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Abstract: Ambient Assisted Living (AAL) technologies are being developed which could assist1

elderly people to live healthy and active lives. These technologies have been used to monitor2

people’s daily exercises, consumption of calories and sleep patterns, and to provide coaching3

interventions to foster positive behaviour. Speech and audio processing can be used to complement4

such AAL technologies to inform interventions for healthy ageing by analyzing speech data5

captured in the user’s home. However, the collection of data in home settings presents acute6

privacy protection challenges. To address this issue, we propose a low cost system for recording7

disguised speech signals which can protect user identity by using pitch shifting. The disguised8

speech so recorded can then be used for training machine learning models for affective behaviour9

monitoring. Affective behaviour could provide an indicator of the onset of mental health issues10

such as depression and cognitive impairment, and help develop clinical tools for automatically11

detecting and monitoring disease progression. In this article, acoustic features extracted from the12

non-disguised and disguised speech are evaluated in an affect recognition task using six different13

machine learning classification methods. The results of transfer learning from non-disguised to14

disguised speech are also demonstrated. We have identified sets of acoustic features which are not15

affected by the pitch shifting algorithm and also evaluated them in affect recognition. We found16

that while the non-disguised speech signal gives the best unweighted average recall (UAR) of17

80.01% the disguised speech signal only causes a slight degradation in performance, reaching18

76.29% UAR. The transfer learning from non-disguised to disguised speech results in a greater19

drop in UAR (65.13%). However, feature selection improves the UAR (68.32%). This work forms20

part of a large project which includes health and wellbeing monitoring and coaching.21

Keywords: privacy preservation; affect recognition; health technologies; emotion recognition;22

ambient assisted living; social signal processing23

1. Introduction24

Health and wellbeing monitoring using Ambient Assisted Living (AAL) technolo-25

gies involves developing systems for automatically detecting and tracking a number of26

events that might require attention or coaching. In the SAAM project [1], we are employ-27

ing AAL technologies to analyse activities and health status of older people living on28

their own or in assisted care settings, and to provide them with personalised multimodal29

coaching. Such activities and status include mobility, sleep, social activity, air quality,30

cardiovascular health, diet [2], emotions [3] and cognitive status [4]. While most of31

these signals are tracked through specialized hardware, audio and speech are ubiquitous32

sources of data which could also be explored in these contexts. Speech quality and activ-33

ity, in particular, closely reflect health and wellbeing. We have explored the potential34

of speech analysis for automatically recognizing emotions [3], cognitive difficulties [4]35

and eating-related events [2] in the SAAM AAL environment [5]. AAL technologies and36

coaching systems such as SAAM, which focus on monitoring of everyday activities, can37

benefit from recognition of these audio events in characterizing contextual information38
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against which other monitoring signals can be interpreted. However user privacy re-39

mains one of the major challenges in collecting audio data in home environments for the40

development of health monitoring technology.41

1.1. Mental Health and Affective Speech42

The literature suggests that older people with cognitive impairment have difficulty43

accessing semantic information [6]. Since successful communication is essential for44

meaningful social interaction, this takes a toll on the patients’ and their carers’ wellbeing.45

This has an impact on the emotional life of these people. Speech monitoring for mood and46

cognitive changes may help inform interventions targeted at alleviating such impacts.47

In addition to their role in cognition [7], the expression of emotions and their recog-48

nition are key aspects of communication [8]. Emotional information can be conveyed49

in different ways, from explicit facial and verbal expression (e.g. smile, pout, happy50

statement) to more subtle non-verbal cues, such as intonation, modulation of vocal pitch51

and loudness of emotional expression. These non-verbal cues are generally referred to52

as emotional prosody.53

In a previous study [9], we found that there are differences in automatically inferred54

affective behaviours regarding expressions of sadness, anger and disgust among people55

with and without cognitive impairment (Alzheimer’s Disease, AD). Although these56

results need further study, they suggest that speakers with AD exhibit a deficit in the57

expression of those emotions, reflected on voice volume, speech rate and pitch. The58

proposed Affective Behaviour Representation (ABR) and emotion classification scores are59

able to predict cognitive deficit in such situations with an accuracy of 63.42%. However,60

in that study there was a mismatch between the dataset used to generate the features for61

recognition (emoDB [10]) and the data on which these features were used (Pitt Corpus62

