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Phage therapy, the therapeutic usage of viruses to treat bacterial infections, has many
theoretical benefits in the ‘post antibiotic era.’ Nevertheless, there are currently no
approved mainstream phage therapies. One reason for this is a lack of understanding of
the complex interactions between bacteriophage, bacteria and eukaryotic hosts. These
three-component interactions are complex, with non-linear or synergistic relationships,
anatomical barriers and genetic or phenotypic heterogeneity all leading to disparity
between performance and efficacy in in vivo versus in vitro environments. Realistic
computer or mathematical models of these complex environments are a potential route
to improve the predictive power of in vitro studies for the in vivo environment, and to
streamline lab work. Here, we introduce and review the current status of mathematical
modeling and highlight that data on genetic heterogeneity and mutational stochasticity,
time delays and population densities could be critical in the development of realistic
phage therapy models in the future. With this in mind, we aim to inform and encourage
the collaboration and sharing of knowledge and expertise between microbiologists and
theoretical modelers, synergising skills and smoothing the road to regulatory approval
and widespread use of phage therapy.

Keywords: bacteriophage, mathematical modelling, phage therapy, simulations, stochasticity, heterogeneity,
communicable disease, antibiotic alternative

INTRODUCTION

Antimicrobial Resistance
According to the World Health Organization (WHO), only three communicable diseases (lower
respiratory infections, diarrheal diseases and tuberculosis) were in the top ten killers globally in
2016, a drop on previous reviews (Ghebreyesus et al., 2018). We are now living over a third longer
than 100 years ago (Office for National Statistics, 2017), which is largely attributable to a reduction
in infectious diseases through improvements in sanitation and to the widespread use of antibiotics
(Ribeiro da Cunha et al., 2019). Antibiotics kill multiple bacterial strains indiscriminately (they are
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broad spectrum) and therefore allow for treatment with limited
pressure on diagnostic sensitivity and specificity. Nevertheless,
this broad-spectrum capability is a two-edged sword and can lead
to over-prescription, disruption of the gut microbiome, allergic
reactions (Lin et al., 2017) and unwanted side effects (e.g., the
nephrotoxicity of colistin (Moulin et al., 2016)). However, by far
the most significant problem, connected with antibiotic use is
antimicrobial resistance (AMR) (O’Neill, 2016).

In spite of their current relatively low global incidence,
communicable diseases are certainly not a phenomenon of the
past (U.S. Department of Health and Human Services and U.S.
Centers for Disease Control and Prevention, 2019). We are now
entering the ‘post antibiotic era’ (U.S. Department of Health
and Human Services and U.S. Centers for Disease Control and
Prevention, 2019), that Fleming warned about in his Nobel
prize acceptance speech (Fleming, 1945). It is unlikely that a
panacea alternative for antibiotic-resistant infections will arise,
and instead novel treatments often have to be approached at a
narrower spectrum pathogen-specific level, requiring a greater
understanding of individual host–pathogen interactions (HPIs).
Possible alternative treatments include novel vaccines, the use of
immunotherapy (stimulating or dampening the immune system
for a therapeutic effect; Naran et al., 2018) and phage therapy
(O’Neill, 2016). Of the options for alternative treatments, the
therapeutic use of bacteriophages (phage therapy) is a particularly
attractive choice for the treatment of drug-resistant pathogenic
bacteria, partially due to their abundance in nature.

Bacteriophages and Phage Therapy
Phage therapy can be applied without indiscriminate disruptions
to the gut microbiota and, because they are hugely abundant
and varied in nature, the pipeline for novel bacteriophages is
endless. In fact, pathogen-specific bacteriophages have regularly
been shown to accumulate specifically alongside their host in
its natural habitat, e.g., in hospital effluents and waste water
(Lin et al., 2017; Leungtongkam et al., 2020). One great appeal
of phage therapy therefore, is the potential to administer lytic
bacteriophages as a cocktail or combinatorial therapy, targeting
multiple pathogenic molecules and systems, thereby reducing
the chance of resistance developing (Smith and Huggins, 1983;
Cisek et al., 2017; Abedon, 2019). Bacteriophages also have the
ability to co-evolve alongside their bacterial target, creating a ‘self-
improving’ treatment (Kysela and Turner, 2007). Phage therapy
is also ‘auto-dosing’ and will replicate to match the burden of
infection in a specific location (Payne and Jansen, 2000; Schooley
and Strathdee, 2020). Importantly, phage therapy has not yet
been linked with anaphylaxis or the other side effects associated
with some antibiotics in clinical trials (Cai et al., 2017; Gordillo
Altamirano and Barr, 2019).

Barriers to Phage Therapy
The many benefits of phage therapy beg the question of
why it is not currently a mainstream treatment option; there
are no approved mainstream bacteriophage medicines in the
European Union or United States and no phage therapy has
yet successfully completed Phase II clinical trials. The barriers
to the development of the potentially lifesaving phage therapy

into clinical products can be divided loosely into regulatory
and experimental factors (although the root cause of regulatory
barriers arguably also lies in a lack of fundamental scientific
knowledge). Although predating the discovery of antibiotics,
bacteriophage research slowed after the advent of antibiotics due
to the latter’s broader spectrum and more predictable results
in vivo. Experimental research on bacteriophages has historically
been plagued by unpredicted or unexplained results and a lack
of reproducibility between studies (Gordillo Altamirano and
Barr, 2019). For example, in a 2017 review covering over 60
anti-Escherichia coli O157:H7 phages, there was a significant
reduction in E. coli titres in the majority of in vitro trials,
but this was typically not seen in subsequent in vivo studies
(Sabouri et al., 2017). Unlike the in vitro environment, the
in vivo environment is also affected by the eukaryotic immune
system, anatomical barriers, immune status and underlying
health conditions, not all of which have been accounted for in
in vitro studies. Another source of discrepancy between in vivo
and in vitro phage therapy research, is the development of
phage resistant isolates (Smith and Huggins, 1983; Cieslewicz
and Vimr, 1997; Cairns et al., 2009; Chan et al., 2016; Kortright
et al., 2019). This is particularly complex as not only can a
bacterium develop resistance to a phage, a phage can also
evolve strategies to overcome these resistance mechanisms (Borin
et al., 2021). The stochasticity of evolution and co-evolution
can make treatment outcomes unpredictable (Sabouri et al.,
2017; Abdelkader et al., 2019). In order to progress phage
therapy, we need to understand tripartite phage-human-bacteria
relationships, rather than just the dipartite human-bacteria
interactions that are required to understand treatment with non-
replicating agents like antibiotics.

Overcoming Barriers to Phage Therapy
Using Mathematical Modeling
A possible route to better understanding the complex tripartite
relationship between phage, bacteria and human, is an increased
and routine use of mathematical modeling, combined with
experimental lab work. However, biologists are often unfamiliar
with mathematical modeling, from the different types of model
that are available, to their specific data requirements. The
intention of this paper is to provide an introduction to the
different types of model, what they can produce, how much
and what type of input is required: bridging the gap between
experimental biology and theoretical modeling and urging
researchers to approach experimental design with an application
in mathematical modeling in mind.

An Introduction to Mathematical
Modeling
In theory, modeling is a simplified version of reality
(Stopar, 2009). A successful and detailed mathematical
model should, in an ideal world, be able to make a priori
predictions about behavior and the outcomes of future
laboratory experiments. Failing this, it should at least
inform the selection of experimental variables to be tested,
streamline experiments and offer plausible explanations of
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unexpected results seen in vitro and in vivo. Although a
mathematical model may never be ‘right’ and fully represent
the real, complex biological world (McNamara, 2013),
this does not prevent it from being useful. Mathematical
modeling can be particularly beneficial when there are
barriers to experimentation, such as cost, complexity and
ethical considerations.

