

Edinburgh Research Explorer

PyTorch Geometric Temporal: Spatiotemporal Signal Processing
with Neural Machine Learning Models
Citation for published version:
Rozemberczki, B, Scherer, P, He, Y, Panagopoulos, G, Riedel, A, Astefanoaei, M, Kiss, O, Beres, F, López,
G, Collignon, N & Sarkar, R 2021, PyTorch Geometric Temporal: Spatiotemporal Signal Processing with
Neural Machine Learning Models. in CIKM '21: Proceedings of the 30th ACM International Conference on
Information & Knowledge Management. Association for Computing Machinery (ACM), pp. 4564–4573, 30th
ACM International Conference on Information and Knowledge Management, Gold Coast, Queensland,
Australia, 1/11/21. https://doi.org/10.1145/3459637.3482014

Digital Object Identifier (DOI):
10.1145/3459637.3482014

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
CIKM '21: Proceedings of the 30th ACM International Conference on Information & Knowledge
Management

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 22. Dec. 2021

https://doi.org/10.1145/3459637.3482014
https://doi.org/10.1145/3459637.3482014
https://www.research.ed.ac.uk/en/publications/6e010eb8-d92a-4986-a2c0-a021b94fd479

PyTorch Geometric Temporal: Spatiotemporal Signal Processing
with Neural Machine Learning Models

Benedek Rozemberczki∗
AstraZeneca

United Kingdom
benedek.rozemberczki@astrazeneca.com

Paul Scherer
University of Cambridge

United Kingdom
pms69@cam.ac.uk

Yixuan He
University of Oxford
United Kingdom

yixuan.he@stats.ox.ac.uk

George Panagopoulos
École Polytechnique

France
george.panagopoulos@polytechnique.edu

Alexander Riedel
Ernst-Abbe University for Applied

Sciences
Germany

alexander.riedel@eah-jena.de

Maria Astefanoaei
IT University of Copenhagen

Denmark
msia@itu.dk

Oliver Kiss
Central European University

Hungary
kiss_oliver@phd.ceu.edu

Ferenc Beres
ELKH SZTAKI

Hungary
beres@sztaki.hu

Guzmán López
Tryolabs
Uruguay

guzman@tryolabs.com

Nicolas Collignon
Pedal Me

United Kingdom
nicolas@pedalme.co.uk

Rik Sarkar
The University of Edinburgh

United Kingdom
rsarkar@inf.ed.ac.uk

ABSTRACT
We present PyTorch Geometric Temporal a deep learning frame-
work combining state-of-the-art machine learning algorithms for
neural spatiotemporal signal processing. The main goal of the li-
brary is to make temporal geometric deep learning available for
researchers and machine learning practitioners in a unified easy-
to-use framework. PyTorch Geometric Temporal was created with
foundations on existing libraries in the PyTorch eco-system, stream-
lined neural network layer definitions, temporal snapshot gener-
ators for batching, and integrated benchmark datasets. These fea-
tures are illustrated with a tutorial-like case study. Experiments
demonstrate the predictive performance of the models implemented
in the library on real world problems such as epidemiological fore-
casting, ride-hail demand prediction and web-traffic management.
Our sensitivity analysis of runtime shows that the framework can
potentially operate on web-scale datasets with rich temporal fea-
tures and spatial structure.

∗The project started when the author was a doctoral student of the Center for Doctoral
Training in Data Science at The University of Edinburgh.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM’21, 1-5 November 2021, Online
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopoulos,
Alexander Riedel, Maria Astefanoaei, Oliver Kiss, Ferenc Beres, Guzmán
López, Nicolas Collignon, and Rik Sarkar. 2021. PyTorch Geometric Tempo-
ral: Spatiotemporal Signal Processingwith Neural Machine LearningModels.
In CIKM’21: ACM International Conference on Information and Knowledge
Management, 1-5 November 2021, Online.ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Deep learning on static graph structured data has seen an unprece-
dented success in various business and scientific application do-
mains. Neural network layers which operate on graph data can
serve as building blocks of document labeling, fraud detection, traf-
fic forecasting and cheminformatics systems [7, 45–47, 63]. This
emergence and the wide spread adaptation of geometric deep learn-
ing was made possible by open-source machine learning libraries.
The high quality, breadth, user oriented nature and availability of
specialized deep learning libraries [13, 15, 46, 67] were all contribut-
ing factors to the practical success and large-scale deployment
of graph machine learning systems. At the same time the exist-
ing geometric deep learning frameworks operate on graphs which
have a fixed topology and it is also assumed that the node features
and labels are static. Besides limiting assumptions about the input
data, these off-the-shelf libraries are not designed to operate on
spatiotemporal data.

Present work. We propose PyTorch Geometric Temporal, an
open-source Python library for spatiotemporal machine learning.
We designed PyTorch Geometric Temporal with a simple and con-
sistent API inspired by the software architecture of existing widely

ar
X

iv
:2

10
4.

07
78

8v
3

 [
cs

.L
G

]
 1

0
Ju

n
20

21

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CIKM’21, 1-5 November 2021, Online B. Rozemberczki, P. Scherer, Y. He, G. Panagopoulos, A. Riedel, M. Astefanoaei, O. Kiss, F. Beres, G. López, N. Collignon, and R. Sarkar

used geometric deep learning libraries from the PyTorch ecosystem
[15, 40]. Our framework was built by applying simple design prin-
ciples consistently. The framework reuses existing neural network
layers in a modular manner, models have a limited number of public
methods and hyperparameters can be inspected. Spatiotemporal
signal iterators ingest data memory efficiently in widely used scien-
tific computing formats and return those in a PyTorch compatible
format. The design principles in combination with the test coverage,
documentation, practical tutorials, continuous integration, package
indexing and frequent releases make the framework an end-user
friendly spatiotemporal machine learning system.

The experimental evaluation of the framework entails node level
regression tasks on datasets released exclusively with the frame-
work. Specifically, we compare the predictive performance of spa-
tiotemporal graph neural networks on epidemiological forecasting,
demand planning, web traffic management and social media in-
teraction prediction tasks. Synthetic experiments show that with
the right batching strategy PyTorch Geometric Temporal is highly
scalable and benefits from GPU accelerated computing.

Our contributions. The main contributions of our work can be
summarized as:

• We publicly release PyTorch Geometric Temporal the first
deep learning library for parametric spatiotemporal machine
learning models.

• We provide data loaders and iterators with PyTorch Geometric
Temporal which can handle spatiotemporal datasets.

• We release new spatiotemporal benchmark datasets from
the renewable energy production, epidemiological reporting,
goods delivery and web traffic forecasting domains.

• We evaluate the spatiotemporal forecasting capabilities of
the neural and parametric machine learning models available
in PyTorch Geometric Temporal on real world datasets.

The remainder of the paper has the following structure. In Sec-
tion 2 we overview important preliminaries and the related work
about temporal and geometric deep learning and the characteris-
tics of related open-source machine learning software. The main
design principles of PyTorch Geometric Temporal are discussed in
Section 3 with a practical example. We demonstrate the forecasting
capabilities of the framework in Section 4 where we also evalu-
ate the scalability of the library on various commodity hardware.
We conclude in Section 5 where we summarize the results. The
source code of PyTorch Geometric Temporal is publicly available
at https://github.com/benedekrozemberczki/pytorch_geometric_
temporal; the Python package can be installed via the Python Pack-
age Index. Detailed documentation is accessible at https://pytorch-
geometric-temporal.readthedocs.io/.

