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Learning to Cache: Federated Caching in a Cellular Network With
Correlated Demands

S. Krishnendu, B. N. Bharath, Navneet Garg, Vimal Bhatia
and Tharmalingam Ratnarajah*†‡

Abstract—In this paper, the problem of distributed content
caching in a small-cell Base Stations (sBSs) wireless network
that maximizes the cache hit performance is considered. Most
of the existing works consider static demands, however, here,
data at each sBS is considered to be correlated across time
and sBSs. Federated learning (FL) based caching strategy is
proposed which is assumed to be a weighted combination of
past caching strategies of neighbouring base stations. A high
probability generalization guarantees on the performance of the
proposed federated caching strategy is derived. The theoretical
guarantee provides following insights on obtaining the caching
strategy: (i) run regret minimization at each sBS to obtain a
sequence of caching strategies across time, and (ii) maximize an
estimate of the bound to obtain a set of weights for the caching
strategy which depends on the discrepancy. Also, theoretical
guarantee on the performance of the least recently frequently
used (LRFU) caching strategy is derived. Further, FL based
heuristic caching algorithm is also proposed. Finally, it is shown
through simulations using Movie Lens dataset that the proposed
algorithm significantly outperforms the recent online learning
algorithms.

Index Terms—Distributed content caching, online learning,
non-stationary demands, regret minimization.

I. INTRODUCTION

There is a pressing need for revamping of the next gener-
ation wireless infrastructure network due to an unprecedented
increase in the data demand in the recent years [1]. There
has been several proposals for new wireless network designs
for handling this surge in the data demand. A few examples
designs include Fog network [2] with edge computing, de-
ployment of small cells to offload wireless data from a macro
Base Station (BS), integrating existing WiFi access points to
share the load, distributed cache replacement strategy based on
Q-learning, to name a few [3], [4], [5]. It is well known that
small-cell infrastructure with edge computing facility alone
cannot support the data demand since the data clogging in
the backhaul acts as a bottleneck. A new paradigm to handle
this data clogging is through caching in the cellular networks.
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Caching can reduce the peak traffic by prefetching popular
contents into memories at the small-cell Base Stations (sBSs)
or the end users [6], [7], [8], [9]. Past works in caching include
the classical work from the point-of-view of information
theory by Niesen et al. [10] (also, see [11]), combinatorial
optimization approach [12], energy efficient caching of files
in a Device-to-Device (D2D) network (see [12] - [14]), and
proactive caching strategy, as in [15]. In [16], the authors
employ Unmanned aerial vehicle (UAV) as aerial BSs and
jointly optimize UAV trajectory and time scheduling to guar-
antee the secure transmission in UAV-relaying systems with
local caching. Similarly, in [17], an efficient vehicular task
offloading via heat-aware mobile edge computing cooperation
is proposed.

One of the key problems to be addressed in caching is that
of estimating/predicting the popularity profile or demands for
the files. Majority of the existing work assume static demands,
and hence algorithms are designed to get a good estimate
of the popularity profile (see [18]-[22]). On the other hand,
estimating the popularity profile based on the data assumes a
naive estimate, i.e., a simple averaging, which may not perform
well in highly non-stationary environments. However, the
demands in reality are non-stationary, and perhaps correlated
across time; this makes the algorithms designed for static
demands/popularity profiles to underperform. One solution
to solve this issue is to consider online learning algorithm
to proactively cache the contents [15]. The authors in [23]
showed that a good hit rate under non-stationary demands can
be achieved through a Time to Live (TTL) based algorithm.
Some past work assumed that there is a stationary caching
policy such as Least Recently Used (LRU) [24], climb [25],
[26], and k-LRU [27] and have characterized the learning
errors as a function of time. The learning error depends on the
stationary distribution, which in turn depends on the mixing
time [28]. Many of these works result in a regret of Ω(T ). In
[29], the authors propose a collaborative caching optimization
problem in a stationary environment to minimize the accumu-
lated transmission delay over a finite time horizon in cache-
enabled wireless networks in a multi-agent multi-armed bandit
(MAMB) perspective, which results in a regret of O(log T ).
In [30], function approximation based reinforcement learning
approaches are proposed for a massive multi-input multi-
output (mMIMO) based network. In [31] integrated access and
backhaul (IAB) heterogeneous network for cache-enabled in-
band full-duplex in the millimeter wave band is developed.
Moreover, in order to use spatio-temporal information, the
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authors in [32] developed a Bayesian dynamical model to
predict the popularity and minimized the cost for transferring
data among the sBSs in the network. On the other hand, in
[33], active learning approach is used to learn the content
popularities to design an accurate content request prediction
model. In [34], the authors propose joint caching and the
dynamic multicast scheduling to increase the robustness of
wireless transmission.

The approach taken so far is either online learning in the
adversarial setting leading to regret minimization or by de-
signing caching strategies by estimating the popularity profile
(see [35]). The disadvantage in the adversarial setting is that
the statistical pattern in the data is completely ignored. An
improvement on this is to account for statistical pattern and
combine the strategies in a systematic way, this is termed
as online-to-batch conversion in the literature [36]. There are
several heuristics such as LRU, Least Frequently Used (LFU)
and Least Recently Frequently Used (LRFU) (and its variants)
which tend to work well in a non-stationary environment.
However, these lack theoretical guarantees when the demand
statistics are non-stationary with correlation across requests.
The LRFU algorithm combines both LRU and LFU. In this
algorithm, each file has combined recency and frequency count
which is updated during each reference [37].

One of the most promising distributed learning algorithms
is the emerging federated learning (FL) framework (see [38],
[39], [40], [41]). In FL framework (a special case of distributed
optimization), each node uses its own data to compute, say,
a strategy, and sends the result to its neighbours or a central
node. Thus, in FL, wireless devices can cooperatively execute
a learning task by only uploading local learning models
to the central BS or its neighbours instead of sharing the
entirety of their training data. A framework similar to FL is
adapted in this paper to solve the caching problem, where an
objective called cache miss (hit) is minimized (maximized) by
combining caching strategies obtained using local data from
each node. In general, this objective needs to be optimized
with respect to a general caching strategy [40], [42], [43],
[44]. This leads to a complex online functional optimization
problem, which is mathematically intractable and may lead
to more complex algorithms. Therefore, before attempting
to solve a general problem, it is natural to make suitable
assumptions on the structure of the caching strategy that leads
to a tractable problem, and provides insights on the general
setting as well. The motivation for using a linear combination
of caching strategies comes from online learning literature
with independent and identically distributed (iid) data [45],
[46]. It is shown that the technique called online-to-batch
conversion, where the current strategy is the average of the
past strategies (assumes convexity of the strategy set) results
in a regret of the order of 1/T , where T denotes the time
slot. In contrast to 1/T regret, online learning algorithms
often adopt an adversarial model, and obtain a convergence
rate of O(1/

√
T ) [47], [48]. Although, the references above

were in the general context, it can be easily extended to the
caching problem. A practical extension of the above to non-
iid correlated requests is to use weighted average of the past
strategies, and optimize the weights. An approach similar to

this has been taken in the context of prediction problems in
[49]. Towards filling shortcoming in the existing work, in this
paper, a systematic approach driven by theory to designing
caching strategy when the demands/requests are highly non-
stationary is addressed. Further, the mathematical framework
developed in this paper are used to provide guarantees for
LRFU, and its variants under non-stationary and correlated
demands.

