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BOUNDARY OF DISTRIBUTION SUPPORT GENERATOR (BDSG): SAMPLE GENERATION
ON THE BOUNDARY

Nikolaos Dionelis, Mehrdad Yaghoobi, Sotirios A. Tsaftaris

The University of Edinburgh, Edinburgh, UK

ABSTRACT

Generative models, such as Generative Adversarial Networks
(GANs), have been used for unsupervised anomaly detection.
While performance keeps improving, several limitations exist
particularly attributed to difficulties at capturing multimodal
supports and to the ability to approximate the underlying dis-
tribution closer to the tails, i.e. the boundary of the distribu-
tion’s support. This paper proposes an approach that attempts
to alleviate such shortcomings. We propose an invertible-
residual-network-based model, the Boundary of Distribution
Support Generator (BDSG). GANs generally do not guaran-
tee the existence of a probability distribution and here, we use
the recently developed Invertible Residual Network (IResNet)
and Residual Flow (ResFlow), for density estimation. These
models have not yet been used for anomaly detection. We
leverage IResNet and ResFlow for Out-of-Distribution (OoD)
sample detection and for sample generation on the bound-
ary using a compound loss function that forces the samples
to lie on the boundary. The BDSG addresses non-convex
support, disjoint components, and multimodal distributions.
Results on synthetic data and data from multimodal distribu-
tions, such as MNIST and CIFAR-10, demonstrate competi-
tive performance compared to methods from the literature.

Index Terms— Anomaly detection, invertible models

1. INTRODUCTION

Anomaly detection is the identification of samples different
from typical data [1, 2]. When anomalies are not known in ad-
vance, unsupervised learning with generative models is used.
The aim is to learn a model of “normality” with anomalies be-
ing detected as deviations from this model [3, 4]. Important
goals are reducing misdetections and false alarms, estimat-
ing the support of the “normal” data distribution, detecting
anomalies close to the support boundary, generating within-
distribution and Out-of-Distribution (OoD) data, and provid-
ing decision boundaries for inference of within and OoD.

Existing approaches to anomaly detection use probabil-
ity, reconstruction [5, 6], and domain based models. GANs
are trained to generate samples and fit the “normal” data dis-
tribution [7, 8]. During inference, an anomaly score of a
queried test sample, x⇤, is computed by evaluating the prob-

ability of obtaining x⇤ with the generator [9]. Such models
belong to the probability-based methods (e.g. AnoGAN) [10,
11]. However, these models do not directly address the major
problems of multimodal support and the ability to generate on
the tails/boundaries. Recent approaches have tried to improve
performance and alleviate shortcomings (e.g. MinLGAN and
FenceGAN) [12, 13]. At present, generative models based on
invertible residual networks, such as [14, 15], are lacking for
unsupervised anomaly detection [16, 17]. Anomaly detection
techniques show discernible limitations for detecting anoma-
lies near the support of multimodal distributions [18, 19].

This work aims at addressing these limitations. Our aim
is to detect abnormalities and generate samples on the bound-
ary of the underlying multimodal distribution of the “normal
data”. We train invertible models [14] to estimate the density
of typical samples and propose a loss function for the bound-
ary generator. We pay particular attention to anomalies close
to the boundary of the data distribution and to anomalies near
high-probability normal samples. We focus on the ability to
model multimodal distributions with non-convex support and
disjoint components. Our model is denoted by Boundary of
Distribution Support Generator (BDSG). It achieves compet-
itive performance on synthetic and typically used benchmark
data. In summary, our contributions are: (a) Training invert-
ible generative models and evaluating the use of inference for
anomaly detection, and (b) Sample generation on the tails.

2. RELATED WORK: BOUNDARY GENERATION

The GAN discriminator estimates the distance between the
target and model distributions, while the generator learns the
mapping from the latent space, z, to the data space, x. The
GAN optimization is argmin✓✓✓g

dist(px(x), pg(x)), where the
distance metric is given by argmax✓✓✓d

f(D, px(x), pg(x)), e.g.
dist(x, y) = ||x � y||1 = maxi|xi � yi|. The GAN loss is

argmin✓✓✓g
argmax✓✓✓d

Ex[log(D(x;✓✓✓d))]
+ Ez[log(1�D(G(z;✓✓✓g);✓✓✓d))],

(1)

where z ⇠ pz(z), x ⇠ px(x), and G(z) ⇠ pg(x). To per-
form anomaly detection, we need to change (1) and create
a discriminator that can distinguish normal from abnormal.
Yet, this implies the ability to have learned all underlying
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Fig. 1. Flowchart of BDSG to learn the mapping B : z ! x.

modes and have covered the full support of the distribution
from limited data. Unfortunately, GANs tend to learn the
mass of the underlying multimodal distribution well, focus-
ing less towards the low probability regions, i.e. the tails, and
have discernible problems with mode collapse [20, 19].

