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Abstract: The tropical savanna in Brazil known as the Cerrado covers circa 23% of the Brazilian
territory, but only 3% of this area is protected. High rates of deforestation and degradation in the
woodland and forest areas have made the Cerrado the second-largest source of carbon emissions in
Brazil. However, data on these emissions are highly uncertain because of the spatial and temporal
variability of the aboveground biomass (AGB) in this biome. Remote-sensing data combined with
local vegetation inventories provide the means to quantify the AGB at large scales. Here, we quantify
the spatial distribution of woody AGB in the Rio Vermelho watershed, located in the centre of
the Cerrado, at a high spatial resolution of 30 metres, with a random forest (RF) machine-learning
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approach. We produced the first high-resolution map of the AGB for a region in the Brazilian Cerrado
using a combination of vegetation inventory plots, airborne light detection and ranging (LiDAR) data,
and multispectral and radar satellite images (Landsat 8 and ALOS-2/PALSAR-2). A combination
of random forest (RF) models and jackknife analyses enabled us to select the best remote-sensing
variables to quantify the AGB on a large scale. Overall, the relationship between the ground data from
vegetation inventories and remote-sensing variables was strong (R2 = 0.89), with a root-mean-square
error (RMSE) of 7.58 Mg ha−1 and a bias of 0.43 Mg ha−1.

Keywords: aboveground biomass; Cerrado ecosystem; random forest; SAR

1. Introduction

The tropical savanna in Brazil, known as the Cerrado, is the second-largest biome in South
America, covering over 200 million ha or approximately 23% of the Brazilian territory [1]. It has
the highest species richness and biodiversity among the world’s savannas [2,3]. Gradients of tree
density, height, canopy cover, and aboveground biomass (AGB) in the Cerrado vary according to
the climate, fire regime, geomorphology, and soil nutrient availability, resulting in 19 distinctive
ecoregions [4]. The Cerrado is characterised by a mosaic of grasslands, shrublands, and forestlands in
varying proportions, depending on the location [5]. Its physiognomies range from campo (grasslands) to
the typical Cerrado stricto sensu (trees and shrubs up to 8–10-m-high and with an understory dominated
by grass) and the cerradão (forest formations with trees up to a height of 20-m-high) [6,7].

Although the aboveground carbon stock in the Cerrado is lower than that of the Brazilian Amazon,
the conversion of the Cerrado biome to different types of land uses is occurring much faster than
in the Brazilian Amazon, mainly because the Brazilian livestock and agricultural frontier has been
expanding towards the northern parts of the Cerrado over the last decades [8,9]. This trend has been
increasing due to the governmental policies put in place since 2018. The Cerrado land use and land
cover (LULC) mapping project, conducted by the Brazilian Ministry of Environment (MMA), showed
that, in 2013, approximately 43% (88 million ha) of the biome had already been converted to different
land uses, with 55% (111 million ha) still covered by native vegetation [4]. The remaining 2% of
the Cerrado were covered by water bodies and by the class “unidentified”, which included areas
covered by clouds and burned areas [10]. Most of the remaining natural areas have been undergoing
degradation due to unsustainable selective logging and burning activities, often overlooked as threats
to habitat integrity and connectivity [4,11]. According to MMA-2019 [12] and the MapBiomas alert
platform (https://mapbiomas.org/en/project), the Cerrado was the Brazilian biome with the highest
levels of deforestation between October 2018 and March 2019, losing 47,704 ha of native vegetation.
In addition, about 95% of the deforestation alerts were in areas without any authorisation—that is,
without a license for deforestation, which is issued by either the federal or state environmental agency.
More than 1400 ha of deforestation took place in legal reserves (Brazil’s environmental legislation
obligates private property owners to retain a fixed proportion of their total area for native vegetation.
These areas are called “legal reserves”) [13].

Only 3% of the Cerrado is strictly protected by the law within conservation areas [12,14], and the
high rates of vegetation loss and degradation have made the Cerrado the second-largest source of
carbon emissions in Brazil [15]. In this context, it is essential to monitor AGB and carbon stocks
effectively, and reliable maps are needed for climate change mitigation policies [16–18]. Uncertainties
in current vegetation carbon stock estimates over the Cerrado are high, and biomass estimates vary by
more than 50 Mg ha−1 within the same area [19–21]. This demands improvements in the accuracy and
spatial resolution to estimate the AGB in this biome. The challenge here is to take the large latitudinal
gradient and the high variation of the vegetation structure into consideration [15], as well as the paucity
of field studies quantifying AGB over different regions of the biome [15,16].

https://mapbiomas.org/en/project
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Different types of sensors, such as satellite-based multispectral imagers and Synthetic Aperture
RADAR (SAR) systems, as well as airborne light detection and ranging (LiDAR), have been successfully
applied to estimate AGB in the tropics [21–26]. SAR and LiDAR have been increasingly used to estimate
AGB in the last eight years [27–36]. The microwave pulses transmitted by a SAR system, especially
at longer wavelengths such as the L- or P-band, interact with the branches and trunks, providing
information about the forest structure, which is highly correlated to AGB [37–39]. Airborne LiDAR
provides information on the canopy height and canopy cover [40–43], which are good proxies for
woody AGB estimations [44]. The main limitations of LiDAR are that it is still an expensive technology
and it is typically not available for large areas [45]. So far, only a few studies have explored the
effectiveness of multi-sensor data synergy in tropical savannas [46–48]. In contrast, this approach has
been intensively used to study other biomes [49–51].

Most studies focusing on AGB estimations in the Cerrado are based on establishing statistical
models between remote-sensing measurements and field plots (i.e., allometric equations linking in
situ measurements to parameters such as tree biomass) [5,16,52]. However, uncertainties remain
high [53], and studies using remote sensing to estimate AGB in the Cerrado are still limited [53,54].
Bitencourt et al. [53] studied the Cerrado vegetation using optical and RADAR data, showing a
strong relationship between these Earth Observation (EO) datasets and foliage biomass. The same
authors also used Japanese Earth Resources Satellite (JERS-1) SAR observations to estimate the woody
AGB of the savanna using a multiple regression analysis, resulting in R2 = 0.87. Miguel et al. [54]
used artificial neural networks to predict the wood volume and AGB of the savanna using satellite
observations from the Linear Imaging Self-Scanner (LISS-III) sensor onboard the ResourceSat-1 satellite.
The neural network approach showed a good accuracy for both the wood volume (R2 ~0.98 and
standard error of estimate (SEE) ~4.83%) and AGB (R2 ~0.94 and SEE ~8.5%). Schwieder et al. [55]
combined Landsat phenological metrics with aboveground carbon field samples of woodland savanna
vegetation using random forest (RF) regression models to map the regional carbon distribution and to
analyse the relationship between the phenological metrics and aboveground carbon stocks. The model
performance varied among the three selected study areas, with root mean squared error (RMSE) values
of 1.64 Mg ha−1 (mean relative RMSE 30%), 2.35 Mg ha−1 (mean relative RMSE 46%), and 2.18 Mg ha−1

