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Abstract. Alzheimer’s disease is a debilitating disease in the elderly,
and is an increasing burden to the society due to an aging population. In
this paper, we apply topological data analysis to structural MRI scans of
the brain, and show that topological invariants make accurate predictors
for Alzheimer’s. Using the construct of Betti Curves, we first show that
topology is a good predictor of Age. Then we develop an approach to
factor out the topological signature of age from Betti curves, and thus
obtain accurate detection of Alzheimer’s disease. Experimental results
show that topological features used with standard classifiers perform
comparably to recently developed convolutional neural networks. These
results imply that topology is a major aspect of structural changes due
to aging and Alzheimer’s. We expect this relation will generate further
insights for both early detection and better understanding of the disease.

Keywords: Topological data analysis · Alzheimer’s disease · MRI.

1 Introduction

Alzheimer’s disease (which is often abbreviated as AD) and other neurodegen-
erative diseases are closely associated with aging. As average life expectancy
increases worldwide, the number of patients with brain aging and associated dis-
eases will rise rapidly. The current estimated number of Alzheimer’s patients is
around 47 million, which is projected to increase to 152 million by year 2050 [25].

Deterioration of the brain manifests as several complex structural, chemi-
cal and functional changes, making it challenging to distinguish diseases from
aging. For example, with age, cerebral ventricles expand and cortical thickness
decreases; lesions and atrophies arise [13]; the brain volume itself contracts with
old age, while gray and white matter volumes are known to expand and con-
tract at different times in the life cycle. These degenerative changes interact in
complex ways with progression of Alzheimer’s disease and the atrophy induced
by it [18]. See Figure 1 for MRI scans of brains showing degeneration in brain
tissue. Thus, understanding these changes and their different manifestations will
be crucial to the prevention and management of the diseases.

Aging related symptoms – atrophied regions, lesions etc – affect connectivity
in the brain; and aberrations in connectivity are also closely related to neural dis-
orders including Alzheimer’s, Autism Spectrum Disorder and many others [23].
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(a) Normal (b) Aging (c) AD

Fig. 1: Topological changes with aging and Alzheimer’s, showing the effects in
gray matter (red) and white matter (white). Both aging and AD result in the
loss of white matter volume and a thinning of the gray matter. Gray matter of
the Aging brain breaks down into smaller connected components.

In this paper, we study the changes in connectivity of the brain by observing the
changes in its topology. Using data analysis on structural MRI scans, we identify
signatures of deterioration in connectivity, and develop techniques to isolate the
signs of Alzheimer’s from ordinary aging.
Our contributions. We take the approach of persistent homology – which
is a way to describe topology at multiple scales or function values. Persistent
homology produces artifacts called Betti Curves [7] that count the number of
disconnections and holes. Our approach computes persistent homology sepa-
rately for different functions for white and gray matter, and we find that the
resultant Betti curves make accurate predictors of the chronological age. These
ideas are described in Section 4.1.

Since changes in connectivity are common features of aging as well as of
Alzheimer’s, we develop a method to factor out the topological signature of
aging to identify cases of Alzheimer’s (Section 4.2). This method works using
the relation between chronological age and Betti curves. It first predicts a Betti
curve given the chronological age of the patient. Next, it computes the Betti curve
of the MRI scan, and finds the residual Betti curve – the difference between the
computed and predicted curve. This residual curve is found to produce significant
gains in identification of Alzheimer’s disease from MRI scans.

Experimental results (Section 5) show that topological features are good
predictors of both age and Alzheimer’s, and the newly defined residual Betti
curves factor out the aging affect from Alzheimer’s fairly successfully. In partic-
ular, we obtain an R2 score of 66% and Mean Absolute Error (MAE) of 4.47
years for the age prediction task (Section 5.1) and F1 score of 0.62 and 0.74
balanced accuracy for detecting Alzheimer’s. These results are comparable to
recent CNN based methods [30] (Section 5.2). Thus, our results suggest that the
topological changes are an important descriptor of the structural changes in the
brain and should be investigated in greater detail for understanding of aging and
Alzheimer’s.
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2 Related Works

A multitude of automated methods to estimate brain age [14,8] and detect
Alzheimer’s have been suggested in the literature in recent years, with their suc-
cess highly dependent on the set of participants, image preprocessing procedures,
cross-validation procedure, reported evaluation metric, number and modality of
brain scans [30]. For detection of AD, they generally fall into two main cate-
gories. The first one is those that classify AD based on biomarkers(e.g. [24,18]),
where the biomarkers have been generally based around describing brain atro-
phy [4]. The second one is for studies based on deep learning and convolutional
neural networks (CNNs) [1,3,22].