MinLGAN uses minimum likelihood regularization to
generate data on the tail of the normal data distribution [12].
FenceGAN performs both sample generation on the boundary
and anomaly detection using the generator and discrimina-
tor, respectively [13]. The generator loss is reinforced with
bespoke losses to help model the boundary and the output of
the discriminator is used as an anomaly threshold. However,
FenceGAN does not succeed to form multimodal supports
and to detect anomalies near discontinuous boundaries.

3. THE PROPOSED BDSG MODEL

We propose the BDSG to detect strong anomalies which are
near the boundary of the normal data distribution. The BDSG
flowchart is shown in Fig. 1. The premise of our approach
is to use two generators: G models data of the distribution
and B models data that lie close to the support boundary of
the distribution. Specifically, we first train an invertible gen-
erator, G(z), in the form of IResNet [14] and ResFlow [22],
G(z) ⇠ pg(x). z follows a standard Gaussian distribution,
z ⇠ N(0, I), and the mapping from the latent space, z 2 Rd,
to the data space, x 2 Rd, is given by G(z). The inverse
is given by G�1(x). The second step is to train a generator,
B(z), to perform sample generation on the support boundary
of the data distribution, learning the mapping B : z ! x.

We now formulate the BDSG loss function. The first term,
L0(✓✓✓b, z), guides to find the boundary, while the second term,
L1(✓✓✓b, z), penalizes deviations from the “normal class” using
the distance from a point to a set. The third term, L2(✓✓✓b, z), is
for the scattering of the B(z) samples in the x space. L2(✓✓✓b, z)
is for dispersion and diversity and is the ratio of distances in
the z and x spaces. With L2(✓✓✓b, z), BDSG addresses the mode
collapse problem. The loss function for B(z;✓✓✓b) is

argmin✓✓✓b
L(✓✓✓b, z, x, G,�1,�2), (2)

where the loss, L(✓✓✓b, z, x, G,�1,�2), is given by

L0(✓✓✓b, z, G) + �1L1(✓✓✓b, z, x) + �2L2(✓✓✓b, z) (3)

=
1

N

NX

i=1


pg(B(zi;✓✓✓b)) + �1

M
min
j=1

||B(zi;✓✓✓b)� xj ||2

+�2
1

N � 1

NX

j=1, j 6=i

||zi � zj ||2
||B(zi;✓✓✓b)�B(zj ;✓✓✓b)||2

3

5 ,

(4)

where �1 and �2 are hyper-parameters of the BDSG. In (3)
and (4), the first term, L0(✓✓✓b, z, G), is given by

1

N

NX

i=1

h
pz(G

�1(B(zi;✓✓✓b))) |det JG(B(zi;✓✓✓b))|�1
i

(5)

=
1

N

NX

i=1

⇥
exp(log(pz(G

�1(B(zi;✓✓✓b))))

� log(|det JG(B(zi;✓✓✓b))|))] ,

(6)

where log(pz(G�1(B(zi)))) and log(|det JG(B(zi))|) are es-
timated by an invertible model. The ✓✓✓b parameters are ob-
tained by running Gradient Descent on L(✓✓✓b, z, x), which can
decrease to zero and is written in terms of the sample size, M ,
and the batch size, N  M . In the loss in (4), the effective
dimensionality of z ⇠ N(0, I) is lower than that of x.

3.1. BDSG Benefits in Sampling Complexity, Anomaly
Detection, and Generation of Strong Anomalies

The Sampling Complexity Problem: To perform anomaly
detection, FenceGAN estimates p(x|D(x) < �). This is dif-
ficult due to the rarity problem since at least ��2 points are
needed on the tail of the distribution. Sampling from a distri-
bution could fail to have even a single point in low probability
regions [23, 24]. However, the FenceGAN loss does not suc-
ceed to generate a discrete boundary around multimodal dis-
tributions separately because it is based on the parallel simul-
taneous estimation of the density and of sample generation
on the boundary. In contrast, the proposed BDSG obviates
the rarity problem achieving better sampling complexity.

Anomaly Detection: During inference, a test sample, x⇤,
is anomalous if pg(x⇤) = 0 and normal otherwise. In practice,
a threshold, ✏, is used instead of 0. The first term of the loss
in (4) discriminates between normal and abnormal data.

