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Flexibility and real options analysis in power system generation expansion
planning under uncertainty
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ABSTRACT
Over many years, there has been a drive in the electricity industry towards better integration of
environmentally friendly and renewable generation resources for power systems. Such resources
show highly variable availability, impacting the design and performance of power systems. In this
article, we propose using a stochastic programming approach to optimize Generation Expansion
Planning (GEP), with explicit consideration of generator output capacity uncertainty. Flexibility
implementation - via real options exercised in response to uncertainty realizations - is considered
as an important design approach to the GEP problem. It more effectively captures upside opportu-
nities, while reducing exposure to downside risks. A decision-rule-based approach to real options
modeling is used, combining conditional-go and finite adaptability principles. The solutions pro-
vide decision makers with easy-to-use guidelines with threshold values from which to exercise the
options in operations. To demonstrate application of the proposed methodologies and decision
rules, a case study situated in the Midwest United States is used. The case study demonstrates
how to quantify the value of flexibility, and showcases the usefulness of the proposed approach.
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1. Introduction

Making timely investments to expand the generation cap-
acity of a national power system to meet future demand is
the focus of long-term Generation Expansion Planning
(GEP) problems. Identifying the optimal energy mix that
ensures energy security - vital for national security, eco-
nomic growth, and social welfare - is of utmost importance
for planning purposes. Recently, greener renewable energy
sources have been actively sought by governments world-
wide to address concerns over environmental impact and
sustainability of energy sources. For example, a study
reported in Global Wind Energy Council (2016) shows that
in 2015 alone, annual wind capacity installations reached
60GW - a record. In 2016, the strong growth of wind
energy penetration continued with an additional 50GW,
bringing cumulative wind power capacity to 486.8GW glo-
bally. The PV Market alliance reported that photovoltaic
installations for solar power generation hit an annual
record-breaking 75GW capacity in 2016, 50% higher than
in 2015 (The PV Market alliance, 2016).

Due to the rising importance of renewable (and variable)
energy sources, power systems are now more vulnerable to
uncertainties and intermittence in supply. Severe operational
malfunctions could arise if such uncertainties are not

considered carefully in the design and expansion planning
of such systems. To support this view, Sweeney (2013)
claims that low rainfall in the year 2000 led to a severe drop
in regional hydropower availability in California, which in
turn, led to the well-known energy crisis in that important
U.S. state. In 2008, Texas experienced an unexpected drop
of 1400MW in wind power generation, coinciding with an
unexpected load increase, which forced 1100MW to be shed
over a short time horizon (Ela and Kirby, 2008).

One approach to improve GEP under supply uncertainty
is to consider flexibility explicitly in the system design, the
system considered here being an expanding portfolio of gen-
erator types being setup over time to satisfy demands.
Flexibility, as a design concept, can be formally described as
aiming to provide “the right, but not the obligation, to change
a system easily in the face of uncertainty.” Flexibility is typic-
ally enabled in early conceptual studies by considering a flexi-
bility strategy, such as designing the system for future
capacity expansion and deferring initial investment until mar-
ket conditions are ripe (Trigeorgis, 1996). The goal of ena-
bling flexibility in the design is to shift the distribution of
possible performance outcomes (e.g., net present value, costs)
to capture better upside opportunities, while reducing expos-
ure to downside risks. In this work, flexibility is enabled using
real options as a value-enhancing strategy. Real options are
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discrete decisions that allow the decision maker to adapt
future actions based on altered future market conditions.
There are several examples in infrastructure systems whereby
the concepts of flexibility through options were successfully
exploited, like the construction of the HSCS building in
Chicago (Guma et al., 2009) and the design of the de 25 de
Abril bridge in Lisbon (Cardin et al., 2015). A lack of flexibil-
ity has also proven to be detrimental in some cases, such as
the Iridium satellite system, where all 66 satellites were
deployed in the initial time period, thus removing any flexi-
bility to adjust capacity with fluctuating demand for cell
phone services. The company had to declare bankruptcy in
the early 2000s, due to weaker revenues arising from lower-
than-expected demands. Other studies in power plant design
and deployment have shown the significant economic benefits
arising from flexibility (Cardin, Zhang, et al., 2017; Cardin,
Xie, et al., 2017; Caunhye and Cardin 2017).

To tackle these issues, we propose an approach to analyze
the long-term effects of (i) supply uncertainty and (ii) flexi-
bility in GEP through stochastic optimization modeling. In
particular, the methodological contributions of this stud are:

1. We build a novel conditional-go decision rule that
guides decision makers on when to exercise generator
addition options based on normalized thresholds of out-
put capacity realizations and taking into account the
time taken to install generators.

2. We extend the conditional-go rule via the finite adapt-
ability method developed in the robust optimization
field (Bertsimas and Caramanis, 2010) to incorporate a
greater variety of options portfolios to deploy and pro-
vide decision makers with better flexibility on when to
deploy options via multiple thresholds.

3. We seek to quantify the value of flexibility recognized
by each method and compare the recommended system
solutions in each case.

GEP is formulated here as the problem of determining an
optimal plan for adding generators over a finite long-term
planning horizon, with the goal of meeting increasing future
demands for electricity. The model considers supply uncer-
tainty through a scenario-based stochastic programming
model, whereby generator output uncertainty is character-
ized by probabilistically distributed scenarios. Flexibility is
embedded into the GEP model by considering the real
option of adding generation capacity, which is to be exer-
cised after the supply uncertainty are realized and observed.
Such a real option enables timely deferment of generation
capacity expansion, thus better capturing the value of flexi-
bility. Conditional-go decision rules are formulated to pro-
vide readily usable policies for exercising real options,
relying on total output capacities that are leftover from ear-
lier periods. In this article, the rule relies on threshold values
of total capacity and optimized generation capacity addition
if and when total capacity slips below such thresholds, serv-
ing as a demonstration example. One managerial benefit of
a decision rule formulation is that many decision-making
rules and strategies can be emulated and analyzed, thereby

providing decision makers with additional flexibilty to
model and analyze rules that may be more intuitive to
them, and/or readily applicable in operations.

2. Related work

2.1. Capacity expansion planning in power systems

Many different approaches have been taken to explore GEP
problems, typically differentiated based on model types,
objectives, constraints, generator types and uncertainty sour-
ces considered. A general approach is to formulate the GEP
problem using a mixed-integer programming model. The
problem can then be modeled using either a deterministic
approach (Park et al., 2000; Antunes et al., 2004; Slochanal
et al., 2004) or a stochastic approach with two-stage stochas-
tic programming (Kamalinia and Shahidehpur, 2010;
Tekiner et al., 2010; Jin et al., 2011; Pereira and Saraiva,
2011; Min and Chung, 2013; Rebennack, 2014;
Vithayasrichareon et al., 2015). It is most common in the
literature to minimize generation and deployment costs
(Slochanal et al., 2004; Kamalinia and Shahidehpour, 2010;
Rebennack, 2014), although maximizing profit (Chuang
et al., 2001) or minimizing conditional value-at-risk (Jin
et al., 2011) have also received some attention. A combin-
ation of environmental impact and cost is typically consid-
ered in a multi-objective optimization setting (Antunes
et al., 2004; Tekiner et al., 2010). Typical constraints include
limits on demand–supply balance, new generator emissions
and additions, as well as generation capacity, reliability
standards, fuel mix diversification. Uncertainty sources often
analyzed include demand (Tekiner et al., 2010; Jin et al.,
2011; Pereira and Saraiva, 2011; Min and Chung, 2013;
Rebennack, 2014; Vithayasrichareon et al., 2015), wind gen-
eration intermittence (Kamalinia and Shahidehpour, 2010),
fuel prices (Jin et al., 2011; Min and Chung, 2013), pollution
limits (Rebennack, 2014), and electricity prices (Pereira and
Saraiva, 2011).