The uses of mathematical models are wide ranging and
they have been used to study anything from the interaction
dynamics of human immune cells and bacteria during infection
(Magombedze et al., 2006; Jayasundara et al., 2019), to collectively
modeling individual immune responses in outbreaks (Kucharski
et al., 2020) and vaccination programs (Reyes-Silveyra and
Mikler, 2016), to finding the most likely causative gene regulation
scenario for an observed expression output (Sturm et al., 2011;
Dresch et al., 2013; Bowyer et al., 2017) or reconstructing the
metabolome of intracellular pathogens (Thiele et al., 2013).
The type of model and the input requirements will depend on
the research question being asked and the level of detail or
depth of information that is required. For example, gaining an
understanding of phage pharmacodynamics, requires a detailed
model that quantitatively predicts rates of phage and bacterial
growth and death (Cairns et al., 2009; Roach et al., 2017).
For the understanding of evolution and the development of
resistance to phages on the other hand, a schematic, game-
theory type model, based on the relative fitness of different
bacterial and phage evolutionary strategies may be preferred
(Turner and Chao, 1999; Tago and Meyer, 2016). Whereas
to characterize entire infectious systems including interactions
with the human host, coarse-grained spatial simulations or
metabolome models (Islam et al., 2019; Rienksma et al., 2019)
would be more useful.

An example of the successful use of a mathematical
simulation to study the interaction between antibiotics and
a bacterial infection is provided by the tuberculosis model
of Aljayyoussi et al. (2017). Mycobacterium tuberculosis is
an intracellular bacterium, notorious for chronic infections
and extensive treatment regimens. Therapeutic outcomes for
M. tuberculosis are difficult to predict, due to its complex
relationship with the eukaryotic host and its phagocytosis into
macrophages. In this 2017 study, an imaging-based mouse-
model approach was combined with mathematical modeling
to make predictions about multiple hypothetical treatment
scenarios (Aljayyoussi et al., 2017). Taking into consideration the
nutritional constraints of the intracellular environment and the
barrier of the host-cell membrane (hindering antibiotics from
reaching the target pathogen), the output was a recommendation
for treatment with higher doses of the drug rifampicin compared
to what was previously used. Independently published in the
same year, Boeree et al. (2015, 2017) showed the successful
clinical application of these predicted treatment doses and
durations in phase II trials (clinical trial NCT01392911).
Had collaborations starter earlier, time and resources could
hypothetically have been saved. The aim of this paper
is to encourage fruitful collaborations between studies like
these, adapting methods to the study of phage therapy
instead of antibiotics.

Overview of the Paper
In the section “Types of Model,” we summarize various
examples of mathematical model that have been previously
used to understand host-pathogen interactions (HPIs), involving
bacteriophages where relevant. These examples are loosely
grouped into four categories: logical, network, reaction rate and
complex (or combined) spatial simulation models (although
there are overlaps), but our review is not intended to be
exhaustive. In the section “Current Phage Therapy Models”
we review current models of phage therapy and highlight key
features that have been shown to be important in the creation of
realistic biological models of phage therapy, offering suggestions
for future modeling endeavors in section “Future Phage Therapy
Models.”

General two-component bacterial infection models have
unsurprisingly been much more extensive and widespread
than models for phage therapy. This review therefore draws
many examples from two-component bacteria-eukaryotic host–
pathogen interactions (HPIs) and two-component bacteria-
phage interactions as well as examining three-component
phage-bacteria-eukaryote interactions (two-component viral-
eukaryotic HPIs are beyond the scope of this paper). Where
phage therapy model examples are not available, we focus in
particular on intracellular bacterial infection models, as these
share some of the complexities of phage therapy, such as the
importance of anatomical barriers.

When discussing two-component host-pathogen interactions,
the term ‘host’ will be reserved for the eukaryotic host (e.g., a
human patient or mouse model) and ‘pathogen’ for the invasive
bacterial species. For three-component bacteriophage systems,
a pathogen is further defined as the immediate ‘bacterial host,’
whereas the human patient or mouse model is to be termed as
the extended ‘eukaryotic host’ for the bacteriophage (and for the
bacterial pathogen) (Keen and Dantas, 2018). The terms ‘two-
component’ or ’three-component’ are used to define the number
of distinct biological entities or ‘agents’ involved in the system
being modeled, i.e., anything with replicative ability, but does not
exclude the possibility of subpopulations arising through genetic
heterogeneity, differentiation, or the presence of non-biological
components (e.g., antibiotics).

TYPES OF MODEL

Logical Models
The simplest models that can be used to examine biological
relationships are logic-based analyses of biological ‘strategies’
using game theory. Classical game-theory models are often used
by social scientists and are based on rational decision making and
‘pay offs’ from choices made by the various ‘players’. Examples
include the famous ‘prisoner’s dilemma,’ in which the two players
are prisoners who must choose whether to ‘defect,’ i.e., confess, in
order to obtain a shorter sentence for themselves, at the expense
of a longer sentence for the other player, or ‘cooperate’ with each
other by remaining silent, resulting in an intermediate sentence
for both (Figure 1). This leads to three possible outcomes: either
both confess (defect), which results in a long sentence for both,
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FIGURE 1 | Outcome matrix for the prisoner’s dilemma.

both remain silent (co-operate) or one remains silent and the
other confesses, each with a fixed pay-off for each player in the
different outcome scenarios (Figure 1). The crucial feature is that
the payoff for each player’s actions depends upon the actions of
the other player, which can lead to paradoxical results. In the
prisoner’s dilemma, the optimum strategy for both players taken
individually is always to defect, no matter what the other player
does, even though this results in a worse outcome for each player
than mutual co-operation.

In evolutionary game theory (EGT), this conflict between
individual advantage and collective benefit is applied to situations
where the players are different organisms and the payoff is
evolutionary fitness (Nowak and Sigmund, 1999), i.e., the
probability of survival or the opportunity to reproduce. For
these reasons, EGTs can be particularly useful when assessing
evolutionary strategies, important in trying to understand
resistance developing to phage therapy. Much as in the
prisoner’s dilemma, EGTs can be used to explain escalating
levels of aggressive and costly host-pathogen interactions (mutual
defection), as opposed to more favorable commensal or symbiotic
interactions (mutual co-operation). An example of a simple EGT,
with inputs and outputs close to the prisoner’s dilemma, was
produced by Nowak and Sigmund (1999); Turner and Chao
(1999). Here, the two ‘players’ were the populations of a phage
and its mutant, which had a different infection rate or multiplicity
of infection (MOI). The strategies of co-operating and defecting
were represented by the manufacturing and sequestering of
diffusible shared products, respectively. The result of this were an
evolutionary drive toward defecting or ‘selfishness,’ even though
this came at a cost compared to co-operating. Like the prisoner’s
dilemma, this result is paradoxical as a population were both
are defectors has a lower fitness than one containing only co-
operators.

While this study exactly paralleled the simple prisoner’s
dilemma, there are many more potential complexities to be taken
into account in biological interactions. Even in Turner et al’s
paper, the outcome was in reality influenced by the relative

TABLE 1 | Outcome matrix for the study by Tago and Meyer (2016), where L is the
gain of the bacterium if it succeeds to replicate, s is the probability of success, c
the energy cost of evading the host’s defense system and r is replication.

In vitro (incomplete defense:
intracellular)

In vivo (complete defense:
intra- and extracellular)

Evasion before
replication

L - c, -k(L - c) sL - c, -k(sL - c)

Replication
without evasion

rL, -krL 0, 0

size of each phage population, which was not a feature of their
simple model. An example of a more complex EGT, where the
players are of different species, was provided by Tago and Meyer
(2016); Table 1, where the transition of obligate intracellular
pathogen Ehrlichia ruminantium from a virulent to an attenuated
form via in vitro passaging in cell culture versus the in vivo
environment, was characterized in a repeat host-pathogen game.
The ‘players’ in this scenario were the intracellular bacterium
and the eukaryotic host. There were four possible strategies,
two for each player. The eukaryotic host had strategies of
incomplete defense, i.e., the intracellular immune system only,
represented in the in vitro environment and complete defense,
represented in vivo, with intra- and extracellular components of
the immune system present. The pathogen on the other hand had
the strategies of ‘evasion before replication’ (coming with the cost
of evading the immune system) and ‘replication without evasion’
(i.e., concentrating all resources on replicating; Table 1). The
game-theoretic model developed showed that attenuation would
result from the trade-off between the benefit to the bacterium
of evasion of the immune system in vivo (leading to increased
virulence) and the cost of maintaining this evasive genotype
in vitro, where the immune system is absent. In an in vivo
scenario, the eukaryotic host had a dominant strategy, i.e., a
fully functional immune system would always predominate, but
the pathogen did not have a dominant strategy (i.e., a strategy
with the best pay-off versus costs). The pay-off and cost to the
pathogen of becoming attenuated entirely depended on the status
of the host immune system and changed over time, dependent
on the number of passages the players underwent. This scenario
therefore required the inclusion of repeated sequential games,
where timescales were factored in, and the pathogen did not have
a dominant strategy until a ‘second round,’ when the host had
adopted a strategy.