(mean relative RMSE 45%), while the aboveground carbon distributions revealed characteristic spatial
patterns. Biomass maps can be assessed through the biomass product accuracy requirements of satellite
missions dedicated to the estimation of a biomass, such as those from the BIOMASS mission [56].
BIOMASS is aiming at errors smaller than ± 20% in terms of the relative RMSE (rel. RMSE) for AGB
higher than 50 Mg ha−1 and ± 10 Mg ha−1 in terms of RMSE for AGB lower than 50 Mg ha−1.

In this study, we quantified the spatial distribution of the AGB in the Rio Vermelho watershed,
located in a central Cerrado region in Brazil. Using a machine-learning approach, we produced the
first high-resolution AGB map (30 m) of a Brazilian Cerrado area based on a combination of vegetation
inventory plots, airborne LiDAR data, and satellite images (Landsat 8 and ALOS−2/PALSAR-2).
The two-stage upscaling approach (field to LIDAR and LIDAR to EO) was also applied for the first
time in an area of this biome. We used a RF model and jackknife analyses to analyse the importance of
the remote-sensing predictor variables, enabling us to select the best ones to quantify the AGB.

2. Data and Methodology

2.1. Study Area

The study site is located in the Rio Vermelho watershed, which is part of the Rio Araguaia
watershed in the state of Goiás, Central Brazil (Figure 1), and it covers an area of 1,082,460 ha.
The landscape topography is typically lowland, and the Cerrado biome’s climate is semi-humid (Aw
in the Köppen’s climate classification system). It is a tropical savanna with two marked seasons:
a dry winter (from May to September) and a rainy summer (from October to April). This watershed
is characterised by a relatively constant air temperature throughout the year, with minimum and
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maximum temperatures of 20 ◦C and 32 ◦C, respectively) [57,58]. Intense and localised precipitation
and frequent dry spells occur.
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Figure 1. Location of the Rio Vermelho watershed study area (outlined in yellow in the right panel)
located in the State of Goiás in Brazil and in the Cerrado biome (grey and green areas in the left
overview panel). The location and a zoom of the canopy height light detection and ranging (LiDAR)
footprints within the watershed (each of those covered an area of 16.82 ha) with the location of the field
plots (black rectangles) are also shown. The entire right panel corresponds to the red square in the
left overview panel. The background image corresponds to the© Bing™ aerial photo, a screenshot(s)
reprinted with permission of Microsoft Corporation.

The Rio Vermelho watershed is part of a region in the Goiás State called “Mato Grosso Goiano”.
This denomination is based on the historical extensive and dense native forest cover (typical for the
Mato Grosso State) in the region [59]. This part of the Brazilian Cerrado underwent intensive human
settlement in the 18th century due to the Brazilian gold rush in Central Brazil [60]. Since forests in
the Cerrado are supposedly associated with soils with good fertility, most of the forest-covered areas
have already been converted to other uses, mainly croplands and pastures [59], sometimes resulting in
land degradation. Today, forest formations are restricted to a small and few fragments. Pastures cover
more than 57% of the study area [6], and livestock ranching is the main economic activity in the region.
By 2018, only approximately 33% of the native vegetation persisted [12,61], and the remaining native
vegetation is fragmented [62] and often located in legal reserves areas.

Vegetation

Most of the Cerrado natural vegetation is comprised of savanna formations (cerrado stricto sensu).
However, forest formations such as woodlands, riparian forests, and seasonal forests play an important
role in the carbon balance, because they have a higher carbon stock density [63]. In the Rio Vermelho
watershed, woodlands or cerradão (in Portuguese) and seasonal forest formations predominate as the
forest remnants. The forest inventory sites were located in two fragments of cerradão, and the plots
follow a structural and biomass gradient from: (a) a savanna-cerradão transition zone (lower biomass),
(b) cerradão, and (c) cerradão-seasonal forest transition zone (higher biomass).
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Dystrophic cerradão is typical for deep, highly lixiviated soil (Oxisols and sandy soils) areas with
a seasonal tropical climate, and their canopy height varies between 8 and 15 m. Canopy cover varies
between 50% and 90%, with an understory of shrubs and grass [62]. They are structurally similar to
seasonal forests and differ mainly in species composition, as they are comprised of seasonal forest as
well as wooded savanna species [62,64].

Seasonal forests are often associated with more fertile soils (mesotrophic and eutrophic soils) and
present different levels of deciduousness during the dry season. The canopy height varies between 15
and 25 m, and the forest cover is between 70% and 95% during the rainy season. In the dry season,
the canopy cover can be lower than 50% in seasonal semideciduous forests and lower than 35% in
seasonal deciduous forests [62].

In wooded savannas, most trees are shorter and sparser than in forest formations, allowing for a
continuous herbaceous grassy layer. Wooded savannas are separated into subgroups according to
their structural gradient: cerrado ralo (2–3-m-tall trees with 5–20% canopy cover), cerrado sensu stricto
or typical cerrado (3–6-m-tall trees with 20–50% forest cover), and cerrado denso (8–15-m-tall trees with
50–70% forest cover) [65].

2.2. Methodology

Figure 2 shows the flowchart of the methodology used to produce the AGB map of the Rio
Vermelho watershed. Our reference datasets consisted of ground measurements and airborne LiDAR
data. We used a combination of Earth Observation (EO) datasets from multispectral passive optical
and synthetic aperture radar (SAR) sensors as predictor variables to estimate the AGB of the study
area. The description of each step of the methodology is provided in the following subsections.

Remote Sens. 2020, 11, x FOR PEER REVIEW 5 of 23 

 

Dystrophic cerradão is typical for deep, highly lixiviated soil (Oxisols and sandy soils) areas 
with a seasonal tropical climate, and their canopy height varies between 8 and 15 m. Canopy cover 
varies between 50% and 90%, with an understory of shrubs and grass [62]. They are structurally 
similar to seasonal forests and differ mainly in species composition, as they are comprised of seasonal 
forest as well as wooded savanna species [62,64]. 