[11]). Thus, prediction accuracy is likely to have been hindered by the facts that (1) the63

Pitt Corpus was not explicitly designed to elicit emotions, (2) that the two datasets were64

recorded under different acoustic conditions, (3) that the speakers were selected from65

different demographics, and (4) that they are in different languages [9].66

1.2. Privacy-Concerns Related to Speech67

Privacy concerns constitute a major obstacle in developing and deploying digital68

technologies for monitoring cognitive health. Individual and societal concerns about69

privacy and data security have been translated in regulations. In the European Union,70

the GDPR [12] has set new standards for the collection and management of personal71

information. Speech data is classified as personal data1: it can be used to identify age,72

gender, subject identity and health status [13]. Sensitive data also encompass additional73

data such as content-free features which could potentially be used for the identification74

of a person. The potential of such features as biometric markers further widens the75

importance of their protection. Concern about privacy is shared by users, who are76

reluctant to consent to being constantly recorded at their homes and/or while speaking77

through phones or computers. The balance between the benefits from an analysis of78

spoken interaction is often offset by the associated threat to privacy.79

Ethical requirements for health-studies have reflected these changes in regulation.80

They have raised awareness on the need for careful risk analysis for studies involving81

the collection and use of speech-related data. In the context of AAL and in-situ studies,82

speech analysis usually requires sending data over networks with different levels of secu-83

rity and associated risks, setting the additional possibility of a data breach if intercepted84

and compromised. While the security of the network can be improved by reducing the85

transit and exposure of sensitive data through a local pre-processing [14,15], the risk86

posed by the presence of sensitive data remains.87

1 As defined in Art. 4(14) of the GDPR and Article 3(13) Directive 2016/680
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A possible way to mitigate these problems is to obfuscate the identity of the user88

while the data is collected by changing the pitch of their speech [16]. However, changing89

the signal can also degrade its analysis: pitch shifting disturbs the acoustic patterns of90

speech which could be indicative of cognitive impairment.91

Hence developing a digital technology using acoustic information should take92

theses issues into account. In this study, we also propose a framework using feature93

engineering to address the disturbance of acoustic features caused by pith alteration for94

affect recognition as shown in Figure 5d.95

1.3. Speech Disguising96

Speech Disguising is a way to alter speech to hide someone’s identity [16]. Zheng et97

al. [17] subjectively analyse the automatic speech disguise technologies i.e. pitch shifting,98

vocal tract length normalization (VTLN) and voice conversion (VC) using 30 trials. They99

found that the speech disguise technologies greatly confuse human evaluators, with an100

equal error rate around random guess (i.e. 50.00 % for pitch shifting, 46.67% for VTLN101

and 46.67 % for VC).102

1.4. Contribution103

We have previously developed a low-cost system [15,18] which records content-free,104

anonymised audio features for automatic analysis. In particular, we extract features such105

as the eGeMAPS set [19] which we have used to detect specific behaviours in the above-106

mentioned applications [2–4]. However, one of the limitation was that the previous107

system [15] delete the audio file after extracting the acoustic features from user’s speech.108

It could work if the emotion is self-reported by user, and we do not have a plan to109

evaluate the new features (i.e. going to be proposed in future), but not for situations110

where other humans needs to annotate the audio files with emotions to generate data for111

machine learning model training. So that preserving audio file is also important while112

preserving privacy. While speech disguising technologies could help preserve the user’s113

privacy to some extend, a question arises: “what are the effects of speech disguising on114

acoustic information for emotion recognition”? In this study, we extend our previous115

work and propose to collect the disguised speech by altering the pitch of the speech116

signal to protect the identity of a user for development and deployment of machine117

learning based application. For testing (i.e. deployment), this approach also guarantees118

the user’s spoken content privacy in addition to identity protection. This is because the119

acoustic features are computed using different statistical functionals at the utterance120

level rather than at frame level, which makes it impossible to extract or re-build content121

information through, for instance, synthesis of speech from the extracted features or122

automatic transcription [20].123

To the authors’ best knowledge, this is the first study and evaluation of disguised124

speech for the development and deployment of affect recognition technologies based on125

acoustic features. Hence, the contributions of this article are:126

• Identification of acoustic features which are not affected by disguising speech;127

• Evaluation of acoustic features extracted from the disguised speech for affect recog-128

nition, and comparison with features extracted from non-disguised speech;129

• Demonstration of transfer-learning of acoustic features from non-disguised speech130

to disguised speech for affect recognition, and analysis of their generalisability.131

