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Aerodynamic instabilities in centrifugal compressors are 

dangerous phenomena affecting machines efficiency and in 

severe cases leading to failures of the compressing system due to 

high amplitude vibrations. Efficient instabilities detection 

during compressor operation is a challenge of utmost 

importance from economical and safety point of view. The most 

sensitive detection is possible with use of a pressure signal from 

inside of the compressor because specific pressure patterns are 

the first symptoms of instabilities. Detection of aerodynamic 

instabilities results in specific challenges, as the pressure signal 

is often very noisy and contains high amount of randomness. 

Surge – most severe instability, can develop very quickly. 

Therefore, the method of detection should be sensitive but also 

robust and quick. Another common instability, inlet 

recirculation is less dangerous, but it results in decrease of 

efficiency, which is to be avoided. Inlet recirculation often 

happens before surge, thus its presence can be used for surge 

proximity detection. The aim of this study is to investigate and 

compare the performance of two non-linear processing methods 

- Empirical Mode Decomposition (EMD) and Singular 

Spectrum Analysis (SSA) in the context of aerodynamic 

instabilities detection – inlet recirculation and surge. The 

comparison focuses on the robustness, sensitivity and pace of 

detection – crucial parameters for a successful detection 

method. It is shown that both methods perform similarly within 

the analyzed bounds for both instabilities. A slight advantage of 

SSA may be noticed for surge due to lower dispersion of the 

indicator value for the same conditions.  

Keywords—data-driven techniques, SSA, EMD, surge, 

compressor, condition monitoring 

I. INTRODUCTION  

Centrifugal compressors are machines of great importance 
for a wide range industries, operating in petrol engines, 
turboshaft engines and processing plants of various kinds [1]. 
Compressor operating range is limited by choke for high mass 
flow rates and the appearance of aerodynamic instabilities at 
low mass flow rates [2]. For the low mass flow rate centrifugal 
compressor reaches its peak efficiency, therefore it is not 
uncommon for instabilities to appear during standard machine 
operation. There exist a number of well-described instabilities, 
such as inlet recirculation, stall or surge [3], [4]. Inlet 
recirculation or rotating stall, being local instabilities are often 
predecessors of a global instability – surge [5]. The 
instabilities in centrifugal compressor may vary in effect, 
ranging from drop in efficiency for inlet recirculation up to 
abrupt destruction of a compressor in case of surge.  

The field of instabilities detection is still in development, 
focusing more and more on application of data-driven 

techniques. The most commonly presented methods were 
based on Wavelet Transform [6], [7] which performed well 
for selected instabilities, but suffer from lack of universality 
due to the need of defining a mother wavelet for analysis. 
Rotating stall can be detected using methods employing 
bifurcation theory [8], but the method due to its character is 
limited to rotating stall only.  

A promising solution for comprehensive aerodynamic 
instabilities detection is offered by Empirical Mode 
Decomposition (EMD) and Singular Spectrum Analysis 
(SSA). Recently, it was shown that SSA can be used for 
detection of surge [9] and inlet recirculation [10] which can be 
regarded a surge predecessor [11]. The same capabilities were 
demonstrated for a method based on EMD [12]. Neither of 
those studies considered the influence of length of the input 
signal for detection as they both used long portions to 
demonstrate the potential of the methods. The requirement of 
application to centrifugal compressors instability detection 
system is that the methods must be quick. Thus, a natural step 
towards implementation of SSA and EMD into an instabilities 
detection system is to validate they potential for robust 
detection of instabilities based on a short signal portions.  

The pace of detection may be considered in two aspects. 
First one – referred hereafter as sensitivity - is the required 
signal portion length needed for the method to extract features 
of instabilities in a repeatable and robust manner. The shorter 
a signal portion allowing for detection, the quicker a method 
can react to a change in conditions and appearance of 
instabilities. The other aspect is data processing time. 
Different methods may have a different computational cost, 
resulting in a higher or lower time required for obtaining the 
indication. This second aspect is highly dependent on the 
implementation of the method, consisting of both software 
and hardware. The comparison in terms of computational time 
is done using MATLAB software implementations and a PC 
computer. It allows benchmarking two methods and provides 
estimation of timescale needed for applying each of them.  

