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Abstract

Current analyses of groundwater flow and transport typically rely on a physically-based

model (PBM), which is inherently subject to error and uncertainty from multiple sources

including model structural error, parameter error and data error. The model uncertainty

can be difficult to quantify, and is propagated to the prediction. In this study, comple-

mentary data-driven models (DDMs) are used to improve prediction of groundwater flow

models. The DDMs, trained with the historical residual of the PBM, have the capability

to compensate for the defects of PBM. Five machine learning techniques, instance-based

weighting (IBW), locally weighted regression (loess), decision trees (DT), artificial neural

networks (ANN) and support vector regression (SVR) are employed to construct the DDMs,

and their performance of enhancing the prediction of the PBM is compared. Before the

DDMs updating, cluster analysis is implemented on the dataset to improve the robustness

and efficiency of the framework. The framework is tested in two real-world case studies

based on the Republic River Compact Association (RRCA) model and the Spokane Valley

Rathdrum Prairie (SVRP) model. The DDMs reduce the root-mean-square errors (RMSE)

of the temporal, spatial and temporal plus spatial head prediction of the RRCA model by

82%, 60% and 48% respectively. In the SVRP case study, the DDMs reduces the temporal

head forecast of the PBM by 79%. Localized DDMs that are conditioned on each cluster

outperform global DDMs without clustering. It is also demonstrated that clustering signifi-

cantly reduces the computational cost of training and cross validation of the DDMs. After

clustering, the run-time of DDMs is negligible comparing with the PBM, which makes the

framework very computationally efficient.
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Chapter 1

INTRODUCTION

1.1 Background

Physically-based models (PBM) of groundwater flow and solute transport are the principle

quantitative tools used in subsurface water analysis and management. Along with the ever

increasing availability of computational power, measurements and improved understanding

of the dynamics of hydrogeologic systems, there are increasing requirements for accuracy for

these models. On the other hand, the inherent uncertainty in groundwater modeling has

been widely recognized in the literature [34, 35, 27, 13, 38, 45, 18].

The uncertainty comes from three primary sources: structural error, parameter error and

data error. As assemblies of assumptions and simplifications, groundwater models are in-

evitably imperfect approximations to the true system. The structural error can arise from

omission and/or misrepresentation of site characteristics and hydrogeologic processes during

conceptualization [35, 38, 13, 34], as well as from the mathematical implementation, e.g.

spatial and temporal discretization [30]. Parameter error comes from the difficulty to cap-

ture, on a wide range of scales, the heterogeneity of hydrogeologic environments that exhibit

both systematic and random spatial variations. It is generally infeasible to obtain enough

measurements to capture such hydrologic complexity [35, 34], thus the use of “effective”

parameter values, as conceptual aggregate representations of heterogeneous hydrogeologic

properties, is essential [30]. Often parameter values are not measurable and need to be esti-

mated by indirect means, which may introduce uncertainty. Finally, data error refers to the

measurement error and the uncertainty in forcing terms, which in most cases are specified
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or estimated from in situ observations.

Structural, parameter and data errors collectively lead to reducible (epistemic) and irre-

ducible (aleatoric) error when the groundwater models are used in prediction. The lumped

error is typically represented as the misfit between the observed quantity of interest and its

simulated counterpart. A large portion of such misfit cannot be ascribed to measurement

error, and may be mitigated in a variety of ways.

Calibration (also known as the inverse problem) is the most common practice to achieve bet-

ter prediction by reducing parameter uncertainty [27]. The traditional approach of calibra-

tion is to first postulate a deterministic model structure, then tune the values of parameters

until the simulation results of the model match corresponding observations to a satisfactory

degree. In the last decade, sophisticated automatic calibration software based on nonlinear

regression, like PEST [17], have been developed and popularized. Techniques like regulariza-

tion and dimension reduction have been proposed to deal with the non-uniqueness problem

and to allow additional parameterization complexity [16, 42, 34]. In contrast with PEST,

which seeks the least-square estimate of parameter values, the Shuffled Complex Evolution

algorithm (SCE) was proposed in [20] as a global optimization strategy applicable to a broad

class of single-criterion calibration problems. The algorithm was further extended to mul-

tiobjective complex optimization that enables the use of multiple complementary measures

[50]. The SCE algorithm and its multiobjective version were later adapted to fit into a

stochastic framework. [46] presented an efficient Markov Chain Monte Carlo sampler called

the Multiobjective Shuffled Complex Evolution Metropolis (MOSCEM) algorithm, which

converges to an ensemble of parameter sets instead of a single estimation. This algorithm

utilizes the concept of Pareto optimality, and uses many points along the Pareto front to

parameterize the model when making predictions.