More complex game theory models have also been used to
predict antibiotic resistance profiles (Chowdhury et al., 2019) and
in the same way, could be used to understand phage-bacteria co-
evolution and the chances of non-lytic commensal relationships
versus resistant populations developing (Borin et al., 2021).
These more complex games may have more than two strategies
and result in more than three possible outcomes or more than
one state of equilibrium (Venkateswaran and Gokhale, 2019).
For example, outcomes are also influenced by the frequency
of ‘events,’ i.e., contact events due to population densities and
the number of replication cycles, meaning strategies can change
over time as pay-offs alter. The games are also not pairwise
and there are multiple individuals within a population, each
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undergoing replication cycles at different rates and capable
of each producing their own mutations and distinct survival
mechanisms. Finally, unlike the traditional prisoner’s dilemma,
‘eliminated populations’ also play a role in EGTs and although
a ‘selfish’ strategy may come with a fitness cost or a decrease in
virulence, the cost is outweighed by the alternative outcome of
death (Smith and Huggins, 1983; Chan et al., 2016).

Despite these added complexities, the input requirements for
an EGT model can be very simple and will often just be a
qualitative list of possible strategies together with assumptions
about how these interact within specific timescales. For example
the variables presented by Tago and Meyer (2016) are the relative
costs and benefits of various strategies to either agent, plus
the relative probabilities that particular strategies will succeed
(Table 1). The input to this type of model is not necessarily
based directly on quantitative data and can often be qualitative,
meaning the outcome of predictions is also often qualitative,
with output just revealing which strategy will be dominant or
‘more likely’ when a stable equilibrium is reached. For example,
it may reveal whether it is more beneficial for a pathogen to
prioritize antibiotic resistance versus immune system evasion
and how this will alter under different biological scenarios
(e.g., during antibiotic treatment). Pay-off values may simply
be −1 for a negative impact on fitness or +1 for a positive
impact, for example. For this reason, these game-theoretic models
do not always require any additional wet lab experiments or
quantitative parameters. However, wet lab experiment can be
used to provide the assumptions, probabilities or outcomes, and
associated timescales required to build an EGT model.

Network Models
Another major tool for modeling HPIs is flux-balance analysis
(FBA). FBA estimates the rates of metabolite production and
consumption within a cell by using existing genetic and reaction-
network information and making simplifying assumptions to
render the problem mathematically tractable. It can be likened
to a constrained flow chart of cellular reactions, where the impact
of gene knockouts, perturbations and drug inhibition on fitness
and metabolite production can be studied (Raman and Chandra,
2009; Putra and Lyrawati, 2020). For a ‘whole cell’ or metabolome
model, an FBA is surprisingly simple (Figure 2). No extensive
kinetic data is required for a basic FBA model and all the
necessary information can be obtained ‘in one go’ by annotating
a gene sequence and using biochemical knowledge to predict
the possible reaction pathways or enzyme functions (i.e., based
on homologies with similar enzymes). Then, using the known
exponential growth rate of an organism to scale the relative
stoichiometries of each reaction, the amount reaction contributes
to a phenotype can be calculated (Figure 2; Orth et al., 2010).
Given certain key assumptions, which we discuss below, FBA
can then output the rates of individual reactions, or how general
quantities, like the growth rate of the organism, vary under
different environmental conditions, e.g., after the administration
of a therapeutic drug or as a result of genetic changes (Orth et al.,
2010; Rowe et al., 2018).

The simplicity of FBA models is achieved by the use of
purely ‘relative’ values for reaction rates and by making two

Reac�ons

M
et

ab
ol

ite
s

1 2 3 4 5

A -4 -1 -1 0 0

B -1 -1 0 0 -1

C 1 2 1 -4 -1

D 2 0 1 1 -1

E 0 1 1 2 2

Reac�on network

Reac�on 1: 4A + B → C + 2D
Reac�on 2: A + B → C + E
Reac�on 3: A → C + D + E
Reac�on 4: 4C → D + 2E
Reac�on 5: B + C + D → 2E

Stoichiometric matrix

FIGURE 2 | Details on a simplified reaction network and stoichiometric matrix
for a flux balance analysis (FBA).

key assumptions. The first, steady-state assumption, is that the
reactions have reached equilibrium so that the concentrations
of all products and reactants are conserved (this is what ’flux-
balance’ refers to). The second assumption is that the organism
is evolutionarily optimized in one or more ways, e.g., to achieve
a maximum overall growth rate or the maximum production of
some bio-product. Combining these two assumptions permits the
mathematical technique of ‘linear programming’ to be applied,
which enables the rapid calculation of all reaction rates across
networks consisting of thousands of genome-wide pathways,
without the need for high-powered computers and without the
need for individual reaction rates to be known a priori.

There are, of course, some limitations to FBAs. Firstly, there
are knowledge gaps in all genomic-scale reconstructions and
we do not know the role of all genes (Orth et al., 2010), FBAs
cannot be used to predict metabolic concentrations (only flux
at steady state) and do not necessarily account for regulatory
effects, e.g., that certain genes and their associated metabolic
pathways will often be switched off. The predicted outcome
from an FBA will therefore be incorrect if, for example, a key
metabolic pathway has not been included. However, this is a
high-throughput modeling technique that offers the ability to
assess the effect of a wide range of initial conditions, e.g., gene
knock outs or the removal of substrates or enzymes, on the
rerouting of metabolic networks and bottlenecks. As such, FBAs
are extensively used in drug discovery (Shen et al., 2010; Krueger
et al., 2016) as well as biosynthesis, e.g., to map out the metabolic
networks of microbes used in fermentation (Wang et al., 2017),
in order to help save money and time in wet lab experiments.
Similarly, FBAs could be used to study the possible perturbations
to the flux of metabolites within a pathogenic host when resources
are diverted to phage production (Islam et al., 2019). This may
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be particularly relevant when trying to understand the role of
lysogenic versus lytic lifecycles adopted by phages.

Adding further constraints to a basic FBA model can make
it more realistic, e.g., assigning directionality or reversibility
to a reaction, imposing maximum or minimum reaction rates
(where those are known) (Orth et al., 2010), adding details
of gene regulation, considering nutrient availability in different
anatomical locations or the rate of metabolite absorption through
anatomical barriers (Rienksma et al., 2018). Adding such realistic
constraints could help explain discrepancies between in vitro and
in vivo phage therapy testing (Sabouri et al., 2017). Recently,
increasingly complex two-component FBA models have been
created, which map the metabolomes of both a eukaryotic host
and pathogen simultaneously, revealing the reciprocal effects on
the metabolism of each agent. An FBA model of this type was
published by Rienksma et al. (2019) to study M. tuberculosis
metabolic responses to hypothetical drug regimens. This model
(sMtb-RECON) combined previously developed maps of the
M. tuberculosis (Jamshidi and Palsson, 2007; Rienksma et al.,
2014) and human metabolism (Thiele et al., 2013; Swainston
et al., 2016) and included 8987 reactions and 6373 metabolites.
However, this model also included extra information from paired
transcriptomes, produced in parallel from the host and pathogen,
as well as information on phagosome-specific cytosolic nutrient
availability, metabolite uptake and secretion rates. The result was
a more realistic and detailed FBA model than previously seen
for a disease scenario with M. tuberculosis. Another example
of a multi-organism FBA model was produced by Islam et al.
(2019) for the bovine rumen bacterial gut microbiome. In
this 2019 study, the functional role of the rumen virome on
three key bacterial gut organisms was investigated, looking
at how the metabolic functions of bacteriophages associated
with their bacterial hosts, studying metabolic exchange and
the re-programming of bacterial carbon metabolism when in
the presence of phages and one another. Following on from
this, three-component phage therapy FBAs (including both the
bacterial and eukaryotic host) are not out of the question, where
uptake and resource availability implications associated with
phage replication can be considered in the context of both the
immediate bacterial and extended eukaryotic host. Thoroughly
annotated genomic data already exists on the human host as
well as a range of pathogens including E. coli (Orth et al., 2010;
Zeng and Yang, 2019), Staphylococcus aureus (Lee et al., 2009;
Shen et al., 2010) and Pseudomonas aeruginosa (Raman and
Chandra, 2009), creating a ‘parts catalogue’ (Kauffman et al.,
2003). Hypothetically therefore, just additional data on a phage
of interest would need to be collected in order to study the
metabolic dependencies in these tripartite interactions. This is
not a trivial extension however and is limited by the need
for fully annotated genome sequences for bacteriophages. The
role of many bacteriophage genes and how precisely they are
regulated, is not yet known however, even for well-studied
phages like T4 and T7 (Dunn et al., 1983; Miller et al., 2003).
Additional work will therefore be required to elucidate the
role of different bacteriophage (and some bacterial) genes and
regulatory elements and how these may interfere with nutrient
resources and the regulation of normal gene expression in their