2 PRELIMINARIES AND RELATEDWORK
In order to position our contribution and highlight its significance
we introduce some important concepts about spatiotemporal data
and discuss related literature about geometric deep learning and
machine learning software.

2.1 Temporal Graph Sequences
Our framework considers specific input data types on which the
spatiotemporal machine learning models operate. Input data types

can differ in terms of the dynamics of the graph and that of the
modelled vertex attributes. We take a discrete temporal snapshot
view of this data representation problem [25, 26] and our work
considers three spatiotemporal data types which can be described
by the subplots of Figure 1 and the following formal definitions:

Definition 2.1. Dynamic graph with temporal signal A dy-
namic graph with a temporal signal is the ordered set of graph and
node feature matrix tuples D = {(G1,X1), . . . , (G𝑇 ,X𝑇)} where
the vertex sets satisfy that 𝑉𝑡 = 𝑉 , ∀𝑡 ∈ {1, . . . ,𝑇 } and the node
feature matrices that X𝑡 ∈ R |𝑉 |×𝑑 , ∀𝑡 ∈ {1, . . . ,𝑇 } .

Definition 2.2. Dynamic graph with static signal. A dynamic
graph with a static signal is the ordered set of graph and node
feature matrix tuples D = {(G1,X), . . . , (G𝑇 ,X)} where vertex
sets satisfy𝑉𝑡 = 𝑉 , ∀𝑡 ∈ {1, . . . ,𝑇 } and the node feature matrix that
X ∈ R |𝑉 |×𝑑 .

Definition 2.3. Static graph with temporal signal. A static
graph with a temporal signal is the ordered set of graph and node
feature matrix tuples D = {(G,X1), . . . , (G,X𝑇)} where the node
feature matrix satisfies that X𝑡 ∈ R |𝑉 |×𝑑 , ∀𝑡 ∈ {1, . . . ,𝑇 } .

Representing spatiotemporal data based on these theoretical
concepts allows us the creation of memory efficient data structures
which conceptualize these definitions in practice well.

(a) Dynamic graph with temporal signal.

(b) Dynamic graph with static signal.

(c) Static graph with temporal signal.

Figure 1: The data iterators in PyTorch Geometric Tempo-
ral can provide temporal snapshots for all of the non static
geometric deep learning scenarios.

https://github.com/benedekrozemberczki/pytorch_geometric_temporal
https://github.com/benedekrozemberczki/pytorch_geometric_temporal
https://pytorch-geometric-temporal.readthedocs.io/
https://pytorch-geometric-temporal.readthedocs.io/

PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models CIKM’21, 1-5 November 2021, Online

2.2 Deep Learning with Time and Geometry
Our work provides deep learningmodels that operate on data which
has both temporal and spatial aspects. These techniques are natural
recombinations of existing neural network layers that operate on
sequences and static graph-structured data.

2.2.1 Temporal Deep Learning. A large family of temporal deep
learning models such as the LSTM [24] and GRU [12] generates
in-memory representations of data points which are iteratively
updated as it learns by new snapshots. Another family of deep
learning models uses the attention mechanism [3, 35, 59] to learn
representations of the data points which are adaptively recontextu-
alized based on the temporal history. These types of models serve
as templates for the temporal block of spatiotemporal deep learning
models.

2.2.2 Static Graph Representation Learning. Learning representa-
tions of vertices, edges and whole graphs with graph neural net-
works in a supervised or unsupervised way can be described by
the message passing formalism [17]. In this conceptual framework
using the node and edge attributes in a graph as parametric func-
tion generates compressed representations (messages) which are
propagated between the nodes based on a message-passing rule
and aggregated to form new representations. Most of the existing
graph neural network architectures such as GCN [30], GGCN[33],
ChebyConv [14], and RGCN [50] fit perfectly into this general de-
scription of graph neural networks. Models are differentiated by
assumptions about the input graph (e.g. node heterogeneity, mul-
tiplexity, presence of edge attributes), the message compression
function used, the propagation scheme and message aggregation
function applied to the received messages.

2.2.3 Spatiotemporal Deep Learning. A spatiotemporal deep learn-
ingmodel fuses the basic conceptual ideas of temporal deep learning
techniques and graph representation learning. Operating on a tem-
poral graph sequence these models perform message-passing at
each time point with a graph neural network block and the new
temporal information is incorporated by a temporal deep learning
block. This design allows for sharing salient temporal and spatial
autocorrelation information across the spatial units. The temporal
and spatial layers which are fused together in a single parametric
machine learning model are trained together jointly by exploit-
ing the fact that the fused models are end-to-end differentiable. In
Table 1 we summarized the spatiotemporal deep learning models
implemented in the framework which we categorized based on
the temporal and graph neural network layer blocks, the order of
spatial proximity and heterogeneity of the edge set.

2.3 Graph Representation Learning Software
The current graph representation learning software ecosystem
which allows academic research and industrial deployment extends
open-source auto-differentiation libraries such as TensorFlow [1],
PyTorch [41], MxNet [11] and JAX [16, 28]. Our work does the same
as we build on the PyTorch Geometric ecosystem. We summarized
the characteristics of these libraries in Table 2 which allows for com-
paring frameworks based on the backend, presence of supervised
training functionalities, presence of temporal models and GPU sup-
port. Our proposed framework is the only one to date which allows

Table 1: A comparison of spatiotemporal deep learningmod-
els in PyTorch Geometric Temporal based on the temporal
and spatial block, order of proximity considered and the het-
ereogeneity of the edges.

Model
Temporal
Layer

GNN
Layer

Proximity
Order

Multi
Type

DCRNN [32] GRU DiffConv Higher False
GConvGRU [51] GRU Chebyshev Lower False
GConvLSTM [51] LSTM Chebyshev Lower False
GC-LSTM [10] LSTM Chebyshev Lower True
DyGrAE [54, 55] LSTM GGCN Higher False
LRGCN [31] LSTM RGCN Lower False
EGCN-H [39] GRU GCN Lower False
EGCN-O [39] LSTM GCN Lower False
T-GCN [65] GRU GCN Lower False
A3T-GCN [68] GRU GCN Lower False
AGCRN [4] GRU Chebyshev Higher False
MPNN LSTM [38] LSTM GCN Lower False
STGCN [63] Attention Chebyshev Higher False
ASTGCN [22] Attention Chebyshev Higher False
MSTGCN [22] Attention Chebyshev Higher False
GMAN [66] Attention Custom Lower False
MTGNN [61] Attention Custom Higher False
AAGCN [52] Attention Custom Higher False

the supervised training of temporal graph representation learning
models with graphics card based acceleration.

Table 2: A desiderata and automatic differentiation backend
library based comparison of open-source geometric deep
learning libraries.