Generating Strong Anomalies: The BDSG can generate
samples lying on the tail of the data distribution, i.e. strong
anomalies. First, the boundary generator, B(z), generates
Q >> N samples. Then, the probability of each of these
boundary samples is computed and L0(✓✓✓b, z, G) in (4), and if
pg(B(z)) < ✏, then B(z) is a strong anomalous sample.

4. EVALUATION OF THE BDSG

We evaluate BDSG on synthetic and image data consider-
ing several criteria that measure its ability to approximate the
boundary and detect anomalies. We evaluate the BDSG for
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Fig. 2. (a,b) CFS BDSG for uni and multimodal distributions.
(c,d) IResNet BDSG. The red points are samples, the green
points IResNet samples, and the blue points BDSG samples.

anomaly detection using the Area Under the Receiver Oper-
ating Characteristics Curve (AUROC) and the Area Under the
Precision-Recall Curve (AUPRC). Using the leave-one-out
methodology, we compare the BDSG with the state-of-the-
art models of GANomaly, AnoGAN, MinLGAN, and Fence-
GAN on MNIST, CIFAR-10, and other datasets for OoD.

Setup: Synthetic data: We test BDSG using two exper-
imental setups using the multivariate Gaussian distribution,
where we know the closed-form of the underlying probability
density function. The first setup uses a closed-form solution
(CFS) evaluation of L0(✓✓✓b, z, G) model distribution, in lieu of
pg(x). The second setup uses pg(x) from IResNet [14].

Benchmark data: We also evaluate the BDSG on MNIST
by first training an invertible generator, ResFlow, for density
estimation. We then train the BDSG using a convolutional
neural network (CNN), applying (4). Then, we evaluate the
performance of the BDSG on CIFAR-10. Further, we evaluate
the performance of the BDSG trained on MNIST and CIFAR-
10 and tested on OoD data using the algorithm convergence
criteria of the proposed loss and its second term, L1 [21].

Models: We use a fully-connected B(z) model for syn-
thetic data and CNN and batch normalization for images.

4.1. B(z) Model Architecture for Synthetic Data

CFS BDSG Model: Based on sensitivity analyses, we use
dense fully-connected layers for B(z), M = 1024, N = 256,
�1 = 0.3, and �2 = 0.025. The sample size, M , affects the
BDSG performance. The batch size, N , affects the conver-
gence speed and can lead to a thinner boundary. Figure 2(a)
shows the boundary formed using the CFS BDSG for a uni-
mode distribution. The red points are from the normal data

distribution; the blue B(z) points are on the estimated bound-
ary. The 2-8-8-2 model for B(z) achieves a low loss function
value and converges the samples to the boundary. For a bi-
modal distribution in Fig. 2(b), a 2-8-8-8-2 network leads to
low loss values and accurate boundary formation. The aver-
age probability of the B(z) points, which are on the boundary,
is L0(✓✓✓b, z, G) = 0.007 in (3). We obtain descending loss
values, successfully converging B(z) to the boundary.

IResNet-Based BDSG: To show that BDSG yields com-
petitive performance on synthetic data from multimodal dis-
tributions, we also perform a second experiment. We train
our chosen invertible model, IResNet, and use the estimated
density to create the boundary. If pg(x) is estimated correctly,
then BDSG estimates the boundary of px(x). In Fig. 2(c), we
use a 2-8-8-8-2 network for B(z) for the unimode distribu-
tion, M = 1024, N = 128, �1 = 0.3, and �2 = 0.025.

For the bimodal distribution in Fig. 2(d), we use a deeper
architecture for B(z), N = 256, and �2 = 0.25. An ablation
study found that L2(✓✓✓b, z) in (4) is necessary, and otherwise
mode collapse is encountered. In Fig. 2(d), for evaluation, we
also use the boundary clustering algorithm given by

argmini=1,...,K minj=1,...,L ||B(z)� xi,j ||2, (7)

where K = 2 clusters from the bimodal distribution, L =
0.5M samples from each mode, and xi,j 2 Rd is the j-th
sample of mode i. Here, minj=1,...,L ||B(z)� xi,j ||2 is negli-
gible, smaller than the distance from a mode/set to a set.

Figures 2(b) and (d) show that BDSG achieves success-
ful boundary formation and stable convergence without mode
collapse. BDSG is compared to FenceGAN and FenceGAN
yields incomplete boundary formation between the modes.