In some cases, decisions related to power dispatch and
transmission network expansion are integrated within the
GEP problem to form the Generation and Transmission
Expansion Planning (GTEP) problem. GTEP considers line
addition, line switching, and power dispatch, in addition to
GEP decisions. Contingency planning (Samarakoon et al.,
2001; Bienstock and Mattia, 2007; Choi et al., 2007; Akbari
et al., 2011), network re-design (Moulin et al., 2010), and
vulnerability analysis (Pinar et al., 2010) are often discussed
in GTEP. Frank and Rebennack (Frank and Rebennack,
2016) provide a thorough introduction to different GTEP
optimization models. Many authors have developed
approaches to GTEP based on deterministic optimization
models (Quelhas et al., 2007; Roh et al., 2007; Motamedi
et al., 2010; Pozo et al., 2012; Sharan and Balasubramanian,
2012). Other works incorporate uncertainty using uncer-
tainty sets (Ruiz and Conejo, 2015) and probabilistically dis-
tributed scenarios (L�opez et al., 2007; Roh et al., 2009;
Alizadeh and Jadid, 2011; Aghaei et al., 2014), where
demand, electricity and fuel prices are usually considered as
the main uncertainty drivers. Among such studies, only Jin
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et al. (2015) and Caunhye and Cardin (2018) in GTEP
incorporate supply uncertainties. Outside the realm of
expansion planning, supply uncertainties have been consid-
ered in other power system planning problems such as the
unit commitment problem (Papavasiliou et al., 2011; Jiang
et al., 2016) and energy scheduling in microgrids (Su et al.,
2013). In Jin et al. (2015), the authors rely on probabilistic
constraints (which are difficult to solve), and then on nor-
mality methods to improve solvability. In Caunhye and
Cardin (2018), an adjustable robust optimization approach
is used for transmission expansion planning under supply
uncertainties. The current article aims to address an import-
ant gap in GEP research, by considering both supply uncer-
tainties and real options in generator capacity expansion,
while providing intuitive solution policies based on a condi-
tional-go decision rule approach. To our knowledge, the
only applications of real options in power systems expansion
planning are in the GTEP problems proposed by van der
Weijde and Hobbs (2012), Falugi et al. (2017) and
Giannelos et al. (2018). The problem in van der Weijde and
Hobbs (2012) considers the deferment of investment deci-
sions using options and the ones in Falugi et al. (2017) and
Giannelos et al. (2018) deal with real options in storage
technologies. However, both studies do not delve into deci-
sion rule formulations, which have been shown in many
studies to provide significant managerial insights over trad-
itional option methods (Cardin, Zhang, et al., 2017). Such
studies show that a decision rule formulation enables more
readily considerations of more complex expansion options,
as compared with standard investment deferment options.

2.2. Real options analysis

Real Options Analysis (ROA) involves applying concepts of
options pricing in finance to the valuation of real assets and
investment opportunities under uncertainty (Myers and
Turnbull, 1977; Trigeorgis, 1996). Flexibility in engineering
design builds upon and expands ROA theory by considering
explicitly design and technology as important vectors to
enable better adaptability and resilience in the face of uncer-
tainty (de Neufville and Scholtes, 2011). Such an approach
to engineering design has shown tremendous performance-
enhancing benefits in the early conceptual design of many
different systems (Chen and Yuan, 1999; Cardin and Hu,
2016). (Cardin, 2014) provides a general five-phase frame-
work to support the design of flexible engineering systems,
along with an overview of relevant design tools to support
design work in each phase.

Decision-rule-based ROA aims to provide systematic pol-
icies and guidelines to help decision makers exercise flexibil-
ity options in a stochastically optimal manner. Formally, a
decision rule can be defined as a function mapping observa-
tions of uncertainty data to actual decisions in operations
(Shapiro et al., 2009). In the stochastic programming litera-
ture, four classes of decision rules are typically considered:
conditional-go, linear, safety-first and zero-order (Garstka
and Wets, 1974). A conditional-go decision rule, as used in
this article, can be thought of as an if-then-else statement in

programming, whereby a set of criteria must be satisfied by
observing uncertainty realizations before the real option can
be exercised. If such criteria are not satisfied, the status quo
is maintained, and the system continues to operate as is,
without any changes. In the study by Cardin, Xie, et al.
(2017), conditional-go decision rules are used in a multistage
stochastic programming framework to support design and
deployment of a hybrid waste-to-energy system. In another
study by Caunhye and Cardin (2017), the idea of condi-
tional-go decision rules is adapted in an approach inspired
from robust optimization. Separable models are obtained by
relaxing the non-anticipativity constraints typically associ-
ated with such problems. In Harper and Thurston (2008),
decision rules are employed to address redesign issues in the
face of environmental impacts during system oper-
ational changes.

3. Methodology

This work illustrates the contributions of real options to a
generic GEP problem under uncertainty in supply capacities
due to intermittent renewable energy sources. For a compre-
hensive outlook on the savings brought about by options on
generator addition, six model cases are evaluated. Case 1 is
a deterministic GEP problem where generator supply capaci-
ties are pre-set to their average values. Case 2 introduces
uncertainty in the Case 1 model via generator supply cap-
acity scenarios produced by Monte Carlo sampling from
assumed probability distributions. It is used as a benchmark
to calculate the expected value of flexibility (EVoF), follow-
ing the approach typically used in the literature on flexibility
in design and real options (Dixit and Pindyck, 1994;
Trigeorgis, 1996; de Neufville and Scholtes, 2011; Cardin,
2014). Quantifying EVoF is important, as it enables deter-
mining the value added by flexibility for a specific system
and strategy. Case 3 applies the concept of real options on
generator addition in an idealistic setting. In this setting, the
decision maker has perfect foresight on uncertainty realiza-
tions and deploys options based on this information. Case 3
is used as a benchmark to calculate the expected value of
perfect information (EVPI), a traditionally used metric to
evaluate the importance of uncertainties in stochastic pro-
gramming models (Birge, 1982). It represents the maximum
one should be willing to pay for complete information about
the future. It provides a theoretical upper bound on EVoF,
which typically cannot be achieved in practice, due to non-
anticipative decision-making. Case 4 and Case 5 apply real
options on generator addition in a realistic setting using a
decision rule-based approach where decision-making is non-
anticipative (i.e., meaning that the decision maker only has
information about past uncertainty realizations). Case 4
employs a conditional-go decision rule on options deploy-
ment. The conditional-go rule, broadly speaking, is an
options deployment method where deployment is prescribed
only if some conditions on past uncertainty realizations are
satisfied. It offers an easily interpretable guideline for deci-
sion makers on how and when to deploy options. Given
that a conditional-go rule is an approximated decision
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policy, it sacrifices optimality as compared with decisions
made with perfect foresight, but provides a readily applicable
guideline for implementation in operations that do not vio-
late non-anticipativity. Case 5 generalizes the conditional-go
rule using the concept of finite adaptability to provide even
more flexibility. Finite adaptability also follows the if-then-
else structure of conditional-go rules, but allows a greater
number of conditions on past uncertainty realizations and a
cataloge of different options on generator deployment, thus
reducing the expected value gap as compared with decisions
made with perfect foresight. Case 6 is a model for optimal
options deployment. This is an optimally flexible model,
that is, one that optimizes real options without decision
rules. Although decision rules are intuitive and offer inter-
pretable approaches to decision-making, they are approxi-
mations and, therefore, generally suboptimal. Case 6 offers a
benchmark to evaluate this suboptimality.

3.1. Case 1: Deterministic approach

As a base-case, GEP is modeled with a classic deterministic
optimization problem where generator output capacities are
taken to be their average values. The optimization problem
is a mixed-integer programming model with integer deci-
sions on the numbers and types of generators to add in
every time period and continuous decisions on the amount
of power to produce from these generators so as to meet
electricity demands while satisfying output capacity con-
straints. Mathematically, the model is as follows:

min
X
i2I

X
t2 T½ �

csetit
ð1þ rÞt xit þ

cgenit

ð1þ rÞt yit
 !

(1)

s:t:yit � v̂it
X
s2 t½ �

xis 8i 2 I, t 2 T½ � (2)

X
i2I

yit ¼ dt 8t 2 T½ � (3)

xit 2 Zþ, yit 2 Rþ 8i 2 I, t 2 T½ �: (4)

The objective function (1) minimizes the total discounted
cost of generator installation and power generation.
Generator capacity constraints are formulated in (2) and
demand satisfaction is enforced in constraint (3). Sign and
domain constraints on decision variables are ensured in (4).
The model presented here, as well as all subsequent models
in this article, are cost minimization models. They account
for investor incentivization through the positive discount
rate used, which captures risk–return tradeoffs typically
observed in industry, and reflective of the data used in the
Midwest U.S. case study (Jin et al., 2011). Cost minimization
is preferred to profit maximization because the latter
requires an in-depth analysis of market dynamics to deter-
mine the selling price of electricity as more generators are
installed. The scope of the current article is limited to the
development of novel decision rules for strategic generation
expansion planning over time, explicitly accounting for
uncertainty and flexibility. Thus, intricate issues related to
plant owernship and contractual arrangements are not

considered. It is assumed that the sites for deploying the
plants are known and set in advance, similar to what is
done in Jin et al. (2011).