2. Materials and Methods132

This section describes the system and algorithms which have been used for propos-133

ing emotion recognition using disguised speech.134

2.1. Emotion Recognition System135

This section describes hardware and software components of the system used to136

extract acoustic features and collect disguised speech. The collected disguised speech137
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could be presented to human annotators (e.g. crowd-sourced annotation i.e labelling138

stage) for annotation of emotions. The system’s architecture is shown in Figure 1 where139

the voice activity detection module detects audio segments based on energy of audio140

signal. After that, we use pitch shifting algorithm [21] for speech disguising and saves141

the audio segments. Later, we extract acoustic features using openSMILE [22] and train142

machine learning models (development module) for emotion recognition. At the end,143

we test the machine learning model (affective and emotional processing module).144

Voice 

Activity 

Detection

Pitch 

Shi�ing

Saving 

Audio Clips

Live Audio Stream

Affective and 

emotional 

processing 

Cognitive 

decline 

detection 

Behaviour Analysis

Audio Data Collec�on 

with ID Protec�on

Annota�on of Emo�ons

by Human

developement of machine

 learning model 

Deployment of machine

learning model

Labelling

Development

ID protected in audio for human annotator

Figure 1. Proposed approach: the affective and emotional processing module will provide input to
the cognitive decline recognition module. The ‘labelling’ and ‘cognitive decline detection’ are not
part of this study. The pitch shifting parameters are only known to and set by the data collection
technician and/or user. The Human annotator doesn’t have that information.

Figure 2. Matrix Creator and Raspberry Pi 3 B+

2.1.1. Hardware Components145

The hardware consists of a Matrix Creator board, constituted of a microphone array,146

an inertial measurement unit, and several other sensors, mounted on a Raspberry Pi147

3 B+, as shown in Figure 2. This setup is meant to be installed in a room where social148

activity and dialogue interaction occurs frequently, such as a dinning room or a sitting149

room.150
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2.1.2. Software Components151

For voice activity detection, we employed the Auditok2 Python binding. As changes152

are detected on disk due voice recording (using the watchdog library3) the OpenSMILE153

[23] toolkit processes the audio file of disguised speech and saves the speech features154

in the attribute-relation file format (ARFF). The extracted acoustic features are then155

processed by a machine learning model for emotion recognition.156

2.2. Data sets157

The Berlin Database of Emotional Speech (EmoDB) corpus [10] is a data set com-158

monly used in the automatic emotion recognition literature. It features 535 acted emo-159

tions in German (5 male and 5 females), based on utterances carrying no emotional160

bias. The corpus was recorded in a controlled environment resulting in high quality161

recordings. Actors were allowed to move freely around the microphones, which affected162

absolute signal intensity. In addition to the emotion, each recording was labelled with163

phonetic transcription using the SAMPA phonetic alphabet, emotional characteristics164

of the voice, segmentation of the syllables, and stress. The quality of the data set was165

evaluated by perception tests carried out by 20 human participants. In a first recognition166

test, subjects listened to a recording once before assigning one of the available categories,167

achieving an average recognition rate of 86%. A second naturalness test was performed.168

Documents achieving a recognition rate lower than 80% or a naturalness rate lower than169

60% were discarded from the main corpus, reducing the corpus to 535 recordings from170

the original 800. The data sets is annotated for 6+1 emotions: anger, disgust, fear, joy171

(happiness), sadness, boredom + neutral.172

2.3. Identity Protection173

To disguise the identify of the subjects, we apply pitch shifting algorithm while174

maintaining the duration of speech signal using Praat [21]. The audio data with iden-175

tity protection along with script for pitch shifting is made available through our git176

repository4. We have used a factor of 2 for pitch shifting with time step of 0.01 seconds,177

minimum pitch of 75 Hz, and maximum pitch of 600 Hz. The pitch shifting parameters178

are only known to and set by the data collection technician and/or user. The Human179

annotator does not have that information. An example of non-disguised and disguised180

audio segment (i.e. spectrogram representation) is shown in Figure 3 and 4 respectively,181

where the durations of the non-disguised and disguised speech are the same.182
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Figure 3. An example of a speech utterance’s spectrogram from the EmoDB dataset of a male
subject.