Library Backend Supervised Temporal GPU
PT Geometric [15] PT ✔ ✘ ✔

Geometric2DR [49] PT ✘ ✘ ✔

CogDL [9] PT ✔ ✘ ✔

Spektral [21] TF ✔ ✘ ✔

TF Geometric [27] TF ✔ ✘ ✔

StellarGraph [13] TF ✔ ✘ ✔

DGL [67] TF/PT/MX ✔ ✘ ✔

DIG [34] PT ✔ ✘ ✔

Jraph [18] JAX ✔ ✘ ✔

Graph-Learn [62] Custom ✔ ✘ ✔

GEM [19] TF ✘ ✘ ✔

DynamicGEM [20] TF ✘ ✔ ✔

OpenNE [57] Custom ✘ ✘ ✘

Karate Club [46] Custom ✘ ✘ ✘

Our Work PT ✔ ✔ ✔

2.4 Spatiotemporal Data Analytics Software
The open-source ecosystem for spatiotemporal data processing
consists of specialized database systems, basic analytical tools and

CIKM’21, 1-5 November 2021, Online B. Rozemberczki, P. Scherer, Y. He, G. Panagopoulos, A. Riedel, M. Astefanoaei, O. Kiss, F. Beres, G. López, N. Collignon, and R. Sarkar

advanced machine learning libraries. We summarized the charac-
teristics of the most popular libraries in Table 3 with respect to the
year of release, purpose of the framework, source code language
and GPU support.

First, it is evident that most spatiotemporal data processing tools
are fairly new and there is much space for contributions in each
subcategory. Second, the database systems are written in high-
performance languages while the analytics and machine learning
oriented tools have a pure Python/R design or a wrapper written
in these languages. Finally, the use of GPU acceleration is not
widespread which alludes to the fact that current spatiotemporal
data processing tools might have a scalability issue. Our proposed
framework PyTorch Geometric Temporal is the first fully open-
source GPU accelerated spatiotemporal machine learning library.

Table 3: A multi-aspect comparison of open-source spa-
tiotemporal database systems, data analytics libraries and
machine learning frameworks.

Library Year Purpose Language GPU
GeoWave [60] 2016 Database Java ✘

StacSpec [23] 2017 Database Javascript ✘

MobilityDB [69] 2019 Database C ✘

PyStac [44] 2020 Database Python ✘

StaRs [42] 2017 Analytics R ✘

CuSpatial [56] 2019 Analytics Python ✔

PySAL [43] 2017 Machine Learning Python ✘

STDMTMB [2] 2018 Machine Learning R ✘

Our work 2021 Machine Learning Python ✔

3 THE FRAMEWORK DESIGN
Our primary goal is to give a general theoretical overview of the
framework, discuss the framework design choices, give a detailed
practical example and highlight our strategy for the long term
viability and maintenance of the project.

3.1 Neural Network Layer Design
The spatiotemporal neural network layers are implemented as
classes in the framework. Each of the classes has a similar architec-
ture driven by a few simple design principles.

3.1.1 Non-proliferation of classes. The framework reuses the ex-
isting high level neural network layer classes as building blocks
from the PyTorch and PyTorch Geometric ecosystems. The goal of
the library is not to replace the existing frameworks. This design
strategy makes sure that the number of auxiliary classes in the
framework is kept low and that the framework interfaces well with
the rest of the ecosystem.

3.1.2 Hyperparameter inspection and type hinting. The neural net-
work layers do not have default hyperparameter settings as some
of these have to be set in a dataset dependent manner. In order
to help with this, the layer hyperparameters are stored as public
class attributes and they are available for inspection. Moreover, the
constructors of the neural network layers use type hinting which
helps the end-users to set the hyperparameters.

3.1.3 Limited number of public methods. The spatiotemporal neu-
ral network layers in our framework have a limited number of public
methods for simplicity. For example, the auxiliary layer initializa-
tion methods and other internal model mechanics are implemented
as private methods. All of the layers provide a forward method and
those which explicitly use the message-passing scheme in PyTorch
Geometric provide a public message method.

3.1.4 Auxiliary layers. The auxiliary neural network layers which
are not part of the PyTorch Geometric ecosystem such as diffusion
convolutional graph neural networks [32] are implemented as stan-
dalone neural network layers in the framework. These layers are
available for the design of novel neural network architectures as
individual components.

3.2 Data Structures
The design of PyTorch Geometric Temporal required the introduction
of custom data structures which can efficiently store the datasets
and provide temporally ordered snapshots for batching.

3.2.1 Spatiotemporal Signal Iterators. Based on the categorization
of spatiotemporal signals discussed in Section 2 we implemented
three types of Spatiotemporal Signal Iterators. These iterators store
spatiotemporal datasets in memory efficiently without redundancy.
For example a Static Graph Temporal Signal iterator will not store
the edge indices and weights for each time period in order to save
memory. By iterating over a Spatiotemporal Signal Iterator at each
step a graph snapshot is returned which describes the graph of
interest at a given point in time. Graph snapshots are returned in
temporal order by the iterators. The Spatiotemporal Signal Iterators
can be indexed directly to access a specific graph snapshot – a
design choice which allows the use of advanced temporal batching.

3.2.2 Graph Snapshots. The time period specific snapshots which
consist of labels, features, edge indices and weights are stored as
NumPy arrays [58] in memory, but returned as a PyTorch Geometric
Data object instance [15] by the Spatiotemporal Signal Iterators
when these are iterated on. This design choice hedges against the
proliferation of classes and exploits the existing and widely used
compact data structures from the PyTorch ecosystem [40].

3.2.3 Train-Test Splitting. As part of the library we provide a tem-
poral train-test splitting function which creates train and test snap-
shot iterators from a Spatiotemporal Signal Iterator given a test
dataset ratio. This parameter of the splitting function decides the
fraction of data that is separated from the end of the spatiotem-
poral graph snapshot sequence for testing. The returned iterators
have the same type as the input iterator. Importantly, this splitting
does not influence the applicability of widely used semi-supervised
model training strategies such as node masking.

3.2.4 Integrated Benchmark Dataset Loaders. We provided easy-to-
use practical data loader classes for widely used existing [38] and
the newly released benchmark datasets. These loaders return Spa-
tiotemporal Signal Iterators which can be used for training existing
and custom designed spatiotemporal neural network architectures
to solve supervised machine learning problems.

PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models CIKM’21, 1-5 November 2021, Online

3.3 Design in Practice Case Study: Cumulative
Model Training on CPU

In the following we overview a simple end-to-end machine learning
pipeline designed with PyTorch Geometric Temporal. These code
snippets solve a practical epidemiological forecasting problem –
predicting the weekly number of chickenpox cases in Hungary [47].
The pipeline consists of data preparation, model definition, training
and evaluation phases.

1 from torch_geometric_temporal import ChickenpoxDatasetLoader
2 from torch_geometric_temporal import temporal_signal_split
3

4 loader = ChickenpoxDatasetLoader()
5

6 dataset = loader.get_dataset()
7

8 train, test = temporal_signal_split(dataset,
9 train_ratio=0.9)

Listings 1: Loading a default benchmark dataset and creat-
ing a temporal split with PyTorch Geometric Temporal

3.3.1 Dataset Loading and Splitting. In Listings 1 as a first step
we import the Hungarian chickenpox cases benchmark dataset
loader and the temporal train test splitter function (lines 1-2). We
define the dataset loader (line 4) and use the get_dataset() class
method to return a temporal signal iterator (line 5). Finally, we
create a train-test split of the spatiotemporal dataset by using the
splitting function and retain 10% of the temporal snapshots for
model performance evaluation (lines 7-8).