In this paper, the problem of FL based caching across
multiple sBSs with correlated demands across time as well
as sBSs is considered. Since the demands can be correlated, a
conditional average of the cache hit is considered as a metric
to design caching strategies. Here, conditioning is with respect
to the “local” data available at the sBS. Following are the main
contributions of this paper:

• In this paper, assuming structured cache placement, high
probability bounds on the conditional average cache hits
are derived using Martingale difference equation [50].
In particular, it is assumed that the caching strategy at
a given time is a linear combination of past caching
decisions across time and across other sBSs in the given
region. Insights provided by the bound including regret
and discrepancy across temporal and spatial cache hits are
used to design the iterative federated based caching algo-
rithm, which optimizes the weights of the linear sum. As
a corollary of the bound, a guarantee on the performance
of the proposed algorithm using equal caching-weights is
also obtained.

• Using the mathematical tools developed in the paper, a
similar theoretical guarantee on the performance of the
LRFU caching strategy under non-stationary demands is
derived. Further, in the iid setting, it is shown that the
LRFU performs close to the proposed caching strategy,
as expected.

• A FL based heuristic caching algorithm motivated by a
well-known algorithm called FedProx [51] is developed,
where a proximal term is added to the local cache hit
maximization problem, which enables to achieve the
local policies close to the averaged caching policies
across neighbors. In the numerical results, the proposed
algorithms (both federated caching and federated caching
heuristic algorithm) have been compared with other
online learning algorithm such as follow-the-perturbed-
leader (FTPL), follow-the-leader and average LFU [52],
[53]. The results show that the proposed algorithms
significantly outperform the existing algorithms as well
as the equal weight algorithms.

II. SYSTEM MODEL

A cellular network consisting of M sBSs denoted by
the set B, and users denoted by the set U, as shown in
Fig. 1 is considered. Each sBS is assumed to have a limited
computation facility and a cache memory of size C bits to
store popular contents. This computation capability facilitates
distributed caching decisions to be taken at individual sBS
without leveraging heavily on the central computing facility
such as cloud service, thus saving tremendously on com-
munication and computation costs. Further, it is assumed



3

that the sBSs can communicate with each other through a
limited capacity link. For example, the neighboring sBSs can
share limited information such as caching decisions, popular
demands and its trends amongst each other. Note that this
edge computing paradigm with communication links between
sBSs encompasses the proposed Fog network architecture
[2]. We assume a time slotted system, where in each slot a
user requests contents from the content library F having N
contents, i.e., |F| = N . The demand for the content f ∈ F
by the user u in the slot t is denoted by df,u(t). The requests
across time slots and sBSs can be correlated with an arbitrary
distribution. Since in a practical content library, the files are
of different sizes, hence the same is assumed in this work (see
the next subsection).

Fig. 1: System model showing multiple sBSs connected to users with
limited cache memory.

In the standard cellular network setting without caching,
the requested file is served by the sBS to which the user is
associated by fetching the content from the server through
backhaul and front-haul links of the network. Note that in
the current implementation, each user is associated with a
single sBS based on the signal-to-interference-plus-noise ratio
(SINR) criterion. Keeping minimal changes to the current
design, it is assumed that the scheduler associates a user
to a sBS based on the SINR criterion. Let the set of users
associated to the sBS b in the time slot t be denoted by Ub(t).
The total demand for the file f at the sBS b in the time slot t is
given by Df,b(t) =

∑
u∈Ub(t)

df,u(t). Let the data available at
the sBS b at time T be denoted by ZT

b,1 ⊆ ZT
b,1, which includes

demands of sBS b until time slot T , and the data shared by the
neighboring sBSs. Here, Zt

b,1 denotes the set of all possible
demands and caching strategy of the neighboring sBSs at the
end of time slot t. The exact data that the neighboring sBSs
provide will be explained in the later part of this paper. Further,
ZT
G,1 :=

⋃
b∈B Z

T
b,1 denotes the global data till time T . The

following subsections describe the caching strategy employed,
and the corresponding metric used to find the optimal strategy.

A. Caching Policy

At each SBS b, the cache placement is assumed to happen
at the end of every time slot. In this paper, a FL based caching
policy is considered, i.e., at the end of time slot t−1 for each
file f , the caching policy for the next time slot is given by
πb,f,t : Zt−1

b,1 → Cb,f , where Cb,f is the fraction of the file f
stored at bth sBS. Thus, the overall caching policy is defined
as πb,t := ×N

f=1πb,f,t : Zt−1
b,1 → ×N

f=1Cb,f . The choice of
Cb,f depends on the type of caching employed. Here, online
FL based caching is employed, as explained below:

• Online FL based caching: In a typical online
caching scheme, an original file f of size Kf bits is
mapped into Sf sub-packets of size l bits each in such a
way that if a user recovers any Lf out of Sf sub-packets,
it can recover the whole file. This gives the flexibility to
store Lf or less number of packets at each sBS, and the
remaining packets can be fetched from the server. For the
sake of simplicity in notation, Lf is used to represent the
number of packets instead of the size of the file in bits.
Although storing any fraction is not possible, choosing
Cb,f = [0, 1] is a good approximation when the number
of sub-packets, i.e, Lf is large. Note that the caching
strategy πb,t is a vector of dimension N . Since the cache
size is limited to C bits, it imposes the constraint that∑

f πb,f,tLf l ≤ C. Here, Lf l is the total number of bits
that needs to be recovered under the caching scheme, and
πb,f,t is the fraction of the packets stored.

The following subsection presents the problem of FL based
caching addressed in this paper.

B. Problem Statement

In caching scheme, the “amount” of requests that are present
in the caches of sBSs to which the users are connected is a
good measure of performance; this is termed as hit rate. In
view of this, the hit rate at the sBS b is given by

Rb,t(πb) :=

N∑
f=1

∑
u∈Ub(t)

df,u(t)πb,fLf . (1)

The above corresponds to the instantaneous hit rate at the
sBS b in the time slot t when caching strategy πb,f ∈ [0, 1]
is employed with Lf := Lf l. Note that the factor l does not
impact the structure of the solution, and hence omitted from
the definition of the hit rate. Since the hit rate is random, a
widely used measure of performance is the average cache hit,
i.e.,

∑
b E{Rb,t(πb,t)} 1, where the average is with respect to

the global demands.2 However, at time t, the sBS b will have
access to its “local” data Zt−1

b,1 , and hence, conditional mean is
the appropriate metric, i.e.,

∑
b E{Rb,t(πb,t) | Zt−1

b,1 }, where

1E[·] represents the statistical expectation operator.
2Note that the demands across sBSs as well as time slots are correlated.