The aim of this study is to evaluate the sensitivity of two 
data driven methods – EMD and SSA for inlet recirculation 
and surge signatures identification and eventually detection of 
those instabilities. The results are used for providing 
recommendations regarding the potential application of those 
methods for a real-time aerodynamic instabilities detection 
system. The computational time for both methods is compared 
to understand the differences in their performance in the 
context of quick detection.   
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This paper presents the outline of EMD and SSA, defines 
method for processing the results to obtain an indicator, and 
provides criteria for comparison. Test stand used for obtaining 
validation data is described along with an experimental 
procedure. The results are divided into two sections, one for 
detection of inlet recirculation and the other for detection of 
surge exploring the differences in methods sensitivity. Finally, 
recommendations regarding the use of EMD and SSA to 
instabilities detection are made.  

II. METHODOLOGY 

A. Empirical mode decomposition 

EMD is based on the assumption that signal consists of a 
sum of simple oscillatory modes – intrinsic mode functions 
(IMFs) and a residue [13] that can be extracted with this 
method. EMD is able to deal with nonstationary and nonlinear 
data of different origin. It is direct and adaptive algorithm, 
with a decomposition base derived from the data. IMFs, due 
to their derivation, can reflect changes in both amplitude and 
frequency of phenomena in the analyzed signal. The IMFs are 
extracted with an empirical method using iterative process 
making use of the envelope of the signal. The details of the 
decomposition are described by Huang [13].  

There exist several approaches for processing the IMFs, 
with focus on their energy [12], frequency [14] or amplitude 
[15] and variation of those values between conditions. It was 
demonstrated that for detection of instabilities in centrifugal 
compressors, the approach based on root mean squared values 
(RMS) of the IMFs can provide insightful results [12]. Thus, 
this approach is used in this study.  

B. Singular spectrum analysis 

SSA is a nonparametric time series analysis method,  
which extends Principal Component Analysis (PCA) [16]. 
SSA reduces a signal to a finite number of independent 
oscillatory components, ordered according to the amount of 
information contained in each [17].  These components are 
called Reconstructed Components (RCs). SSA permits to 
isolate components of the original signal for better 
understanding of the phenomena and for obtaining 
characteristic features which may be used for compressor 
monitoring. The main steps of the conventional SSA are 
embedding, decomposition and reconstruction grouping and 
diagonal averaging. Detailed description of SSA process is 
outlined by Golyandina [17]. The RCs in this study are 
evaluated by computing their RMS value, which was 
demonstrated to be applicable when analyzing compressor 
performance with this method [10].  

C. Compressor test rig 

The analysis is based on high-frequency pressure data 
sampled from several locations inside the centrifugal 
compressor (Figure 1). The data from this machine was 
previously analysed and described [7], therefore it can 
efficiently be used for benchmarking of different methods.  

For described investigation, a series of data for different 
throttle opening areas (TOA) was considered. TOA values 
ranged from 8.5%, where deep surge was present, to 35%, 
where the machine was working in a stable regime. In between 
those values, the flow transformed from stable to unstable. In 
the process, certain local instabilities could be observed, such 
as inlet recirculation. The analysis of this phenomenon was 
done by Garcia et al. [18]. Table 1 summarizes TOA values 
subjected to analysis in this paper and observed flow 

conditions. In this study, the focus is on detection of inlet 
recirculation and unstable conditions, without differentiation 
between mild and deep surge. Therefore, the conditions for 
TOA below 18% will be referred to as unstable.  

  
Fig. 1. Experimental stand cross-section with sensors positions [7] 

 
Table 1. Throttle opening area and observed flow conditions [19]. 