1 import torch
2 import torch.nn.functional as F
3 from torch_geometric_temporal.nn.recurrent import DCRNN
4

5 class RecurrentGCN(torch.nn.Module):
6 def __init__(self, node_features, filters):
7 super(RecurrentGCN, self).__init__()
8 self.recurrent = DCRNN(node_features, filters, 1)
9 self.linear = torch.nn.Linear(filters, 1)
10

11 def forward(self, x, edge_index, edge_weight):
12 h = self.recurrent(x, edge_index, edge_weight)
13 h = F.relu(h)
14 h = F.dropout(h, training=self.training)
15 h = self.linear(h)
16 return h

Listings 2: Defining a recurrent graph convolutonal neural
network using PyTorch Geometric Temporal consisting of
a diffusion convolutional spatiotemporal layer followed by
rectified linear unit activations, dropout and a feedforward
neural network layer.

3.3.2 Recurrent Graph Convolutional Model Definition. We define
a recurrent graph convolutional neural network model in Listings 2.
We import the base and functional programming PyTorch libraries
and one of the neural network layers from PyTorch Geometric
Temporal (lines 1-3). The model requires a node feature count and

convolutional filter parameter in the constructor (line 6). The model
consists of a one-hop Diffusion Convolutional Recurrent Neural
Network layer [32] and a fully connected layer with a single neuron
(lines 8-9).

In the forward pass method of the neural network the model
uses the vertex features, edges and the optional edge weights (line
11). The initial recurrent graph convolution based aggregation (line
12) is followed by a rectified linear unit activation function [37]
and dropout [53] for regularization (lines 13-14). Using the fully-
connected layer the model outputs a single score for each spatial
unit (lines 15-16).

1 model = RecurrentGCN(node_features=8, filters=32)
2

3 optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
4

5 model.train()
6

7 for epoch in range(200):
8 cost = 0
9 for time, snapshot in enumerate(train):
10 y_hat = model(snapshot.x,
11 snapshot.edge_index,
12 snapshot.edge_attr)
13 cost = cost + torch.mean((y_hat-snapshot.y)**2)
14 cost = cost / (time+1)
15 cost.backward()
16 optimizer.step()
17 optimizer.zero_grad()

Listings 3: Creating a recurrent graph convolutional neural
network instance and training it by cumulative weight up-
dates.

3.3.3 Model Training. Using the dataset split and the model defini-
tion we can turn our attention to training a regressor. In Listings 3
we create a model instance (line 1), transfer the model parameters
(line 3) to the Adam optimizer [29] which uses a learning rate of
0.01 and set the model to be trainable (line 5). In each epoch we set
the accumulated cost to be zero (line 8) iterate over the temporal
snapshots in the training data (line 9), make forward passes with
the model on each temporal snapshot and accumulate the spatial
unit specific mean squared errors (lines 10-13). We normalize the
cost, backpropagate and update the model parameters (lines 14-17).

1 model.eval()
2 cost = 0
3 for time, snapshot in enumerate(test):
4 y_hat = model(snapshot.x,
5 snapshot.edge_index,
6 snapshot.edge_attr)
7 cost = cost + torch.mean((y_hat-snapshot.y)**2)
8 cost = cost / (time+1)
9 cost = cost.item()
10 print("MSE: {:.4f}".format(cost))

Listings 4: Evaluating the recurrent graph convolutional
neural network on the test portion of the spatiotemporal
dataset using the time unit averaged mean squared error.

CIKM’21, 1-5 November 2021, Online B. Rozemberczki, P. Scherer, Y. He, G. Panagopoulos, A. Riedel, M. Astefanoaei, O. Kiss, F. Beres, G. López, N. Collignon, and R. Sarkar

3.3.4 Model Evaluation. The scoring of the trained recurrent graph
neural network in Listings 4 uses the snapshots in the test dataset.
We set the model to be non trainable and the accumulated squared
error as zero (lines 1-2).We iterate over the test spatiotemporal snap-
shots, make forward passes to predict the number of chickenpox
cases and accumulate the squared error (lines 3-7). The accumulated
errors are normalized and we can print the mean squared error
calculated on the whole test horizon (lines 8-10).

3.4 Design in Practice Case Study: Incremental
Model Training with GPU Acceleration

Exploiting the power of GPU based acceleration of computations
happens at the training and evaluation steps of the PyTorch Geo-
metric Temporal pipelines. In this case study we assume that the
Hungarian Chickenpox cases dataset is already loaded in memory,
the temporal split happened and a model class was defined by the
code snippets in Listings 1 and 2. Moreover, we assume that the
machine used for training the neural network can access a single
CUDA compatible GPU device [48].

1 model = RecurrentGCN(node_features=8, filters=32)
2 device = torch.device('cuda')
3 model = model.to(device)
4

5 optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
6 model.train()
7

8 for epoch in range(200):
9 for snapshot in train:
10 snapshot = snapshot.to(device)
11 y_hat = model(snapshot.x,
12 snapshot.edge_index,
13 snapshot.edge_attr)
14 cost = torch.mean((y_hat-snapshot.y)**2)
15 cost.backward()
16 optimizer.step()
17 optimizer.zero_grad()

Listings 5: Creating a recurrent graph convolutional neural
network instance and training it by incremental weight up-
dates on a GPU.

3.4.1 Model Training. In Listings 5 we demonstrate accelerated
training with incremental weight updates. The model of interest
and the device used for training are defined while the model is trans-
ferred to the GPU (lines 1-3). The optimizer registers the model
parameters and the model parameters are set to be trainable (lines
5-6). We iterate over the temporal snapshot iterator 200 times and
the iterator returns a temporal snapshot in each step. Importantly
the snapshots which are PyTorch Geometric Data objects are trans-
ferred to the GPU (lines 8-10). The use of PyTorch Geometric Data
objects as temporal snapshots allows the transfer of the time pe-
riod specific edges, node features and target vector with a single
command. Using the input data a forward pass is made, loss is
accumulated and weight updates happen using the optimizer in
each time period (lines 11-17). Compared to the cumulative back-
propagation based training approach discussed in Subsection 3.3

this backpropagation strategy is slower as weight updates happen
at each time step, not just at the end of training epochs.

3.4.2 Model Evaluation. During model scoring the GPU can be
utilized again. The snippet in Listings 6 demonstrates that the only
modification needed for accelerated evaluation is the transfer of
snapshots to the GPU. In each time period we move the temporal
snapshot to the device to do the forward pass (line 4). We do the
forward pass with the model and the snapshot on the GPU and
accumulate the loss (lines 5-8). The loss value is averaged out and
detached from the GPU for printing (lines 9-11).

1 model.eval()
2 cost = 0
3 for time, snapshot in enumerate(test):
4 snapshot = snapshot.to(device)
5 y_hat = model(snapshot.x,
6 snapshot.edge_index,
7 snapshot.edge_attr)
8 cost = cost + torch.mean((y_hat-snapshot.y)**2)
9 cost = cost / (time+1)
10 cost = cost.item()
11 print("MSE: {:.4f}".format(cost))

Listings 6: Evaluating the recurrent graph convolutional
neural network with GPU based acceleration.