Hence, the expectation should be with respect to all the total randomness.
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the expectation is conditioned on the local demands, i.e., ZT
b,1.

Thus, the following problem needs to be solved

max
πb,t

∑
b

E{Rb,t(πb,t) | Zt−1
b,1 }

subject to
∑
f

πb,f,tLf ≤ C. (2)

Let the set of all caching strategies be denoted by C :=
{πb,f : πb,f ≥ 0,

∑
f πb,fLf ≤ C}. The above is similar to

the formulation considered in the prediction problems [49].
Unfortunately, in the real world scenario, the conditional
expectation is difficult to compute, and hence the above
problem cannot be solved. One possible approach could be
to estimate the conditional expectation, and use it as a proxy
in the above problem. Since the user demands arrive in real-
time, this estimate could be updated online. However, in this
paper, instead of updating the estimates online, the solution for
caching problem will be obtained online using the available
“local” data. In the following section, solution to the above
problem for online FL based caching scenarios is presented.

III. ONLINE FEDERATED LEARNING BASED CACHING

Towards addressing the problem, a few structural assump-
tions are made on the caching strategy employed. In a typical
online learning with adversarial framework, a natural metric
to consider is the “regret”. In the present setting, the demands
are random in nature and this corresponds to a stochastic
setting rather than an adversarial setting, i.e., the nature reacts
in a random fashion rather than an adversarial fashion. A
well known strategy to handle this is through online-to-batch
conversion [54], which is as follows: (i) at time slot t, solve
the regret minimization problem to get a sequence of caching
strategies, and (ii) use the average of these caching strategies at
time t. This has the advantage of providing O( 1

T ) regret when
the problem is stochastic. The model considered in this paper
has added complexity that the demands of any sBS b across
time slots can be correlated. Further, it can also be correlated
with the demands of other sBSs. In this scenario, a natural
extension of online-to-batch conversion is to take the average
of regret minimizing caching strategies across time as well
as the sBSs [36], [49]. Towards this, consider the following
weighted average of a sequence of caching strategies πb,t from
time slot t = T − τ + 1 to T given by

π̄b,T+1 :=

T∑
t=T−τ+1

αb,tπb,t, (3)

where αb,t’s are the non-negative weights that sat-
isfy

∑T
t=T−τ+1 αb,t = 1. The symbol αb,T :=

(αb,T−τ+1, . . . , αb,t) is used to denote vector of weights
corresponding to the sBS b from time slot T − τ + 1 to
T . The caching strategy has been taken as a weighted linear
combination of all the neighboring SBSs caching strategies. It
is important to note that the average of caching strategy across
time is also a valid caching strategy, i.e., the set of all caching
strategies C is a convex set. Since the demands are correlated

across sBSs, a natural way to construct the caching strategy
for the time slot T + 1 is as follows

π
(av)
b,T+1 := wT+1

b π̄b,T+1 +
∑

b′∈Nb

wT+1
jb(b

′ )
π̄b′ ,T+1, (4)

where the map jb : Nb → {1, 2, . . . , |Nb|}, |Nb| denotes the
set of neighboring sBSs to which it is connected, and the
weights are chosen to be non-negative with the constraint given
by

∑
b′∈Nb

wT+1
jb(b

′ )
+wT+1

b = 1 ∀ sBS b. Now, the problem is
to choose weights in such a way that the average cache hit is
maximized. One can expect that in order to solve this problem,
any sBS b ∈ B at the end of time slot T should have access
to neighboring sBSs’ data. In this paper, a formal approach
to answer the above is detailed. Obviously the choice of the
weights wT+1

jb(b
′ )

as well as αb,t depend on how relevant (i)
is its past caching decisions to the current demands, and (ii)
caching decisions of neighboring sBSs are to the sBS b. These
are captured through the following notions of mismatch and
regret.

Definition (Mismatch): The mismatch between a sBS b and
its neighbor with weights wT+1

jb(b
′ )

, b
′ ∈ Nb is given by

Mb,T+1(w ̸=b,T ) :=
∑

b′∈Nb

wT+1
jb(b

′ )
∆b,T+1(αb,T+1,αb′ ,T+1),

(5)
where the weight vector w ̸=b,T := (wT+1

jb(b
′ )
: b

′ ∈ Nb), and

∆b,T+1(αb,T+1,αb′ ,T+1) := E{Rb,T+1(π̄b′ ,T+1) | Z
T
b,1}

− E{Rb,T+1(π̄b,T+1) | ZT
b,1}.

The above captures mismatch or discrepancy across sBSs,
which will help us in determining the relevance of the neigh-
boring sBSs’ decisions. If the mismatch is small for a sBS b
essentially means that the neighboring sBSs strategy performs
well on the sBS b. Similarly, to determine the relevant caching
strategies across time to the current time slot, and to measure
the performance, the two key metrics are discrepancy across
time and the regret, which are defined as follows.

Definition (Discrepancy): Given the local information at the
sBS b with caching strategies πb,t for b ∈ B, t = T − τ +
1, . . . , T , the discrepancy at the end of time slot T is defined
by

Db,T (αb,T ) := sup
πb,t:t=T−τ+1,...,T

∣∣∣∣∣
T∑

t=T−τ+1

αb,t∆R̄T,t(πb,t)

∣∣∣∣∣ .
(6)

where ∆R̄T,t(πb,t) := E{Rb,T+1(πb,t) | ZT
b,1} −

E{Rb,t+1(πb,t) | Zt
b,1}.

Definition (Regret): The regret at the sBS b at time T with
respect to a sequence of strategy πb,t is defined as

Regb,T,τ (πb,t) := sup
π∗

b,t

T∑
t=T−τ+1

Rb,T+1(π
∗
b,t)

−
T∑

t=T−τ+1

Rb,T+1(πb,t). (7)
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The following theorem gives guarantees for the proposed
caching strategy, and also provides insights on how to choose
the weights, and the sequence of caching policies across
time. The main result of the paper is stated below, and the
corresponding proof is presented in Sec. VI.