The studies in the first group mainly focus on measuring brain atrophy from
a structural MRI, which is an important biomarker for determining the sta-
tus and strength of the neurodegeneration from AD [29]. However, the existing
methods are known to be incomplete. Though the deep learning approaches from
the second group show promising results, there are challenges in terms of gen-
eralisation [26,2], bias and data leakage [30]. A recent summary of CNN-based
methods and a number of possible issues can be found in [30].

Topological data analysis (TDA) has been used to study other static anatom-
ical data (e.g. retina images [5,17]) as well as dynamic data such as functional
MRI (fMRI) scans [27]. fMRI represents activity in different parts of the brain
by detecting blood flow. In contrast, MRI (or structural MRI) produces a static
anatomical image and not of the temporary activity. To the best of our knowl-
edge, the current paper is the first TDA-based analysis of AD on MRI data of
the brain, showing that Topology is a significant feature of aging and AD.

3 Preliminaries

3.1 Homology and Betti Curves

Betti numbers are topological invariants that count numbers of holes in each di-
mension. The dimension n Betti number is written as βn. For example, β0 counts
the number of connected components, β1 is the number of one-dimensional or
“circular” holes and β2 counts the number of enclosed spaces or voids. We present
here only a basic description needed for our exposition. For a detailed mathe-
matical treatment, we refer the reader to various excellent texts on algebraic
topology [19,9].

The Betti number is sensitive to noise and small perturbations in data. Topo-
logical data analysis (TDA) is made robust through the use of topological per-
sistence [31,6] – working off the assumption that structures which persist over
multiple scales of data, or multiple values of a relevant filtration function, are im-
portant. In order to use them in our analysis, starting with an image I, we build
a representation of the data as cubical complexes Fr, according to the sub-level
sets of some carefully selected filtration function f : I → R. All pixels which
when used to evaluate f fall below some threshold parameter r are included in
the cubical complex, and, by increasing r, we obtain a sequence of nested cubical
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complexes Fr0 ⊂ Fr1 ⊂ Fr2 ⊂ . . .. The Betti curve [7] is the sequence consisting
of the Betti numbers of these complexes: Bn(I, r) := βn(Fr).

3.2 Dataset

The dataset used in this study is a publicly available dataset of MRI scans
OASIS-3 [21]. It consists of scans of 1098 individuals, taken over a period of 10
years as part of a longitudinal neuroimaging study. We have used a portion of the
dataset consisting of 888 scans, where 733 are healthy and 155 with AD. Table 1
shows the gender and age distribution. The dataset was chosen for the availability
of precomputed FreeSurfer [10] files which include skull-stripped scans, brain
segmentations [12], cortical thickness measurements [11] and 3D reconstructions.
This allows for a much more streamlined analysis of the images, and means
that we can relate the results directly to the precomputed measurements of
brain volumes and thicknesses. These measurements form the feature sets for
the Baseline model used in experiments.

Healthy AD
Age (mean ± SD ) 66.9 ± 9.3 74.6 ± 8.1

Gender (M/F) 258/475 74/81

Table 1: Demographic data of the subset used in experiments.

4 Algorithms and methods

4.1 Betti curve based features on MRI data

To compute the Betti curves of MRI scans, we need an appropriate filtration
function. Given the different qualitative properties we seek to capture between
gray and white matter, we isolate the two regions and compute the persistent
homology using two different filtration parameters.