3.5 Maintaining PyTorch Geometric Temporal
The viability of the project is made possible by the open-source
code, version control, public releases, automatically generated doc-
umentation, continuous integration, and near 100% test coverage.

3.5.1 Open-Source Code-Base and Public Releases. The source code
of PyTorch Geometric Temporal is publicly available on GitHub un-
der the MIT license. Using an open version control system allowed
us to have a large group collaborate on the project and have exter-
nal contributors who also submitted feature requests. The public
releases of the library are also made available on the Python Package
Index, which means that the framework can be installed via the pip
command using the terminal.

3.5.2 Documentation. The source-code of PyTorch Geometric Tem-
poral and Sphinx [8] are used to generate a publicly available doc-
umentation of the library at https://pytorch-geometric-temporal.
readthedocs.io/. This documentation is automatically created every
time when the code-base changes in the public repository. The doc-
umentation covers the constructors and public methods of neural
network layers, temporal signal iterators, public dataset loaders
and splitters. It also includes a list of relevant research papers, an
in-depth installation guide, a detailed getting-started tutorial and a
list of integrated benchmark datasets.

3.5.3 Continuous Integration. We provide continuous integration
for PyTorch Geometric Temporal with GitHub Actions which are
available for free on GitHub without limitations on the number of
builds. When the code is updated on any branch of the repository
the build process is triggered and the library is deployed on Linux,
Windows and macOS virtual machines.

https://pytorch-geometric-temporal.readthedocs.io/
https://pytorch-geometric-temporal.readthedocs.io/

PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models CIKM’21, 1-5 November 2021, Online

3.5.4 Unit Tests and Code Coverage. The temporal graph neural
network layers, custom data structures and benchmark dataset load-
ers are all covered by unit tests. These unit tests can be executed
locally using the source code. Unit tests are also triggered by the
continuous integration provided by GitHub Actions. When the mas-
ter branch of the open-source GitHub repository is updated, the
build is successful, and all of the unit tests pass a coverage report
is generated by CodeCov.

4 EXPERIMENTAL EVALUATION
The proposed framework is evaluated on node level regression
tasks using novel datasets which we release with the paper. We also
evaluate the effect of various batching techniques on the predictive
performance and runtime.

4.1 Datasets
We release new spatiotemporal benchmark datasets with PyTorch
Geometric Temporal which can be used to test models on node level
regression tasks. The descriptive statistics and properties of these
newly introduced benchmark datasets are summarized in Table 4.

Table 4: Properties and granularity of the spatiotemporal
datasets introduced in the paper with information about the
number of time periods (𝑇) and spatial units (|𝑉 |).

Dataset Signal Graph Frequency 𝑇 |𝑉 |
Chickenpox Hungary Temporal Static Weekly 522 20

Windmill Large Temporal Static Hourly 17,472 319
Windmill Medium Temporal Static Hourly 17,472 26
Windmill Small Temporal Static Hourly 17,472 11

Pedal Me Deliveries Temporal Static Weekly 36 15
Wikipedia Math Temporal Static Daily 731 1,068
Twitter Tennis RG Static Dynamic Hourly 120 1000
Twitter Tennis UO Static Dynamic Hourly 112 1000
Covid19 England Temporal Dynamic Daily 61 129
Montevideo Buses Temporal Static Hourly 744 675

MTM-1 Hand Motions Temporal Static 1/24 Seconds 14,469 21

These newly released datasets are the following:
• Chickenpox Hungary. A spatiotemporal dataset about the
officially reported cases of chickenpox in Hungary. The
nodes are counties and edges describe direct neighbourhood
relationships. The dataset covers the weeks between 2005
and 2015 without missingness.

• Windmill Output Datasets. An hourly windfarm energy
output dataset covering 2 years from a European country.
Edge weights are calculated from the proximity of the wind-
mills – high weights imply that two windmill stations are
in close vicinity. The size of the dataset relates to the group-
ping of windfarms considered; the smaller datasets are more
localized to a single region.

• PedalMeDeliveries.Adataset about the number of weekly
bicycle package deliveries by Pedal Me in London during
2020 and 2021. Nodes in the graph represent geographical
units and edges are proximity based mutual adjacency rela-
tionships.

• Wikipedia Math. Contains Wikipedia pages about popular
mathematics topics and edges describe the links from one
page to another. Features describe the number of daily visits
between 2019 and 2021 March.

• Twitter Tennis RG and UO. Twitter mention graphs of
major tennis tournaments from 2017. Each snapshot con-
tains the graph of popular player or sport news accounts and
mentions between them [5, 6]. Node labels encode the num-
ber of mentions received and vertex features are structural
properties.

• Covid19 England. A dataset about mass mobility between
regions in England and the number of confirmed COVID-19
cases from March to May 2020 [38]. Each day contains a
different mobility graph and node features corresponding
to the number of cases in the previous days. Mobility stems
from Facebook Data For Good 1 and cases from gov.uk 2.

• Montevideo Buses. A dataset about the hourly passenger
inflow at bus stop level for eleven bus lines from the city
of Montevideo. Nodes are bus stops and edges represent
connections between the stops; the dataset covers a whole
month of traffic patterns.

• MTM-1 Hand Motions. A temporal dataset of Methods-
Time Measurement-1 [36] motions, signalled as consecutive
graph frames of 21 3D hand key points that were acquired
via MediaPipe Hands [64] from original RGB-Video material.
Node features encode the normalized xyz-coordinates of
each finger joint and the vertices are connected according
to the human hand structure.

4.2 Predictive Performance
The forecasting experiments focus on the evaluation of the recur-
rent graph neural networks implemented in our framework. We
compare the predictive performance under two specific backpropa-
gation regimes which can be used to train these recurrent models:

• Incremental: After each temporal snapshot the loss is back-
propagated and model weights are updated. This would need
as many weight updates as the number of temporal snap-
shots.

• Cumulative: When the loss from every temporal snapshot
is aggregated it is backpropagated and weights are updated
with the optimizer. This requires one weight update per
epoch.

4.2.1 Experimental settings. Using 90% of the temporal snapshots
for training, we evaluated the forecasting performance on the last
10% by calculating the average mean squared error from 10 experi-
mental runs. We used models with a recurrent graph convolutional
layer which had 32 convolutional filters. The spatiotemporal layer
was followed by the rectified linear unit [37] activation function
and during training time we used a dropout of 0.5 for regulariza-
tion [53] after the spatiotemporal layer. The hidden representations
were fed to a fully connected feedforward layer which outputted
the predicted scores for each spatial unit. The recurrent models

1https://dataforgood.fb.com/
2https://coronavirus.data.gov.uk/

 https://dataforgood.fb.com/
https://coronavirus.data.gov.uk/

CIKM’21, 1-5 November 2021, Online B. Rozemberczki, P. Scherer, Y. He, G. Panagopoulos, A. Riedel, M. Astefanoaei, O. Kiss, F. Beres, G. López, N. Collignon, and R. Sarkar

Table 5: The predictive performance of spatiotemporal neural networks evaluated by average mean squared error. We report
average performances calculated from 10 experimental repetitions with standard deviations around the averagemean squared
error calculated on 10% forecasting horizons. We use the incremental and cumulative backpropagation strategies.