Theorem 3.1: Given weights and a sequence of caching
strategies as in (4) that is adapted to ZT

b,1, with a probability
of at least 1− δ, δ > 0, the following two bounds hold:

E
[
Rb,T+1(π

(av)
b,T+1) | Z

T
b,1

]
≥

T∑
t=T−τ+1

αb,tRb,t(πb,t)

− E(1)b,T , (8)

where

E(1)b,T := Hmax∥αb,T ∥2

√
2

τ
log

1

δ
+Mb,T+1(w̸=b,T )+Db,T (αb,T ),

Hmax is the maximum cache hit, and

E
[
Rb,T+1(π

(av)
b,T+1) | Z

T
b,1

]
≥ sup

πb,t

T∑
t=T−τ

αb,tR̄t,T (πb,t)

− E(2)r,T . (9)

for any γ > 0. In the above, R̄t,T (πb,t) :=

E
[
Rb,T+1(πb,t) | ZT

b,1

]
, and

E(2)b,T := 2Hmax∥αb,T ∥2

√
2

τ
log

1

δ
+ Mb,T+1(w̸=b,T )

+
2Regb,T,τ (πb,t)

τ
+Hmax

T∑
t=T−τ+1

∣∣∣∣αb,t −
1

τ

∣∣∣∣
+ 2Db,T (αb.T ) + γ. (10)

An important special case of the above result is when
uniform caching strategy is used, i.e., αb,t = 1/τ ∀ t, which
is presented as a corollary.

Corollary 3.2: Given equal weights, i.e., αb,t = 1/τ ∀ t, and
a sequence of caching strategies as in (4) that is adapted to
ZT
b,1, with a probability of at least 1− δ, δ > 0, the following

two bounds hold:

E
[
Rb,T+1(π

(av)
b,T+1) | Z

T
b,1

]
≥ 1

τ

T∑
t=T−τ+1

Rb,t(πb,t)

− E(1)b,T , (11)

where

E(1)b,T :=
Hmax

τ

√
2 log

1

δ
+ Mb,T+1(w̸=b,T ) + Db,T (uτ ),

Hmax is the maximum cache hit, and

E
[
Rb,T+1(π

(av)
b,T+1) | Z

T
b,1

]
≥ sup

πb,t

1

τ

T∑
t=T−τ

R̄t,T (πb,t)

− E(2)r,T . (12)

for any γ > 0. In the above, uτ := ( 1τ ,
1
τ , . . . ,

1
τ ) ∈ R1×τ ,

R̄t,T := E
[
Rb,T+1(πb,t) | ZT

b,1

]
, and E(2)r,T :=

2Hmax

τ

√
2 log 1

δ + Mb,T+1(w ̸=b,T ) +
2Regb,T,τ (πb,t)

τ +

2Db,T (uτ ) + γ.
A few observations are in order with reference to Theorem

3.1. The term Hmax
∑T

t=T−τ

∣∣αb,t − 1
τ

∣∣ in the second bound
suggests that all the weights should be close to 1/τ , i.e.,
uniform weights. On the other hand, both the bounds also
suggest that the discrepancies should be made low by choosing
the weights appropriately. This requires non-uniform weights
in general, and since the two tasks are conflicting, a nice
balance needs to be maintained by properly choosing the
weights. Further, it is clear from the second bound that the
caching policy should be chosen in such a way that the regret
is minimized. The following subsection presents a systematic
approach to find an online distributed caching algorithm.

A. Algorithm for Federated Learning based Caching

In this subsection, the insights provided by the theory are
used to propose an algorithm for FL based online caching. The
main result states that upon using the caching strategy given in
(4), the resulting cache hit is lower bounded by the expression
in (9) with high probability. Now, at time slot T +1, the goal
is to choose the individual strategy πb,t to construct π(av)

b,T+1

as in (4) such that the right hand side of (9) consisting of
regret and discrepancy terms to be maximized.3 In particular,
this can be done by using the following two steps: (i) choose
the sequence πb,t in such a way that minimizes the regret
term, and (ii) minimize the mismatch terms Mb,T+1(w ̸=b,T )
and Db,T (αb,T ) to get the optimal weights, which can be used
to combine the caching sequence as in (4). The first step would
be to find the regret minimizing caching strategy by solving
the following optimization problem

min
πb,t:1Tπb,t≤C

[
sup
π∗

b,t

T∑
t=T−τ+1

Rb,T+1(π
∗
b,t)

−
T∑

t=T−τ+1

Rb,T+1(πb,t)

]
(13)

to get a sequence of caching policies denoted by πR
b,t ∀ t. Note

that the above problem can be solved optimally at the end of
time slot T as each sBS has access to the demands until time
slot T . In the next step, we maximize the right hand side of
(9) excluding the regret term. Unfortunately, the discrepancy
term is unknown, and hence is estimated using the demands.
Moreover, the discrepancy term involves an optimization. One
way to deal with this is to use the regret minimizing caching
strategy, and solve the following optimization problem to
obtain the weights

sup
αb,t, w̸=b,T

T∑
t=T−τ+1

αb,tRb,t(π
R
b,t)− aD̂b,T (αb)−

bM̂b,T+1(w ̸=b,T ) + λ

T∑
t=T−τ+1

∣∣∣∣αb,t −
1

τ

∣∣∣∣(14)

3The regret and discrepancy have negative signs on the right hand side.
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for some λ > 0, and D̂b,T (αb) is an estimate of the discrep-
ancy given by

D̂b,T (αb) :=

sup
πb,t:πb,t1T x≤C

∣∣∣∣∣∣
T∑

t=T−τ+1

αb,t

∑
f

ψ(f)
τ1,τ2(t, T )πb,f (t)

∣∣∣∣∣∣ ,(15)

where ψ
(f)
τ1,τ2(t, T ) := Lf

(
1
τ1

∑T
l=T−τ1+1 ϕb,f (l)−

1
τ2

∑t−1
l=t−τ2+1 ϕb,f (l)

)
, and the sum demand

Φb,f (t) :=
∑

u∈Ub(t)
df,u(t). The constants a and b are

fine tuned to get better results. An estimate of the discrepancy
across sBSs is given by

M̂b,T+1(w̸=b,T ) :=
1

τ

∑
b′∈Nb

wT+1
jb(b

′ )

 T∑
s,l=T−τ+1

αb,sRb,l(π
R
b,s)−

T∑
s,l=T−τ+1

αb′ ,sRb′ ,l(π
R
b′ ,s

)

 . (16)

Note that the conditional expectations are replaced by the time
average of the cache hit as a proxy to get the above estimate
of the discrepancy. In the time slot T , the average cache hit
from the time slot T − τ + 1 to T is used as a proxy for
the conditional mean in the expression for Mb,T+1(w ̸=b,T ).
Although the objective in (14) seems to be simple, it is a
non-convex function of αb,t and w ̸=b,T , making the problem
difficult to solve for global optima. However, a simple gradient
descent algorithm can be used to achieve a local optima.
Using the gradient descent approach leads to Algorithm 1,
which is explained next. Note that the estimate of discrepancy
above involves solving an optimization problem with respect to
the caching strategy πb,t. However, this optimization problem
depends on αb,t, which is unknown. A natural approach to
this is to assume some initial αb,t, and solving the above
optimization problem using gradient descent step, and project
to satisfy the cache constraint. This is done in steps 1 and 2
of the Subroutine. Using this, in the step k + 1, an update
πt
b,f (k + 1) is obtained. This is used in the expression for

an estimate of the discrepancy in (15), and used in (14) to
subsequently solve for weights αb,t and wT+1

jb(b
′ )

. This is done
by taking a gradient descent step with respect to αb,t in the
problem in (14) followed by projection to satisfy the constraint∑T

t=T−τ+1 αb,t = 1. These two steps correspond to steps 3
and 4 of the Subroutine. Similar gradient steps are taken for
the weights wT+1

jb(b
′ )

. These steps correspond to steps 5 and 6

of the Subroutine. The details are provided in the algorithm
below, and explained later in this section.