hosts. In order to make the models truly representative of a
clinical scenario, the role of spatial variables in the interactions
of phages with anatomical and bacterial barriers will also need to
be considered (Rienksma et al., 2019). Over time, the databases
available on different metabolomes will evolve, making the
options for three-component FBAs easier and more realistic,
with the potential of even creating dynamic kinetic mechanistic
models of combined metabolomes.

Reaction Rate Models
Therapeutically, bacteriophages do not follow linear kinetics like
other pharmaceuticals. They are self-replicating and ‘auto-dosing’
(the rate of phage growth is dependent on the host population or
degree of infection) and so the study of pharmacokinetics (what
the body does to a drug) cannot be separated from the study
of pharmacodynamics (what the drug does to the body). It is
important therefore to understand the non-linear relationship
between bacteriophage and bacteria in an in vivo environment
in order to make optimal use of phage therapy and avoid
unpredicted results. For this, a reaction-rate model can be very
useful. Ordinary differential equations (ODEs) are widely used to
model interactions that involve rates or changes over time (Ewald
et al., 2020). In detail, an ODE model describes the mathematical
relationships in concentrations or populations of any of a number
of species, e.g., cells, viruses, nutrients or toxins, and the rates at
which such quantities change (Ewald et al., 2020). For example,
ODEs can be used to model the exponential growth rate of
bacteria based on data input on the population size (P) at any
one time (t) and the corresponding growth rate (a) (Equations 1
and 2; Figure 3). During exponential growth, the more bacteria
there are, the quicker the population grows, and the number of
new bacteria produced in an hour will depend on the population
size at the beginning of that hour (i.e., the rate of change in the
population over time is equivalent to the growth rate multiplied
by the population). Mathematically, the equation is the following:

dP
dt
= aP, (1)

which has solution
P = P0eat. (2)

Here dP/dt means the derivative of P with respect to t. It is the
slope of the P vs. t curve and here it is the instantaneous bacterial
growth rate. P0 is the initial population size and e = 2.718 (Euler’s
number, a constant and the base of the natural logarithm).

A more complex set of coupled differential equations could
be used to express interactions between organisms or between
bacteria and antibiotics, e.g., the famous compartmental
susceptible-infected-removed (SIR) model (Ross, 1916;
Equations 3a–c) for the time course of an infectious disease

dS
dt
= − kIS, (3a)

dI
dt
= kIS− rI, (3b)
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FIGURE 3 | Illustration of differential equation models. (A) Plot of equation Y for exponential growth P = P0eat with P0 = 1 and a = 1.7 hr–1. Dashed line
indicates the meaning of the derivative dP/dt. Here, dP/dt = aP. (B) Numerical solution to the SIR model (Equations 3a–c) with initial conditions
S(0) = 0.99, I(0) = 0.01, R(0) = 0 and parameter values k = 1 days–1 and r = 0.5 days–1. The qualitative behavior is that the infection I grows exponentially
and then dies away as the density of susceptible hosts S reduces, leaving a fraction R of the population resistant. (C) Numerical solution to Equations 4a–d, with
typical parameter values taken from Cairns et al. (2009): a = 1 h–1, f = 10–5 h–1, b = 10–7 mL/h, h = 1.5, t = 10 min, and starting susceptible and viral
concentrations S(t = 0) = 3 × 104 cfu/mL and P(t = 0) = 5 × 104 pfu/mL, respectively, with no infected or resistant cells. The plot shows the total bacterial
(black) and viral (red) concentrations over time.

dR
dt
= rI, (3c)

where S is the population size of some susceptible host organism
or cells, I is the infected host population and R represents the
removed population, where ‘removed’ can imply either dead or
resistant cells or organisms. The parameters k and r are the rates
of infection and death (or resistance development), respectively.
The term kIS indicates that infection is due to contacts between
infectious and susceptible organisms or cells and that the contact
rate is proportional to the product of the two populations, as one
would expect by analogy to a basic bimolecular chemical reaction.
Unlike logic and network models, this set of equations does not
have a simple, analytical solution, but numerical solutions and
analytical approximations can readily be derived.

Typically, ODEs are used to predict temporal dynamics. Using
the slightly more complex PDEs (partial differential equations;
those with more than one independent variable) one can also
study spatial effects (Klann and Koeppl, 2012). Both ODEs
and PDEs are deterministic (the result is always the same and
depends only on the initial conditions) and local in time and
space. More realistic extensions include stochastic differential
equations (SDEs), which take account of random variation in
behavior, e.g., in individual cell division times or drug response;
and delay differential equations (DDEs), where memory of past
states of the system can be included. These extensions are more
costly to implement, and more analytically challenging, but
there is often a profound difference between the predictions of
stochastic and deterministic models in particular (Renshaw, 1991;
discussed more later).

As an example of a rate based model, Cairns et al. (2009)
used DDEs to study the development of resistance among
Campylobacter jejuni populations treated with bacteriophages.
The mathematical model developed (simplified slightly by
neglecting their phage decay term) was

dS
dt
= aS− fS− bSP, (4a)

dR
dt
= aR+ fS, (4b)

dI
dt
= − bS(t − τ)V(t − τ)+ bSP, (4c)

dP
dt
= hbS(t − τ)V(t − τ)− bSP, (4d)

where S, R, I and P are the concentrations of susceptible bacteria,
resistant bacteria, infected bacteria and phages, respectively, all
evaluated at time t. S(t − τ) and P(t − τ), etc., refer to these
concentrations evaluated at time t − τ, where τ is the latent
period. The other parameters are: a the growth rate of susceptible
and resistant bacteria (to account for a trade-off between phage
resistance and fitness a lower growth rate could instead be
specified for the resistant bacteria); f the rate at which the
resistance mutation arises per susceptible bacterium; b the rate
constant for phage binding to susceptible bacteria; and h the
phage burst size. This is a DDE because it involves quantities
evaluated at earlier times, i.e., S(t − τ) and P(t − τ).

This model gives typical curves as shown in Figure 3C. The
initial peak in bacterial concentration corresponds to the growth
and then extinction of the phage-susceptible bacterial population,
while the resistant population grows exponentially at long times.
The phage population grows initially but then plateaus as the
concentration of susceptible bacteria falls. Fitting these curves to
relatively simple experimental data, specifically the concentration
of bacteria and phage obtained over time, together with known
parameters such as the phage burst size, enables estimates of the
other phage and bacterial physiological parameters specified in
the previous paragraph. This permits the estimation of further
derived parameters, like the threshold in bacterial concentration
required for phage replication, which are relevant to phage-
based treatments.