Chickenpox Hungary Twitter Tennis RG PedalMe London Wikipedia Math

Incremental Cumulative Incremental Cumulative Incremental Cumulative Incremental Cumulative
DCRNN [32] 1.124 ± 0.015 1.123 ± 0.014 2.049 ± 0.023 2.043 ± 0.016 1.463 ± 0.019 1.450 ± 0.024 0.679 ± 0.020 0.803 ± 0.018

GConvGRU [51] 1.128 ± 0.011 1.132 ± 0.023 2.051 ± 0.020 2.007 ± 0.022 1.622 ± 0.032 1.944 ± 0.013 0.657 ± 0.015 0.837 ± 0.021
GConvLSTM [51] 1.121 ± 0.014 1.119 ± 0.022 2.049 ± 0.024 2.007 ± 0.012 1.442 ± 0.028 1.433 ± 0.020 0.777 ± 0.021 0.868 ± 0.018
GC-LSTM [10] 1.115 ± 0.014 1.116 ± 0.023 2.053 ± 0.024 2.032 ± 0.015 1.455 ± 0.023 1.468 ± 0.025 0.779 ± 0.023 0.852 ± 0.016
DyGrAE [54, 55] 1.120 ± 0.021 1.118 ± 0.015 2.031 ± 0.006 2.007 ± 0.004 1.455 ± 0.031 1.456 ± 0.019 0.773 ± 0.009 0.816 ± 0.016
EGCN-H [39] 1.113 ± 0.016 1.104 ± 0.024 2.040 ± 0.018 2.006 ± 0.008 1.467 ± 0.026 1.436 ± 0.017 0.775 ± 0.022 0.857 ± 0.022
EGCN-O [39] 1.124 ± 0.009 1.119 ± 0.020 2.055 ± 0.020 2.010 ± 0.014 1.491 ± 0.024 1.430 ± 0.023 0.750 ± 0.014 0.823 ± 0.014
A3T-GCN[68] 1.114 ± 0.008 1.119 ± 0.018 2.045 ± 0.021 2.008 ± 0.016 1.469 ± 0.027 1.475 ± 0.029 0.781 ± 0.011 0.872 ± 0.017
T-GCN [65] 1.117 ± 0.011 1.111 ± 0.022 2.045 ± 0.027 2.008 ± 0.017 1.479 ± 0.012 1.481 ± 0.029 0.764 ± 0.011 0.846 ± 0.020
MPNN LSTM [38] 1.116 ± 0.023 1.129 ± 0.021 2.053 ± 0.041 2.007 ± 0.010 1.485 ± 0.028 1.458 ± 0.013 0.795 ± 0.010 0.905 ± 0.017
AGCRN [4] 1.120 ± 0.010 1.116 ± 0.017 2.039 ± 0.022 2.010 ± 0.009 1.469 ± 0.030 1.465 ± 0.026 0.788 ± 0.011 0.832 ± 0.020

were trained for 100 epochs with the Adam optimizer [29] which
used a learning rate of 10−2 to minimize the mean squared error.

4.2.2 Experimental findings. Results are presented in Table 5 where
we also report standard deviations around the test set mean squared
error and bold numbers denote the best performing model un-
der each training regime on a dataset. Our experimental findings
demonstrate multiple important empirical regularities which have
important practical implications. Namely these are the following:

(1) Most recurrent graph neural networks have a similar predic-
tive performance on these regression tasks. In simple terms
there is not a single model which acts as silver bullet. This
also postulates that the model with the lowest training time
is likely to be as good as the slowest one.

(2) Results on the Wikipedia Math dataset imply that a cumula-
tive backpropagation strategy can have a detrimental effect
on the predictive performance of a recurrent graph neural
network. When computation resources are not a bottleneck
an incremental strategy can be significantly better.

4.3 Runtime Performance
The evaluation of the PyTorch Geometric Temporal runtime per-
formance focuses on manipulating the input size and measuring
the time needed to complete a training epoch. We investigate the
runtime under the incremental and cumulative backpropagation
strategies.

4.3.1 Experimental settings. The runtime evaluation used theGCon-
vGRU model [51] with the hyperparameter settings described in
Subsection 4.2. We measured the time needed for doing a single
epoch over a sequence of 100 synthetic graphs. Reference Watts-
Strogatz graphs in the snapshots of the dynamic graph with tempo-
ral signal iterator had binary labels, 210 nodes, 25 edges per node
and 25 node features. Runtimes were measured on the following
hardware:

• CPU: The machine used for benchmarking had 8 Intel 1.00
GHz i5-1035G1 processors.

• GPU:We utilized a machine with a single Tesla V-100 graph-
ics card for the experiments.

8 9 10 11 12

0

8

16

24

log2 Number of nodes

Ru
nt
im

e
in

se
co
nd

s

2 3 4 5 6

log2 Number of edges per node

3 4 5 6 7

0

8

16

24

log2 Number of node features

Ru
nt
im

e
in

se
co
nd

s

2 3 4 5 6

log2 Number of filters

Incremental CPU Cumulative CPU Incremental GPU Cumulative GPU

Figure 2: The average time needed for doing an epoch on a
dynamic graph – temporal signal iterator of Watts Strogatz
graphs with a recurrent graph convolutional model.

4.3.2 Experimental findings. We plotted the average runtime cal-
culated from 10 experimental runs on Figure 2 for each input size.
Our results about runtime have two important implications about
the practical application of our framework:

(1) The use of a cumulative backpropagation strategy only re-
sults in marginal computation gains compared to the incre-
mental one.

(2) On temporal sequences of large dynamically changing graphs
the GPU aided training can reduce the time needed to do an
epoch by a whole magnitude.

PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models CIKM’21, 1-5 November 2021, Online

5 CONCLUSIONS AND FUTURE DIRECTIONS
In this paper we discussed PyTorch Geometric Temporal the first
deep learning library designed for neural spatiotemporal signal
processing. We reviewed the existing geometric deep learning and
machine learning techniques implemented in the framework. We
gave an overview of the general machine learning framework de-
sign principles, the newly introduced input and output data struc-
tures, long-term project viability and discussed a case study with
source-code which utilized the library. Our empirical evaluation
focused on (a) the predictive performance of the models available
in the library on real world datasets which we released with the
framework; (b) the scalability of the methods under various input
sizes and structures.

Our work could be extended and it also opens up opportunities
for novel geometric deep learning and applied machine learning
research. A possible direction to extend our work would be the
consideration of continuous time or time differences between tem-
poral snapshots which are not constant. Another opportunity is the
inclusion of temporal models which operate on curved spaces such
as hyperbolic and spherical spaces. We are particularly interested in
how the spatiotemporal deep learning techniques in the framework
can be deployed and used for solving high-impact practical machine
learning tasks.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A System for Large-Scale Machine Learning. In 12th {USENIX}
symposium on operating systems design and implementation ({OSDI} 16). 265–283.

[2] Sean Anderson, Eric Ward, Lewis Barnett, and Philippina English. 2018. sdmTMB:
Spatial and spatiotemporal GLMMs with TMB. https://github.com/pbs-assess/
sdmTMB.