The above approaches capture at best the larger-scale variations of subsurface hydrogeologic
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properties, failing to resolve heterogeneity exhibited at smaller scales [35]. Attempting to

infer the complexity of the reality from limited field measurements, the inverse problem is

inherently ill-posed and has infinite number of solutions. A unique solution can be obtained

via zonation, using pilot points and/or Tikhonov regularization, however with the price of

a loss of detail in the calibrated field. In [34], Moore and Doherty noted that the estimated

parameter value at any point is a weighted average of the true hydrogeologic property over

a much larger area. They further argued that, as a result of the calibrated model being

unable to replicate the detail of the true system, the model-to-measurement misfit can show

a high degree of spatial correlation. MOSCEM, on the other hand, is able to account for

uncertainties associated with model parameters [46]. In the groundwater modeling commu-

nity, high-resolution Monte Carlo methods have been developed that describe the spatial

variability and scaling of hydrogeologic medium properties geostatistically. This family of

methods generates multiple random realizations of model parameters on a fine grid, then

analyzes the predictive results of all realizations statistically. The generated model param-

eter fields should be conditioned on field measurements of the hydrogeologic properties as

well as observations of the state variables (e.g. water levels). Generating and conditioning

a sufficient number of realizations makes this methods very time consuming [37]. The com-

putational cost associated with these Monte-Carlo based methods makes them infeasible for

many groundwater models especially when there are many parameters.

Beven and Freer [4] pointed out that for a complex environmental system, satisfactory agree-

ment with observations can be achieved by many different model structures and parameter

sets. Although the stochastic methods stated above account for parameter error by allowing

for exploration in the parameter space, they are still based on a single model conceptualiza-

tion or structure, like the traditional calibration approaches. It has been widely recognized

in the literature that an inadequate model structure or conceptualization is far more detri-

mental to its predictive accuracy than suboptimal parameter values [35, 22, 38, 30, 25]. In

addition, as suggested by Doherty [18], the model parameters might be over-adjusted during
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calibration to compensate for the model structure defects, which would deteriorate the pre-

diction. As a result, predictions based on a single conceptual model are subject to statistical

bias and/or underestimation of uncertainty.

Multimodel approaches based on a suit of conceptual models have been developed to ex-

plicitly handle structural error. Hoeting et al. [28] suggested that averaging over all models

can improve upon the systematic bias and general limitations of a single model. In the hy-

drologic literature, the generalized likelihood uncertainty estimation methodology (GLUE)

was proposed and has been successfully applied to a variety of hydrologic problems [3].

GLUE identifies several competing model structures and postulates parameters’ prior joint

probability distribution for each structure. It then implement Monte Carlo simulations

and run each model with realizations drawn from the prior distribution. The simulation

results are compared with corresponding observations to determine the likelihood of each

combination of model structure and parameter realization based on a subjective likelihood

function. Those combinations that yield acceptable replication of observation are then run

in prediction mode, and their outputs are weighted by the likelihood to generate the final

prediction. Unlike GLUE which uses a subjective likelihood function to weight the combina-

tions of model structure and parameter set, the Bayesian model averaging (BMA) appraoch

determines the model weights by calculating their posterior probabilities integrated over

parameters with Bayes’ theorem. Both GLUE and BMA are computationally demanding.