Multiple differential equations can also be combined and
incorporated into larger models to simulate more complex
scenarios. An example of a complex system of coupled ODEs is
the modeling of the dynamics of Salmonella enterica infecting
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macrophages by Gog et al. (2012), where multiple bacterial cells
infect a single host cell. This model is an extension of the SIR
model, expanded to include separate variables indicating host
cells infected by one, versus two, three or more bacteria, with
the bacteria themselves being modeled explicitly. By extending
the SIR model, it could reproduce more complex data, and allow
for more precise fitting of relevant parameters (however, an
increased number of free parameters is also dangerous, as it can
give a falsely good fit with a poor model: the appropriate statistical
techniques must be applied rigorously to compare fits with
multiple models). Gog et al. created sixteen candidate models
to include or exclude all combinations of four features (intra-
cellular bacterial replication; death of infected cells; re-infection
rate differing from the rate of the first infection and the presence
of one versus two populations of host cells (i.e., differentiated
macrophages, each with different susceptibilities to infection)).
Experimental information input was quantitative and included
basic infection rate, the effects of multiplicity of infection (MOI)
on infection rate, growth rate of bacteria and the death rate
of infected macrophages, with the theoretical model being used
to fit to the number of bacterial cells infecting a macrophage
over time. Often, the best fit will come from the model with
the largest number of degrees of freedom, but in this work, a
statistical test (a maximum likelihood estimation (MLE)) showed
that including just two of the four features (different re-infection
rate and differentiation of macrophages) explained the data
sufficiently well, with no significant advantage provided by the
other two features. Another example of a reaction rate model is
the work of Wood et al. (2014) who used a similar model to study
intracellular Francisella tularensis infections, identifying the role
of heterogeneity in susceptibility to infection of individual hosts
within a population. The methods utilized in these studies could
be adjusted to study phage infection of bacteria, as opposed to
bacterial infection of human cells, looking at the effect of re-
infection and superinfection (where a pre-existing viral infection
prevents a secondary infection).

We have here discussed differential equations only at a cell or
population level: simple differential equations can also be used
to understand sub-cellular molecular details (Scott et al., 2010;
Mayorga et al., 2018), but where cellular compartments, or spatial
processes such as diffusion matter, a more complex combined
model may be more appropriate (Krone, 2004).

Combined Complex Modeling
Techniques
Aspects of the previously discussed modeling techniques
(plus many more besides) can be coupled together in a single
complex spatiotemporal simulation, as in, e.g., Cowan et al.
(2012). These complex models are produced by combining
‘layers’ of information, e.g., communication networks,
resource ‘transactions,’ population densities, access to nutrients
(Schreinemachers and Berger, 2011) and are based on the idea
that a small number of common processes underlie a wide variety
of cellular functions, e.g., forces of attraction in protein-protein
binding (O’Sullivan and Perry, 2013). Historically, ‘spatial
simulation models’ have been used to characterize ecological

systems (Wallentin, 2017) or in epidemiological studies
(Karl et al., 2014) but this could also be applied microscopically
to phage-bacteria-eukaryote relationships at a cellular level
(Cowan et al., 2012).

Hypothetically, we should be able to model an entire cell
at a molecular level (Klann and Koeppl, 2012), developing
a ‘virtual lab’ or ‘virtual cells’ (Cowan et al., 2012). Due
to the current technological limitations on the processing of
simulations, however, molecular models are often limited to
smaller systems or fast processes. For this reason, these models
are often ‘coarse grained’ (Levitt, 2014; Kmiecik et al., 2016),
i.e., they are simplified, in order to study larger systems and
timescales. For example, ‘pseudo-molecules’ made of coarse
grained ‘beads’ (Ingólfsson et al., 2014; Casalini, 2020) containing
simplified representations of amino key side chains may be
used to represent complex proteins versus using detailed atomic
information from an x-ray crystallography derived protein
structure (Levitt and Warshel, 1975); population dynamics
models may be coarse grained to the level of individual cells
or cellular populations, as we saw in the section “Reaction Rate
Models.” Despite this current limitation, however, this kind
of model can have high predictive power and produce usable
quantitative values for future experimentation. Fine grained data
is not always necessary for the desired result. For example, coarse-
grained spatial simulation models have been used to study the
formation of phage plaques in soft agar (Krone, 2009) and how
environmental spatial structure and biofilms impact on phage-
bacteria interactions (Bull et al., 2018).

Nevertheless, combined modeling approaches are much more
demanding in their requirement for quantitative data than the
models previously discussed here, e.g., EGT models. In general,
the more parameters one can measure independently for a full
spatial simulation model, the better (Figure 4). These models
may require, but are not limited to, the input of robust data
on population densities, treatment agent diffusion, clearance
and mixing rates (Klann and Koeppl, 2012), types of host and
pathogen populations (i.e., proportions of treatment-resistant
versus susceptible bacteria or specific host immune cells versus
non-specific cells; Wood et al., 2014), infection location (e.g.,
intracellular infections) and the associated nutrient availability
in this location (Aljayyoussi et al., 2017), the presence of pre-
existing antibodies (Majewska et al., 2015), host immune status
(Lathrop et al., 2018) as well as the presence of any co-infections
(competition between pathogens). Other variables may also
include host (bacterial and eukaryotic) infection rates, bacterial
doubling times, rates of bacterial transmission across anatomical
barriers (Cowan et al., 2012), host-pathogen population mixing
rates (as a result of anatomical barriers, pathogen motility and
the formation of biofilms or aggregates) (Wikle and Royle,
2002), rate of pathogenic clearance by the innate or adaptive
immune system, the rate of development of treatment resistance
or immune system evasion methods. Data on all of these variables
can be analyzed using multiple sub-models. For example, phage
resistance could be examined using a combination of EGTs and
ODEs. The chances of a model being used to make successful
predictions will also be dependent on how thorough data
collection is (i.e., the number of relevant interlinking dependents
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and variables factored in) and how representative it is of a real-
world situation. For example, in vitro host infection rates do not
necessarily carry forward to in vivo studies where anatomical
barriers also play a role in controlling infection (Lathrop et al.,
2018) and the access a drug has to a pathogen.

CURRENT PHAGE THERAPY MODELS

Modeling a system with three biological entities is significantly
more complicated than modeling a two-component HPI or
a model with a eukaryotic host, bacteria and an inanimate
antibacterial treatment, due to the fact that a bacteriophage
is self-replicating and can evolve genetically (it is a ‘self-
improving’ treatment) (Payne and Jansen, 2000). For this
reason, many existing phage models are two-component phage-
bacteria models rather than three-component models (also
involving the eukaryotic host). However, experimental findings
are highlighting, more and more, the complex relationship
between not only a bacteriophage and bacterium, but also
between the bacteriophage and the eukaryotic host. For example,
bacteriophages have been shown to play a significant role in
the gut microbiome (where they make up an estimated 90% of
the gut population; (Wu and Ross, 2016; Górski et al., 2018;
Keen and Dantas, 2018)), and there is an indication of cross-
talk between phages and the innate immune system (Tiwari et al.,
2011; Lin et al., 2017; Roach et al., 2017) as well as a phage role
in immune homeostasis, although these are not fully understood.
The bacteriophage-bacterial-human relationship is thus a fully
interconnected tripartite relationship, rather than a sequential
three-component relationship where the intermediate bacterium
just connects the phage and eukaryote. With the complexity of
these relationships, the use of mathematical modeling has been
and could be extremely beneficial in assisting experimental lab
work and, we believe, of great importance in the future of phage
therapies. We now give examples of how current models of
phage therapy have been utilized, what they have shown and
what some of the limitations and knowledge gaps are, with
the idea of inspiring the development and use of these kinds
of models in future studies. These examples have been loosely
divided into models based on phage relationships with their
immediate bacterial host and the innate or adaptive arms of
the extended eukaryotic host. Many of these models used rate-
based differential equations, sometimes in combination with
logical models. To date, large FBAs and spatial simulations with
three-components have not been produced. Following from this
analysis of previous research, we recommend areas for future
study and highlight key features to produce more accurate and
robust mathematical models in the future.