Seasonal forests are often associated with more fertile soils (mesotrophic and eutrophic soils) 
and present different levels of deciduousness during the dry season. The canopy height varies 
between 15 and 25 m, and the forest cover is between 70% and 95% during the rainy season. In the 
dry season, the canopy cover can be lower than 50% in seasonal semideciduous forests and lower 
than 35% in seasonal deciduous forests [62]. 

In wooded savannas, most trees are shorter and sparser than in forest formations, allowing for 
a continuous herbaceous grassy layer. Wooded savannas are separated into subgroups according to 
their structural gradient: cerrado ralo (2–3-m-tall trees with 5–20% canopy cover), cerrado sensu stricto 
or typical cerrado (3–6-m-tall trees with 20–50% forest cover), and cerrado denso (8–15-m-tall trees with 
50–70% forest cover) [65]. 

2.2. Methodology 

Figure 2 shows the flowchart of the methodology used to produce the AGB map of the Rio 
Vermelho watershed. Our reference datasets consisted of ground measurements and airborne LiDAR 
data. We used a combination of Earth Observation (EO) datasets from multispectral passive optical 
and synthetic aperture radar (SAR) sensors as predictor variables to estimate the AGB of the study 
area. The description of each step of the methodology is provided in the following subsections. 

 
Figure 2. Flowchart showing the methodology used to produce the aboveground biomass (AGB) map 
of the Rio Vermelho watershed, Goiás State, Brazil. SR = surface reflectance.  

2.2.1. Ground Truth Data 

We used woody AGB data from 15 (20 m × 50 m) field plots located in cerradão vegetation to 
estimate the AGB from airborne LiDAR. These plots were established in 2014, and all trees with a 
diameter at breast height (dbh) ≥ 5 cm at 1.30 m above the ground were considered. The tree heights 

Figure 2. Flowchart showing the methodology used to produce the aboveground biomass (AGB) map
of the Rio Vermelho watershed, Goiás State, Brazil. SR = surface reflectance.

2.2.1. Ground Truth Data

We used woody AGB data from 15 (20 m × 50 m) field plots located in cerradão vegetation to
estimate the AGB from airborne LiDAR. These plots were established in 2014, and all trees with a
diameter at breast height (dbh) ≥ 5 cm at 1.30 m above the ground were considered. The tree heights
were measured with a digital clinometer (HAGLOF ECII-D). The basal area in m2 was calculated from
the dbh (basal area = (π/4) ∗ (dbh/100)2) (Table 1). Ten plots were located in the remnants of native



Remote Sens. 2020, 12, 2685 6 of 22

vegetation in the municipality of Itapirapuã (Figure 1, right panel, top zoom), while five plots were
located in the municipality of Goiás (Figure 1, right panel, lower zoom).

Table 1. Floristic and structural characterisations of the plots located in fragments of the native Cerrado
vegetation in the Rio Vermelho watershed, Goiás State, Brazil. WS-FS = savanna-cerradão transition
zone, TFS = cerradão, FS-SF = cerradão-seasonal forest transition zone; S = species richness, TD = tree
density, DBH = diameter at breast height, H = height, TBA = tree basal area, AGB = aboveground
biomass, and CV= coefficient of variation.

Plot ID Vegetation
Type

S
(Species)

TD
(Ind. ha−1)

DBH Range
(cm)

(Mean/CV%)

H (m)
(Mean/CV%)

TBA
(m2/ha)

AGB
(Mg ha−1)

Itapirapuã 1 WS-FS 38 990 5.0–36.7
(9.1/56.9)

1.7–11.2
(5.8/26.9) 13.5 19.3

Itapirapuã 2 WS-FS 32 920 5.0–45.5
(9.5/54.7)

1.6–13.4
(5.6/35.5) 10.8 21.2

Itapirapuã 3 WS-FS 45 1030 5.0–29.4
(10.4/54.5)

2.1–14.0
(5.8/35.9) 15.0 24.5

Itapirapuã 4 WS-FS 41 1040 5.3–52.0
(9.8/58.4)

1.3–12.6
(5.5/33.4) 14.4 28.2

Itapirapuã 5 TFS 36 1140 5.0–41.4
(10.3/60.4)

2.0–12.8
(6.0/31.9) 16.4 32.2

Itapirapuã 6 TFS 45 1570 5.0–34.7
(10.5/47.0)

1.5–12.9
(6.5/31.6) 22.6 35.3

Itapirapuã 7 TFS 50 1990 5.0–43.7
(9.1/52.9)

1.8–13.2
(6.5/33.6) 21.9 36.8

Itapirapuã 8 TFS 60 1440 5.0–48.0
(10.4/61.2)

2.6–13.2
(6.1/31.8) 20.1 40.2

Itapirapuã 9 TFS 35 1210 5.0–53.3
(10.1/62.9)

1.8–13.1
(6.5/30.8) 17.0 40.9

Goiás 10 TFS 41 1260 5.0–35.3
(10.9/57.3)

3.6–19.6
(8.7/38.6) 20.5 52.8

Itapirapuã 11 TFS 39 1260 5.0–42.3
(11.2/65.9)

1.7–14.9
(6.3/36.3) 24.3 54.3

Goiás 12 FS-SF 38 1310 5.0–49.3
(11.3/61.5)

2.5–19.3
(9.3/33.3) 24.6 70.4

Goiás 13 FS-SF 26 690 5.0–49.0
(13.0/73.6)

3.4–22.0
(10.2/43.5) 18.3 77.0

Goiás 14 FS-SF 27 820 5.0–44.2
(13.2/63.5)

3.0–38.0
(12.5/48.7) 22.0 98.3

Goiás 15 FS-SF 24 760 5.0–41.7
(14.0/67.3)

2.5–26
(10.9/52.5) 24.4 103.9

As mentioned, the two native vegetation fragments sampled are classified as cerradão. However,
due to the high structural heterogeneity in the Cerrado biome, there were considerable variations
in the structure of the woody vegetation within the sampled plots. The floristic and structural
characteristics of the plots described in Table 1 (and from Figure S1 to Figure S20 in the Supplementary
Materials) corroborate that the sampled plots adequately represent the gradient of floristic-structural
variation inherent to forest formations from all of the Cerrado. Thus, four plots were classified as a
savanna-cerradão transition zone, seven as cerradão, and four as a cerradão-seasonal forest transition
zone [62]. The sampled plots showed a height gradient directly related to the aboveground biomass
stocks of woody vegetation. In the savanna-cerradão transition zone, the mean height was below 6 m,
in the cerradão, between 6 and 8 m, and, in the cerradão-seasonal forest transition zone, above 9 m
(Table 1). These plots were representative of the structural variation found in the cerradão vegetation
of the region, with AGB values ranging from 19 to 104 Mg ha−1 (Table 1).