2.4. Acoustic Features183

Acoustic feature extraction was performed on the non-disguised and disguised184

speech segments using the openSMILE v2.1 toolkit which is a “source-available” software185

suite for automatic extraction of features from speech, widely used for emotion and186

affect recognition in speech [24]. The extracted features are also made available through187

2 https://pypi.org/project/auditok/ – accessed April 2021
3 https://github.com/gorakhargosh/watchdog – accessed April 2019
4 https://git.ecdf.ed.ac.uk/fhaider/pitchshifting4affectrecogntion

https://git.ecdf.ed.ac.uk/fhaider/pitchshifting4affectrecogntion
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Disguised Speech
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Figure 4. An example of a speech utterance’s spectrogram from the EmoDB dataset of a male
subject after applying pitch shifting algorithm for identity protection.

the above mentioned git repository. The following is a brief description of the acoustic188

feature sets used in the experiments described in this paper:189

2.4.1. emobase:190

This feature set contains the mel-frequency cepstral coefficients (MFCC), voice191

quality, fundamental frequency (F0), F0 envelope, line spectral pairs (LSP) and intensity192

features with their first and second order derivatives. Several statistical functions are193

applied to these features, resulting in a total of 988 features for every speech segment194

[24].195

2.4.2. ComParE:196

The ComParE 2013 [23] feature set includes energy, spectral, MFCC, and voicing197

related low-level descriptors (LLDs). LLDs include logarithmic harmonic-to-noise ratio,198

voice quality features, Viterbi smoothing for F0, spectral harmonicity and psychoacoustic199

spectral sharpness. Statistical functionals are also computed, bringing the total to 6,373200

features.201

2.4.3. eGeMAPS:202

The eGeMAPS [19] feature set resulted from an attempt to reduce the somewhat203

unwieldy feature sets above to a reduced set of acoustic features based on their potential204

to detect physiological changes in voice production, as well as theoretical significance205

and proven usefulness in previous studies [22]. It contains the F0 semitone, loudness,206

spectral flux, MFCC, jitter, shimmer, F1, F2, F3, alpha ratio, Hammarberg index and207

slope V0 features, as well as their most common statistical functionals, for a total of 88208

features per speech segment.209

2.5. Statistical Analysis210

To investigate the possible differences in acoustic characteristics between the non-211

disguised and disguised speech signals, we first performed a normality test using the212

one-sample Kolmogorov-Smirnov procedure. This test showed that the data (i.e. acoustic213

features) follow a normal distribution (p < 0.001). We then performed a t-test between214

the acoustic features extracted from the non-disguised speech signals and the acoustic215

features extracted from the disguised speech signal. We observed the following:216

1. for the emobase feature set, there are 257 features out of 988 for which no statistically217

significant differences (p > 0.05) between the non-disguised and disguised speech218

signals were found. Parts of different functional of Mfcc, fftMag, ZCR, energy,219

loudness and intensity are not affected by the speech alteration.220

2. For the ComParE feature set, we found that 2491 features out of 6373 show no221

statistically significant differences (p > 0.05) between non-disguised and disguised222

speech signals. Some mfcc, fftMag, audiospec, HNR, ZCR, energy, RASTA, jitter223

and shimmer functionals are not affected by the speech alteration procedure. The224

full lists of emobase and ComParE features tested is available through the above225

mentioned git repository.226
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3. For the eGeMAPS feature set, we have noted that there are 24 features out of 88227

which have no statistically significant differences (p > 0.05). The full list of those228

features is shown below:229

• F0semitoneFrom27.5Hz_sma3nz_pctlrange0 − 2230

• F0semitoneFrom27.5Hz_sma3nz_meanRisingSlope231

• F0semitoneFrom27.5Hz_sma3nz_stddevRisingSlope232

• F0semitoneFrom27.5Hz_sma3nz_stddevFallingSlope233

• loudness_sma3_meanRisingSlope234

• spectralFlux_sma3_stddevNorm235

• m f cc1_sma3_stddevNorm236

• m f cc2_sma3_stddevNorm237

• m f cc3_sma3_stddevNorm238

• logRelF0 − H1 − H2_sma3nz_stddevNorm239

• logRelF0 − H1 − A3_sma3nz_stddevNorm240

• alphaRatioV_sma3nz_amean241

• alphaRatioV_sma3nz_stddevNorm242

• hammarbergIndexV_sma3nz_amean243

• slopeV0 − 500_sma3nz_stddevNorm244

• slopeV500 − 1500_sma3nz_stddevNorm245

• spectralFluxV_sma3nz_stddevNorm246

• m f cc1Vsma3nz_stddevNorm247

• m f cc2Vsma3nz_stddevNorm248

• m f cc3Vsma3nz_stddevNorm249

• m f cc4Vsma3nz_stddevNorm250

• loudnessPeaksPerSec251

• MeanUnvoicedSegmentLength252

• StddevUnvoicedSegmentLength253

2.6. Classification Methods254

The classification experiments were performed using six different methods, namely255