Algorithm 1 Algorithm for Federated Learning based Caching

1: for T = 1, 2, . . ., and sBS b ∈ B do
2: Run regret minimization as in (13) to get a sequence
3: πR

b,t, t = 1, . . . , T

4: Call Subroutine (T , τ , πR
b,t, πR

b
′
,t

for all b
′
∈ Nb) .

5: to get πb,T+1

6: end for

The stopping criterion of the algorithm in the Subroutine
is determined by checking if the difference in weights is
smaller than a threshold, which is chosen based on extensive
simulations. The learning rate ηk, βk, and γk are chosen such
that it decays as 1/

√
k with the iteration k.

Subroutine (T , τ , πR
b,t, πR

b′ ,t
for all b

′ ∈ Nb):

• for each sBS b, for k = 0, 1, 2, . . . do
1) If (k = 0), then initialize π(0)

b,f = C∑
f Lf

, ∀ f and

α
(0)
b,t = 1/τ,∀t ≥ T − τ + 1, and zero otherwise. Let

Γt,T :=
∑

f π
t
b,f (k)Ψ

f
τ1,τ2(t, T ). For k ̸= 0, update

πt
b,f (k + 1) = πt

b,f (k) + 2ηkg, (17)

where g := αb,t(k)Ψ
f
τ1,τ2(t, T ) if

∑T
t=T−τ+1 Γt,T >

0, else choose g := −αb,t(k)Ψ
f
τ1,τ2(t, T ).

2) Project: πb,f (k + 1) ← max{πb,f (k + 1), 0} and
π
(k+1)
b,f ← Cπb,f (k+1)∑

f πb,f (k+1)Lf
.

3) Update the α-weights:

αb,t(k + 1) = αb,t(k) + βk

[
Rb,t(π

R
b,t)−Θ

− ∇αM̂b,T+1(w̸=b,T )

]
, (18)

where βk is the step size, Γt,T is as defined in step
1 above, Θ := 2max{Γt,T ,−Γt,T } − λ∇α∥αb,t(k)−
u∥1,

∇αM̂b,T+1(w ̸=b,T ) :=
2

τ

∑
b′∈Nb

wT+1
jb(b

′ )
(k)

T∑
l=T−τ+1

Rb,l(π
R
b,t),

and ∇α∥αb,t(k)−u∥1 := 1{αb,t <
1
τ }−1{αb,t ≥ 1

τ }.
4) Project: αb,t(k + 1) ← max{αb,t(k + 1), 0}, and

αb,t(k + 1)← αb,t(k+1)∑T
t=T−τ+1 αb,t(k+1)

.
5) Update the w-weights for sBS b using data

from neighboring sBSs as follows:

wT+1
jb(b

′ )
(k + 1) = wT+1

jb(b
′ )
(k)− 2γk

τ

 T∑
s,l=T−τ+1

αb,s(k)

×Rb,l(π
R
b,s)−

T∑
s,l=T−τ+1

αb′ ,s(k)Rb,l(π
R
b′ ,s

)

 (19)

6) Project: wT+1
jb(b

′ )
(k+1)← max{wT+1

jb(b
′ )
(k+1), 0},

and

– Normalize: If
∑

b′∈Nb
wT+1

jb(b
′ )
(k + 1) < 1,

then wT+1
b = 1 −

∑
b′∈Nb

wT+1
jb(b

′ )
(k + 1), else

wT+1
b = 0 and for all b

′ ∈ Nb, wT+1
j(b′ )

(k + 1) =

wT+1

jb(b
′
)
(k+1)∑

b
′∈Nb

wT+1

jb(b
′
)
(k+1)

.
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7) if (not converged): Broadcast the weights obtained in
the current iteration to all neighboring sBSs, and go
back to step 1 else; return

π̄b,T+1 = wT+1
b (k + 1)

T∑
t=T−τ+1

αb,t(k + 1)πR
b,t +

∑
b′∈Nb

wT+1
jb(b

′ )
(k + 1)

T∑
t=T−τ+1

αb′ ,t(k + 1)πR
b′ ,t

(20)

• end for
Since the above algorithm is a modification of gradient

descent algorithm,4 the convergence can be proved in a similar
manner to that of classical gradient descent. The proof is
omitted due to lack of space. In the following subsection, the
proposed FL based heuristics algorithm for caching mecha-
nism design that takes into account neighboring SBSs requests
is detailed.

B. Federated Learning Based Heuristics Caching Mechanism

In the single SBS scenario, a natural approach to find
a caching strategy is to solve the following optimization
problem:

min
π:

∑
f πf lf≤L

F̂k(π), (21)

where F̂k(π) :=
∑

f∈F (1 − πf )lf d̂
(t)
f,k is an estimate of the

average cache miss, and d̂
(t)
f,k := 1

τ

∑t−1
s=t−τ d

(s)
f,k. However,

if the amount of data available is less, the estimate will be
poor, and hence results in a poor caching strategy. One way
to overcome this is to use the information available from the
neighboring sBSs. This can be done by penalizing the caching
strategies that are far from some average of the caching
strategies of the neighboring sBSs, i.e., λ∥π − π̄

(t)
Nk
∥2, where

π̄
(t)
Nk

is the average of neighboring SBSs caching strategies.
This requires information about past caching strategies from
the neighboring sBSs, which is assumed to be available. The
parameter λ > 0 controls the amount of deviation that can be
tolerated. More details of the heuristic algorithm are provided
in Algorithm 2. The following subsection presents an analysis
of the LRFU scheme. To the best of authors knowledge, this
analysis is the first of its kind in the literature.