3.2. Case 2: Two-stage stochastic programming approach

Building upon the deterministic model, uncertainty is intro-
duced in the output capacities. A set of scenarios X of out-
put capacities is sampled from a pre-set probability
distribution (variations to this distribution are explored later
in this article) and a two-stage stochastic programming
model is proposed whereby generator setup decisions are
modeled as here-and-now decisions and power generation
decisions are construed as wait-and-see or recourse decisions.
This means that setup decisions are made independent of
uncertainty realizations, whereas generation decisions are
made dependent on uncertainty realizations. The objective
function becomes the sum of the total discounted installa-
tion cost and the expected total discounted generation cost
over all scenarios. The mathematical model is:

min
X
i2I

X
t2 T½ �

csetit
ð1þ rÞt xit þ

X
x2X

pxQðx,xÞ (5)

s:t: xit 2 Zþ 8i 2 I, t 2 T½ �
and where

Qðx,xÞ ¼ min
X
i2I

X
t2 T½ �

cgenit

ð1þ rÞt yitx
(6)

s:t: yitx � vitx
X
s2 t½ �

xis 8i 2 I, t 2 T½ � (7)

X
i2I

yitx ¼ dt 8t 2 T½ � (8)

yitx 2 Rþ 8i 2 I, t 2 T½ �: (9)

The two-stage stochastic programming model has subtle
but substantial differences from the deterministic model.
The first difference is in the objective function. For the sto-
chastic programming case, the objective (5) is the minimiza-
tion of the sum of the total discounted setup cost and
expectation over realized scenarios of uncertain parameters
of a recourse function. The recourse function (also termed
the second-stage model) is an optimization model in its own
right, where the discounted total power generation cost (6)
is minimized. The second difference from the deterministic
model is that power generation decisions are dependent on
scenario x 2 X: This is because generator output capacity
limits are dependent on x. Capacity and demand satisfac-
tion constraints are formulated in (7) and (8), respectively.
The two-stage structure is similar to the one used in Jin
et al. (2011), with fixed/robust generator addition and scen-
ario-dependent power generation. Generator addition deci-
sions are strategic, whereas power generation decisions are
operational. In general, strategic decisions are long-term and
cannot be instantly changed or adjusted with scenarios.
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3.2.1. Challenges posed by the two-stage stochastic pro-
gramming approach

A case can be made that fixing generator additions prior to
all uncertain generator output capacity realizations is an
overly rigid way of planning for the future, and especially
the long-term future. The stochastic programming method
in Case 2 prescribes those fixed generator addition decisions
based on a pre-determined set of scenarios constructed from
historical data, when in reality the long-term future can
deviate significantly from the past. This reality is especially
pronounced in power systems generation expansion plan-
ning, where the output capacities of “green” generators rely
heavily on weather conditions, for which it is notoriously
difficult to provide long-range forecasts because of well-
established erratic weather fluctuations due to climate
change. One could argue that using a multi-stage stochastic
programming approach with a practicable allowance for
scenario-dependent generator additions would solve the
rigidity of the two-stage approach. Although the multi-stage
stochastic programming approach is theoretically sound, it
brings important numerical and practical challenges that can
make it difficult to implement, particularly for the problem
considered in this article. First, a multi-stage stochastic pro-
gramming approach requires the estimations of conditional
scenario probabilities that are hard to obtain and are most
of the time assigned arbitrary values, leading to a highly
biased perceived value-addition of “optimal” decisions and
poor out-of-sample performances, a phenomenon commonly
referred to as the optimizer’s curse (Smith and Winkler,
2006). Second, multi-stage stochastic programming with
scenario-dependent generator additions lends itself to black-
box implementation, meaning that practitioners using it
would have no intuition on the reasoning that lies behind
the generator addition decisions, and would therefore, need
to accept making hefty investment decisions without under-
standing the underlying rationale. The next section of this
article proposes real options with conditional-go rules as a
way to allow flexibility in the generator addition decisions,
without the numerical complexity, conditional probability
estimations, and black-box disadvantages of classic multi-
stage stochastic programming. Moreover, the decision rules
approach is intuitive in nature, making it much easier for
managers and owners to apply in operations. Moreover, the
decision rules approach is intuitive in nature, making it
much easier for managers and owners to apply in operations
(Cardin, Xie, et al., 2017).

3.3. Real options for flexibility

To incorporate strategic flexibility (discriminating from
“operational flexibility”, for which recourse decisions are
already provided in the stochastic model), options on gener-
ator installation deferment are added to the model. For a
comprehensive exploration of real options, three variants of
the stochastic programming model are provided. The first
variant represents an ideal, but unrealistic, case where the
decision maker has perfect information about all past and
future uncertainty realizations in any time period. The

second variant implements a non-anticipative conditional-go
decision rule on generator options. The third variant uses a
finite adaptability mechanism to generalize the conditional-
go rule. These variants are explained below.

3.3.1. Case 3: Perfect uncertainty realization information
This is a simple baseline model where the decision maker is
able to enable real options on generator addition with per-
fect foresight on future uncertainty realizations. In essence,
this model can be viewed as an anticipative stochastic pro-
gramming model where generator setup decisions are
dependent on scenarios. The model is formulated below,
with the main purpose of providing a comparison baseline
for upcoming decision rule models:

min
X
x2X

px
X
i2I

X
t2½T�

�
csetit

ð1þ rÞt x
o
itx þ cgenit

ð1þ rÞt yitx
�

(10)

s:t: ð8Þ
and

yitx � vitx
X
s2½t�

xoisx 8i 2 I, t 2 ½T�, x 2 X
(11)

xoitx 2 Zþ, yitx 2 Rþ 8i 2 I, t 2 T½ �, x 2 X: (12)

This model is a single-stage stochastic programming model
where all decision variables are scenario-dependent. The
objective function (10) is the minimization of the total expected
discounted cost of setup and generation, with px denoting the
probability of scenario x 2 X happening. The constraints (11)
and (12) are capacity and sign constraints, respectively,
adjusted with scenario-dependent generator setup.

3.3.2. Case 4: Conditional-go decision rule
Case 3 is an idealized situation of perfect foresight. It means
that the decision maker knows with certainty the scenario
realizations for the whole planning horizon, and is therefore,
able to implement the optimal strategic generator addition
plan for each of these realizations. Realistically, it is almost
impossible for decision makers to perfectly forecast scenario
realizations. Furthermore, it takes time to build generators.
Decisions at a time period are typically made based on past
uncertainty realizations, which in stochastic programming
literature is called non-anticipativity. Under non-anticipativ-
ity and scenario-dependent generator addition, the two-stage
model becomes a multi-stage model where decisions in each
time period are based on the history of uncertainty realiza-
tions. This is due to constraint (11) where the power gener-
ated from a generator type in a period t depends on the
total number of generators of that type setup from periods 1
to t. The main disadvantage of this approach is that it
requires the decision maker to draw up a multi-level scen-
ario tree and optimize decision-making for this particular
scenario tree, leaving the possibility of bad out-of-sample
performances. Furthermore, the multi-stage scenario tree
requires the estimation of conditional probabilities, which
may be inaccurate or even impossible in some cases. This
work proposes a decision-making paradigm that provides
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the decision maker with simple guidelines, called decision
rules, that are scenario-independent, to simplify and general-
ize decision-making.

The decision-making paradigm proposed is a conditional-
go decision rule. The word “conditional-go” refers to an if-
then-else type statement, where options are exercised under
some cases of output capacity realizations and not exercised
otherwise. The rule in this article is as such: At a time period
t, if the Normalized Total Output Capacity Realization
(NOCR) of a generator of type i until time period t � 1 is
below an optimized threshold value, then the decision maker
exercises expansion options for generator of type i. Else, if
that NOCR is greater than or equal to the threshold value,
options are not exercised. Mathematically, the NOCR of a
generator of type i at time t in scenario x is defined as

Ritx ¼
P

s2 t�1½ � visx �minx2Xf
P

s2 t�1½ � visxg
maxx2Xf

P
s2 t�1½ � visxg �minx2Xf

P
s2 t�1½ � visxg

:

The NOCR is calculated a priori from the output capacity
realizations and is a unity-based normalization procedure that
brings all values in the range ½0, 1�: This normalization also
yields normalized threshold values in the range ½0, 1�: It has
the quality of improving the interpretability of thresholds. For
example, a threshold value of zero means that the decision
maker should never exercise options and conversely, a thresh-
old value of one indicates to the decision maker that options
should always be exercised. The conditional-go decision rule
allows the decision maker the flexibility to change generator
setup decisions as new data are revealed. Note that the non-
anticipativity property that is characteristic of multi-stage sto-
chastic programming models is maintained here, as the
NOCR at time t is calculated from the cumulative output cap-
acity realization until time t – 1.