decision trees (DT, where the leaf size is optimized through a grid search within a range256

of 1 to 20), nearest neighbour (KNN, where K parameter is optimized through a grid257

search within a range of 1 to 10), linear discriminant analysis (LDA), random forest (RF,258

with 1500 trees, where leaf size is optimized through a grid search within a range of 1 to259

20), Naive Bayes (NB, with kernel distribution assumption optimized through a grid260

search for kernel smoothing density estimate, Multinomial distribution, Multivariate261

multinomial distribution and Normal distribution) and support vector machines: SVM,262

with a linear kernel (optimized by trying different kernel function i.e., linear, Gaussian,263

RBF and polynomial) with box constraint optimized by trying a grid search between264

0.1 to 1.0, and sequential minimal optimization solver (optimized by trying different265

solvers i.e., iterative single data algorithm, L1 soft-margin minimization by quadratic266

programming and sequential minimal optimization ). The prior-probabilities of the267

classifiers are set according to the class distributions.268

The classification methods are implemented in MATLAB (http://uk.mathworks.269

com/products/matlab/ (December 2020)) using the statistics and machine-learning270

toolbox. The classifier hyper-parameters maximum ranges (such as K = 10) are set271

through trial and error. A leave-one-subject-out (LOSO) cross-validation setting was272

adopted, where the training data does not contain any information of the validation273

subjects. To assess the classification results, we used the Unweighted Average Recall274

(UAR) instead of overall accuracy as the dataset is imbalanced. The unweighted average275

recall is the arithmetic mean of recall for all seven classes.276

http://uk.mathworks.com/products/matlab/
http://uk.mathworks.com/products/matlab/
http://uk.mathworks.com/products/matlab/
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Figure 5. Affect recognition system: Machine learning model training and testing where testing is
performed in leave one subject out cross-validation settings.

3. Experimentation277

This section describes the experiments and data partition to evaluate the proposed278

frameworks as shown in Figure 5.279

3.1. Experiment 1280

In this experiment, we extracted acoustic features over the non-disguised audio281

data. Later we trained the machine learning models for classification purpose. The282

validation is performed in leave-one subject out cross-validation setting as shown in283

Figure 5a.284

3.2. Experiment 2285

In this experiment, we extracted acoustic features over the transformed audio data286

where we hid the identity of a subject using pitch shifting algorithm. Later we trained287

the machine learning models for classification purpose. The validation is performed in288

leave-one subject out cross-validation setting as shown in Figure 5b.289
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3.3. Experiment 3290

In this experiment, we trained the machine learning models using non-disguised291

speech and the validation is performed using disguised speech in leave-one subject out292

cross-validation setting as shown in Figure 5c.293

3.4. Experiment 4294

This experiment uses the selected acoustic features as described in Section 2.5, we295

trained the machine learning models using non-disguised speech and the validation is296

performed using disguised speech in leave-one subject out cross-validation setting as297

shown in Figure 5d.298

4. Results299

This section reports the results for the four experiments.300

4.1. Experiment 1301

The UAR for all feature sets and classification methods is shown in Tables 1. These302

results indicate that the ComParE feature set (80.01%) provides the best UAR, with the303

LDA classifier for emotion recognition. The confusion matrix is shown in Figure 6 for304

further insight (i.e. precision and recall for all 6+1 emotions) into the best result. The305

results indicate that the SVM provides the best averaged UAR of 73.42% across all the306

feature sets, and the ComParE feature set (57.76%) provides the best average UAR across307

the all classifiers.

Table 1: Experiment 1: Affect recognition results without identity protection where
training and validation is performed on the non-disguised audio data. The Unweighted
Average Recall (UAR%) is reported.