LRFU Caching Policy: Analysis and Guarantees: In this
scheme, an average of the past demands of each file is listed
in the decreasing order, and the first k files are stored, where
k is chosen in such a way that the cache size constraint is
satisfied. In particular, in time slot t, at sBS b, the following
optimization problem is solved:

max
π:

∑
f πfLf≤C

∑
f

πf d̂b,f,tLf , (24)

where d̂b,f,t := 1
τ

∑t−1
s=t−τ−1 db,f,s ∀ f . In the case of constant

file sizes, i.e., Lf := L ∀ f , the solution to the above
amounts to listing the files in the decreasing order of d̂b,f,t,
and storing the top k files, where k is chosen to satisfy the

4The algorithm deviates from the classical gradient descent in the step 2
of the subroutine as the problem involves two optimization problems.

Algorithm 2 Algorithm for Federated Learning based Heuris-
tics Caching

1: procedure FEDERATED LEARNING BASED HEURISTICS
FOR CACHING

2: for ∀ sBS k = 1, . . . , N and ∀f = 1, . . . , F do
3: d̂

(0)
f,k ← initial demand

4: π
(0)
Nk
← initial caching vector s.t.

∑
f πfLf ≤ C

5: end for
6: for t = 1, 2 . . . , do
7: sBS k sents π̂∗

k,t−1 to its neighboring sBSs.
8: At each sBS k, estimate demand vectors
9: and average caching vectors as follows:

d̂
(t)
f,k :=

1

τ

t−1∑
s=t−τ

d
(s)
f,k, and π̄

(t)
Nk

:=
1

|Nk|
∑
j∈Nk

π̂∗
k,t−1.

(22)
10: Solve the following optimization problem to get
11: π̂∗

k,t:

π̂∗
k,t := argmin

π
F̂k,t(π) + λ∥π − π̄

(t)
Nk
∥2, (23)

where F̂k,t(π) :=
∑

f∈F (1− πf,k)Lf d̂
(t)
f,k, and λ > 0.

12: Cache files at sBS k according to π̂∗
k,t, and

13: distribute across its neighboring sBSs.
14: end for
15: end procedure

cache constraint. However, when the files sizes are different,
instead of the “average” demands d̂b,f,t, one should consider
Lf d̂b,f,t in the above argument. By imposing the constraint
πf ∈ {0, 1} ∀ f leads to the classical LRFU solution and the
corresponding caching strategy is denoted by πLRFU

b,t . Before
stating the main theorem, the following notions of discrepancy
(similar to discrepancy described earlier) will be used to state
the main result.

Definition (Discrepancy across time and information):
Given local and global information at the sBS b with
caching strategies πb,t for b ∈ B, t = T − τ + 1, . . . , T ,
the corresponding discrepancy between local and global
information at the end of time slot T is defined by

DGL,T (τ) := sup
πb,t:t=T−τ+1,...,T

∣∣∣∣∣1τ
T∑

t=T−τ+1

(
∆R̄T,t

)∣∣∣∣∣ , (25)

where ∆R̄T,t := E{Rb,T+1(πb,t) | ZT
b,1} −

E{Rb,t(πb,t) | ZT
G,1}.

The above measures the discrepancy between the local and
the global data, i.e., the demands at sBS b and all other sBSs.
In the iid demands scenario, it is clear that the discrepancy
is zero, as expected. In other words, having access to global
information is useful to improve the accuracy of the future
demand estimate through averaging, and hence the average
cache hit as well. The following theorem provides guarantees
on the performance of the LRFU scheme in comparison with
(2), which assumes perfect knowledge of statistics of the
demands. Note that the analysis included in the proof of the
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following result does not depend on whether πf ∈ {0, 1} or
πf ∈ [0, 1]. Therefore, this constraint is not explicitly stated.

Theorem 3.3: For the LRFU caching strategy πLRFU
b,t , with a

probability of at least 1− δ, δ > 0, the following bound hold:∑
f

πLRFU
b,t d̂b,f,tLf ≤ sup

πb

E
[
Rb,t(πb) | Zt−1

b,1

]
+ DGL,t(αb) + Db,t(uτ )

+ Hmax∥αb,T ∥2

√
2 log 1

δ

τ
(26)

where Db,t(uτ ) is as defined in (6) with uτ := ( 1τ ,
1
τ , . . . ,

1
τ )

is a 1× τ vector, and DGL,t(αb) is as defined in (25).
Proof: See Appendix VII.

It is clear from the above theorem that in the
iid demands scenario, the right hand side will be

supπb
E
[
Rb,t(πb) | Zt−1

b,1

]
+Hmax∥αb,T ∥2

√
2 log 1

δ

τ . It is clear
that as τ → ∞, i.e., using more local data to compute
the demand estimate, the metric used in the case of LRFU
approaches that of the optimal cache hit in (2). The above
result is independent of the demand process, as opposed to the
existing work on LRFU, which typically assume iid demands.
The following section presents simulation results to validate
some of the insights provided by our theory to design online
caching algorithm, and compare it with some of the well
known algorithms.

1) Complexity Analysis:

• Algorithm I: The function in (2) O(d2maxτN) multiplica-
tions and O(dmaxτN) additions, where dmax is the max-
imum degree of the topology of the network presented
earlier, N is the number of files and τ is the time slot.
The proposed algorithm involves solving a optimization
problem, whose complexity is analyzed under the as-
sumption that the gradient descent method is used to find
the optimal point. The gradient descent method involves
the following two steps; (a) computing the updated vector,
which involves using the current point and move in the
direction of the gradient, and (b) projecting the result
onto the constraint region. Thus, the total complexity is
the number of times step (a) above is required to solve
the problem with an accuracy of ζ, i.e., the difference
between the solution obtained and the optimal value of
the objective function, times the complexity of step (a).
Thus, from [55], the number of times step (a) is executed
is of the order of O(1/ζ). Therefore, the total complexity
is O(d

2
maxτN
ζ ) multiplications and O(dmaxτNζ ) additions.

• Algorithm II : The function in (21) requires O(dmaxτN)
multiplications and O(dmaxτN) additions, where dmax
is the maximum degree of the topology of the net-
work presented earlier. Similar to the complexity analysis
of Algorithm I, the total complexity of Algorithm II
is O(dmaxτNζ ) multiplications and O(dmaxτNζ ) additions.
The computational complexity if the LRFU algorithm is
O(log2 τ) where τ is the cache size. Comparing this with
the LRFU algorithm, it can be observed that both the
proposed algorithms performs significantly better than the

LRFU method at the expense of a slight increase in the
complexity depending on the accuracy attained.