The worst performance of the rule is the optimal solution
of Case 2 and this is achieved when all thresholds are zero,
effectively eliminating options and fixing generator addition.
The main advantage of the decision rule is that it acts as
simple guidelines, in the form of optimal threshold values
and options deployment, to decision makers. These guide-
lines are applicable to cases where actual generator capacity
realizations are different from every scenario considered in
set X. The model below optimizes both the threshold values
and the number of generators to be deployed as options. Let
½Ta� ¼ ½T� n ½a�, where “n” is the notation for the relative
complement, meaning that ½T� n ½a� denotes the set of ele-
ments that are in ½T� but not in ½a�: The set of time periods
for which options on generators of type i are “exerciseable”
is denoted by Ci ¼ ft 2 ½T1� : t þ ki � Tg and the stochastic
programming model with conditional-go decision rules is

min
X
i2I

X
t2½T�

csetit
ð1þ rÞtxit

þ
X
x2X

px
X
i2I

X
t2½T�

cgenit

ð1þ rÞtyitx þ
X
i2I

X
t2½Tkiþ1�

csetit
ð1þ rÞtx

o
itx

0
@

1
A
(13)

s:t: ð8Þ
and

yitx � vitx
X
s2½t�

xis þ
X

s2½tkiþ1�
xoisx 8i 2 I, t 2 ½Tkiþ1�,x 2 X

(14)

yitx � vitx
X
s2½t�

xis 8i 2 I, t 2 ½ki þ 1�,x 2 X (15)

ðRitx þ �Þeitx � ait 8i 2 I, t 2 Ci,x 2 X (16)

Ritxð1� eitxÞ � ait � eitx 8i 2 I, t 2 Ci,x 2 X (17)

xoiðtþkiÞx � biðtþkiÞ 8i 2 I, t 2 Ci,x 2 X (18)

xoiðtþkiÞx � Meitx 8i 2 I, t 2 Ci,x 2 X (19)

xoiðtþkiÞx � biðtþkiÞ �Mð1� eitxÞ 8i 2 I, t 2 Ci,x 2 X

(20)

biðtþkiÞ �
1
jXj
X
x2X

eitx 8i 2 I, t 2 Ci (21)

biðtþkiÞ � M
X
x2X

eitx 8i 2 I, t 2 Ci (22)

xit 2 Zþ, yitx, ais 2 Rþ, eisx 2 f0, 1g 8i 2 I, t 2 T½ �,
s 2 Ci,x 2 X (23)

xoitx,bit 2 Zþ 8i 2 I, t 2 Tkiþ1½ �,x 2 X: (24)

The objective function (13) is the minimization of the
sum of the total discounted cost of fixed generator setup
and the expected total discounted cost of power generation
and options deployment. Constraints (14) and (15) are cap-
acity constraints, taking into consideration, the time to build
generators when they are exercised as options. Since deci-
sions on options exercising are updated in every time
period, the time taken for a generator option to become
fully operational is an important consideration. Constraint
(14) provides capacity bounds for time periods ½Tkiþ1� ¼
fki þ 1, :::,Tg, which are the time periods where it is pos-
sible for deployed options for generator type i to start oper-
ation. Constraint (15) provides capacity bounds for time
period ½ki þ 1� ¼ f1, :::, ki þ 1g, which are the time periods
where it is not possible for generator options of type i to
start operation, given a time-to-build of ki. These capacity
bounds therefore depend only on fixed generator deploy-
ments. Constraints (16)–(20) model the conditional-go rule.
Constraints (16) and (17) ensure that for a generator of type
i at time t in scenario x, the NOCR is below the threshold
value ait if and only if the binary variable eitx ¼ 1: When
eitx ¼ 1, constraint (16) becomes Ritx � ait � � and when
eitx ¼ 0, constraint (17) is Ritx � ait: Constraints (18) to
(20) ensure that if expansion options are exercised for a
generator of type i at time t, a quantity of biðtþkiÞ generators
become operational t þ ki time periods later and that if
expansion options are not exercised, no generators are
added. When eitx ¼ 1, constraints (18) and (20) yield
xoiðtþkiÞx ¼ biðtþkiÞ and when eitx ¼ 0, constraint (19) guaran-
tees that xoiðtþkiÞx ¼ 0: Constraint (21) enforces the condition
that if an option exercising decision is made, the number of
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generators deployed must be at least one. This prevents the
model from considering zero deployment as a possible real
options decision. Constraint (22), conversely, guarantees that
if a decision is made to not exercise options, no generators
are deployed. Constraints (23) and (24) specify the decision
variables of the model.

Note on NOCR: In this work, output capacities are the
only uncertain parameters and as such, the conditional-go
rule is based on NOCR, a function of output capacities.
However, the conditional-go rule is not restrictive, in the
sense that different metrics can be used to adapt it if more
parameters such as costs and demands are uncertain. For
example, reserve margins such as those described in
Hemmati et al. (2013), which are functions of demands and
output capacities, can replace NOCR to tailor the decision
rule for cases when both demands and capacities
are uncertain.

Illustration of the decision-making paradigm. To fully grasp
the decision-making paradigm under the conditional-go
rule, it is essential to understand the chronology of decision-
making in stochastic programming. Prior to any uncertainty
realization, the decision maker solves the model for Case 4,
with all possible scenarios of uncertain parameters as input.
The model outputs an optimal decision vector
ðx�, y�, a�, e�, xo�,b�Þ: Consider a simple situation with one
generator type, two scenarios, and a 3-year planning hori-
zon. Suppose that the model for Case 4 gives optimal deci-
sions (we only illustrate those decision variables that
showcase the conditional-go rule here) x� ¼ ð1, 1, 2Þ, a� ¼
ð0, 0:2, 0:5Þ and b� ¼ ð0, 2, 3Þ, where a� is in MW. The deci-
sion vector x� is a fixed deployment plan for generators and
indicates that one generator should be deployed at time
t¼ 1 and at time t¼ 2 and two generators should be
deployed at time t¼ 3. Suppose that the output capacity
realizations at times 1, 2, and 3 are (2, 3), (2, 5), (3, 8),
respectively, for the two scenarios. This means that in the
first time period, the generator can produce a maximum of
2MW of power in the first scenario and 3MW in the
second scenario, in the second time period, it can produce a
maximum of 2MW of power in the first scenario and
5MW in the second scenario, and in the third time period,
it can produce a maximum of 3MW of power in the first
scenario and 8MW in the second scenario. Let us illustrate
how decision-making is conducted as data is revealed.
Suppose that at time t¼ 1, scenario 2 happens. The decision
maker has one generator available from the fixed deploy-
ment and generates power from it to satisfy demands. At
time t¼ 2, the decision maker possesses historical data on
the output capacity at time t¼ 1 and can calculate the
NOCR as (3–2)/(3–2)¼1. Since this is greater than the
threshold value a�2 ¼ 0:2, no option is exercised. Now, at
time t¼ 2, scenario 1 happens. The decision maker has two
generators from fixed deployments and therefore, 2� 2 ¼
4MW of power available to satisfy demands. At time t¼ 3,
the decision maker has historical data on scenario realiza-
tions for times 1 and 2. The NOCR is ((3þ 2)–(2þ 2))/
(3þ 5)–(2þ 2))¼0.25. Since this is smaller than the

threshold value a�3 ¼ 0:5, options are exercised and there-
fore, b�3 ¼ 3 generators are deployed (assuming a time-to-
build of zero), in addition to the two generators already
planned for in the fixed deployment plan. Note that if scen-
ario 2 had happened at time t¼ 2, the NOCR for time t¼ 3
would be 0.75, instead of 0.25, and options would not have
been deployed. This illustrates the concept of flexibility
through the delaying of strategic decisions until further
information is revealed. It also shows the power of flexibility
in protecting against downside risks by avoiding generator
deployment when unnecessary. In contrast, the model for
Case 2 would have fixed all generator deployments, irre-
spective of the evolution of available information. This pro-
vides a useful benchmark (or baseline) from which one can
measure the improvement brought about by flexibility, and
quantified as the EVoF. Case 3 is a situation of complete
flexibility that can only be implemented when perfect infor-
mation is considered. This means that at time t¼ 1, the
decision maker knows exactly what scenarios will happen in
every time period and implements the generator deployment
plan for that specific set of scenario realizations. Case 3
effectively gives a theoretical upper bound on EVoF, which
we term the EVPI to conform to conventional stochastic
programming literature (Birge, 1982). This case is unrealiz-
able in practice, although it is instructive in terms of evalu-
ating the decision maker’s willingness to pay to embed
flexibility in a power system.

3.3.3. Case 5: Finite adaptability
The conditional-go principle is that of deciding on a single
threshold value per generator type in every time period.
This means that a single condition is used per generator
type in every time period. This section proposes a further
enhancement of the conditional-go principle through a
generalization with multiple thresholds per time period per
generator. The generalization is analogous to the concept
of finite adaptability used in robust optimization
(Bertsimas and Caramanis, 2010). Under a vector
ðait1, :::, aitPÞ of P threshold values and a set ðbit2, :::, bitPÞ
forming a catalogue of P – 1 options for every generator
type i in time period t, the generalized finite adaptability
decision rule, formally defined, becomes: if aitp�1 � Ritx <
aitp, exercise bitp, 8p 2 ½P1�, where ait1 ¼ 0 and aitP ¼
1þ �: Note that when P¼ 3, this reduces to an enhanced
version of the conditional-go rule, in the sense that if
Ritx < ait2, an option quantity of bit2 is deployed, else an
option of bit3 is deployed where, unlike the conditional-go
decision rule, bit3 is not necessarily zero. The model under
finite adaptability decision rules is:

min
X
i2I

X
t2 T½ �

csetit
ð1þ rÞt xit

þ
X
x2X

px
X
i2I

X
t2 T½ �

cgenit

ð1þ rÞt yitx þ
X
i2I

X
t2 Tkiþ1½ �

csetit
ð1þ rÞt x

o
itx

0
@

1
A

(25)
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s:t: ð8Þ, ð14Þ, ð15Þ, ð23Þ
and
Ritx � aitp þ 1� eitxp � �eitxp 8i 2 I, t 2 Ci,x 2 X, p 2 P1½ �

(26)

Ritx � aitðp�1Þ þ eitxp � 1 8i 2 I, t 2 Ci,x 2 X, p 2 P1½ �
(27)

xoiðtþkiÞx � biðtþkiÞpþMð1� eitxpÞ 8i2 I, t 2Ci,x2X,p2 P1½ �
(28)

xoiðtþkiÞx � biðtþkiÞp�Mð1� eitxpÞ 8i2 I, t 2Ci,x2X,p2 P1½ �
(29)

biðtþkiÞp �M
X
x2X

eitxp 8i2 I, t2Ci,p2 P1½ � (30)

aitp� aitðp�1Þ þd 8i2 I, t 2Ci,p2 P1½ � (31)

ait1 ¼ 0 8i2 I, t2Ci (32)

aitP ¼ 1þ � 8i2 I, t2Ci (33)

aitp 2Rþ,eitxp0 2 f0,1g 8i2 I, t2Ci,x2X,p2 P½ �,p0 2 P1½ �
(34)

xoitx,bitp 2Zþ 8i2 I, t 2 Tkiþ1½ �,x2X,p2 P1½ �: (35)

The objective function is the same as for Case 4.
Constraints (26) and (27) make sure that if aitp�1 � Ritx <
aitp, options for partition p are exercised. Constraints (28)
and (29) stipulate that if option exercising is carried out on
generators of type i in time t for partition p, a number
biðtþkiÞp options become available ki time periods later.
Constraint (30) ensures that if options are not exercised,
zero generators are deployed. Constraints (31) to (33) for-
malize bounds on threshold values. The term d is a min-
imum threshold value change that the decision maker needs
to observe before changing options decisions. Constraints
(34) and (35) specify the decision variables of the model.

In the finite adaptability model, there is a clear trade-off
between complexity and optimality. If an infinite number of
partitions is chosen, the model becomes akin to a perfect-
information case. In less extreme cases, as the number of
partitions is increased, the model gives better solutions.
However, the number of constraints increases, sacrificing
model tractability.

3.3.4. Case 6: Two-stage stochastic programming with
generator installation recourse

In order to provide a legitimate benchmark to evaluate the
sub-optimality of both the conditional-go rule and the finite
adaptability rule, the following model is proposed wherein
recourse decisions are allowed on generator installations,
without decision rules. This is different from the model with
perfect information (Case 3) in that both first- and second-
stage generator additions are allowed, non-anticipativity is
maintained, and the time taken to build generators are also
considered:

min
X
i2I

X
t2 T½ �

csetit
ð1þ rÞt xit

þ
X
x2X

px
X
i2I

X
t2 T½ �

cgenit

ð1þ rÞt yitx þ
X
i2I

X
t2 Tkiþ1½ �

csetit
ð1þ rÞt x

o
itx

0
@

1
A

(36)

s:t:ð8Þ
and

yitx � vitx
X
s2 t½ �

xis þ
X

s2 tkiþ1½ �
xoisx 8i 2 I, t 2 Tkiþ1½ �,x 2 X

(37)

yitx � vitx
X
s2 t½ �

xis 8i 2 I, t 2 ki þ 1½ �,x 2 X (38)

xit 2 Zþ, yitx 2 Rþ 8i 2 I, t 2 T½ �,x 2 X (39)

xoitx 2 Zþ 8i 2 I, t 2 Tkiþ1½ �,x 2 X: (40)

This model is used to evaluate optimality losses when
implementing decision rules. The conditional-go and finite
adaptability decision rules, although providing decision
structures that are easy to understand and interpret, do lead
to optimality losses. Decision rules are, in essence, approxi-
mations of optimal decisions that offer more interpretable
rules of thumb for decision makers in order to make imple-
mentations less black-box, at the expense of optimality
losses. Modeling-wise, the difference between Case 6 and the
models with decision rules (Case 4 and Case 5) is that there
are no additional constraints imposed on recourse installa-
tion decisions. The constraints imposed in Case 4 and Case
5 are to structure real options deployment in such a way
that it follows the if–else rules. With respect to the decision
structure, whereas Case 4 and Case 5 output optimal thresh-
olds and options portfolios, Case 6 only outputs the scen-
ario-dependent generator installation plan.

3.4. Summary of trade-offs

Cases 1 to 6 trade off flexibility, implementability, and
numerical complexity to various degrees. In order to guide
practitioners on how to compare these models and apply
them appropriately, we summarize the trade-offs that exist
among the models and discuss the contexts in which each
model is best applied. As a reminder, Case 1 is the deter-
ministic model, Case 2 is the two-stage stochastic program-
ming model with fixed generator addition decisions, Case 3
is a theoretical model for planning under perfect informa-
tion, Case 4 is the stochastic programming model with real
options and the conditional-go decision rule, Case 5 is the
stochastic programming model with real options and the
finite adaptability decision rule, and Case 6 is the stochastic
programming model with real options and no decision rule.
Evidently, Case 3 is a purely theoretical model used to cal-
culate the expected value of perfect information, a common
metric used to evaluate stochastic programming models. We
therefore omit it from the following discussions.
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Flexibility. The flexibility of a system is its ability to react to
uncertainty. Case 1 yields the least flexible system since it does
not consider uncertainty at all and provides both a fixed gen-
erator addition plan and a fixed power generation plan. Case
2 offers operational flexibility by allowing power generation to
be uncertainty-dependent. Case 4 adds strategic flexibility via
a single set of real options on generator additions and if–else
conditions on the deployment of these options. Case 5 further
improves the flexibility by nesting more if–else conditions,
thereby allowing choices among multiple real option sets.
Case 6 yields the most flexible system, being optimally flexible,
in the sense that it is constructed without restrictions on the
set(s) of real options to be deployed and without any if–else
conditions. It finds the best option deployment strategy with-
out rule-of-thumb assumptions.

Implementability. The implementability of a model is the ease
with which the model can be put in practice, especially with
respect to future uncertainty realizations. Case 1 is the least
implementable model, since its reliance on fixed decisions for
nominal parameter values means that it is likely to severely
under-perform when these parameters vary. Although Case 2
and Case 6 address parameter uncertainties, they do so by
relying solely on historical data. Without decision rules, these
two models offer no insights to practitioners on the rationale
behind the optimal decisions, and therefore provide no com-
mon understanding on how best to react to future data. Case
4 and Case 5 provide rules of thumb to practitioners, via deci-
sion rules, to establish a common and interpretable decision-
making rationale for reacting to uncertainties.

Numerical complexity. The numerical complexity is the ease
with which a model can be solved. Case 1 is the easiest to solve,
with no constraints for flexibility implementation and no
attachment of decision variables or constraints to uncertainty
realizations. Case 2 increases in numerical complexity, as power
generation decisions are made for every uncertainty realization
and generator output capacities and demand satisfaction have
to be met for every uncertainty realization as well. In addition
to those, Case 6 contains real options decisions for every uncer-
tainty realization. Case 4 further increases in numerical com-
plexity by necessitating additional uncertainty-dependent
constraints and variables to represent the conditional-go rule.
Notably, binary decision variables are needed to represent the
if–else aspect of the rule. Case 5 is the one with the highest
numerical complexity, containing further decision variables
and constraints to represent the nested if–else conditions of the
finite adaptability decision rule. Table A in the Online
Supplemental Materials summarizes those insights, ranking the
models from 1 (best) to 5 (worst) in each category.

4. Case study

The various models developed are implemented in a demon-
stration GEP problem for Midwest U.S. with a planning
horizon of 10 years. In terms of wider applicability, these
models can be used in joint coordinated system planning,
such as that initiated in 2007 by Regional Transmission

Organizations and Independent System Operators in
Midwest and Northeast U.S. which conducted economic
studies with prescribed renewable penetration mandates (Jin
et al., 2011) and in the expansion of microgrids (Khodaei
et al., 2014). In addition, these models can be integrated in
GTEP problems to allow strategic flexibility. In GTEP prob-
lems, investments in generation expansion are conducted
jointly with grid/transmission expansion and the real
options and decision rule concepts provided in this work
can be incorporated in the generation phase of
GTEP problems.

