.03E–21 −5.63 0.69 −8.18 1.67E–15

ALT −2.08 0.42 −4.89 1.29E–06 −2.06 0.51 −4.07 5.32E–05

AST −2.50 0.44 −5.69 1.97E–08 −2.47 0.57 −4.37 1.46E–05

HDL-cholesterol 0.16 0.24 0.7 0.4851 0.21 0.28 0.74 0.4619

LDL-cholesterol −25.22 24.19 −1.04 0.2975 −37.09 27.27 −1.36 0.1747

Total cholesterol −0.37 0.14 −2.65 0.0082 −0.45 0.16 −2.82 0.0051

Triglycerides −1.47 0.35 −4.2 3.07E–05 −1.68 0.41 −4.13 4.13E–05
aWald χ2 statistic was estimated by a poisson regression model.
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(GSE51797), respectively. The primary data set was generated to
assess pharmacologically induced carcinoma, which may influence
hepatic cell-type ratios, so we confined our analysis to N= 4
water-treated control rat livers. A significant negative association
was observed between promoter DNA methylation and gene
expression of SLC7A11 (R=−0.97, p= 0.029), suggesting that the
hypomethylation observed in our study has the potential to be
linked with the observed expression upregulation, although future
larger studies are needed to confirm this effect.

SLC7A11 expression in human postmortem brain
We also analyzed expression of SLC7A11 in individuals with AUD
and controls using human postmortem brain tissues. SLC7A11
mRNA level expression in PFC of individuals with AUD significantly
was increased compared to the controls (p= 0.0352) (Fig. 4B).

DISCUSSION
In this paper, we carried out the largest EWAS of AC so far, conducted
MR analyses to establish a link between AC and AUD risk, followed up
with the generation of a biological methylation prediction score
based on AC data for AUD risk, and validated the top probe in
SLC7A11 in various animal and human endophenotypic datasets.

EWAS and target validation
We report multiple associations between DNA methylation and AC
in the Generation Scotland cohort. There was a strong correlation
between waves 1 and 2 of the Generation Scotland cohort and
sensitivity analyses indicated that the results were not substan-
tially confounded by smoking.
The most significant association with AC was with cg06690548,

a CpG site located in the promoter region of SLC7A11, which has
previously been reported to be associated with increased AC
[10, 11, 14, 43, 64]. In addition, in an EWAS of liver enzyme levels,
this probe was the top hit for association with ALT and GGT

levels and was also associated with a reduced risk of hepatic
steatosis [65].
The SLC7A11 gene encodes the light chain (xCT) of the cystine/

glutamate antiporter (system xc
–) that transports the anionic form

of cystine into cells in exchange for glutamate. System xc
– is

expressed in several cells including macrophages, hepatocytes,
endothelial cells, neurons, astrocytes, and microglia [66]. The
exported glutamate makes up the extracellular glutamate
concentration in the brain [66–69]. System xc

– plays an important
role in preventing oxidative stress and damage in cells, as the
imported cystine is reduced to cysteine, the rate-limiting precursor
for synthesis of glutathione (GSH). This mechanism is crucial for
both brain and liver. In brain, a recent study showed that
cg06690548 hypermethylation in Parkinson’s disease was asso-
ciated with downregulation of the SLC7A11 gene and reduced
GSH levels and increased oxidative stress triggered degeneration
of dopaminergic neurons in the substantia nigra [70]. We found
that decreased methylation at cg06690548 was associated with
AC in both the population-based cohorts and AUD cohorts.
Subsequent biological validation of the effects of alcohol on
SLC7A11 methylation and expression using a chronic rat model
and human postmortem brain confirmed that decreased methyla-
tion at cg06690548 leads to increased mRNA expression, further
supporting a functional role of this SLC7A11 CpG site. Our data are
in line with a recent study by Choi et al. who showed that alcohol
increases xCT/SLC7A11 expression in liver in mice and patients
with ALD leading to increased extracellular glutamate levels in the
liver [71]. Genetic or pharmacologic inhibition of xCT attenuated
alcoholic steatosis in mice, highlighting the potential for
therapeutic intervention. Similarly, alcohol exposure consistently
upregulated xCT/SLC7A11 transporter expression in rat brain [72],
consistent with our EWAS data of hypomethylated cg06690548.
Our endophenotypic analysis of alcohol-associated phenotypes