In tropical ecosystems, species diversity is generally very high. Therefore, generalised
(mixed-species) allometric models are more appropriate than species-specific equations [66,67]. We used
the following mixed species allometric model [68] designed for cerradão (N = 87, R2 = 0.94, residual
standard error (RSE) = 0.13 Mg; RSE (%) = 49.83). The model estimates the woody AGB (only live trees
were used) with a diameter at breast height ≥ 5 cm, excluding leaf biomass.

AGB = exp [−12.29 + 2.69 ∗ ln(dbh) + 0.80 ∗ ln(h)] (1)
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where dbh is the diameter at breast height, and h is height.
In our study, these in situ woody AGB estimates were then used to establish an empirical model

to estimate AGB as a function of the structural metrics derived from the airborne LiDAR.

2.2.2. LiDAR Data

We used 60 tiles of airborne LiDAR data (covering a total area of 1009.01 ha) collected by the
Sustainable Landscapes project led by the Brazilian Enterprise for Agricultural Research Corporation
(EMBRAPA). The LiDAR data covered the municipalities of Itapirapuã and Goiás, Goiás State, Brazil.
The flights took place between 20 June 2015 and 7 July 2015. The LiDAR dataset has an average density
of returns of ~45 ppm2 (points per square meter). The average altitude of the flights was ~850 m,
with a field of view of 12◦. Two LiDAR sensors (Optech Orion M300 and Optech ALTM 09SEN243)
were used in these campaigns, but the percentage of flight line overlaps was high (~65%). LiDAR
returns of all 15 plots are shown from Figure S6 to Figure S20 in the Supplementary Materials.

The LASTools software [69] was used to process the LiDAR data and to generate the following
variables derived from the LiDAR point cloud data: DSM (digital surface model), CHM (canopy
height model), DTM (digital terrain model), CC (canopy cover coverage), CD (canopy density), Max-H
(maximum height), Percentile_p15, Percentile_p10, Percentile_p20, Percentile_p30, Percentile_p35,
Percentile_p55, Percentile_p40, Percentile_p45, Percentile_p50, Percentile_p60, and Percentile_p65.
Highly correlated variables were excluded, and the ones containing the most unique information,
CHM, CC, and CD, were used to establish statistical models to extrapolate the spatially limited LiDAR
AGB estimates to both the optical and radar observations (Figure 2).

2.2.3. Optical Data

The United States Geological Survey (USGS) Landsat 8 Collection 1 Tier 1 data consists of surface
reflectance products generated from the Landsat 8 Operational Land Imager (OLI), with 30-m spatial
resolution. The USGS atmospherically corrects the scenes using the Landsat 8 Surface Reflectance
Code (LaSRC), which also uses the C function of the mask (CFMASK) algorithm [70] to generate a
cloud, shadow, water, and snow mask. We selected all the scenes acquired in the period of 2015–2017
(244 scenes) to generate a cloud and shadow-free median temporal composite (Figure 2). In addition to
the spectral bands, we generated a range of vegetation indices that could potentially be representative
for the vegetation canopy structure, seasonality, and a measure of vegetation greenness. These were the
normalised difference vegetation index (NDVI), normalised burn ratio (NBR), normalised difference
moisture index (NDMI), and the soil adjusted vegetation index (SAVI). These indices have previously
been used in similar studies [21,23,71–73].

2.2.4. SAR Data

We used the global 25-m resolution ALOS PALSAR/PALSAR−2 annual mosaics, which are
freely available at https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm. This dataset was
pre-processed by the Japanese Aerospace Exploration Agency (JAXA) using L-band SAR images of the
backscattering coefficient acquired by the Advanced Land Observing Satellite (ALOS) and Advanced
Land Observing Satellite-2 (ALOS-2). The mosaics consist of 10 × 10-degree tiles pre-processed to
correct for geometric distortions (ortho-rectification) and topographic effects [74]. The mosaics were
calibrated to γ0 using the following equation:

γ0 = 10 x log10(DN)2 + CF (2)

where γ0 is the gamma-naught in decibels (dB), DN is the digital number in unsigned 16 bit, and CF is
a calibration constant of 83.0 dB.

We reduced the noise of the mosaics by applying a temporal multi-channel filter [75] with
a 5 × 5-pixel moving average window. Then, we applied a temporal normalisation between PALSAR

https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm
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and PALSAR-2 images aiming to correct for soil moisture and sensor differences. For our final
PALSAR-2 composite, we used the median value of the three mosaics (2015, 2016, and 2017) (Figure 2).
We observed a geolocation error of ~80 m on average for the PALSAR-2 mosaics in comparison to HR
(high-resolution) imagery and Landsat 8 scenes. We generated a Sentinel-1 SAR median γ0 composite
using 283 scenes from between 2016 and 2018, and we used this not as an input for our modelling but
as a geolocation reference image. The PALSAR-2 composite was georeferenced against the Sentinel-1
composite using a SAR-to-SAR co-registration. This approach, instead of a SAR-to-optical approach,
was chosen to avoid errors derived from the different viewing geometries of SAR and optical images.
The variables used for this study were the SAR backscatter coefficients (γ0

HV and γ0
HH) and two SAR

indices—namely, the radar forest degradation index (RFDI) and the cross-polarised ratio (CpR) [74].

2.3. Modelling Framework

We adopted a two-stage upscaling method from field measurements to airborne LiDAR point
clouds and from the LiDAR-based estimates to satellite imagery. We estimated the woody AGB of the
field plots and used these as a reference to estimate the woody AGB across the LiDAR footprints using
LiDAR-derived structural variables as a predictor. Our field plots covered a representative range of
flora and structure of the woody vegetation (Table 1) from 19 Mg ha−1 to 104 Mg ha−1. As the LiDAR
point clouds are sensitive to the forest structure, we assumed that these plots could express the physical
and structural variations of the vegetation of the study site, and we allowed the AGB LiDAR model
to extrapolate for values < 19 Mg ha−1. This field-to-LiDAR procedure allowed us to increase our
sampling from the 15 plots to thousands of observations derived from the LiDAR footprint covering a
wide range of woody AGB and vegetation types. We then used these LiDAR AGB, representative for
the vegetation in the region, in combination with EO datasets to estimate the woody AGB over the
entire Rio Vermelho watershed.