Five candidate generators are available for deployment,
namely pulverized coal (PC), combined cycle (CC), combus-
tion turbine (CT), wind, and finallly integrated gasification
combined cycle (IGCC). The construction of this case study
is based on demand, setup cost, generation cost, output cap-
acity, and discount rate data provided in Jin et al. (2011).
To keep this article self-contained, the data is also described
here. The discount rate is a constant 8% over the whole
planning horizon. The forecast of the incremental peak elec-
tricity demand is shown in Table B of the Online
Supplemental Materials. Following the approach in Jin et al.
(2011), incremental demand data are used, the goal of the
GEP problem being to build an entirely new power system
to satisfy these incremental electricity demands over a 10-
year planning horizon. Table C of the Online Supplemental
Materials shows the setup and generation costs for each gen-
erator type. The setup/installation cost comprises the initial
capital investment to purchase the generator, as well as the
fixed operations and maintenance expenditure over the gen-
erators lifespan in the planning horizon. The generation cost
consists mostly of fuel cost and variable infrastructure
deterioration cost with usage. The nameplate generator
capacities are 650MW, 400MW, 210MW, 400MW, and
600MW for PC, CC, CT, Wind, and IGCC, respectively.
The time to build PC, CC, CT, Wind, and IGCC generators
are, in years, 6, 3, 2, 2, and 5, respectively. To characterize
output capacity losses, availability factors (which can be
viewed as percentages of up-times) are used, with averages
of 0.90, 0.90, 0.90, 0.35, and 0.90 for PC, CC, CT, Wind,
and IGCC, respectively. The uncertainty in generator capaci-
ties is characterised through uncertainty in availability fac-
tors. Probabilistically-distributed scenarios are generated
through Monte Carlo simulation from the distributions
shown in Table D of the Online Supplemental Materials.
The models in this article are solved using IBM-ILOG
CPLEX 12.6.

4.1. Results for baseline cases: Case 1, case 2, case 3,
and case 6

The optimal objective values of Case 1, Case 2, Case 3, and Case 6
are (in $billion) 28.5, 87.5, 41.9, and 45.7 respectively and the solu-
tion times are (in seconds) 0.22, 30.7, 174.6, and 55.8 for Case 1,
Case 2, Case 3, and Case 6, respectively. Case 2 and Case 6 are
solved over 1000 scenarios generated via Monte Carlo simulation.
These results show that the presence of uncertainty greatly
increases the optimal cost, due to the additional generators needed
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to hedge against uncertainty. Table E of the Online Supplemental
Materials compares the optimal setup decisions in the determinis-
tic model (Case 1) against those of the stochastic programming
model (Case 2) and the stochastic programming model with real
options and no decision rule (Case 6).

4.2. Results for case 4

Case 2 is the traditionally used method in the literature to tackle
GEP. The main issue with this methodology is that generator
setup decisions are fixed and cannot be changed as new uncer-
tainty realizations are revealed. Over the long term, circumstantial
changes risk making the proposed generator setup plan difficult,
or even impractical, to implement. Case 4 addresses the rigidity of
the setup plan by adding flexibility to the system design through
real options on generator setup. With the conditional-go decision
rules implemented in Case 4, an optimal solution is obtained
through Sample Average Approximation (SAA). In the SAA pro-
cedure, the model is first solved for a set of 50 scenarios to obtain
optimal threshold value results that are then entered as input
parameters in the model before solving over the 1000 scenarios
that were generated for Case 2. The normalization used for total
output capacity realizations is essential to keep threshold values
sample-independent and, thus, valid for the 1000-scenario model.
The optimal objective value for Case 4 is $87.2 billion. The SAA
results for Case 4 are shown in Table 1. Only the threshold values
greater than zero are shown for clarity.

The interpretation of Table 1 is as follows: Suppose the deci-
sion maker is in year 3. She calculates the NOCR until year 2
from past uncertainty realizations in every scenario and for
every generator. If, for a scenario, that value is less than 0.84
for wind generators, an option to add three wind generators is
exercised. Since the time to build wind generators is 2 years,
these three wind generators become fully deployed and func-
tional in year 5. An analysis of the results of Case 5 can be
found in the Online Supplemental Materials.

4.3. Summary of results

The results obtained in the previous sub-sections can be used
to quantify, on the one hand, the EVoF, and on the other
hand, the EVPI for different systems. The former is a measure
of how much economic value is added by explicit consider-
ation of uncertainty and flexibility, as compared with a rigid
or inflexible system. The latter is a measure of the upper
bound on EVoF specific to a given system, and is obtained by
comparing the expected performance of a flexible system with
the expected performance of a system that is optimized using
perfect foresight (i.e., adapting perfectly and flexibly to each

scenario). EVoF is important to quantify the added value from
flexibility for a specific system and strategy, considering deci-
sions that are non-anticipative and imperfect. Such analysis is
widely performed and accepted in the literature on real
options analysis and flexibility in design see Dixit and
Pindyck (1994); Trigeorgis (1996); de Neufville and Scholtes
(2011); and Cardin (2014). Here, Case 2 is used as a bench-
mark inflexible system, since investment decisions (i.e., setup
costs) are the same across all output capacity scenarios. EVPI
is a theoretical measure (i.e., unrealizable) that violates non-
anticipativity, a fundamental constraint in stochastic pro-
gramming. Quantifying EVPI is also important, nonetheless,
as it places an upper bound on EVoF, and therefore may affect
the willingness to pay by a decision maker to embed flexibility
in the design of a power system.

The following relationships can be derived, using the
expected value (EV) of cost for different systems:

EVoF ¼ EVInflexible � EVFlexible (41)

EVPI ¼ EVFlexible or Inflexible � EVPerfect Information (42)

0 � EVoF � EVPIMax (43)

In (41), the inflexible system is always Case 2, as it is the
benchmark rigid system, and the flexible systems are Cases
3-6. For Case 2, EVoF¼ 0 since the system is inflexible, and
for Case 3, EVoF ¼ 87:5�41:9 ¼ 45:6 billions, the theoret-
ical upper bound on the value added by flexibility. By simi-
lar principles, EVoF ¼ 0:3 billions for Case 4, for Case 5
EVoF ¼ 1:3 billions, and for Case 6 EVoF ¼ 41:8 billions.
The values for Case 4 and 5 are significantly lower than the
upper bound, due to non-anticipativity and the sub-optimal-
ities incurred by using decision rule approximations. The
value for Case 6 is close to the theoretical upper bound, as
Case 6 does not have any optimality loss due to decision
rules. The lesson here is that there is a significant price to
pay for interpretability. Although Case 6 yields significantly
higher EVoF, its solutions do not provide any rule of thumb
that will facilitate implementation, which means that practi-
tioners have to take its solution at face value and implement
it blindly. In (42), EVPI is measured by subtracting the
expected value for Case 3 (i.e., the system with perfect fore-
sight) from the expected value for Cases 2, 4, 5, and 6. For
Case 2, this leads to EVPI ¼ 87:5�41:9 ¼ 45:6 billions,
which is the same EVoF for Case 3. It is the highest EVPI
across all cases (referred as EVPIMax), since the potential for
flexibility is untapped. For Case 3, EVPI¼ 0 since there is
no further value improvement possible from flexibility under
perfect foresight. For Case 4 EVPI ¼ 45:3 billions, for Case

Table 1. Generator setup results from SAA for Case 4.

Year 1 2 3 4 5

Fixed 14 Wind, 1 IGCC 25 Wind 3 Wind 33 Wind 1 IGCC
Threshold – 0.13 for IGCC 0.84 for Wind 1.00 for Wind –
Options – – – – 3 Wind

Year 6 7 8 9 10

Fixed 2 Wind, 1 IGCC 1 IGCC – – –
Threshold – – 0.77 for Wind – –
Options 11 Wind 1 IGCC 146 Wind 1 Wind –
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5 EVPI ¼ 44:3 billions, and for Case 6 EVPI ¼ 3:8 billions.
EVPI for Case 5 is lower than EVPI for Case 4, as finite
adaptability provides greater flexibility than conditional-go
decision rules, thereby lowering the value discrepancy meas-
ured under perfect foresight. Case 6 has even lower EVPI, as
it provides an optimally flexible system, without perfect fore-
sight (non-anticipativity is maintained). Equation (43) cap-
tures the relationship between EVoF and EVPI. It represents
the fact that EVoF for flexible non-anticipative systems (i.e.,
Cases 4 and 5) is bounded from below at zero (i.e., Case 2)
and from above by EVoF of a flexible system with perfect
foresight (i.e., Case 3), which corresponds to EVPIMax from
Case 2. This relationship is confirmed by the results sum-
marized in Table 2.

5. Concluding remarks

This article addresses two important questions in GEP
research. First, it addresses the question of how to best incorp-
orate uncertainty in generator output capacities into a GEP
model. Second, it explores how to add strategic decision-mak-
ing flexibility through real options into a GEP model formula-
tion, with the goal of improving expected system
performance. To tackle these issues, six models are proposed,
each analyzing different aspects of GEP. The first model is a
deterministic model and the second is a stochastic program-
ming model with fixed generator setup plans. The second
model is used to analyze the effect of uncertainty and the
expected value of flexibility (EVoF). The third model assumes
that the decision maker has perfect foresight into uncertainty
realizations and reacts according to these realizations to for-
mulate different generator setup plans. This model is an ideal-
ized fully flexible model and is used to gauge the expected
value of perfect information (EVPI), which provides an upper
bound on EVoF. The fourth and fifth models implement flexi-
bility through real options on generator setup and non-antici-
pative decision rules. The fourth model implements a
conditional-go principle where thresholds are evaluated below
which options are exercised. The fifth model implements
finite adaptability decision rules whereby a metric of past
uncertainty realizations (in this article, a normalized total out-
put capacity realization metric is used) is partitioned, with dif-
ferent options decisions made in each partition. The sixth
model is a two-stage stochastic model with generator installa-
tion recourse. The six models are used in a demonstration
GEP case study in Midwest U.S., showing significant savings
when flexibility is implemented with the conditional-go prin-
ciple and with finite adaptability.