TOA [%] Flow conditions 

8.5 Unstable - Deep surge 

12-18 Unstable - Mild surge 

19-25 Transient - Inlet recirculation  

26 - 35 Stable 

 

The data was sampled at 100 kHz, allowing to capture wide 

range of flow structures. The presence of inlet recirculation 

was observed for the sensor Ps-imp1 located upstream of the 

impeller and was not noticed for other sensor locations [7]. 

Surge was observed for all sensors, with the strongest 

signature for the Ps-out sensor at the outlet [7]. Therefore, 

only those two sensors will be used in the study - Ps-imp1 for 

inlet recirculation and Ps-out for surge.  

D. Approach to decomposition 

The decomposition with EMD and SSA is performed on non-

overlapping signal portions extracted from a longer signal. 

The length of the portions varies to evaluate the sensitivity of 

the methods to instabilities and observe changes in dispersion 

of the data.  For each length, the confidence of prediction is 

demonstrated to understand the trade-off between the signal 

portion length and accuracy of prediction. The data used for 

analysis comes from quasi-dynamic study – where 

measurements for different conditions were done 

independently for each TOA.  

E. Indicator of instabilities 

Indication of instabilities is based on RMS value of selected 

components. The indicator is computed using specific signal 

portions length. When 𝑁  is the signal length expressed in 

number of samples, the RMS value can be computed 

according to equation (1). The same approach is used for 

IMFs and RCs.  

𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑥𝑖

2𝑁
𝑖=1    (1) 

F. Criteria for comparison 

The sensitivity of methods is validated on signal portions 

𝑁=1000, 5000, 10000 and 50000 samples, equivalent to 0.01, 

0.05, 0.1 and 0.5 seconds of wall clock time respectively or 



alternatively to 1, 5, 10 and 50 revolutions of the impeller. 

Forty windows are used for each operating point to account 

for stochastic character of pressure signal and understand the 

dispersion of the data.  The outcome is assessed quantitatively 

using a control line approach. The control line is created 

based on stable operating conditions and the performance of 

the method is assessed based on how well the unstable 

conditions can be differentiated from stable ones.  

III. RESULTS 

The results are divided into three sections. First one 
discusses importance of decomposition parameters and their 
influence on the decomposition time. Section one summarizes 
the differences in sensitivity of the methods for detection of 
inlet recirculation. The last section shows the method 
sensitivity for surge detection in the compressor.  

Parameters of decomposition 

Both, EMD and SSA are adaptable to the data, without a pre-
defined base of decomposition. However, they require a 
number of decomposition parameters to be set. The choice of 
those parameters influences the decomposition and its pace. 

 

Fig. 2. Influence of SSA and EMD parameters on the pace of 
decomposition; a) sifting iterations number on EMD decomposition time 

for N=5000; b) signal length on EMD decomposition time for eight sifting 

iterations; c) window length on SSA decomposition time for N=5000; d) 
signal length on SSA decomposition time for L=50; red dash-dot line is a 

fitted linear trend 

 

SSA is based on singular value decomposition of the signal, 
which requires a selection of a window length (L) which slides 
over the signal. There is no consensus about the selection of 
window length L in reference to signal length N, but certain 
guidelines were provided in the literature. It was outlined by 
Golyandina [17] that L should be less than N/2. Some L 
estimation methods were created, such as that of Wang et al. 
based on the autocorrelation function [20]. When applying 
this method for high-frequency signal the window length 
obtained from the method was very short – several orders of 
magnitude smaller than the signal length N. In general, the 
smaller the L value, the worse frequency resolution of the 
spectrum [17].  

Window length affects the pace of the decomposition process, 
as it results in obtaining more RCs (number equal to L). Thus, 
the bigger L value, the more time is needed for decomposition. 

The same applies to the signal length N. Influence of the 
length of those parameters is summarized in Figure 2 c) and 
d).   