The first step was to model the relationship between LiDAR woody vegetation structural variables
and the AGB estimated from the field plots (Figure 2). We generated raster-based LiDAR vegetation
structural variables with using a 1-m pixel size. We then used the average value of the pixels within the
20 × 50-m plots (0.10 ha) to develop our models. As we had a limited number of field plots, we had to
limit the number of variables included in the empirical models as well. Based on a visual exploration
of the relationships between the dependent and independent variables, as well as the distribution of
each predictor, we identified three potential predictors: canopy height model (CHM), canopy density
(CD), and canopy cover (CC). We then used all possible combinations of these variables to find the best
generalised linear model to estimate the AGB based on the Akaike’s information criterion corrected for
a small sample size (AICc). This final model was used to estimate the AGB over the entire LiDAR
footprint at a 30-m spatial resolution (0.09 ha). The next step was to model the relationship between
the estimated LiDAR AGB and the EO datasets. These EO datasets were resampled, co-registered, and
stacked at 30-m spatial resolutions (Figure 2). We used the LiDAR AGB pixels (N = 2,973) as training
and test samples in a regression version of the random forest (RF) algorithm [76] in the Google Earth
Engine [77], which was implemented within a k-fold cross-validation framework [73]. The following
variables were used as predictors in the model: γ0

HV; γ0
HH; RFDI; CpR from the PALSAR-2 data; and

blue, green, red, near infrared, and shortwave infrared bands, as well as NDVI, NBR, NBR2, NDMI,
and SAVI from the Landsat 8 data. RF is a nonparametric machine-learning algorithm that uses a
bootstrap technique to construct multiple decision trees. Jackknife tests were also run to compare the
importance of the predictor variables based on a R2 of the model. Due to the randomness (stochastic
nature) of the RF algorithm, the importance may change for each run. Thus, the variable importance
analysis was run for each k and then averaged to produce the overall importance figures. The test was
performed running each single set of variables in isolation to assess the accuracy of each set. The higher
the R2, the higher the importance of the variable. Then, a set of variables was excluded each time from
the whole set to assess the drop in the variance explained by the model.
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The k-fold cross-validation framework was used to train and validate the algorithm (Figure 2),
maximising the reference data available. Figure 2 shows the overview of the method used to produce
the AGB map and the uncertainty characterisation in the Rio Vermelho watershed. The whole reference
dataset was used for both training and validation purposes. The dataset was stratified by three
AGB levels (low, medium, and high), and randomly sampled into the folds to ensure that all folds
have similar probability distribution functions of the AGB. Then, k-1 folds were used to train the
RF algorithm and to produce the AGB map, while the remaining fold was used for the validation.
The process was then run k times, reusing the folds for training purposes but using them only once for
validation purposes. The final outputs were k AGB maps over the study area. The mean value of the k
AGB maps was used as the final AGB map, and we used the standard deviation (SD) of the k estimates
for any given pixel to generate a prediction error (σprediction) map. This error also accounts for the
representativeness of the sampling sites of the true distribution of AGB in the region [21]. The total SD
(σAGB) was propagated, as explained in Rodriguez-Veiga et al. [29] and Saatchi et al. [21], as follows:

σAGB =
(
σ2

measurement + σ2
LiDAR + σ2

allometry + σ2
sampling + σ2

prediction

) 1
2

(3)

where the measurement error (σmeasurement) of the tree level parameters averaged at the plot scale
was assumed as 10% [78], the LiDAR error (σLiDAR) was assumed as 1.5% (from a 0.11-m instrument
error for an average 7.13 m canopy height), the allometric error (σallometry) was assumed to be 49.83%
(Scolforo et al. [68]), and the sampling error (σsampling) from the variability of AGB within the pixels
was estimated as 12.39% based on Réjou-Méchain et al. [79].

Our k-fold cross-validation assessment followed James et al. [80] and involved the calculation
of the R2, RMSE, rel. RMSE, and the mean bias error (MBE). Aside from the overall assessment,
we also analysed the errors by biomass ranges. Finally, we also compared our AGB estimates to four
other studies [21–23,81] (Table 2). Baccini et al. [23] used multi-sensor satellite data to estimate the
aboveground live woody vegetation carbon density for pantropical ecosystems with a 500-m resolution.
Saatchi et al. [21] mapped the total carbon stock in live biomasses (above- and belowground) in the
tropics using a combination of data from in situ inventory plots and satellite LiDAR samples of the
forest structure to estimate the carbon storage, plus optical and microwave imagery (1 km resolution),
to extrapolate over the landscape. Santoro et al. [81] estimated AGB globally at a 100-m resolution by
combining spaceborne SAR, LiDAR, and optical observations for the year 2010, with auxiliary datasets
from forest inventories—namely, additional remote-sensing observations, climatological variables,
and ecosystems classifications. Avitabile et al. [22] combined two existing datasets of vegetation
aboveground biomasses (AGB) into a pantropical AGB map at a 1-km resolution using an independent
reference dataset of field observations and locally calibrated it using high-resolution, harmonised, and
upscaled biomass maps. For the comparison of our results to these maps, we aggregated all of them to
the same spatial resolution (1 km).

Table 2. Summary of forest aboveground biomass (AGB) maps used for comparison with our study
results. RMSE: root mean square error, rel. RMSE: relative root mean square error.

Study Coverage Year Spatial
Resolution Methodology Accuracy/Uncertainty

Saatchi et al. [21] Pantropical early 2000s 1 km
MaxEnt (field measurements,

GLAS data, optical and
microwave imagery)

Uncertainty from ±6%
to ±53%

Baccini et al. [23] Pantropical 2007–2008 500 m Random Forest algorithm (field
data, GLAS and MODIS data)

RMSE = 25 Mg C/ha
for tropical America

Avitabile et al. [22] Pantropical 2000–2008 1 km

Weighted linear averaging
method (biomass reference

datasets, Saatchi et al. [21] map
and Baccini et al. [23] map)

RMSE = 87~98 Mg/ha;
Mean error: almost
null in most cases

Santoro et al. [81] Global 2010 100 m
Water Cloud Model (ALOS

PALSAR, Envisat, Landsat and
field plots)

rel. RMSE = 57.1% and
Bias = 10.6 Mg ha −1

for tropical areas
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3. Results

3.1. LiDAR-Derived AGB Map

Table 3 shows the models tested in this study. The AGB = f(CHM, CC) model was the one that
best explained the field-based AGB variations (Table 3, adj R2 = 0.93, RMSE = 6.74 Mg ha−1, or 13% of
the mean biomass values) and, therefore, was used to predict the AGB over the whole LiDAR flight
footprint. This predicted LiDAR AGB was used to generate training and test samples to run the RF
algorithm to extrapolate the AGB to the EO datasets covering the entire Rio Vermelho watershed.
Although the AGB = f(CC, CD, CHM) model resulted in a slightly smaller RMSE and a higher AIC
than AGB = f(CHM, CC), both models showed the same R2 (= 0.93) and RMSE (6.74 Mg ha−1 or rel.
RMSE = 13%). We therefore opted for the AGB = f(CHM, CC) model, as it is more parsimonious and
only uses two independent variables (Table 3 and Figure S1 in the Supplementary Materials).