Nomenclature

Sets

I Set of generator types
½T� Set of running indices from 1 to T
X Set of scenarios

Parameters

vitx Output capacity of generator type i in period t in scen-
ario x

ki Number of time periods taken to install a generator of
type i

d Minimum threshold value change necessary to change
options decisions

T Planning horizon
csetit Setup cost for a generator of type i in period t

cgenit Unit power generation cost of generator type i in
period t

r Discount rate
dt Electricity demand in period t
v̂it Average output capacity of generator type i in period t
px Probability of occurrence of scenario x
M A big number
� A small number
jXj Cardinality of set X

Decision Variables

x it Number of generators of type i installed in period t
yit Power generated from generator type i in period t
xoitx Number of generators of type i installed in period t in

scenario x
yitx Power generated from generator type i in period t in

scenario x
eitx Binary variable for if options for generator type i are

exercised in period t in scenario x
ait Conditional-go threshold value for generator type i in

period t
bit Number of generators of type i installed as options in

period t under the conditional-go rule
aitp The pth threshold value for generator type i in period t

under the finite adaptability rule
eitxq Binary variable for if options for partition q of the finite

adaptability rule are exercised for generator type i in
period t in scenario x

bitq Number of generators of type i installed as options for
partition q in period t under the finite adaptability rule

Notes on contributors

Dr. Aakil M. Caunhye is a Lecturer in Business Analytics at the
University of Edinburgh Business School. His research focuses on
robust optimisation and stochastic programming, both of which are
mathematical modelling techniques that can be applied to a wide range
of cross disciplinary decision-making problems. He has worked on
novel model derivations, reformulations and algorithmic solution
approaches for classes of multi-stage robust optimisation and stochastic
programming models such as network optimisation, combinatorial
optimisation, and mixed integer optimization. Application areas
include integrated power grid expansion planning, disaster response
planning, real options analysis in engineering systems design, and
resilience improvement for critical infrastructure systems. Dr. Caunhye
holds a PhD in Systems and Engineering Management from Nanyang
Technological University, as well as MSc and BEng degrees in
Industrial and Systems Engineering from the National University of
Singapore. Prior to joining the University of Edinburgh, he served as a

Table 2 Summary of results for EVoF and EVPI.

Case Description EVoF ($, billions) EVPI ($, billions)

1 Deterministic N/A N/A
2 Benchmark Inflexible 0.0 45.6
3 FlexiblePerfect Information 45.6 0.0
4 Flexible, Conditional-go 0.3 45.3
5 Flexible, Finite Adaptability 1.3 44.3
6 Flexible, No Decision Rule 41.8 3.8

IISE TRANSACTIONS 11



Research Fellow as part of the Future Resilient Systems project in col-
laboration with ETH Z€urich, and as a Research Associate at Nanyang
Technological University. Notably, his paper co-authored with Dr.
Cardin entitled “An approach based on robust optimization and deci-
sion rules for analyzing real options in engin- eering systems design”
received the 2019 IISE Transactions Award for Best Application Paper
in Design and Manufacturing.

Dr. Michel-Alexandre Cardin is a Senior Lecturer (Associate Professor)
in Computational Aided Engineering at the Dyson School of Design
Engineering, Imperial College London, where he leads the Strategic
Engineering Laboratory. His work focuses on the development and
evaluation of new computational aided methodologies, digital proc-
esses, and algorithms to support the design of engineering systems,
with applications in infrastructure and financial systems. Before joining
Imperial College, Dr. Cardin worked as a Quantitative Researcher in
the hedge fund industry, developing strategies for derivatives trading
using machine learning techniques. He also worked as an Assistant
Professor at the National University of Singapore, where he served as
Principal Investigator on international collaborations like Future
Resilient Systems with ETH Z€urich, and Singapore-MIT Alliance for
Research and Technology. Dr. Cardin holds a PhD in Engineering
Systems and a Master of Science in Technology and Policy from MIT,
a Master of Applied Science in Aerospace Engineering from the
University of Toronto, Honors BSc in Physics from McGill University
in Canada, and graduate of the Space Science Program at the
International Space University. He is an Associate Editor for the ASME
Journal of Mechanical Design, and served on the Editorial Boards of
the INCOSE Journal Systems Engineering and IEEE Transactions on
Engineering Management.

Muhammad Rahmat completed his BEng in Industrial Systems
Engineering and Management at the National University of Singapore.
His Final Year Project focused on the analysis and design of flexibility
in engineering systems. Upon graduation, he worked as a financial ana-
lyst at the Singapore Ministry of Finance.

ORCID

Aakil M. Caunhye http://orcid.org/0000-0001-6841-9471
Michel-Alexandre Cardin http://orcid.org/0000-0002-2337-1133

References

Aghaei, J., Amjady, N., Baharvandi, A. and Akbari, M.-A. (2014)
Generation and transmission expansion planning: MILP–based
probabilistic model. IEEE Transactions on Power Systems, 29(4),
1592–1601.

Akbari, T., Rahimikian, A. and Kazemi, A. (2011) A multi-stage sto-
chastic transmission expansion planning method. Energy Conversion
and Management, 52(8-9), 2844–2853.

Alizadeh, B. and Jadid, S. (2011) Reliability constrained coordination of
generation and transmission expansion planning in power systems
using mixed integer programming. IET Generation, Transmission &
Distribution, 5(9), 948–960.

Antunes, C.H., Martins, A.G. and Brito, I.S. (2004) A multiple objective
mixed integer linear programming model for power generation
expansion planning. Energy, 29(4), 613–627.

Bertsimas, D. and Caramanis, C. (2010) Finite adaptability in multi-
stage linear optimization. IEEE Transactions on Automatic Control,
55(12), 2751–2766.

Bienstock, D. and Mattia, S. (2007) Using mixed-integer programming
to solve power grid blackout problems. Discrete Optimization, 4(1),
115–141.

Birge, J.R. (1982) The value of the stochastic solution in stochastic lin-
ear programs with fixed recourse. Mathematical Programming,
24(1), 314–325.

Cardin, M.-A. (2014) Enabling flexibility in engineering systems: A tax-
onomy of procedures and a design framework. Journal of
Mechanical Design, 136(1), 011005.

Cardin, M.-A., de Neufville, R. and Geltner, D.M. (2015) Design cata-
logs: A systematic approach to design and value flexibility in engin-
eering systems. Systems Engineering, 18(5), 453–471.

Cardin, M.-A. and Hu, J. (2016) Analyzing the tradeoffs between
economies of scale, time-value of money, and flexibility in design
under uncertainty: Study of centralized versus decentralized waste-
to-energy systems. Journal of Mechanical Design, 138(1), 011401.

Cardin, M.-A., Xie, Q., Ng, T.S., Wang, S. and Hu, J. (2017) An
approach for analyzing and managing flexibility in engineering sys-
tems design based on decision rules and multistage stochastic pro-
gramming. IISE Transactions, 49(1), 1–12.

Cardin, M.-A., Zhang, S. and Nuttall, W.J. (2017) Strategic real option
and flexibility analysis for nuclear power plants considering uncer-
tainty in electricity demand and public acceptance. Energy
Economics, 64, 226–237.

Caunhye, A.M. and Cardin, M.-A. (2017) An approach based on robust
optimization and decision rules for analyzing real options in engin-
eering systems design. IISE Transactions, 49(8), 753–767.

Caunhye, A.M. and Cardin, M.-A. (2018) Towards more resilient inte-
grated power grid capacity expansion: A robust optimization
approach with operational flexibility. Energy Economics, 72, 20–34.

Chen, W. and Yuan, C. (1999) A probabilistic-based design model for
achieving flexibility in design. Journal of Mechanical Design, 121(1),
77–83.

Choi, J., Mount, T.D. and Thomas, R.J. (2007) Transmission expansion
planning using contingency criteria. IEEE Transactions on Power
Systems, 22(4), 2249–2261.

Chuang, A.S., Wu, F. and Varaiya, P. (2001) A game-theoretic model
for generation expansion planning: Problem formulation and
numerical comparisons. IEEE Transactions on Power Systems, 16(4),
885–891.

de Neufville, R. and Scholtes, S. (2011) Flexibility in Engineering
Design. MIT Press, Cambridge, MA.

Dixit, A.K. and Pindyck, R. (1994) Investment under Uncertainty. NJ.
Princeton University Press, Princeton, NJ.

Ela, E. and Kirby, B. (2008) Ercot event on February 26, 2008: Lessons
learned. Technical report, National Renewable Energy Lab.(NREL),
Golden, CO.

Falugi, P., Konstantelos, I. and Strbac, G. (2017) Planning with mul-
tiple transmission and storage investment options under uncertainty:
A nested decomposition approach. IEEE Transactions on Power
Systems, 33(4), 3559–3572.