EMD does not require a choice of window length L. However, 
the procedure of decomposition includes iterative sifting step, 
where the number of iterations may differ [13]. Similarly, as 
for SSA, there is no universal approach to defining the right 
number of iterations. It can be set indirectly through sifting 
stoppage criterion or directly by setting a specific number of 
iterations. Stoppage criteria focus on ensuring that the 
extracted IMFs meet IMF criteria defined by Huang [13] using 
local or global formulation. It was shown that the criteria are 
imperfect as well. What is more, too high number of sifting 
iterations can deplete IMFs of physical meaning [21] and 
extend the time needed for decomposition. The influence of 
sifting iterations number on the pace of decomposition is 
shown in Figure 2 a) and b). 

For both decomposition methods, specific components or 
groups of components have to be chosen for an indicator. In 
EMD, the first IMF holds the highest frequency components 
present in the signal and each subsequent IMF holds lower 
frequency components. RCs from SSA are created in a way 
that the first RC holds the lowest frequencycomponents and 
subsequent RCs hold higher frequency components. 
Therefore, the IMFs and RCs are reversed in order when it 
comes to their frequency content.  

Inlet recirculation detection 

Inlet recirculation in this machine was manifested by 
a broadband noise of frequency around 1000 Hz but with no 
dominating frequency discovered. It was observed the 
strongest for the sensor 𝑃𝑠𝑖𝑚𝑝1 located on the shroud before 

impeller – the area known as inlet recirculation zone .  

EMD-based detection 

For defining the EMD approach, the choice of IMFs was done 
based on analysis of mean RMS changes for different IMFs, 
not presented in this study. It was observed that the strongest 
trace of inlet recirculation was held by IMF 6. Thus, this IMF 
was chosen as a base of an indicator. To account for stochastic 
nature of the signal, forty pieces of a signal were used to 
validate the dispersion of the data and check whether energy 
of selected IMF can serve as a robust indicator. The variability 
was investigated for varying signal length N and constant 
sifting iterations number equal to eight, as suggested by Wang 
et al. [21].   

 

Fig. 3. Comparison of RMS of IMF 6 for different signal lengths N for 
sensor before impeller; dashed lines are 1st and 99th percentile of 

distribution for each of the windows 

a) b) 

c) d) 



 

Figure 3 demonstrates changes of IMF 6 energy for different 
operating conditions. The mean value for all window lengths 
is similar, but data dispersion differs significantly, decreasing 
consistently with increasing signal length. The dispersion of 
RMS values, limits of which are marked with dashed lines, 
grows visibly for increasing level of instability. Based on 
visual study, it may be stated that inlet recirculation can be 
quickly detected when using a window of 5000 samples and 
above by an increase of RMS value above the reference. Using 
1000 samples is not enough to efficiently capture this 
instability, mainly due to high dispersion of RMS. The RMS 
level for selected IMF stays above the benchmark as well for 
surge regime. This might result in problems with 
differentiating inlet recirculation and surge from each other 
based on an indicator constructed on IMF 6.  

SSA-based detection 

The inlet recirculation can also be captured through using 
changes in RMS of RCs produced by SSA. As was shown by 
Logan et al. [10] RC2 can be used for extraction of inlet 
recirculation features in centrifugal compressors. An 
important parameter of the method is window length used for 
decomposition. Window length choice is regarded case 
specific, thus the analysis of its influence for compressor data 
is presented in Figure 4. The window lengths L varied from 
15 to 200 signal samples and computations were done for 
signal length of 5000 samples. Using the shortest window 
L=15, inlet recirculation is not well distinguished from other 
operating conditions. For L=30 to L=75, the RC2 energy 
behaves similarly, increasing in the IR region, which suggests 
it can be used for indication. The longest windows also allow 
to distinguish stable conditions from IR, but their RMS 
changes differ, presenting a drop in the center of IR region. 
Thus, knowing that increasing window length is expensive in 
terms of computational time, L=30 was defined to be suitable 
for the aim defined in this study. The dispersion of the data 
does not present a consistent dependency on the conditions or 
window length.  