4.2. Binary Classification and Boundary Precision

We create a grid of equidistant points in the 2D space and
associate each grid point with a probability using the distribu-
tion in Fig. 2(d). Using a threshold, ✏, to detect anomalies, we
evaluate the inference performance of L0 in (4) by computing
binary classification metrics. To examine the influence of the
choice of ✏, we compute precision, recall, F1 score, and accu-
racy, and these scores are higher than 0.99 for ✏ � 0.5%. To
examine how accurate we estimate the boundary and to com-
pare with IResNet, we define two Boundary Precision (BP)
scores. By analogy with precision, BP1 is the percentage of
B(z)-points that satisfy px(B(z)) 2 [�, ✏]. BP2 is defined as
the intersection of the grid points with IResNet. BP1 is always
higher than BP2: BP1 = 80%, BP2 = 68% when ✏ = 1%.

4.3. Evaluation of the BDSG on Image Data

MNIST: Setup: We train ResFlow until convergence on
MNIST using the leave-one-out evaluation where the anomaly
class is the leave-out digit and the normal class is the remain-
ing digits. We then train the BDSG using a CNN with batch



Fig. 3. AUROC and AUPRC evaluation on MNIST data.

normalization, using (4). We also examine different models
such as feed-forward and residual. For M , we use the entire
training set and we also examine different values for N in
(4). After convergence, the loss is 0.7, L0(✓✓✓b, z, G) = 0, and
L1(✓✓✓b, z, x) = 0.8. This L1(✓✓✓b, z, x), which is the distance
from a point to a set, is smaller than the minimum set dis-
tance of every pair of MNIST digits which is approximately
10. For evaluation, we compare the proposed BDSG with
state-of-the-art models using AUROC and AUPRC as they
are commonly used evaluation criteria in the literature [5].

Findings: Figure 3 shows that BDSG achieves competi-
tive performance compared to the alternative techniques and
on average and for most digits, BDSG outperforms EGBAD,
AnoGAN, and VAE in AUROC and GANomaly, EGBAD,
AnoGAN, VAE, FenceGAN, and WGAN in AUPRC.

Going beyond the leave-one-out setting, we assess how
BDSG performs when other OoD data are used as anomaly
samples considering MNIST as normal and Fashion-MNIST
and KMNIST as OoD abnormal [1]. We report results in Ta-
ble 1 using algorithm convergence criteria, the proposed loss
and L1. The loss and L1 are lower for the normal class, digits
1 to 9, than for the anomaly class, digit 0, and the abnormal
OoD data indicating that the proposed loss and its first term
can be used for anomaly detection with a threshold of 1.

CIFAR-10: Setup: We train ResFlow and IResNet for
density estimation on CIFAR-10 [15]. Next, we train BDSG
using a CNN with batch normalization and applying (4).

Findings: Figure 4 presents the AUROC for each CIFAR-
10 class. On a leave-one-out evaluation, the BDSG outper-
forms on average EGBAD and AnoGAN. We demonstrate

MNIST Loss L1 CIFAR-10 Loss L1

Digits 1-9 0.74 0.93 CIFAR-10 3.16 8.94

Digit 0 20.36 66.32 CIFAR-100 7.50 23.43

Fashion-MNIST 9.92 31.44 SVHN 7.18 22.36

KMNIST 9.28 29.37 STL-10 10.01 31.75

Table 1. Evaluation of BDSG comparing normality (MNIST
Digits 1-9 and CIFAR-10) with the abnormal class and the
anomaly cases (MNIST Digit 0, Fashion-MNIST, KMNIST
and CIFAR-100, SVHN, STL-10), using L and L1 in (4).

Fig. 4. AUROC evaluation of BDSG on CIFAR-10 data.

the efficacy of the proposed BDSG model which achieves
competitive performance in AUROC compared to EGBAD,
AnoGAN, and VAE. Table 1 presents the performance evalu-
ation of the BDSG to detect abnormal OoD data from CIFAR-
100, SVHN, and STL-10 using the algorithm criteria of the
loss and L1(✓✓✓b, z, x). Both L and L1 in (4) are high for the
anomaly cases deviating from normality, indicating that an
anomaly detection threshold can be imposed on either the pro-
posed cost or its second term, e.g. 4 on L and 9 on L1.

5. CONCLUSION

For anomaly detection, the accurate determination of the sup-
port boundary is critical and in this paper, we present the
BDSG which uses the loss in (4) and leverages reversibility
to compute the probability at any point in x. It addresses
the rarity problem and the detection of strong anomalies, and
maps from z to x concentrating the images of z on the bound-
ary. Using invertible models has advantages in improving the
anomaly detection methodology by allowing to devise a gen-
erator for creating boundary samples. The BDSG performs
sample generation on the boundary, addresses mode collapse,
and achieves competitive performance on synthetic data from
multimodal distributions and on MNIST and CIFAR-10.
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