The gray matter is processed using density filtration [16]. This function
smooths out the image by assigning to each pixel the number of non-zero neigh-
bours within a 3 pixel radius. For white matter, we wish to detect discolourations
associated with lesions, thus the filtration is performed directly on the pixel in-
tensity values.

Persistence diagrams are computed on filtration values. These are then nor-
malized to [0, 1] and used to compute the Betti curves (E.g. see Fig. 2). Ad-
ditionally, Freesurfer’s preprocessing procedure produces point clouds outlining
a 3D reconstruction of the outer surface of the brain. We compute the Betti
curves for these point clouds from Vietoris-Rips filtration [6]. The persistent ho-
mology computation produces Betti curves for dimensions 0, 1 and 2 using 100
filtration values in each dimension, resulting in three 100-dimensional vectors.
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Fig. 2: Example of a dimension 1 Betti curve computed from the gray matter.
The age of subjects are 56 for young, 65 for AD and 83 for aging.

For the machine learning algorithms, we concatenate these curves from different
dimensions into a single vector, and call this the Betti curve B(s) for subject s.
Concatenation of curves from different combination of regions of the brain (gray
matter, white matter and surface reconstruction) produces different instances of
B(s).

4.2 Aging vs Alzheimer’s

We first develop techniques to correlate age with the Betti curve features, and
then compute Residual Betti Curves that represent Betti Curves modulo the
effect of age.
Predicting age from Betti curves. The age prediction model is built using
a random forest regressor [20] on the Betti curves. Several models are trained
for each set of the Betti curves (white matter, gray matter and point cloud) in-
dependently. We train an additional model consisting of the various Betti curves
concatenated together. We compare the performance of all these models to a
baseline model consisting of a random forest regressor trained on the FreeSurfer
volumetric statistics.
Residual Betti curves: Factoring out the effect of age. Next, we consider
the inverse problem of predicting the combined Betti curves from the age of a
person. For a person of age a, we call this the expected Betti curve E(a). The
true combined Betti curve B(s) can be regarded as a sum:

B(s) = E(a) +R(s),

where we call R(s) the residual Betti curve for subject s of age a. R(s) is the
difference between B(s) and E(a) and represents how much the brain structure
deviates from the expected (healthy) brain. Values in R will be usually small for
healthy subjects and large for AD patients.

The classification model is then trained on the set of residuals to obtain
the distribution P (A|R(s)) where A is a binary random variable indicating the
presence of Alzheimer’s.
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This training for Alzheimer’s prediction operates as follows. Normalized Betti
curves for the entire dataset are computed. E is estimated using a linear regres-
sion on a healthy subpopulation. A Support Vector Machine (SVM) model is
trained on the remaining data to predict the presence of Alzheimer’s given the
residuals R(s) = B(s)− E(a)

Example residual curves are shown in Figure 3. We report the test set per-
formance of various combinations of Betti curves as in the age prediction model.
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Fig. 3: Comparison of gray matter residual curves in the dimensions 0 and 1.
The first dimensional residual (right), shows clearer distinction between the old
subject and and the AD patient. The age of subjects is 56 for young, 65 for AD
and 83 for aging.

4.3 Implementation details

The source code is available on GitHub1, where more implementation details
can be found. Persistent homology was computed with giotto-tda library [28].
Baseline comparisons were conducted with a set of standard features. The ran-
dom forest age prediction model, as well as the SVM and linear regressor models
of the AD classification model are instantiated with the default hyperparameters
in scikit-learn. For the former, sampling procedure is stratified to preserve
the distribution of ages in the data, resulting in 666 train curves and 466 test
curves. For the latter, the linear regressor is trained on 200 healthy curves and
the SVM is trained on 566 curves (100 more curves are added to the remaining
466 by oversampling due to imbalance between subjects with and without AD).

5 Experimental results

5.1 Brain age prediction

. Initial experiments explore the utility of Betti curves as predictors of brain
age. This is done by training several random forest models on the Betti curves

1 https://github.com/ameertg/BrainAgingTDA
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obtained from the various regions, white matter, gray matter and point cloud
surface reconstructions. We investigate the performance of the regression when
restricted to the Betti curves of a particular region as well its performance when
the Betti curves are concatenated together. The Baseline model consists of a
random forest regressor trained on the FreeSurfer volumetric statistics.
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Fig. 4: Predicted versus actual age for healthy subjects.