Table 3. Model comparison according to Akaike’s information criterion corrected for a small sample
size (AICc). Parameters for each model include: LogLik (log-likelihood), k (number of predictor
variables), AICc (Akaike’s information criterion corrected for a small sample size), ∆AICc (difference
in AICc between the current and the best model), Adj R2 (adjusted coefficient of determination),
and RMSE (root mean square error). The intercept and coefficients, as well as the coefficient of
determination (R2) for each model, are also presented. CHM = canopy height model, CD = canopy
density, and CC = canopy cover.

Model LogLik k AICc ∆AICc Adj R2 RMSE (Mg ha−1)

AGB = −61.92 + 4.88*CHM + 0.83*CC −49.90 2 107.81 0.00 0.93 6.74
AGB = −107.18 + 2.21*CC − 1.26*CD + 6.34*CHM −49.40 3 108.81 1.00 0.93 6.52

AGB = −30.03 + 4.30*CHM + 0.66*CD −50.56 2 109.13 1.32 0.92 7.04
AGB = 2.44 + 6.25*CHM −52.71 1 111.42 3.61 0.89 8.12

AGB = −27.17 − 2.31*CC + 3.22*CD −54.83 2 117.66 9.85 0.86 9.36
AGB = −76.56 + 1.76*CD −56.56 1 119.13 11.32 0.81 10.51
AGB = −173.08 + 2.48*CC −60.72 1 127.44 19.63 0.69 13.86

AGB = 52.34 −69.39 0 142.78 34.97 0.00 24.70

3.2. AGB and Uncertainty Map

The AGB varied from 0 to 90 Mg ha−1 per pixel (Figure 3), whereas the pixel-scale uncertainty
estimated by the error propagation approach ranged from 0 to 49 Mg ha−1 (Figure 4). Figure 5 shows
the averaged variable importance analysis across the k-fold procedure for each set of variables derived
from Landsat 8 (L8) and ALOS-2/PALSAR-2 (ALOS) included in the random forest (RF) model. These
results indicated that the Landsat reflectances composite was the most important set of variables when
predicting AGB. However, the ALOS indices contain more unique information not represented by the
other variables, as shown by the largest decrease in accuracy when the variable was excluded. Figure 6
shows the overall accuracy assessment and Table 4 the assessment by AGB range.

The accuracy assessment between the AGB map predicted from EO and the AGB reference from
LiDAR showed R2 = 0.89, RMSE = 7.58 Mg ha−1, rel. RMSE = 43%, and bias = 0.43 Mg ha−1 (Figure 6).
Our map shows an underestimation of very high AGB (negative bias) and a slight overestimation of
low AGB (positive bias) [28] (Table 4). We also found a RMSE of 6.39 Mg ha−1 (rel. RMSE = 61%) for
AGB lower than 50 Mg ha−1 and a RMSE = 13.41 Mg ha−1 (rel. RMSE = 19%) for AGB higher than
50 Mg ha−1. Details of the accuracy assessment by biomass range are shown in Table 4.
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Table 4. Cross-validation assessment by the AGB range. MBE: mean bias error.

AGB Range
(Mg ha−1)

Number of Pixels Reference AGB
(Mg ha−1)

Map AGB
(Mg ha−1)

MBE
(Mg ha−1)

RMSE
(Mg ha−1)

Rel.
RMSE

0–20 2084 4.4 5.7 1.3 4.8 109%
20–40 379 29.5 31.8 2.3 10.4 35%
40–60 287 49.3 48.8 −0.5 10.8 22%
60–80 152 69.2 62.6 −6.6 11.4 16%
>80 71 89.2 72.3 −17.0 20.0 22%
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Figure 5. Averaged variable importance analysis across the k-fold procedure for each set of variables
derived from Landsat 8 (L8) and ALOS-2/PALSAR-2 (ALOS) included in the random forest (RF) model.
The R2 for each single set of variables and all variables together (left) and decrease in R2 for models
excluding a single set of variables (right). ALOS backscatter: γ0

HV and γ0
HH. ALOS indices: radar forest

degradation index (RFDI), cross-polarised ratio (CpR). L8 reflectances: blue, green, red, near infrared,
shortwave infrared-1, and shortwave infrared-2. L8 indices: normalised difference vegetation index
(NDVI), normalised burn ratio (NBR), NBR2, normalised difference moisture index (NDMI), and soil
adjusted vegetation index (SAVI).



Remote Sens. 2020, 12, 2685 13 of 22

Remote Sens. 2020, 11, x FOR PEER REVIEW 13 of 23 

 

 
Figure 5. Averaged variable importance analysis across the k-fold procedure for each set of variables 
derived from Landsat 8 (L8) and ALOS-2/PALSAR-2 (ALOS) included in the random forest (RF) 
model. The R2 for each single set of variables and all variables together (left) and decrease in R2 for 
models excluding a single set of variables (right). ALOS backscatter: 𝛾ு௏଴  and 𝛾ுு଴  . ALOS indices: 
radar forest degradation index (RFDI), cross-polarised ratio (CpR). L8 reflectances: blue, green, red, 
near infrared, shortwave infrared-1, and shortwave infrared-2. L8 indices: normalised difference 
vegetation index (NDVI), normalised burn ratio (NBR), NBR2, normalised difference moisture index 
(NDMI), and soil adjusted vegetation index (SAVI). 

The accuracy assessment between the AGB map predicted from EO and the AGB reference from 
LiDAR showed R2 = 0.89, RMSE = 7.58 Mg ha−1, rel. RMSE = 43%, and bias = 0.43 Mg ha−1 (Figure 6). 
Our map shows an underestimation of very high AGB (negative bias) and a slight overestimation of 
low AGB (positive bias) [28] (Table 4). We also found a RMSE of 6.39 Mg ha−1 (rel. RMSE = 61%) for 
AGB lower than 50 Mg ha−1 and a RMSE = 13.41 Mg ha−1 (rel. RMSE = 19%) for AGB higher than 50 
Mg ha−1. Details of the accuracy assessment by biomass range are shown in Table 4. 