Features RF DT KNN NB SVM LDA avg.
emobase. 0.6835 0.5052 0.2460 0.6051 0.7308 0.5574 0.5547
ComParE 0.7059 0.5368 0.2281 0.3953 0.7949 0.8001 0.5768
eGeMAPS 0.7063 0.4918 0.3885 0.4854 0.6858 0.6616 0.5699

avg 0.6986 0.5113 0.2875 0.4953 0.7372 0.6730 —
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Figure 6. Confusion matrix of the best result for experiment 1 using LDA and Compare Feature
set.

4.2. Experiment 2309

The UAR for all feature sets and classification methods is shown in Table 2. These310

results indicate that the combination of the ComParE feature set and LDA again provides311

the best UAR score (76.29%). The confusion matrix for this is shown in Figure 7 where312

precision and recall for all 6+1 emotions are listed. In addition, SVM provides the best313
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averaged UAR of 71.68% across all the feature sets and the eGeMAPS feature set (54.78%)314

provides the best average UAR across the all classifiers.315

Table 2: Experiment 2: Affect recognition results with identity protection for training
and validation subjects where training and validation is performed on the pitch-shifted
audio data. The Unweighted Average Recall (UAR%) is reported.

Features RF DT KNN NB SVM LDA avg.
emobase. 0.6657 0.4588 0.2759 0.5865 0.7358 0.5417 0.5441
ComParE 0.7063 0.5211 0.2016 0.2440 0.7388 0.7629 0.5291
eGeMAPS 0.6335 0.4529 0.3705 0.4818 0.6759 0.6720 0.5478

avg 0.6685 0.4776 0.2827 0.4374 0.7168 0.6589 —
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Figure 7. Confusion matrix of the best result for experiment 2 using LDA and Compare Feature
set.

4.3. Experiment 3316

The results for this experiment are shown in Tables 3. These results indicate that317

the ComParE feature set again provides the best UAR (65.13%), but this time the RF318

classifier proves to be the most effective. The confusion matrix is shown in Figure 8319

where precision and recall for all 6+1 emotions are listed. RF provides the best averaged320

UAR of 57.33% across all feature sets, and the emobase feature set yields the best average321

UAR across all classifiers (45.95%).322

Table 3: Experiment 3: Affect recognition results with identity protection for validation
subjects, where training is performed on the non-disguised audio data and validation is
performed on the pitch-shifted audio data. The Unweighted Average Recall (UAR%) is
reported.

Features RF DT KNN NB SVM LDA avg.
emobase. 0.5624 0.4172 0.2162 0.4838 0.6103 0.4673 0.4595
ComParE 0.6513 0.4479 0.2161 0.1429 0.1435 0.1344 0.2893
eGeMAPS 0.5062 0.3698 0.2623 0.3470 0.5391 0.1339 0.3597

avg 0.5733 0.4116 0.2315 0.3246 0.4310 0.2452 —

4.4. Experiment 4323

The resulting UAR scores for all feature sets and classification methods used in this324

experiment are shown in Tables 4. As before, the ComParE/RF combination achieves325

the best result (68.32%). The confusion matrix is shown in Figure 9 where precision326

and recall for all 6+1 emotions are listed. As in the previous experiment, RF provideed327

the best averaged UAR (60.34%) across all the feature sets, and the emobase feature set328

yielded the best average UAR across classifiers (48.62%).329
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Figure 8. Confusion matrix of the best result for experiment 3 using RF and Compare Feature set.

Table 4: Experiment 4: Affect recognition results with identity protection, where training
and validation is performed on selected acoustic features of the non-disguised audio
data and validation is performed on the pitch-shifted audio data. The Unweighted
Average Recall (UAR%) is reported.

Features RF DT KNN NB SVM LDA avg.
emobase. 0.5731 0.4121 0.2665 0.5331 0.6250 0.5075 0.4862
ComParE 0.6832 0.4793 0.2541 0.1429 0.1839 0.1231 0.3111
eGeMAPS 0.5540 0.4467 0.2623 0.3305 0.4988 0.4375 0.4216

avg 0.6034 0.4460 0.2610 0.3355 0.4359 0.3560 —
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Figure 9. Confusion matrix of the best result for experiment 4 using RF and Compare Feature set.