Relationship Between Bacteriophages
and the Bacterial Host
In the non-linear relationship between bacteria and
bacteriophages, the replication potential of a bacteriophage
is largely dependent on the properties and status of its
immediate host, meaning that bacteriophage replication is
reliant on the entity they are consequently removing (Payne and

Jansen, 2000; Cairns et al., 2009; Roach et al., 2017). Models
created by Payne and Jansen (2000) and Cairns et al. (2009)
underlined two important threshold parameters that need to
be considered in mathematical models of these self-replicating
pharmaceuticals: the minimum concentration of bacteria needed
for phage replication (proliferation threshold) and the minimum
concentration of phages for a bacterial population to decline
(inundation threshold) (Payne and Jansen, 2000; Cairns et al.,
2009). The inclusion of these important parameters is essential in
understanding therapeutic phage dosages. Other mathematical
models have also highlighted the need to include the feature of
bacterial resistance to phages and resulting resultant outgrowth
in simulation studies (Cairns et al., 2009; Leung and Weitz, 2017;
Roach et al., 2017).

Relationship Between Bacteriophages
and the Eukaryotic Host Innate Immune
System
Previous failures in reproducing results from in vitro studies
in in vivo phage therapy scenarios can be partially ascribed
to an incomplete understanding of the interactions between
bacteriophages and the innate immune system (Leung and Weitz,
2017). In fact, multiple studies have shown that the immune
system needs to be functional for phage therapy to be successful
and that the two systems work synergistically (Tiwari et al., 2011;
Górski et al., 2017; Roach et al., 2017; Van Belleghem et al., 2018).
Immunocompromised or neutropenic subjects (i.e., with a low
neutrophil count) have not responded as well as subjects with
fully functional immune systems to phage therapy (Tiwari et al.,
2011; Roach et al., 2017), and two-component in vitro studies
(with no immune cells) often result in a lysogenic co-existence
between phages and bacteria (Leung and Weitz, 2017). In the
absence of human cells therefore, a valid treatment may appear
to be less efficacious than it would be in a clinical environment.
It is not until the immune system is added to experimental
and computational phage therapy models that the equilibrium
shifts toward bacterial removal (Van Belleghem et al., 2018). In
particular, the presence of neutrophils is critical to the success of
phage therapies (Tiwari et al., 2011; Roach et al., 2017). Reaction
rate models created by Roach et al. (2017) estimated that the
presence of 20–50% fully functional neutrophils is required for
a phage therapy to be successful (Roach et al., 2017).

Against a high infectious load, phage therapy cannot succeed
without the immune system (Tiwari et al., 2011; Leung and
Weitz, 2017; Roach et al., 2017). The immune system can reach
saturation (i.e., there is a finite number of killer cells produced
in a given time and there is a maximum rate at which they can
destroy invaders (Leung and Weitz, 2017)), bacteria can develop
ways of evading the immune system (e.g., biofilm formation
(Olson et al., 2002)) and phage cannot replicate when bacteria are
below a threshold level (Payne and Jansen, 2000). Eradication of
the bacterial host will result in termination of phage replication
and the immune system is required to ‘mop up’ these remaining
bacteria. This ‘immunophage’ synergy mirrors the action of
some bacteriostatic antibiotics, which are also dependent on the
immune system to clear infections once the pathogen has stopped
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FIGURE 4 | Flow chart to illustrate the potential complexity of a tripartite phage therapy model taking full account of host/pathogen/phage interactions.
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replicating (Gordillo Altamirano and Barr, 2019). Including this
partnership between the innate immune system and phages will
likely be crucial in producing realistic predictions and outcomes
from in silico phage therapy models.

Relationships Between Bacteriophages
and the Eukaryotic Host Adaptive
Immune System
There is currently less information on any synergy between
phages and the eukaryotic adaptive immune system than on
the innate immune system (Leung and Weitz, 2017), but there
has been some evidence of the clearance of bacteriophages
by the adaptive immune system (Merril et al., 1996; Hodyra-
Stefaniak et al., 2015; Majewska et al., 2015; Van Belleghem
et al., 2018) and IgG-type antibodies have been shown to be
active against bacteriophages (Hodyra-Stefaniak et al., 2015;
Majewska et al., 2015). Although the presence of anti-phage
antibodies has not always prevented a favorable outcome from
phage therapy (Van Belleghem et al., 2018), the reason for this is
little understood. It is therefore clear that a greater understanding
of the mammalian host-versus-phage (MHvP) immune response
is also key to understanding phage therapies and producing
successful models. For example, the outcome of the production
of anti-phage antibodies has been shown to be influenced by the
therapeutic phage dosage, route of administration, application
schedule and varies on a phage-to-phage basis (Majewska et al.,
2015). More long term experiments may also be needed to reveal
the implications of the immune system for the development of
antibodies against phages (as well as the long term changes in
bacterial resistance to phages) (Kortright et al., 2019).

Conclusion on Existing
Three-Component Models
It is clear that a number of factors have been key to creating
realistic mathematical models of phage therapy, including the
synergy between the immune system and bacteriophages (Tiwari
et al., 2011; Górski et al., 2017; Roach et al., 2017; Van Belleghem
et al., 2018), the mammalian host-versus-phage (MHvP) immune
response (Merril et al., 1996; Hodyra-Stefaniak et al., 2015;
Majewska et al., 2015; Van Belleghem et al., 2018), threshold
densities of phages and bacteria (Payne and Jansen, 2000;
Cairns et al., 2009) and the development of phage resistant
bacterial populations (Cairns et al., 2009; Leung and Weitz, 2017;
Roach et al., 2017). However, there are a number of knowledge
gaps and limitations with current two- and three-component
mathematical models that also still need to be addressed in order
for phage therapy models to accurately predict experimental
outcomes a priori, particularly in a clinical scenario. For example,
it is important to perform long term in vivo studies to better
understand if there is a synergistic role of the adaptive immune
system in phage therapy. In addition, there are limitations
relating to the omission of the natural stochasticity present in
nature from models, e.g., variations in antibody numbers from
person to person, possibly due to the intentional simplification of
models. Having discussed some of the different types of models

available, we now look to put this into the context of future
research and how others may apply modeling to their own work.

FUTURE PHAGE THERAPY MODELS

Here we discuss considerations for the choice of a mathematical
model and the depth of information required before presenting
the importance of introducing stochasticity into models.
Following on from this, we make observations on key features
that should be addressed in future models and how this can
be done. There are an extensive number of qualitative and
quantitative parameters and features which could be included in
models (Figure 4). These include initial concentrations of phage
and bacteria, concentration thresholds, rates and population
ratios, to name a few. However, we highlight a specific few
priorities, selected due to a relative lack of inclusion in a
number of previous models (see the section “Current Phage
Therapy Models”) or because other previous models have shown
that inclusion of these variables have considerably improved
mathematical model accuracy (Guttman et al., 2005; Cairns
et al., 2009; Leung and Weitz, 2017; Roach et al., 2017). The
features we prioritize are genetic stochasticity and heterogenous
populations, as well as the temporal dynamics of biological
time delays, relating to the spatial dynamics of population
densities and mixing.

Choosing an Appropriate Model
Resolution of Data Required
In a laboratory setting, a less complicated in vitro approach may
be more appropriate for an in-depth study of a microscopic
parameter, such as cell division or infection rates, whereas animal
models are required to study overall effects on pathogenesis.
In vitro macrophage-cell-line experiments and similar, offer an
insight into the role of the innate immune system in controlling
pathogenic infection, whereas whole organism in vivo studies
provide an insight into both innate and adaptive arms of the
eukaryotic immune system. In the same way, different types
of mathematical model also need to be selected depending
on the research question. Modeling approaches vary in the
complexity of their input and output: from the input of
quantitative versus qualitative data to outputs ranging from
precise numerical predictions to purely qualitative descriptions
of possible outcomes (Table 2). When designing models, it is
important to find a balance between models being too simplistic
compared to overly complex (Stopar, 2009), i.e., to produce a
realistic model without the modeling or experimental burden
becoming problematic.