 

Fig. 4. Influence of window length L on RC2 RMS at different operating 
conditions for the signal length N=5000; dashed lines mark 1st and 99th 

percentile of distribution for each TOA  

 

Having defined the window length, the analysis of signal 
length influence is performed. Figure 5 shows energy of RC2 
for different signal portions lengths N with window length 
L=30. The shape of mean value is very similar in case of all 

N, suggesting that the signal portion length choice does not 
have important influence on the energy of RC2 in this case, at 
least not in the analysed range of lengths. The dispersion of 
data is importantly higher for L=1000 than for other lengths 
and seems to decrease for increasing L.  

 

Fig. 5. Influence of signal length N on RC2 RMS at different operating 

conditions for window length L=30; dashed lines mark 1st and 99th 

percentile of distribution for each TOA  

Comparison of EMD and SSA performance for inlet 
recirculation detection 

The comparison of EMD and SSA for inlet recirculation 
detection done for N=1000 and 5000 is shown in Figure 6. For 
the shorter signal length, both methods provide good 
indication of instability using a mean value. However, the 
dispersion of data is high and prohibits a robust detection 
based on a single signal portion of this length. When using a 
longer signal portions N=5000, the dispersion is much smaller 
and robust identification is possible using a single window for 
most of the IR region using both EMD and SSA. EMD 
demonstrates more consistent behaviour for stable conditions, 
allowing to draw a control line lower than for SSA. Another 
difference is visible in surge region, where the RMS of IMF 6 
remains above control line, while RMS of RC2 falls below.  

 

Fig. 6. Influence of window length L on RC2 RMS and IMF 6 RMS at 

different operating conditions for the signal length N=5000. Black line is 

plotted for SSA and blue line for EMD. Dashed and dotted lines are 1st and 
99th percentile of distribution for each TOA; red lines are control lines for 

EMD and SSA based on the maximum value in stable conditions 

 

Consequently, a similar signal portion N is needed for both 
methods to provide a robust indication of inlet recirculation. 
The estimated time needed for decomposition is 0.06s for SSA 
and 0.04s for EMD, indicating the advantage of EMD but with 
both of them being of similar magnitude to each other and 
clock time needed for collecting this number of signal points. 



 

Surge detection 

Surge detection is of utmost importance for every compressor 
safety system. The analysis of surge detection potential will 
be based on differentiating this region from stable operation 
region.  

EMD-based detection 

The analysis of EMD behavior indicated that high IMFs hold 
surge information. The IMF chosen to represent this instability 
is IMF 8. Figure 7 shows mean IMF 8 RMS along with its 
variation for different signal lengths considered. The mean 
value of RMS changes steadily as compressor approaches 
surge. Similarly to IMF 6, the dispersion increases with 
increasing instability. It is also notable that dispersion 
decreases with increasing window length. Mean value of the 
IMF 8 provides clear indication of conditions, but the 
detection based on the RMS value from a single signal portion 
is not robust due to high dispersion of RMS values.  

 

Fig. 7. Comparison of RMS of IMF 8 for different signal lengths N for 

sensor 𝑃𝑠𝑜𝑢𝑡 at the outlet; dashed lines mark 1st and 99th percentile of 

distribution for each TOA  

 

Therefore, despite very clear and consistent indication coming 
from mean value, the RMS of selected IMF requires either 
longer signal length or obtaining a mean value from several 
windows. This fact is probably caused by mode mixing, a 
phenomenon common for EMD [13]. The transfer of 
instabilities energy from one IMF to another lead to high 
variation of energy. It is especially evidenced through 
presence of very low RMS values in some windows in 
unstable region. Non-stationary character of the pressure 
signal can also contribute to the observed variability, as for 
longer windows the dispersion decreases which should not 
happen if solely mode mixing was responsible This makes 
using a specific IMF problematic in detection of instabilities. 
On the other hand, standard de-mixing methods like Ensemble 
Empirical Mode Decomposition (EEMD) [22] severely 
influence the pace of decomposition, as the standard EMD 
procedure is repeated a number of times therein.   