5. Discussion330

The summary of results is shown in Table 5. We note that the non-disguised speech331

(i.e. Experiment 1) provides the best UAR and accuracy but experiments 4 and 3 provide332

the best recall for Anger (98.43%) and Sad (83.87%) as shown in bold in Table 5. The333

‘Happy’ emotion is miss-classified as ‘Anger’ and the miss-classification rate increases334

for disguised speech experiments, with the worst miss-classification rate occurring when335

feature selection is performed (Experiment 4). A similar patter is observed for the336

’Disgust’ category, which exhibits the greates performance degradation in disguised337

speech. However, feature selection provides better overall UAR (68.32%) than the full338

feature set (65.13%). Experiment 2 provides better UAR (76.29%) than experiments 3339

and 4. One of the advantages of the architecture employed in experiment 2 is that the340

training and testing are both performed on the disguised speech, with the pitch shifted341

by the same factor (i.e. 2) for all speech utterances. A variable pitch factor may result in342

a different outcome.343

To better understand the relationship between the experiments, we also plotted the344

Venn diagram shown in Figure 10. In this diagram, the brown area (labelled “Target”)345
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Table 5: Results Summary: Accuracy (Accu.), Unweighted Average Recall (UAR) and
recall of each emotion for the best best results of each experiment

Experiment Accu. UAR Anger Bore. Disgust Fear Happy Sad Neutral
EXP.1 81.31 80.01 90.55 88.89 82.61 71.01 57.75 80.65 88.61
EXP.2 77.01 76.29 81.10 83.95 76.09 69.57 52.11 83.87 87.34
EXP.3 69.91 65.13 98.43 76.54 36.96 57.97 43.66 79.03 63.29
EXP.4 72.71 68.32 98.43 86.42 50.00 63.77 18.31 79.03 82.28

represents the annotated labels, the blue area represents the predicted labels of Experiment346

1, the red area represents the predicted labels of Experiment 2, the green area represents347

the prediction obtained with the experiment 3, and finally the yellow area represents348

labels predicted with the experiment 4. The Venn diagrams suggest the information349

captured by different pitch profiles is not similar, as only 289 out of 535 instances are350

detected by all the experiments.351
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Figure 10. Venn Diagram.

Overall, the experiments show that despite some degradation in prediction accuracy,352

privacy preservation is compatible with emotion recognition in the settings proposed.353

We note that while previous studies have proposed affect recognition systems [19,25–28],354

this study presents an analysis of affect recognition on data that have been transformed355

to protect the identity of users.356

5.1. Limitations357

Some limitation of this study which we intend to address in future work include:358

• the use of an off-the-shelf pitch shifting method which could have an influence on359

the performance of affect recognition system;360

• the fact that pitch is shifted using a constant factor of 2, whereas a different factor361

or a variable factor could result in different results;362

• feature selection is performed though a statistical approach, and more sophisticated363

feature selection methods [27] might improve the results further;364

• the disguised speech for affect recognition system is evaluated using data which is365

collected in lab-settings instead of real-world settings;366

• the hardware used for the proposed system is a combination of matrix creator and367

Raspberry Pi 3 B+ with 1.4 GHz 64-bit quad-core processor, which limits one’s368

choice of audio processing and features extraction algorithms due to performance369

limitations.370
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6. Conclusion371

AAL can benefit from unobtrusive, privacy-preserving systems for gathering and372

processing of speech at home. This paper described a framework for capturing disguised373

speech and training machine learning models while protecting the identity of users374

for automatic wellbeing monitoring tasks, in the context of an AAL-based coaching375

system for healthy ageing. This study also demonstrated that the acoustic information376

of disguised speech can be used for emotion recognition. We found that while the377

non-disguised speech signal gives the best Unweighted Average Recall (UAR) of 80.01%378

the disguised speech signal only causes a slight degradation of performance, reaching379

76.29%. The transfer learning from non-disguised to disguised speech results in a380

reduction of UAR (65.13%). However, feature selection improves the UAR (68.32%).381

Privacy protection and preservation in audio and speech can be regarded from different382

perspectives, including the protection of a person’s identity, protection of the content383

spoken, and protection from inferences one may be able to draw from the characteristics384

of a person’s voice (such as cognitive or emotional status) [29]. A current limitation of385

the pitch shifting approach is that it only addresses the first (using pitch shifting for386

identity protection) and second (using statistical functionals of acoustic features instead387

of content) of these aspects. In future, we aim to address inference protection within388

a general framework. We also plan to evaluate humans’ annotation performance on389

disguised speech.390
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