[3] Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. 2015. Neural Machine
Translation by Jointly Learning to Align and Translate. In 3rd International
Conference on Learning Representations, ICLR 2015.

[4] Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. 2020. Adaptive Graph
Convolutional Recurrent Network for Traffic Forecasting. Advances in Neural
Information Processing Systems 33 (2020).

[5] Ferenc Béres, Domokos M. Kelen, Róbert Pálovics, and András A. Benczúr. 2019.
Node Embeddings in Dynamic Graphs. Applied Network Science 4, 64 (2019), 25.

[6] Ferenc Béres, Róbert Pálovics, Anna Oláh, and András A. Benczúr. 2018. Temporal
Walk Based Centrality Metric for Graph Streams. Applied Network Science 3, 32
(2018), 26.

[7] Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin
Blais, Benedek Rózemberczki, Michal Lukasik, and Stephan Günnemann. 2020.
Scaling Graph Neural Networks with Approximate Pagerank. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 2464–2473.

[8] Georg Brandl. 2010. Sphinx Documentation. URL http://sphinx-doc. org/sphinx.
pdf (2010).

[9] Yukuo Cen, Zhenyu Hou, Yan Wang, Qibin Chen, Yizhen Luo, Xingcheng Yao,
Aohan Zeng, Shiguang Guo, Peng Zhang, Guohao Dai, et al. 2021. CogDL: An
Extensive Toolkit for Deep Learning on Graphs. arXiv preprint arXiv:2103.00959
(2021).

[10] Jinyin Chen, Xuanheng Xu, Yangyang Wu, and Haibin Zheng. 2018. GC-LSTM:
Graph Convolution Embedded LSTM for Dynamic Link Prediction. arXiv preprint
arXiv:1812.04206 (2018).

[11] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. MXNet: A Flexible
and Efficient Machine Learning Library for Heterogeneous Distributed Systems.
arXiv preprint arXiv:1512.01274 (2015).

[12] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations Using RNNEncoder–Decoder for Statistical Machine Translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational Linguistics, 1724–1734.

[13] CSIRO’s Data61. 2018. StellarGraph Machine Learning Library. https://github.
com/stellargraph/stellargraph.

[14] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convo-
lutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In
Advances in Neural Information Processing Systems. 3844–3852.

[15] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with
PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

[16] Roy Frostig, Matthew James Johnson, and Chris Leary. 2018. Compiling Machine
Learning Programs via High-Level Tracing. Systems for Machine Learning (2018).

[17] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural Message Passing for Quantum Chemistry. In International
Conference on Machine Learning. PMLR, 1263–1272.

[18] Jonathan Godwin*, Thomas Keck*, Peter Battaglia, Victor Bapst, Thomas Kipf,
Yujia Li, Kimberly Stachenfeld, Petar Veličković, and Alvaro Sanchez-Gonzalez.
2020. Jraph: A Library for Graph Neural Networks in Jax. http://github.com/
deepmind/jraph

[19] Palash Goyal, Sujit Rokka Chhetri, Ninareh Mehrabi, Emilio Ferrara, and Ar-
quimedes Canedo. 2018. DynamicGEM: A Library for Dynamic Graph Embedding
Methods. arXiv preprint arXiv:1811.10734 (2018).

[20] Palash Goyal and Emilio Ferrara. [n.d.]. GEM: A Python Package for Graph
Embedding Methods. Journal of Open Source Software 3, 29 ([n. d.]), 876.

[21] Daniele Grattarola and Cesare Alippi. 2020. Graph Neural Networks in Tensor-
Flow and Keras with Spektral. arXiv preprint arXiv:2006.12138 (2020).

[22] Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. 2019.
Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic
Flow Forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 33. 922–929.

[23] Matthew Hanson. 2019. The Open-Source Software Ecosystem for Leveraging
Public Datasets in Spatio-Temporal Asset Catalogs (STAC). In AGU Fall Meeting
Abstracts, Vol. 2019. IN23B–07.

[24] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural computation 9, 8 (1997), 1735–1780.

[25] Petter Holme. 2015. Modern Temporal Network Theory: A Colloquium. The
European Physical Journal B 88, 9 (2015), 1–30.

[26] Petter Holme and Jari Saramäki. 2012. Temporal Networks. Physics reports 519, 3
(2012), 97–125.

[27] Jun Hu, Shengsheng Qian, Quan Fang, Youze Wang, Quan Zhao, Huaiwen Zhang,
and Changsheng Xu. 2021. Efficient Graph Deep Learning in TensorFlow with
TF Geometric. arXiv preprint arXiv:2101.11552 (2021).

[28] James Bradbury and Roy Frostig and Peter Hawkins and Matthew James Johnson
and Chris Leary and Dougal Maclaurin and George Necula and Adam Paszke
and Jake VanderPlas and Skye Wanderman-Milne and Qiao Zhang. 2018. JAX:
Composable Transformations of Python+NumPy Programs. http://github.com/
google/jax

[29] Diederik Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimiza-
tion. In Proceedings of the 3rd International Conference on Learning Representations.

[30] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In International Conference on Learning Repre-
sentations (ICLR).

[31] Jia Li, Zhichao Han, Hong Cheng, Jiao Su, Pengyun Wang, Jianfeng Zhang, and
Lujia Pan. 2019. Predicting Path Failure in Time-Evolving Graphs. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 1279–1289.

[32] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion Convolutional
Recurrent Neural Network: Data-Driven Traffic Forecasting. In International
Conference on Learning Representations.

[33] Yujia Li, Richard Zemel, Marc Brockschmidt, and Daniel Tarlow. 2016. Gated
Graph Sequence Neural Networks. In International Conference on Learning Repre-
sentations (ICLR).

[34] Meng Liu, Youzhi Luo, Limei Wang, Yaochen Xie, Hao Yuan, Shurui Gui, Zhao
Xu, Haiyang Yu, Jingtun Zhang, Yi Liu, Keqiang Yan, Bora Oztekin, Haoran Liu,
Xuan Zhang, Cong Fu, and Shuiwang Ji. 2021. DIG: A Turnkey Library for Diving
into Graph Deep Learning Research. arXiv preprint arXiv:2103.12608 (2021).

[35] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effective
Approaches to Attention-based Neural Machine Translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing. 1412–1421.

[36] Harold B Maynard, G J Stegemerten, and John L Schwab. 1948. Methods-Time
Measurement. McGraw-Hill.

[37] Vinod Nair and Geoffrey E Hinton. 2010. Rectified Linear Units Improve Re-
stricted Boltzmann Machines. In Proceedings of the 27th International Conference
on International Conference on Machine Learning. 807–814.

[38] George Panagopoulos, Giannis Nikolentzos, and Michalis Vazirgiannis. 2021.
Transfer Graph Neural Networks for Pandemic Forecasting. In Proceedings of the
35th AAAI Conference on Artificial Intelligence.