SSA-based detection 

Figure 8 presents the window length analysis done for RC1 
from 𝑃𝑠𝑜𝑢𝑡  sensor located at the outlet pipe wall. The same set 
of window lengths L is used for a signal portion N=5000. RC1 
is used for detection, as it is sensitive to appearance of low-

frequency pressure oscillations characteristic to surge. The 
mean value of RMS is similar for all windows, decreasing 
slightly with increasing window length. This is due to RC1 
containing narrower range of frequencies for increasing 
window size. An important increase in energy takes place at 
the end of IR region and continues in surge region. With 
extending the window length, the RMS value for stable 
conditions decreases, moving the potential benchmark value 
down. The difference in case of surge region is smaller and a 
significant change can be observed for window L=200. The 
window length chosen for further analysis is L=30, similarly 
as in case of RC2 selected for inlet recirculation detection. 

  

Fig. 8. Influence of window length L on RC1 RMS at different operating 

conditions for the signal length N=5000; dashed lines mark 1st and 99th 

percentile of distribution for each TOA 

 

 

Fig. 9. Comparison of RMS of IMF 8 for different signal lengths N for 

sensor 𝑃𝑠𝑜𝑢𝑡 at the outlet; dashed lines mark 1st and 99th percentile of 

distribution for each TOA 

 

Figure 9 presents RMS value of RC1 for varying operating 
conditions and signal length. It can be noted that the dispersion 
of the data for signal length N=1000 is much higher than for 
higher lengths and the mean value experiences more 
fluctuations. The behaviour of RMS for N=5000, 10000 and 
50000 is more consistent and the mean values is almost 
identical for all those lengths. The data dispersion decreases 
with increasing N, but the effect is not as striking as for EMD.  



 

Comparison of EMD and SSA performance for surge 
detection 

The comparison for surge detection is done with signal length 
of 5000 and 10000 samples. It can be seen that in case of SSA, 
the shorter length is sufficient to provide a good distinction of 
conditions. The increase of energy would start earlier than 
detected in reference, resulting in producing a number of false 
alarms happening before the actual surge region. It might be 
considered a flaw of the method. For the same signal length, 
EDM fails to produce a robust identification of conditions. It 
is caused by high dispersion of energy values for the analysed 
signal portions. Therefore, a longer signal portion is needed 
for robust identification using the proposed approach. The 
time needed for decomposition was 0.06s for SSA with L=30 
and N=5000. The time needed for EMD with N=10000 was 
comparable, despite the longer window, being 0.07s. This is 
of the same order of magnitude as the signal length needed for 
detection, making these methods potential candidates for real 
time detection.  

 

Fig. 10. Comparison of RMS of IMF 8 for different window lengths with 
data dispersion; data for sensor at the outlet a) N=5000; b) N=10000  

IV. CONCLUSIONS 

In this paper two non-linear signal processing methods – EMD 
and SSA were compared in terms of their performance for 
instabilities detection in centrifugal compressor. Based on 
RMS of selected decomposition components, the overall 
detection possibilities and signal length needed for robust 
identification of inlet recirculation and surge was compared. 
It was shown that: 

-  Inlet recirculation can be detected with both methods 
using a similar signal length and within a comparable 
time, with a slight pace advantage towards EMD.  

- Detection of surge is quicker with SSA, as shorter signal 
portion (N=5000) is sufficient for robust detection. 
Similar performance is presented by EMD when using 
twice as long signal, which transfers into the need of a 
longer data acquisition. However, the processing time 
remained similar, making this a viable option.  

- Both EMD and SSA can be considered as a base for quick 
and responsive instabilities detection system as they 
present similar performance in the presented case study.  
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