Although models are arguably more realistic when a greater
depth of data is included, this complexity will not always be
required and a more ‘coarse grained’ or simplified model can
often be used. An analogy for this would be that in the study
of traffic routes, we do not need to include data on the color
or brand of cars, this is unnecessary information which will
likely overcomplicate the model (O’Sullivan and Perry, 2013).
As a biological example, a population may be simplified and
represented as two distinct ‘wild type’ and ‘resistant’ populations,
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TABLE 2 | Summary of approaches to modeling host pathogen interactions.

Model type Data input demand Temporal modeling Spatial modeling Computational cost Stochastic

Logical/game theory Very Low No No Very low No

Network/FBA Low Yes Yes Low No

Differential/reaction rate Intermediate Yes No Intermediate Sometimes

Combined complex models High Yes Yes High Sometimes

where all mutants are combined in one group rather than
accounting for all the multiple heterogenous mutant populations
that may have appeared, each with different mutations and fitness
costs (Cairns et al., 2009). In the same way, when studying phage
receptor binding, biomolecules may be coarse grained into key
functional groups rather than atoms (Merchant and Madura,
2011; Casalini, 2020).

Breadth of information is also something which needs to
be considered when planning modeling and experiments. For
example, if one wanted to understand pathogenic bacterial
fitness in different nutrient environments, then sequencing of
the genome and the production of a single organism FBA may
tell a scientist everything they need to know (Lee et al., 2009;
Rowe et al., 2018; Zeng and Yang, 2019). In order to understand
this in a clinical setting however, the production of paired
transcriptomes of the pathogen and eukaryotic host and their
use in a more complex two-component FBA would be more
informative, providing information on how infection dynamics
and pathogen fitness depend on the status of the eukaryotic host
(Islam et al., 2019; Rienksma et al., 2019). The study of regular
antibiotics can also be added to this system and predictions
made on the changes in flux of metabolites depending on this
treatment agent (Shen et al., 2010; Krueger et al., 2016). To
extend this to study the effects of a phage therapy however, a
third organism would need to have its genome sequenced and a
three-component FBA produced. None of these FBA models are
‘wrong,’ but each will answer a different question and will have its
own place in biology.

If collecting reproducible data from multiple different
experimental approaches produces a more robust data set, it is
important that modeling is also performed from multiple angles.
Modeling based on logic models should be used to complement
and corroborate predictions from network and reaction rate
models and vice versa. As an extension of this, in vitro, in vivo
and in silico data should also be cross-compared for consistency
to allow for the synergistic expansion of our understanding of
models and their realism (Ewald et al., 2020).

Closely linked to deciding on the depth and breadth of
knowledge required for a model and the choice to simplify
features, is the choice between approaching a model from a
stochastic or deterministic point of view, a topic which will
now be discussed.

Stochastic Versus Deterministic Models
Spatial simulation models and to some extent rate-based
models, can be described as having either a deterministic
or stochastic approach. A deterministic model, making links
between outcomes and causative events, will always produce the

same output from a given starting condition or state, as there is
no variability. For example, a model may make the assumption
of a rigid genetic causation of a particular hereditary trait.
A stochastic model on the other hand has a random probability
distribution and so an outcome cannot be predicted precisely,
since there will be statistical variation. Stochastic variations
may therefore appear as biological ‘noise’ (Wilkinson, 2009)
and can relate to diffusion in complex cellular environments
(Bressloff, 2014), variations in individual cell division times or
the production of heterogeneous cell populations (Wilkinson,
2009), both through differentiation (Gog et al., 2012) and genetic
mutation. Although historically deterministic modeling has been
very popular (Gill, 2009; Meehan et al., 2020), if one thing
has become apparent from previous experimental and modeling
research into phage therapy, it is that the biological world is
stochastic by nature (Beiting and Roos, 2011). Models therefore
have sometimes been too deterministic to fully represent an
in vivo scenario (Gill, 2009). However, both deterministic and
stochastic models do have relevant roles to play in the study of any
particular system (Renshaw, 1991). Knowledge gaps in simpler
models are often filled with deterministic ‘assumptions’ to make
them work, e.g., assuming there is no bacterial replication during
a short reaction time (Go et al., 2014). A deterministic approach
can be ‘wrong’ or incomplete but is often easier to apply than
a stochastic model and can still give helpful insight and may
be sufficient. A model does not need to be ‘right’ or complete
to be useful (O’Sullivan and Perry, 2013; see also the section
“Resolution of Data Required”). (It is also important to note
that the relevance of applying a deterministic versus stochastic
approach will depend on the population size being analyzed. If
the sample size is small then a stochastic model will be necessary
(Renshaw, 1991) whereas stochastic effects like mutation can
often be treated deterministically in large populations).

In order to specifically study stochasticity, an SDE (stochastic
differential equation) may be particularly useful, as are more
complex models with multiple possible routes or outcomes. These
more complex models often contain calculations know of as
‘branching processes’. This means that the model accounts for
biological ‘decisions,’ e.g., a mutation event, where an outcome
will alter the path an individual may follow, resulting in a
model which looks similar to a family tree. By analyzing
two possible outcomes (survival versus extinction; Lashari and
Trapman, 2018) at each branch point, this kind of model can,
for example, provide information on fluctuations in population
size and the differential effects of control mechanisms (e.g.,
transcriptional regulation) on individuals over time (Athreya,
2006; Meehan et al., 2020) based on the different routes
individuals follow (and such information is not accessible to
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deterministic models). For this reason, branching processes have
historically been used to study long term evolution, reproduction
and extinction, for example in the study of the spread of
epidemics (Lashari and Trapman, 2018; Fyles et al., 2021). An
example of a study of stochasticity in infection was produced
by Wood et al. (2014), where the heterogeneity in susceptibility
to F. tularensis infection of individual phagocytic hosts within
a population was investigated (Wood et al., 2014). This project
used a Markov chain, a stochastic model produced using a chain
of rate-based equations to describe a sequence of possible events,
in which the probability of each event depends only on the
outcome of the previous event. In the context of the study by
Wood et al. (2014) there were three possible bacterial ‘events’:
birth (cell division or release of bacteria from phagocytes), death
and survival (phagocytosis without cell death). The output of
this model was information on the relationship between the
infectious dose of the pathogen and eukaryotic response (i.e., the
onset of symptoms).

As can be seen, the study of stochasticity in mutation and
the development of genetic heterogeneity within a population is
very relevant to a number of studies (Cairns et al., 2009; Gog
et al., 2012; Wood et al., 2014). We now discuss the relevance of
genetic heterogeneity in bacteriophage research and highlight it
as a priority for future modeling scenarios.

Priority Areas for Future Research
Genetic Heterogeneity
The implications of genetic heterogeneity and the resulting
resistance to bacteriophages in making accurate predictions from
models was highlighted in the work of Cairns et al. (2009)
studying the treatment of C. jejuni infections. They found that
the inclusion of data on the development of phage-resistant
bacteria was critical to producing a model matching real world
outcomes. In addition to bacterial evolution, bacteriophages
can also co-evolve and develop their own strategies to combat
bacterial resistance (Borin et al., 2021). Every stage in the bacterial
pathogen and phage life cycles is susceptible to mutations
that will alter the balance in the phage–host relationship, can
result in heterogenetic sub-populations (Edwards et al., 2016)
and will come with potential fitness costs or survival benefits.
For example, changes to a bacterial genome can result in the
development of resistance to a treatment, evasion of the immune
system or changes to growth and infection rates (e.g., through
prioritizing replication over virulence) (Stopar, 2009). The ratios
of each of these sub-populations will vary over time (García
et al., 2019) and will have reciprocal knock-on effects on each of
the other agents, resulting in different ‘strategies’ and outcomes
in battles for ‘survival of the fittest’ (Turner and Chao, 1999;
Cairns et al., 2009; Tago and Meyer, 2016). It is important
therefore to consider the rate of, and probability of, evolutionary
mutations and population heterogeneity in future models, to
increase their realism (Diard et al., 2017). To do this, one needs to
understand the stochasticity of mutations, e.g., through the study
of phage receptors, bacterial resistance mechanisms and phage
counter adaptations, including the approximate rates at which
they develop. This data could help to explain some unexpected

wet lab data (Sabouri et al., 2017) and suggest new ways to prevent
or slow down the development of phage resistance among
pathogenic bacteria. Bacterial resistance to antibiotics is well
known and avoiding this same path with alternative treatments
will be critical to our future relationship with infectious diseases
(Fleming, 1945).