IV. SIMULATION RESULTS

The simulation setup consists of five sBSs with multiple
users connected to each of the sBS as shown in Fig. 1.
Without loss of generality, it is assumed that the users can
move, and over time connect to different sBSs. The demands
from the users are generated using the Movie Lens data
set.5 The total number of files is 800, i.e., the users can
possibly request from only these catalog of Movie Lens data.
The size of each file is assumed to be chosen uniformly
random from 10 to 100 units. The demands at each sBS
are obtained by randomly dividing Movie Lens data into
5 disjoint chunks, which are spread across 200 time slots
(here one time slot equals one day). Further, the demands are
normalized in each slot to get the popularity profile. This is
used in place of demands while defining the (weighted cache
hit and discrepancy) metric to compute the optimal weights
in Algorithm 1. The average cache hit with un-normalized
demands is used as a performance measure. The optimization
is done with respect to the weights across time as well as
sBSs. In this section, for simplicity, the weights across time
will be referred to as α, and the weights allocated across
sBSs as w. To understand the importance of past demands
and the neighboring sBSs demand, it is important to compare
the proposed scheme under various conditions. In particular,
the proposed FL based caching algorithm is compared with
(i) the FL based heuristic algorithm proposed in Sec. III-B,
(ii) the algorithm that uses uniform w and optimal α, (iii)
LRFU, (iv) algorithm with uniform α and optimal w, and
(v) follow-the-leader, (vi) FTPL, and (vii) average LFU. The
following parameters were used: τ = 10, τ1 = τ2 = 5,
ηk = 1/

√
k, βk = 0.01/

√
k, and γk = 0.4/

√
k, where k

is the iteration index in the algorithm. The topology of the
sBSs for Fig. 2 shows a plot of cache hit versus cache size
for different caching algorithms. The topology of the sBS is
described by 1 ↔ 2 ↔ 3, 3 ↔ 4 ↔ 5, and 5 ↔ 1, where
a ↔ b indicates that sBSs a and b can communicate with
each other. Fig. 2 shows the sum cache hit rate of all the sBSs
summarizing the trends in all the sBSs. It is clear from the
figure that the proposed algorithm (both proposed FL based
caching algorithm and proposed FL based heuristic caching
algorithm) performs better than the LRFU, follow-the-leader,
FTPL, average LFU uniform α and optimal w, as well as
uniform w with optimal values of α. The difference here is
around 104 demonstrating the benefit of using the proposed
scheme(s).

The cache hit performance of the proposed caching algo-
rithm (FL based) under various inter-sBS topologies are shown
in Fig. 3. The following three topologies were considered: (i)
centralized topology (a↔ b ∀a, b ∈ [1, 5]), (ii) circular (1↔
2↔ 3↔ 4↔ 5↔ 1) and (iii) linear (1↔ 2↔ 3↔ 4↔ 5).
It can seen from the Fig. 3 that for the centralized topology, the
average cache hit is maximum since each sBS has access to
all of its neighbouring sBSs data. The sBS needs to exchange

5http://grouplens.org/datasets/movielens/
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real-time caching information with its neighbouring sBSs, and
hence in real settings will lead to a delay while exchanging the
information which in turn affects the performance of the online
caching strategies. In Fig. 4, the average cache hit is plotted
as the delay is varied for circular topology. As seen from
Fig. 4 as the delay increases while exchanging the information
among the sBSs, the average cache hit eventually reduces. In
Fig. 5, average cache hit for different iterations (no. of times
each cycle is repeated) is plotted and we can observe that as
the number of iterations increases the average cache hit also
increase.

V. REMARKS AND FUTURE DIRECTIONS

The paper proposed an algorithm for caching in a FL based
network setting using theoretical guarantees provided in Theo-
rem 3.1. Taking the best of both the statistical and adversarial
setting we design a caching strategy for a distributed network
when the demands are highly non-stationary. The proposed FL
based caching algorithm, uses a discrepancy measure with the
regret minimization. The LRFU algorithm uses a windowed
average of demands, and caches the files with the highest
average demands. Despite the simplicity of the algorithm,
there are no theoretical guarantees when the demands are
non-stationary and hence, theoretical guarantees on the perfor-
mance of the LRFU caching strategy is provided in this work.
It is also shown that the proposed FL based caching algorithms
outperform LRFU, average LFU, follow-the-leader and FTPL.
Further, FL based heuristic caching algorithm is also proposed
and it is observed that it performs better than the FL based
caching algorithm and hence motivating the future work on
providing guarantees for the heuristic algorithm. Finally, it is
interesting to explore average weighted demands in place of
average demands in the LRFU performs better than the vanilla
LRFU and the proposed FL based caching algorithm. In this
case, how should one choose the weights? Answers to these
questions will be a part of our future work.

VI. PROOF OF THEOREM 3.1

Assume that each SBS b employs the caching strategy in
(4) based on the local data ZT

b,1. Then, the corresponding
conditional average of the hit rate is given by

E
[
Rb,T+1(π

(av)
b,T+1) | Z

T
b,1

]
(a)
=

wT+1
b

T∑
t=T−τ

αb,tE
[
Rb,T+1(πb,t) | ZT

b,1

]
+

∑
b′∈Nb

wT+1
b′

T∑
t=T−τ

αb′ ,tE
[
Rb,T+1(πb′ ,t) | Z

T
b,1

]
(b)
=

T∑
t=T−τ

αb,tE
[
Rb,T+1(πb,t) | ZT

b,1

]
− Mb,T+1(w ̸=b,T ), (27)

where (a) follows simply by substituting for π∗
b,T+1 from

(4). The equality (b) follows by (i) adding and subtracting the
term

∑
b′∈Nb

wT+1
b′

∑T
t=T−τ αb,tE

[
Rb,T+1(πb,t) | ZT

b,1

]
, and

using the definition of Mb,T+1(w ̸=b,T ), and (ii) using the fact

that wT+1
b +

∑
b′∈Nb

wT+1
b′

= 1 ∀ b ∈ B. Now, by adding and

subtracting
∑T

t=T−τ αb,tE
[
Rb,T+1(πb,t) | Zt−1

b,1

]
, and using

the definition of Db,T (αb,T ) in (6), the above equation can be
lower bounded as

E
[
Rb,T+1(π

(av)
b,T+1) | Z

T
b,1

]
≥

T∑
t=T−τ

αb,tE
[
Rb,t(πb,t) | Zt−1

b,1

]
− Mb,T+1(w ̸=b,T )

− Db,T (αb,T ). (28)

Similarly, an upper bound can also be obtained as follows

E
[
Rb,T+1(π

(av)
b,T+1) | Z

T
b,1

]
≤

T∑
t=T−τ

αb,tE
[
Rb,t(πb,t) | Zt−1

b,1

]
+ Mb,T+1(w ̸=b,T )

+ Db,T (αb,T ) (29)

where the above upper bound follows by adding the discrep-
ancies instead of subtraction. Note that the term

At := αb,tRb,t(πb,t)− αb,tE
[
Rb,t(πb,t) | Zt

b,1

]
is a Martingale difference, i.e., E

{
At | Zt

b,1

}
= 0. Thus, the

following event occurs with a probability of at least 1 − δ,
which follows from the Azuma’s inequality

T∑
t=T−τ

At ≤ Hmax∥αb,T ∥2

√
2

τ
log

1

δ
. (30)