 
Figure 6. Cross-validation between the AGB map predictions and AGB reference data derived from 
the LiDAR point clouds. The black dash line corresponds to the y = x line. RMSE: root mean square 
error. 

  

Figure 6. Cross-validation between the AGB map predictions and AGB reference data derived from the
LiDAR point clouds. The black dash line corresponds to the y = x line. RMSE: root mean square error.

Figures 7 and 8 show the comparisons between the AGB estimates produced in our study and four
other studies [21–23,81]. Although these maps were estimated using different methods and at different
resolutions over the pantropical area, it is interesting to observe how the different data products
compared to each other. While this study and Avitabile et al. [22] presented probability distribution
functions skewed towards low biomass ranges, other studies [21,23,81] showed distributions tending
towards much higher AGB levels, with averages two to three times larger than those found in this
study and by Avitabile et al. [22] (Figure 7). Figure 8 shows that the datasets from [21,23,81] did not
adequately represent all the variations that exist in the area due to the lower spatial resolution and, also,
generally showed a greater overestimation of the AGB. Although Santoro et al. [81] provided more
details in terms of the distribution of AGB in comparison with the other three maps, their map still
overestimated the AGB compared to our results. In the map developed in this study, one can observe
the AGB variation in detail, which is corroborated by the observed high coefficient of determination
(R2 = 0.89) between the AGB reference datasets and the final AGB map.
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4. Discussion

In 2014, Brazil submitted a greenhouse gas (GHG) emission report (Forest Reference Emission
Level (FREL) for Reducing Emissions from Deforestation for REDD+ under the United Nations
Framework Convention on Climate Change (UNFCCC)) [82] as part of the country’s commitment
to reduce GHG emissions from deforestation in the Amazon (FREL Amazonia). Brazil indicated in
that report that its national report would be the sum of the FRELs for each of the six Brazilian biomes.
The FREL report for the Cerrado biome (FREL Cerrado), together with the FREL Amazonia, showed
that emissions induced by land use changes accounted for approximately 73% of the emissions in
Brazilian territory [82]. This shows the importance of the Cerrado biome for REDD+ policies and for
the efforts of climate change mitigation in the country, such as the national inventories initiatives as
part of the Third National Communication of Brazil to the UNFCCC [63].

The reduced number of studies on the quantification and spatial variability of the total Cerrado
AGB stocks limits a full understanding of CO2 emission patterns in this biome. These are especially
critical for local and national climate governance strategies. Appropriate management and mitigation
models will depend on the accuracy of this information. We produced the first high-resolution
continuous map of AGB in an area of the Brazilian Cerrado, making use of a combination of vegetation
inventory plots, airborne light detection and ranging (LiDAR) data, and satellite images (Landsat 8 and
ALOS-2/PALSAR-2). Fieldwork in the Brazilian Cerrado is challenging, time-consuming, and expensive,
and existing field datasets still do not entirely represent the extent of the biome. An alternative to
increasing the sample size is using LiDAR by upscaling the information from field plots (which ideally
should be representative of the analysed ecosystem). This strategy has been used in recent studies in
other forest types [83,84]. We increased our sample size thousands of times, reaching a very high R2 of
0.93 in the AGB LiDAR estimation. This consistent result was essential to allow us to use LiDAR as a
reference for our AGB modelling process using satellite images and machine learning.
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In our study, the RF algorithm proved to be a good strategy to estimate the AGB in the study area
(Table 4 and Figure 6). This result can be attributed to the ability of these techniques to capture the
nonlinearity present in the data, as they can approximate complex functions [85]. This is an important
characteristic for the modelling of vegetation, such as ecological patterns governed by nonlinear and
interactive processes at any ecological scale [85], since they usually present complex behaviours [28].

Current sources of AGB information for the Cerrado are the global and pantropical maps that
have a limited spatial resolution (from 100 m to 1 km) and questionable high estimations for this biome
(Figures 7 and 8) [2]. Figure 7 shows the distribution by AGB intervals, average, and total AGB observed
from our study and the four global and pantropical maps over the Rio Vermelho watershed [21–23,81].
This study and the one conducted by Avitabile et al. [22] presented distributions with an average of
18.66 Mg ha−1 and 16.25 Mg ha−1, respectively. On the other hand, Santoro et al. [81], Saatchi et al. [21],
and Baccini et al. [23] showed distributions tending towards much higher AGB levels, with averages of
33.89 Mg ha −1, 31.12 Mg ha −1, and 58.59 Mg ha −1, respectively. Saatchi et al. [21] and Baccini et al. [23]
found the distributions of the AGB tending toward a normal distribution for the study site, which
was not the case for the map produced by Avitabile et al. [22], Santoro et al. [81], and our study.
Morandi et al. [2] recently calculated AGB values for the Cerrado biome using a large independent
dataset of field plots. The study estimated an average of 20.4 ± 6.0 Mg ha−1 for the central areas of the
Cerrado biome, where this watershed is located, which agrees with our study results. However, global
and pantropical studies showed significantly higher AGB levels in comparison to Morandi et al. [2],
our study (Figure 7), and to the AGB values measured in our field plots. We also observed the tendency
of these products to overestimate the AGB on the lower AGB ranges, which results from the models
attempting to compensate for the underestimation at the higher AGB ranges due to the potential
signal saturation [28]. This agrees with previous studies that have indicated the inconsistency of these
products when compared in several forest biomes [86,87]. Our regional AGB map (Figure 3) takes the
local vegetation structure of the Brazilian Cerrado into account and has a spatial resolution of 30 m.
Overall, the relationship between our reference data and the remote-sensing variables is relatively high
(R2 = 0.89), with a root mean square error (RMSE) of 7.58 Mg ha−1. The accuracy assessment showed
that our map underestimates high AGB levels and slightly overestimates low AGB levels (Table 4).
This result fully meets the biomass product accuracy requirements set by the BIOMASS mission (RMSE
< 10 Mg ha−1 for AGB < 50 Mg ha−1 and rel. RMSE < 20% for AGB > 50 Mg ha−1) [56], with a RMSE of
6.39 Mg ha−1 for AGB < 50 Mg ha−1 and a rel. RMSE = 19% for values > 50 Mg ha−1. It is important to
highlight that we were interested in a representative range for cerradão AGB, including transitions to
other vegetation types.