showed that various liver biomarkers were robustly associated
with SLC7A11 methylation status. This finding is intriguing, as a
recent EWAS on NAFLD also identified SLC7A11 methylation
status as risk factor for hepatic steatosis [73]. In addition,
postmortem brain analyses showed that SLC7A11 was upregu-
lated in key brain regions previously implicated in AUD, high-
lighting potential direct effects on brain structure and physiology.
Thus, our study makes an important contribution to the growing
evidence that SLC7A11 is an important molecule that spans the
liver–brain-axis in alcohol-related disease and may represent a
novel therapeutic target for these conditions. While there are
currently no FDA-approved medications that selectively target
SLC7A11/xCT, there is growing interest in SLC7A11 inhibitors in
the cancer field, as SLC7A11 overexpression promotes tumor
growth partially by suppressing ferroptosis, which might also be
relevant to alcohol-related liver cancers [74, 75]. Interestingly, N-
acetylcysteine, a cytosine prodrug that targets SLC7A11/xCT
decreases synaptic glutamate transmission and oxidative stress
and has been investigated in several preclinical and clinical studies
as a potential therapeutic target for psychiatric and substance use
disorders [76–78].
There were several other candidate genes that were also

strongly associated with AC in our EWAS with potential implica-
tion on alcohol-associated disease. Three CpGs located in the gene
encoding the phosphoglycerate dehydrogenase (PHGDH) showed
statistically significant differential methylation in our study. This
finding is important given that the cg14476101 site has been
previously been associated with high blood pressure [79], which is
often a consequence of excessive chronic alcohol use [80] and
normalizes for the majority of individuals after AC cessation
[81, 82]. A large meta-analysis found that reducing AC lowers
blood pressure in a dose-dependent manner [83]. Interestingly,
differential methylation at multiple genes (SLC7A11, PHGDH, TXNIP,
LOC100132354, CPT1A, SLC1A5) is associated with both AC (this
study) and with hypertension [79].

Fig. 4 SLC7A11 experssion in rat liver and human postmortem
brain. A Effect of alcohol intake on SLC7A11 expression in the liver
of rats. Relative hepatic mRNA expression in the chronic alcohol-fed
rat model (n= 7 for control and 8 for ethanol groups). B Effect of
alcohol consumption on SLC7A11 expression in human postmortem
brain. Relative hepatic mRNA expression in PFC of individuals with
AUD (n= 13 for control and 11 for case).
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The c-Jun-dimerization protein 2 (JPD2) locus contains four
CpGs associated with AC. JDP2 is a component of the AP-1
transcription factor that has been shown to be involved in the
development of liver cancer in mice [84]. Four CpGs at the GAS5
locus were also associated with AC. The top CpG (cg06644515)
was also associated with AUD and alcohol use in a previous study
of three independent cohorts [13]. GAS5 methylation is associated
with morning cortisol levels, suggesting a role for HPA-axis
regulation in the development of AUD [13].
The differentially methylated genes were overrepresented

amongst genes usually expressed at low levels in some of the
key tissues impacted by alcohol usage (liver, pancreas, and brain).
Enrichment was also seen amongst genes whose upregulation is
associated with Alzheimer’s disease, and the longest DMR we
discovered, which is in the MAZ gene, is amongst this gene set
and is known to localize to pathologic structures in Alzheimer’s
disease brain [85]. These data support the link observed between
AC and Alzheimer’s disease [86, 87].

Mendelian randomization of alcohol consumption and AUD
While there has been substantial literature that chronic heavy AC
can increase the risk for AUD, observational epidemiological data
are prone to confounding and reversed causation making causal
inference and directionality difficult. In order to investigate the
relationship between AC and AUD risk, we performed a two-
sample bidirectional Mendelian randomization analysis. Our data
show evidence for a potential causal association between the
genetic liability for increase AC and the risk for AUD. Although
GWAS analyses by Walters et al. did not find overwhelming
genetic overlap between AC phenotypes and AUD, there are
several GWAS limitations that might contribute to this “lack of
finding” of overlap, including phenotypic considerations and lack
of power and study design. Mendelian Randomization is a
complementary genetic approach, and in this case, we used AC
as exposure and AUD as outcome, with non-overlapping samples.
It may well be the case that future larger AUD GWAS studies will
show a greater overlap of genetic factors influencing AC with
genetic risk variants for AUD. Our Mendelian randomization
finding suggests that the underlying biological mechanism for
heavy AC might also be relevant in the pathophysiology of AUD.
Based on these results we further analyzed if AC MRSs can predict
AUD risk.