The above implies that

T∑
t=T−τ

αb,tE
[
Rb,t(πb,t) | Zt−1

b,1

]
≥

T∑
t=T−τ

αb,tRb,t(πb,t)

− Hmax∥αb,T ∥2

√
2

τ
log

1

δ
,

(31)

where Hmax is the maximum possible hit rate. Since −At is
also a Martingale difference, using Azuma’s inequality, the
following holds good with a probability of at least 1− δ

T∑
t=T−τ

αb,tRb,t(πb,t) ≥
T∑

t=T−τ

αb,tE
[
Rb,t(πb,t) | Zt−1

b,1

]
− Hmax∥αb,T ∥2

√
2

τ
log

1

δ
(32)

Using (31) in (28), the following holds good with a probability
of at least 1− δ

E
[
Rb,T+1(π

(av)
b,T+1) | Z

T
b,1

]
≥

T∑
t=T−τ

αb,tRb,t(πb,t)

− Hmax∥αb,T ∥2

√
2

τ
log

1

δ
− Mb,T+1(w̸=b,T )

− Db,T (αb,T ). (33)
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This proves the first result in the theorem. Similar to the above
equation, using (32) in (29), the following holds good with a
probability of at least 1− δ

T∑
t=T−τ

αb,tRb,T+1(πb,t) ≥ E
[
Rb,T+1(π

(av)
b,T+1) | Z

T
b,1

]
− Hmax∥αb,T ∥2

√
2

τ
log

1

δ
− Mb,T+1(w ̸=b,T )

− Db,T (αb,T ) (34)

Let C∗
b,t, t = T−τ, . . . , T , b ∈ B be some sequence of caching

strategy. Now, consider the following term

−
T∑

t=T−τ

αb,tRb,T+1(πb,t) +

T∑
t=T−τ

αb,tRb,T+1(C
∗
b,t)

≤
T∑

t=T−τ

(
αb,t −

1

τ

)(
Rb,T+1(C

∗
b,t)−Rb,T+1(πb,t)

)

+
1

τ

T∑
t=T−τ

(
Rb,T+1(C

∗
b,t)−Rb,T+1(πb,t)

)
≤ Hmax

T∑
t=T−τ

∣∣∣∣αb,t −
1

τ

∣∣∣∣+ Regb,T,τ (πb,t)

τ
, (35)

where the regret is as defined in (7). If the caching strategy
used is C∗

b,t, then, the above implies that

T∑
t=T−τ

αb,tRb,T+1(πb,t) ≥
T∑

t=T−τ

αb,tRb,T+1(C
∗
b,t)

− Hmax

T∑
t=T−τ

∣∣∣∣αb,t −
1

τ

∣∣∣∣
−

Regb,T,τ (πb,t)

τ
. (36)

From (33), we have

E[Rb,T+1(π
(av)
b,T+1)|Z

T
b,1] ≥

T∑
t=T−τ

αb,tRb,T+1(C
∗
b,t)
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− Hmax

T∑
t=T−τ

∣∣∣∣αb,T −
1

τ

∣∣∣∣
−

Regb,T,τ (πb,t)

τ

−Hmax∥αb,T ∥2

√
2

τ
log

1

δ
− Mb,T+1(w ̸=b,T )

− Db,T (αb,T,τ ). (37)

Now, using (34) with C∗
b,T+1 :=

∑T
t=1 αb,tC

(av)
b,t in place of

π
(av)
b,T+1, we get

E[Rb,T+1(π
(av)
b,T+1)|Z

T
b,1] ≥ E

[
Rb,T+1(C

∗
b,T+1)|ZT

b,1

]
− Hmax

T∑
t=T−τ

∣∣∣∣αb,t −
1

τ

∣∣∣∣
−

2Regb,T,τ (πb,t)

τ

−2Hmax∥αb,T ∥2

√
2

τ
log

1

δ
− Mb,T+1(w̸=b,T )

− 2Db,T (αb,T,τ ). (38)

It is possible to choose C∗
b,t in such as way that

E
[
Rb,T+1(C

∗
b,T+1) | ZT

b,1

]
≥

sup
hb,t

T∑
t=T−τ

αb,tE
[
Rb,T+1(hb,t) | ZT

b,1

]
− γ

for some γ > 0. Using this in the above equation, and
substituting the resulting equation in (33) gives

E
[
Rb,T+1(π

(av)
b,T+1) | Z

T
b,1

]
≥

sup
πb,t

T∑
t=T−τ

αb,tE
[
Rb,T+1(πb,t) | ZT

b,1

]
− 2Hmax∥αb,T ∥2

√
2

τ
log

1

δ
− Mb,T+1(w ̸=b,T )

−
2Regb,T,τ (πb,t)

τ

− Hmax

T∑
t=T−τ

∣∣∣∣αb,t −
1

τ

∣∣∣∣
− 2Db,T (αb,T,τ )− γ. (39)

This completes the proof of the theorem.

VII. PROOF OF THEOREM 3.3

Note that the sequence Ab,s :=
1
τ

[
Rb,s(πs)− E

{
Rb,s(πs)|Zs−1

b,1

}]
for t−τ−1 ≤ s ≤ t−1

is a Martingale difference. The sequence is also bounded,
i.e., |Ab,s| ≤ Hmax∥αb,T ∥2

τ . Hence, by Azuma’s inequality, it

can be seen that with a probability of at least 1 − δ, for any
caching strategy πb, the following holds∑

f

πb,td̂b,f,tLf ≤ 1

τ

t−1∑
s=t−τ−1

E
[
Rb,s(πb) | Zs−1

b,1

]

+ Hmax∥αb,T ∥2

√
2 log 1

δ

τ
, (40)

where the estimate d̂b,f,t := 1
τ

∑t−1
s=t−τ−1 db,f,s for all f . Now,

the following bound can be obtained by adding and subtracting
E
[
Rb,t(πb) | Zt−1

b,1

]
, and taking the supremum of the modulus

over caching strategies to get the following bound in terms of
discrepancy∑

f

πb,td̂b,f,tLf ≤ E
[
Rb,t(πb) | Zt−1

b,1

]

+Db,t(uτ ) +Hmax∥αb,T ∥2

√
2 log 1

δ

τ
.(41)

Similarly, the following bound can be obtained by adding and
subtracting E

[
Rb,t(πb) | Zt−1

G,1

]
, and taking supremum of the

modulus over all caching strategies (as done previously) to get∑
f

πb,td̂b,f,tLf ≤ E
[
Rb,t(πb) | Zt−1

G,1

]
+ Db,t(uτ ) + DGL,t(αb)

+ Hmax∥αb,T ∥2

√
2 log 1

δ

τ
. (42)

The desired result in the theorem can by obtained by taking
supremum over all caching strategies πb, and identifying that
the supremum in the right hand side results in the LRFU
caching strategy. This completes the proof.
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