When analysing the statistical indicators of the goodness-of-fit (RMSE and R2) (Table 4) using
the RF technique, a higher accuracy was achieved for the AGB range > 40 Mg ha−1. However, even
though we are confident in our AGB estimations, we have to be cautious with the estimations of AGB
values < 19 Mg ha−1, areas that are not covered by woody vegetation (e.g. grasslands, agriculture, and
bare soil), as our field-to-LiDAR AGB model was developed using field plots located only in woody
vegetation areas. In Figure 6, we can observe an underestimation of the highest AGB ranges (AGB >

80 Mg ha−1), which is also reflected in the negative bias for this high AGB level (Table 4). The range
of predictions random forest regression can make is bound by the highest and lowest values in the
training data. This can lead to overestimations in the lower value range and underestimations in the
higher range [88]. The scatterplot between the satellite AGB estimates from our results and the LiDAR
AGB showed this effect with the slight underestimation of high AGB (Table 4 and Figure 6). This effect
was also observed in the studies of Nunes and Görgens [88] and Zhang and Lu [89].

It is reported that machine-learning techniques can provide more accurate estimates than
classical regression models [88]. Silva et al. [90] evaluated the use of machine-learning techniques
and mixed models to estimate the volume and AGB of individual trees in the Brazilian Cerrado.
The machine-learning techniques presented, and mixed-effect models, showed similar and highly
accurate results (R2 = from 0.97 to 0.99 and RMSE = from 12% to 13%) [58]. According to Silva et al. [90],
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because the modelling of forest resources commonly presents complex relationships among the variables,
nonlinear mixed-effects modelling (NLME) and machine-learning techniques such as RF, adaptive
network-based fuzzy inference systems (ANFIS), and artificial neural networks (ANNs) may be good
alternative modelling techniques. In our study, using RF, we produced an AGB map of an area in the
Brazilian Cerrado with a R2 of 0.89 and RMSE of 7.58 Mg ha−1. Previous studies tried to estimate
the AGB in savannas using satellite data and reached performances lower than the results from our
work [54,91,92].

Over the last decades, several studies have used SAR, especially ALOS PALSAR L-band radar
images, to estimate the AGB of tropical savannas. Mermoz et al. [93] used ALOS PALSAR data to map
the AGB in savanna ecosystems in Cameroon. They argued that L-band PALSAR mosaics are suitable
for the retrieval of savanna AGB (typically less than 100 Mg ha−1) at the national and continental scales.
In a similar study, Carreiras et al. [27] tested a combination of field data and ALOS PALSAR backscatter
intensity to reduce the uncertainty in the estimation of vegetation AGB in the Miombo savanna
woodlands of Mozambique (East Africa). They applied a machine-learning algorithm, resulting in a
good fit and accurate model (R2 = 0.95 and RMSE = 5.03 Mg ha−1). However, since they used bootstrap
samples in combination with a cross-validation procedure, the reported cross-validation statistics could
be overoptimistic [22]. A combination of datasets from different sources, such as in this study, proved
to be efficient when the goal was to reduce uncertainties in the AGB estimates. Recent studies have
explored the combination of different data types. Braun et al. [91] used passive and active microwaves
to estimate the AGB of savannas. They introduced the integration of passive brightness temperature
as an additional variable for AGB estimation, based on the hypothesis that it contains information
complementary to the microwave backscatter coefficient from active sensors.

As we found in our work, many studies have shown the advantages of combining optical and
SAR datasets using machine-learning techniques such as RF for AGB estimations. The optical data
are sensitive to the biophysical properties of the vegetation, and radar data are more sensitive to
the electrical and geometrical information of the vegetation—more specifically, the moisture content
and vegetation structure. Forkuor et al. [46] showed in a recent study that combining field inventory
data with Sentinel 1 (SAR) and Sentinel 2 (optical) to estimate the AGB in the West African dryland
forest (tropical savanna and woodlands) using a RF algorithm performed much better than either
one of them alone, reaching a R2 of 0.90. This corroborates our results, which have also shown an
improvement in accuracy using the combination of SAR and optical datasets rather than using either
one individually. Our study also showed the highest performance (R2 = 0.89) when all variables were
included. The variable importance analysis (Figure 5) showed a slightly superior R2 for Landsat 8
reflectance data (R2 = 0.84) in comparison to ALOS−2 backscatter data (R2 = 0.79) when mapping the
AGB using a single set of data. Landsat 8 indices seem to have an almost identical performance to
the Landsat 8 reflectance data, and there is no significant drop in performance when the indices are
excluded (Figure 6). Conversely, the exclusion of the ALOS indices from the whole set results in the
largest drop of R2 (i.e., −0.07), despite having the lowest performance when used alone (R2 = 0.51).
This agrees with previous studies that found a higher contribution of the optical reflectance data to
estimate AGB, potentially due to the sensitivity of optical data to shadow and moisture [23,29,94],
which can be a key factor in sparse vegetation such as Cerrado. Additionally, the relatively low AGB
levels in the study area might provide a level playing field with L-band SAR data, which usually
presents a sensitivity of the signal to higher AGB levels than optical data [95–99]. Our study highlighted
the need to use remote sensing in combination with local vegetation inventories to effectively quantify
the spatial variation of AGB in ecosystems of the Brazilian Cerrado. Future high-resolution maps of
ABG will likely be more useful to quantify carbon emissions from Cerrado degradations at the local
and regional scales. The methodology presented here has the potential to be used to generate the
first of its kind AGB map of the entire Brazilian Cerrado, which is often neglected in carbon stock
assessments of the South American continent.
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5. Conclusions

We provided the first high-resolution map of the AGB (30-m resolution) of a Brazilian Cerrado
area using a combination of field inventory plots, airborne light detection and ranging (LiDAR)
data, and satellite images (Landsat 8 and ALOS−2/PALSAR−2). We used random forest (RF) models
and jackknife analyses to study the importance of remote-sensing variables to quantify the AGB of
cerradão at large scales. Overall, the relationship between the reference data and remote-sensing
variables is strong (R2 = 0.89), with a root mean square error (RMSE) of 7.58 Mg ha−1. Spatially, our
map slightly underestimated and overestimated the values of the AGB in few areas of the savanna
(bias = 0.43 Mg ha−1). However, this spatial bias is similar to other AGB maps. Our study highlights
the need to use remote sensing in combination with local field inventories to effectively quantify the
spatial variation of AGB in the ecosystems of the Brazilian Savanna.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/17/2685/s1:
Figure S1: One-on-one relationship between the selected airborne LiDAR predictors (CC (%): canopy cover; and
CHM (m): canopy height model) and the mean AGB values measured in the field plots (Mg ha-1). Figure S2
to Figure S5: Field photos of natural vegetation found in the Rio Vermelho watershed. Figure S6 to Figure S20:
LiDAR returns.
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