The correlation between the true and predicted ages can be seen in Figure 4.
For evaluation, we consider the R2 score on the testing set. This is a common
metric used in the evaluation of regression models and describes the variance of
the target variable explained by the model. An R2 score of 1 indicates perfect fit
while 0 indicates no correlation between the model output and the target labels.

Table 2 indicates that for raw MRI the combined white and gray matter
features performs well with an R2 score of 0.51, while the addition of point
cloud information provides a large increase to an R2 score of 0.66 and Mean
absolute error of 4.47 years.

Model R2 score MAE

Freesurfer Baseline 0.46 ± 0.02 5.43 ± 0.21
White matter 0.43 ± 0.02 5.80 ± 0.22
Gray matter 0.49 ± 0.03 5.56 ± 0.17
White + gray matter 0.50 ± 0.02 5.46 ± 0.24
Surface point cloud 0.53 ± 0.03 5.13 ± 0.32
All combined 0.65± 0.02 4.47± 0.23

Table 2: Mean test set model performances (mean and standard deviation) on 5
runs (with random train and test sets) in terms of R2 score and Mean Absolute
Error (MAE) for various feature sets. Based on combined Betti curve features.
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5.2 AD detection with age correction

Here we compare two approaches to training an AD classifier. The first method
uses the Betti curve obtained from the MRI scan while the second method in-
corporates information about aging by considering the residual Betti curves. As
above, we test both methods on individual Betti curves and also on the concate-
nated curve which includes the white, gray and point cloud Betti curves. Since
the number of healthy and AD patients are different, we compute F1 score and
balanced accuracy which are different methods for interpreting unbalanced data.
Table 3 shows that the initial model performs poorly on all feature sets but sees
significant improvements in F1 scores when we introduce the residual curve. The
residual approach performs particularly well on the gray matter features.

Raw Betti curves Residual Betti curves
F1 score Balanced acc F1 score Balanced acc

Gray matter 0.00 ± 0.0 0.50 ± 0.0 0.61± 0.02 0.74± 0.03
White matter 0.13 ± 0.01 0.51 ± 0.02 0.50 ± 0.03 0.65 ± 0.04

Surface Point cloud 0.42± 0.02 0.76 ± 0.03 0.45 ± 0.03 0.57 ± 0.03
Combined 0.30 ± 0.02 0.76± 0.02 0.47 ± 0.04 0.60 ± 0.03
Baseline 0.36 ± 0.02 0.66 ± 0.02 0.22 ± 0.03 0.47 ± 0.02

Table 3: Mean and standard deviation test set performance of the SVM classifier
on 5 runs (with random training and test sets) trained on the raw Betti curves
(left); and on the residual Betti curves (right).

6 Discussion

The most striking observation from our experiments is that simple classifica-
tion on topological features produces a balanced accuracy of 0.76 on Raw Betti
Curves and 0.74 on Residual Betti curves, while in comparison, state-of-the-art
CNN-based methods (3D subject-level CNN, 3D ROI-based CNN, 3D patch-level
CNN, 2D slice-level CNN) achieve average balanced accuracy varying between
0.61 and 0.73 (see Table 6 in [30], last column, row Baseline). Our experiments
use about half of the same dataset OASIS-3 [21], and thus the comparison needs
some further study. However, it is clear from the results that topology can play
a significant role in the study and detection of Alzheimer’s disease.

Various other results in our study also point toward specific relevance of
topology in the study of the brain. The residual Betti curves on Gray matter
were particularly accurate, suggesting the need for further study of the topology
of gray matter. Similarly, the topological age prediction was explored here only
to the extent it was useful for subsequent detection of AD. Its combination with
other techniques such as BrainAge [15] and relation to the Freesurfer and CNN
features remain to be explored.
Acknowledgements. RA is supported by the UKRI (grant EP/S02431X/1).
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