[39] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,
Hiroki Kanezashi, Tim Kaler, Tao B Schardl, and Charles E Leiserson. 2020.
EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs. In
AAAI. 5363–5370.

https://github.com/pbs-assess/sdmTMB
https://github.com/pbs-assess/sdmTMB
https://github.com/stellargraph/stellargraph
https://github.com/stellargraph/stellargraph
http://github.com/deepmind/jraph
http://github.com/deepmind/jraph
http://github.com/google/jax
http://github.com/google/jax

CIKM’21, 1-5 November 2021, Online B. Rozemberczki, P. Scherer, Y. He, G. Panagopoulos, A. Riedel, M. Astefanoaei, O. Kiss, F. Beres, G. López, N. Collignon, and R. Sarkar

[40] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
PyTorch: An Imperative Style, High-Performance Deep Learning Library. In
Advances in Neural Information Processing Systems. 8024–8035.

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
Advances in Neural Information Processing Systems 32 (2019), 8026–8037.

[42] Edzer Pebesma. 2017. staRs: Spatiotemporal Arrays: Raster and Vector Datacubes.
https://github.com/r-spatial/stars.

[43] Sergio J Rey and Luc Anselin. 2010. PySAL: A Python Library of Spatial Analytical
Methods. In Handbook of Applied Spatial Analysis. Springer, 175–193.

[44] Emanuele Rob. 2020. PySTAC: Python library for working with any SpatioTempo-
ral Asset Catalog (STAC). https://github.com/stac-utils/pystac. GitHub repository.

[45] Benedek Rozemberczki, Peter Englert, Amol Kapoor, Martin Blais, and Bryan
Perozzi. 2020. Pathfinder Discovery Networks for Neural Message Passing. arXiv
preprint arXiv:2010.12878 (2020).

[46] Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. 2020. Karate Club: An
API Oriented Open-source Python Framework for Unsupervised Learning on
Graphs. In Proceedings of the 29th ACM International Conference on Information
& Knowledge Management. 3125–3132.

[47] Benedek Rozemberczki, Paul Scherer, Oliver Kiss, Rik Sarkar, and Tamas Ferenci.
2021. Chickenpox Cases in Hungary: a Benchmark Dataset for Spatiotemporal
Signal Processing with Graph Neural Networks. arXiv:2102.08100 [cs.LG]

[48] Jason Sanders and Edward Kandrot. 2010. CUDA by Example: An Introduction to
General-Purpose GPU Programming. Addison-Wesley Professional.

[49] Paul Scherer and Pietro Lio. 2020. Learning Distributed Representations of Graphs
with Geo2DR. In ICML Workshop on Graph Representation Learning and Beyond.

[50] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling Relational Data with Graph Convolu-
tional Networks. In European Semantic Web Conference. Springer, 593–607.

[51] Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson.
2018. Structured Sequence Modeling with Graph Convolutional Recurrent Net-
works. In International Conference on Neural Information Processing. Springer,
362–373.

[52] Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu. 2019. Two-Stream Adaptive
Graph Convolutional Networks for Skeleton-Based Action Recognition. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
12026–12035.

[53] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. The Journal of Machine Learning Research 15, 1 (2014), 1929–1958.

[54] Aynaz Taheri and Tanya Berger-Wolf. 2019. Predictive Temporal Embedding of
Dynamic Graphs. In Proceedings of the 2019 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining. 57–64.

[55] Aynaz Taheri, Kevin Gimpel, and Tanya Berger-Wolf. 2019. Learning to Repre-
sent the Evolution of Dynamic Graphs with Recurrent Models. In Companion
Proceedings of The 2019 World Wide Web Conference (WWW ’19). 301–307.

[56] Paul Taylor, Christopher Harris, Thompson Comer, andMark Harris. 2019. CUDA-
Accelerated GIS and Spatiotemporal Algorithms. https://github.com/rapidsai/
cuspatial.

[57] Cunchao Tu, Yuan Yao, Zhengyan Zhang, Ganqu Cui, Hao Wang, Changxin Tian,
Jie Zhou, and Cheng Yang. 2018. OpenNE: An Open Source Toolkit for Network
Embedding. https://github.com/thunlp/OpenNE.

[58] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. 2011. The NumPy
Array: a Structure for Efficient Numerical Computation. Computing in science &
engineering 13, 2 (2011), 22–30.

[59] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All You
Need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems. 6000–6010.

[60] Michael A Whitby, Rich Fecher, and Chris Bennight. 2017. GeoWave: Utiliz-
ing Distributed Key-Value Stores for Multidimensional Data. In International
Symposium on Spatial and Temporal Databases. Springer, 105–122.

[61] ZonghanWu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi
Zhang. 2020. Connecting the Dots: Multivariate Time Series Forecasting with
Graph Neural Networks. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 753–763.

[62] Hongxia Yang. 2019. AliGraph: A Comprehensive Graph Neural Network Plat-
form. In Proceedings of the 25th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining. 3165–3166.

[63] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2018. Spatio-Temporal Graph Con-
volutional Networks: a Deep Learning Framework for Traffic Forecasting. In
Proceedings of the 27th International Joint Conference on Artificial Intelligence.
3634–3640.

[64] Fan Zhang, Valentin Bazarevsky, Andrey Vakunov, Andrei Tkachenka, George
Sung, Chuo-Ling Chang, and Matthias Grundmann. 2020. MediaPipe Hands:
On-device Real-time Hand Tracking. arXiv:2006.10214 [cs.CV]

[65] Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and
Haifeng Li. 2019. T-GCN: A Temporal Graph Convolutional Network for Traffic
Prediction. IEEE Transactions on Intelligent Transportation Systems 21, 9 (2019),
3848–3858.

[66] Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, and Jianzhong Qi. 2020. GMAN:
A Graph Multi-Attention Network for Traffic Prediction. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 34. 1234–1241.

[67] Da Zheng, Minjie Wang, Quan Gan, Zheng Zhang, and George Karypis. 2020.
Learning Graph Neural Networks with Deep Graph Library. In Companion Pro-
ceedings of the Web Conference 2020 (WWW ’20). 305–306.

[68] Jiawei Zhu, Yujiao Song, Ling Zhao, and Haifeng Li. 2020. A3T-GCN: Attention
Temporal Graph Convolutional Network for Traffic Forecasting. arXiv preprint
arXiv:2006.11583 (2020).

[69] Esteban Zimányi, Mahmoud Sakr, and Arthur Lesuisse. 2020. MobilityDB: A
Mobility Database Based on PostgreSQL and PostGIS. ACM Transactions on
Database Systems (TODS) 45, 4 (2020), 1–42.

https://github.com/r-spatial/stars
https://github.com/stac-utils/pystac
https://arxiv.org/abs/2102.08100
https://github.com/rapidsai/cuspatial
https://github.com/rapidsai/cuspatial
https://github.com/thunlp/OpenNE
https://arxiv.org/abs/2006.10214

	Abstract
	1 Introduction
	2 Preliminaries and related work
	2.1 Temporal Graph Sequences
	2.2 Deep Learning with Time and Geometry
	2.3 Graph Representation Learning Software
	2.4 Spatiotemporal Data Analytics Software

	3 The Framework design
	3.1 Neural Network Layer Design
	3.2 Data Structures
	3.3 Design in Practice Case Study: Cumulative Model Training on CPU
	3.4 Design in Practice Case Study: Incremental Model Training with GPU Acceleration
	3.5 Maintaining PyTorch Geometric Temporal

	4 Experimental evaluation
	4.1 Datasets
	4.2 Predictive Performance
	4.3 Runtime Performance

	5 Conclusions and Future Directions
	References