Methylation risk scores and AUD risk
Using MRSs trained on the Generation Scotland cohort, we were
able to discriminate between AUD cases and controls in two
independent USA-based cohorts of mixed ethnicity. Given that the
AUC for AUD in the present study was as high as 0.92, this DNA
methylation signature may have clinical utility as a biomarker for
heavy drinking. This is comparable, and indeed better, than many
existing clinical biomarkers for alcohol use, such as elevated liver
enzymes or carbohydrate-deficient transferrin [88]. While mea-
surement of phosphatidylethanol (PEth), an objective measure of
AC, can be considered currently the gold-standard of assessing AC
compared to self-report measures [89], PEth also has some
limitation including a half-life of ~4–7 days [90] and a limited
window of detection of about 21 days [91]. In this regard, a MRS
for AC might offer a longer-term biomarker signature profile,
although future studies are needed to test how stable this
measure is over time [8] and how clinically useful it might be.
Previous studies that have attempted to create DNA

methylation-based biomarkers of alcohol use have not been as
successful in discriminating heavy drinkers from controls. McCart-
ney et al., using a subset of the Generation Scotland cohort used
in this study, were able to predict heavy drinking in an
independent population-based cohort with an AUC of 0.73 [92].
A study by Liu et al. developed a predictor [43] that when tested in
independent cohorts predicted heavy drinking with maximum

AUCs of 0.60 and 0.77 and problem drinking with a maximum AUC
of 0.80 [93]. As studies of methylation-based biomarkers for
alcohol use were found to be less predictive in adolescents
compared to adults [93], it is likely that the methylation scores
represent exposure to long-term alcohol use. This measure may be
of use as a proxy for self-reported alcohol use when these
measures are unavailable, or to complement self-report when the
measurement reliability is questioned. Further work is needed to
determine the stability of alcohol-associated methylation after
drinking cessation, as this will inform the clinical applicability of
MRSs as biomarkers.

Strengths and limitations
We note several strengths of our study, including the largest
single sample cohort EWAS to date, providing adequate power to
detect a large range of effects and enabling a high degree of
precision. As a result, we identified a range of genes with robust
statistical evidence for an association with AC. In addition, we
carried out biological target validation studies, which is a crucial
step in moving a large set of data findings to meaningful and
potentially clinically important new target identification, as shown
with SLC7A11. Finally, by using Mendelian randomization to
validate the use of AC phenotypes as surrogate for AUD risk, we
calculated a methylation prediction score that robustly identified
AUD status, highlighting the usefulness of EWAS approaches for
validating disease diagnostics and monitoring.
There are also several limitations that should be carefully taken

into consideration when interpreting our results. We describe DNA
methylation changes observed in peripheral blood in our EWAS,
which may not be informative for the many other tissues
impacted by AC. To address this limitation, we have carried out
several replication and biological validation experiments for the
top target SLC7A11, including brain and liver as well as animal
cohorts. Interestingly, we observed convergence of evidence that
SLC7A11 might be relevant to alcohol related pathology in both
liver and brain and were able to detect this target using a
peripheral blood DNA EWAS approach. While studies of blood are
essential for developing effective biomarkers for clinical use and
for discovery of potential new biological targets, the exact
mechanisms by which alcohol leads to widespread epigenetic
modifications are not addressed in our study. Furthermore, while it
is likely that alcohol exposure leads to DNA methylation changes,
it is possible that some DNA methylation changes can also lead to
changes in AC behaviors. Longitudinal studies are, therefore,
warranted.
We also note that our discovery cohort was predominantly a

population-based sample of EA ancestry, limiting inference to
other populations and possible disease populations. Future
studies need to include other ethnic groups and should also
carry out sex-specific analyses. In addition, it is important to note
that there are several other factors besides AC that can have
effects on the epigenetic landscape, such as phenotypic hetero-
geneity, various environmental factors including life-experiences
and lifestyle and underlying genetic architecture.

Summary
In summary, we describe an EWAS of AC in 8161 individuals in a
population-based cohort. We find 2504 CpGs where DNA
methylation is significantly associated with levels of AC and
identify several enriched gene pathways and gene sets. Biological
validation and endophenotypic studies identified SLC7A11 as a
top target relevant to liver and brain, and other genes related to
often observed clinical comorbidities of chronic heavy AC,
including hypertension and Alzheimer’s disease. This research
serves as a proof-of-principle study showing that upstream
phenotypes, such as AC, can have direct relevance to underlying
disease. Future studies are needed to determine the clinical utility
of methylation biomarkers as proxies for alcohol exposure and to

F.W. Lohoff et al.

8

Molecular Psychiatry



establish the degree to which they can aide in the discovery of
novel therapeutic targets for AUD and alcohol-related diseases.
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