Game theory models, particularly those with multiple ‘rounds,’
could be particularly useful to identify the key strategies
that are most likely to dominate evolutionarily and would
bring the greatest ‘reward’ for agents. Due to the stochasticity
associated with genetic heterogeneity, models with multiple
‘decision points’ (branching processes) and stochastic differential
equations (SDEs) would also be helpful, studying processes
in the context of a ‘memory’ of previous events (Gog et al.,
2012; Wood et al., 2014; see previous section). For example,
branching processes have already been used to better understand
the development of AMR (Meehan et al., 2020). Modeling
data also needs to be analyzed in the context of changes to
‘payoffs’ and probabilities over time (Tago and Meyer, 2016),
depending on the resistance phenotype developed. For this
kind of analysis, a delayed differential equations (DDEs) may
be very useful. As well as developing our understanding of
phage-bacterial host evolution and co-evolution, collecting more
information on how the eukaryotic immune system distinguishes
between commensal bacteria and pathogenic ones (and phages)
in simpler two-component HPIs would also provide information
that would help us to understand tripartite relationships with
bacteriophages better.

Considering Spatial and Temporal Dynamics in
Population Mixing
Spatial variability can be introduced by different tissues and
microenvironments (Wikle and Royle, 2002). On a macroscopic
level, this includes the separation of agents by anatomical
barriers and the formation of densely packed bacterial biofilms
(Leung and Weitz, 2017). This is therefore linked tightly to
temporal dynamics and the presence of time delays. For example,
time delays can occur as a result of the time taken for a
pathogen or drug to cross anatomical barriers or changes in
bacterial replication rates due to limited nutrient availability (e.g.,
phagosomal pathogens such as Salmonella will likely be more
nutrient deprived than cytoplasmic or extracellular pathogens
(Rienksma et al., 2019)). Leung et al. highlighted that it is
population and concentration densities in the locality of infection
that will directly impact on pathogenesis, disease prognosis
and treatment efficacy, as opposed to overall loads per patient
(Gog et al., 2012; Aljayyoussi et al., 2017; Leung and Weitz,
2017). Bacterial densities will also impact on the number of
‘contact events’ and bacteriophage infection and replication rates,
as well as affecting pathogenesis and bacterial evasion of the
immune system via quorum sensing signaling pathways and
biofilm formation (Leung and Weitz, 2017). Biological systems
are transient and dynamic and a snapshot image of a single time
point therefore, will not be representative of the full time course
of a treatment regimen.

Time delays are often not represented in in vitro liquid
cultures, i.e., there are no anatomical barriers present, or
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the immune system is not fully represented. These spatial
and temporal features have a tendency to be overlooked in
modeling and when transitioning to in vivo studies therefore
(Aljayyoussi et al., 2017). However, with so many outcomes
dependent on population density, it would be greatly detrimental
to the realism of a model should spatial and temporal features not
be considered. For example, it was only the inclusion of temporal
delays due to anatomical barriers in the tuberculosis models
created by created by Aljayyoussi et al. (2017; discussed earlier)
that produced treatment models with timescales that matched
those seen in the real world. Therefore, we suggest that more
rate-based experiments and models are required. For example,
temporal resolution can be improved through the collection of
live microscope data on infection rates at a single cell level (Gog
et al., 2012) or collection of time course 16s RNA sequencing data
(Wu and Ross, 2016) and the use of delay differential equations
(DDEs; differential equations that will factor in a time delay;
Hodyra-Stefaniak et al., 2015) in models. In particular, there is
a need to better develop our understanding of bacteriophage
transcytosis into the blood stream and around the rest of the body
in order to make more accurate assumptions about dosages from
local bacteriophage concentrations. To include these additional
spatial features in a model, there are certainly occasions where
a confluent lawn of eukaryotic cells or in vitro experiment will
not suffice, as they do not represent anatomical barriers and
the breadth of microenvironments within a eukaryotic host. In
these situations, a more complex or animal model may be more
beneficial (Keen and Dantas, 2018). If more complex or animal
models cannot be used, great care should be taken to account
for shortcomings when making conclusions and attempting to
extrapolate data for use in an in vivo scenario.

Conclusion on Priority Areas for Future Phage
Therapy Models
Collecting data on mutational heterogeneity and resistance to
treatments, time delays and population densities can lead to
large experimental and modeling demands, but it will also make
models more representative of in vivo scenarios. The omission
of any feature in a model should be an active decision in
experimental design rather than it being just overlooked and
the exclusion of key features from a model should be justifiable,
based on the research question and the required complexity of
the model. Omitted features should be handled carefully and
accounted for as best as possible when extrapolating data and
drawing conclusions.

DISCUSSION AND FINAL CONCLUSION

Unlike antibiotics, there is a practically unlimited supply of
novel bacteriophages. However, unpredictable in vitro and in vivo
results currently hinder regulatory approval of phage therapies
(Gordillo Altamirano and Barr, 2019). If mathematical modeling
can be used alongside lab-based experiments to shortlist phage
options, design experiments and enhance our confidence as to
whether a phage therapy application would be successful and
safe for in vivo models or humans prior to testing in the clinical
environment, then this may smooth the road to widespread use.

Findings in the past few decades have highlighted more and
more the complex relationship between not only a bacteriophage
and bacterium, but also the bacteriophage and its eukaryotic
host, with an appreciation of the synergy between the innate
immune system and bacteriophages being key to understanding
experimental outcomes (Tiwari et al., 2011; Górski et al., 2017;
Roach et al., 2017; Van Belleghem et al., 2018). The success
and realism of mathematical models and their ‘fit’ to real
world data is something that has developed over time, with
advances in experimental and computational technology, as
well as our experimental capabilities and understanding (Bauer
et al., 2009; Ewald et al., 2017) meaning our understanding of
phage research is really only just reaching maturity (Lin et al.,
2017). For example, advances in the collection of RNA and
transcriptome data has transformed the way we develop FBA
models and allowed the production of complex quantitative
simulations of entire metabolic systems from more than one
organism (Rienksma et al., 2018, 2019). Updates on pre-
existing mathematical models are continuously being developed
and published, factoring in larger data sets and new details
on molecular-level host-pathogen interactions (Thiele et al.,
2013; Rienksma et al., 2019). However, work remaining to be
done includes the gathering of data on resistance and co-
evolution (particularly related to mutational stochasticity and
heterogeneity) and the spatial dynamics of population densities
and biological time delays to aid further improvement of models.
Although a number of models of phage therapy already exist,
this additional data would open up the possibility of more
realistic models, representing all three components in a clinical
setting at once.

It is important to note that the data needed to create
an informative model may already exist. For example, to
create a DDE of a phage therapy scenario, data is needed on
concentrations of susceptible and resistant bacteria, infected
cells and free phage particles, rates of bacterial growth,
phage infection, natural phage decay and bacterial resistance
development at a given time, in addition to the length of phage
latency periods and burst sizes, or these need to be fitted by
the model (Cairns et al., 2009). Enough phage transcriptomic or
genomic data to develop FBAs may also already exist (Kauffman
et al., 2003). We therefore encourage collaboration between
wet lab biologists and those well-informed in mathematical
modeling in order to make the most of data that already exists
and fill gaps where little more may be needed to complete a
simulation. Looking forward, where biologists are aware of the
types of quantitative or qualitative data needed to be input into a
model, this might also help to more efficiently plan experiments
to produce data that could be used by others in silico. The
sharing of knowledge could lead to very fruitful synergism of
resources and findings.

Mathematical models are of course not without their
limitations, but collectively a plethora of information has been
produced from modeling endeavors up to this date, including
predicted treatment times and dosages (Aljayyoussi et al., 2017),
a greater understanding of which scenarios will dominate in
a biological setting (Gog et al., 2012; Tago and Meyer, 2016)
and information on key agents which need to be present for
a treatment to be successful (Roach et al., 2017) to give a few
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examples. There is hope therefore that mathematical modeling
will play a hugely beneficial role in future research.
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