Frank, S. and Rebennack, S. (2016) An introduction to optimal power
flow: Theory, formulation, and examples. IIE Transactions, 48(12),
1172–1197.

Garstka, S.J. and Wets, R.J.-B. (1974) On decision rules in stochastic
programming. Mathematical Programming, 7(1), 117–143.

Giannelos, S., Konstantelos, I. and Strbac, G. (2018) Option value of
dynamic line rating and storage, in 2018 IEEE International Energy
Conference, IEEE Press, Piscataway, NJ, pp. 1–6.

Global Wind Energy Council (2016) Global wind report 2016 – annual
market update. Global Wind Energy Council, Brussels, Belgium.

Guma, A., Pearson, J., Wittels, K., de Neufville, R. and Geltner, D.
(2009) Vertical phasing as a corporate real estate strategy and devel-
opment option. Journal of Corporate Real Estate, 11(3), 144–157.

Harper, S.R. and Thurston, D.L. (2008) Incorporating environmental
impacts in strategic redesign of an engineered system. Journal of
Mechanical Design, 130(3), 031101.

Hemmati, R., Hooshmand, R.-A. and Khodabakhshian, A. (2013)
Reliability constrained generation expansion planning with consider-
ation of wind farms uncertainties in deregulated electricity market.
Energy Conversion and Management, 76, 517–526.

Jiang, R., Guan, Y. and Watson, J.-P. (2016) Risk-averse stochastic unit
commitment with incomplete information. IIE Transactions, 48(9),
838–854.

12 A. M. CAUNHYE ET AL.



Jin, S., Ryan, S.M., Watson, J.-P. and Woodruff, D.L. (2011) Modeling
and solving a large-scale generation expansion planning problem
under uncertainty. Energy Systems, 2(3-4), 209–242.

Jin, T., Yu, Y. and Elsayed, E. (2015) Reliability and quality control for
distributed wind/solar energy integration: A multi-criteria approach.
IIE Transactions, 47(10), 1122–1138.

Kamalinia, S. and Shahidehpour, M. (2010) Generation expansion plan-
ning in wind-thermal power systems. IET Generation, Transmission
& Distribution, 4(8), 940–951.

Khodaei, A., Bahramirad, S. and Shahidehpour, M. (2014) Microgrid
planning under uncertainty. IEEE Transactions on Power Systems,
30(5), 2417–2425.

L�opez, J.A., Ponnambalam, K. and Quintana, V.H. (2007) Generation
and transmission expansion under risk using stochastic program-
ming. IEEE Transactions on Power Systems, 22(3), 1369–1378.

Min, D. and Chung, J. (2013) Evaluation of the long-term power gen-
eration mix: The case study of South Korea’s energy policy. Energy
Policy, 62, 1544–1552.

Motamedi, A., Zareipour, H., Buygi, M.O. and Rosehart, W.D. (2010)
A transmission planning framework considering future generation
expansions in electricity markets. IEEE Transactions on Power
Systems, 25(4), 1987–1995.

Moulin, L.S., Poss, M. and Sagastiz�abal, C. (2010) Transmission expan-
sion planning with re-design. Energy Systems, 1(2), 113–139.

Myers, S.C. and Turnbull, S.M. (1977) Capital budgeting and the cap-
ital asset pricing model: Good news and bad news. The Journal of
Finance, 32(2), 321–333.

Papavasiliou, A., Oren, S.S. and O’Neill, R.P. (2011) Reserve require-
ments for wind power integration: A scenario-based stochastic pro-
gramming framework. IEEE Transactions on Power Systems, 26(4),
2197–2206.

Park, J.-B., Park, Y.-M., Won, J.-R. and Lee, K.Y. (2000) An improved
genetic algorithm for generation expansion planning. IEEE
Transactions on Power Systems, 15(3), 916–922.

Pereira, A.J. and Saraiva, J.T. (2011) Generation expansion planning
(GEP) – A long-term approach using system dynamics and genetic
algorithms (GAs). Energy, 36(8), 5180–5199.

Pinar, A., Meza, J., Donde, V. and Lesieutre, B. (2010) Optimization
strategies for the vulnerability analysis of the electric power grid.
SIAM Journal on Optimization, 20(4), 1786–1810.

Pozo, D., Sauma, E.E. and Contreras, J. (2012) A three-level static
MILP model for generation and transmission expansion planning.
IEEE Transactions on Power Systems, 28(1), 202–210.

Quelhas, A., Gil, E., McCalley, J.D. and Ryan, S.M. (2007) A multiper-
iod generalized network flow model of the US integrated energy sys-
tem: Part i–model description. IEEE Transactions on Power Systems,
22(2), 829–836.

Rebennack, S. (2014) Generation expansion planning under uncertainty
with emissions quotas. Electric Power Systems Research, 114, 78–85.

Roh, J.H., Shahidehpour, M. and Fu, Y. (2007) Market-based coordin-
ation of transmission and generation capacity planning. IEEE
Transactions on Power Systems, 22(4), 1406–1419.

Roh, J.H., Shahidehpour, M. and Wu, L. (2009) Market-based gener-
ation and transmission planning with uncertainties. IEEE
Transactions on Power Systems, 24(3), 1587–1598.

Ruiz, C. and Conejo, A.J. (2015) Robust transmission expansion plan-
ning. European Journal of Operational Research, 242(2), 390–401.

Samarakoon, H., Shrestha, R. and Fujiwara, O. (2001) A mixed integer
linear programming model for transmission expansion planning
with generation location selection. International Journal of Electrical
Power & Energy Systems, 23(4), 285–293.

Shapiro, A., Dentcheva, D. and Ruszczy�nski, A. (2009) Lectures on
Stochastic Programming: Modeling and Theory. SIAM, Philadelphia,
PA.

Sharan, I. and Balasubramanian, R. (2012) Integrated generation and
transmission expansion planning including power and fuel transpor-
tation constraints. Energy Policy, 43, 275–284.

Slochanal, S.M.R., Kannan, S. and Rengaraj, R. (2004) Generation
expansion planning in the competitive environment, in 2004
International Conference on Power System Technology, 2004.
PowerCon 2004, Volume 2, IEEE Press, Piscataway, NJ, pp.
1546–1549.

Smith, J.E. and Winkler, R.L. (2006) The optimizer’s curse: Skepticism
and postdecision surprise in decision analysis. Management Science,
52(3), 311–322.

Su, W., Wang, J. and Roh, J. (2013) Stochastic energy scheduling in
microgrids with intermittent renewable energy resources. IEEE
Transactions on Smart Grid, 5(4), 1876–1883.

Sweeney, J.L. (2013) California Electricity Crisis. Hoover Press, CA.
Tekiner, H., Coit, D.W. and Felder, F.A. (2010) Multi-period multi-

objective electricity generation expansion planning problem with
Monte-Carlo simulation. Electric Power Systems Research, 80(12),
1394–1405.

The PV Market alliance (2016) Global PV market report. http://www.
pvmarketalliance.com/pv-market-alliance-announces-the-2016-pv-
installations-at-75-gw-and-a-stable-market-in-2017/ (accessed 3
September 2021).

Trigeorgis, L. (1996) Real Options: Managerial Flexibility and Strategy
in Resource Allocation. MIT Press, Cambridge, MA.

Van der Weijde, A.H. and Hobbs, B.F. (2012) The economics of plan-
ning electricity transmission to accommodate renewables: Using
two-stage optimisation to evaluate flexibility and the cost of disre-
garding uncertainty. Energy Economics, 34(6), 2089–2101.

Vithayasrichareon, P., Riesz, J. and MacGill, I.F. (2015) Using renew-
ables to hedge against future electricity industry uncertainties–an
Australian case study. Energy Policy, 76, 43–56.

IISE TRANSACTIONS 13

http://www.pvmarketalliance.com/pv-market-alliance-announces-the-2016-pv-installations-at-75-gw-and-a-stable-market-in-2017/
http://www.pvmarketalliance.com/pv-market-alliance-announces-the-2016-pv-installations-at-75-gw-and-a-stable-market-in-2017/
http://www.pvmarketalliance.com/pv-market-alliance-announces-the-2016-pv-installations-at-75-gw-and-a-stable-market-in-2017/

	Abstract
	Introduction
	Related work
	Capacity expansion planning in power systems
	Real options analysis

	Methodology
	Case 1: Deterministic approach
	Case 2: Two-stage stochastic programming approach
	Challenges posed by the two-stage stochastic programming approach

	Real options for flexibility
	Case 3: Perfect uncertainty realization information
	Case 4: Conditional-go decision rule
	Illustration of the decision-making paradigm

	Case 5: Finite adaptability
	Case 6: Two-stage stochastic programming with generator installation recourse
	Summary of trade-offs
	Flexibility
	Implementability
	Numerical complexity



	Case study
	Results for baseline cases: Case 1, case 2, case 3, and case 6
	Results for case 4
	Summary of results

	Concluding remarks
	Nomenclature
	Sets
	Parameters
	Decision Variables
	Orcid
	References