To render BMA computationally feasible for groundwater modeling, Neuman [7] proposed

the maximum likelihood version of BMA (MLBMA), which avoids the need for Monte Carlo

simulation and integration by calibrating each model against observations. For GLUE, BMA

and MLBMA, it is critical to select a set of mutually exclusive models that adequately spans

various aspects of the real system. However, there exists no well-accepted guidelines in the

literature about how to achieve this goal [30]. In addition, MLBMA involves calibration of

each model in the ensemble, making it still computationally intensive.
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This section has provided a brief overview of approaches to reduce parameter and/or struc-

tural uncertainties. On the other hand, as noted by Gupta [24], it is often difficult to

disaggregate errors into their source components to understand, manage and reduce the un-

certainty. On the other hand, for the decision-making process in water resource management,

it is important to know the total model uncertainty lumped from all possible sources. This

suggests to use a “model residual” approach that skips any distinction among uncertainty

sources and directly analyzes the model residuals to build a model of predictive uncertainty

[36]. Here the term “residual” refers to the misfit between measurement of system state

(e.g. water level) and corresponding model output. It has been shown that a dominant

portion of the misfit cannot be ascribed to measurement error, and is not random but sys-

tematic (see for example [19, 23]). Furthermore, it is demonstrated that the residual is likely

to show in many groundwater studies a high degree of spatial and temporal correlation

[43, 49, 15, 19, 34]. These arguments justify the approach of characterizing the model resid-

ual as being dependent on a set of predictors, which may include time and spatial locations.

Traditional statistical approaches to model the residual in hydrologic modeling often assume

the residual be an independent identically distributed process, usually Gaussian with zero

mean, assumptions rarely satisfied in practice. Many methods have been proposed either to

manipulate the residuals so that they satisfy such assumptions, or to relax these assump-

tions [36]. Another trend has been to develop data-driven models based on machine learning

techniques to model the residuals. Abebe and Price [1] approached the residual modeling

of a rainfall-runoff model by applying a parallel artificial neural network (ANN) model to

forecast the errors of the conceptual model. Solomatine and Shrestha [41] utilized the M5

model tree to predict the quantiles of predictive error in rainfall-runoff modeling. It was

suggested that “the historical model residuals are the best available quantitative indicator”

of the defects of modeling process [41], and hence data-driven models can capture the defects

by learning from the residuals. Later, Demissie et al. [14, ?, 43, 49] introduced this idea into

groundwater modeling by proposing a complementary framework where separately-developed

5



data-driven models (DDMs) were used to enhance the prediction error of the physically based

MODFLOW models. This framework constructs complementary DDMs that are capable of

recovering the unknown information about the real hydrogeologic system that is not repre-

sented correctly by the numerical model. This framework is not restricted to any particular

type of model error and hence is advantageous if the sources of prediction error are multiple

and not easily identifiable. In addition, it does not invoke any statistical assumption about

the error distribution. Furthermore, unlike calibration and Monte-Carlo based approaches,

the framework only runs the PBM once, thus making it suitable for PBMs requiring long

running time. On the other hand, the effectiveness and efficiency of this framework could

be compromised when applied to large datasets.

1.2 Scope of Thesis

In this thesis, the complementary modeling framework proposed in [15] will be applied to real-

world case studies to test the ability of machine learning techniques for improving prediction

accuracy of physically based groundwater flow models (PBM). We improve this framework

by introducing clustering to make it more robust, flexible and computationally efficient when

applied to large datasets. It will be demonstrated that implementation of cluster analysis

before applying DDMs enables the latter to be better adapted to local patterns in the PBM

residuals. In addition, clustering also reduces the computational cost of implementing some

DDMs so that it becomes feasible to develop and tune them with the limited computation

power and memory provided by desktop computers. Besides cluster analysis, five machine

learning methods are employed to build DDMs: instance based weighting (IBW), locally

weighted regression (loess), decision tree (DT), artificial neural network (ANN) and support

vector regression (SVR). The DDMs are used to improve the head prediction of the MOD-

FLOW model in two real-world case studies that are calibrated in different manners.
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The complementary framework is expected to yield more accurate predictions as long as

systematic patterns are presented in the PBM residuals. This assumption is tested using

techniques borrowed from statistics and information theory. The resulting information is

then used to determine whether it is appropriate to apply DDMs in a specific prediction

scenario. In addition, the dependence between the residuals and other available data is also

analyzed and helps to select input data for DDMs. Furthermore, the techniques are also

used to analyze the remaining residuals after the DDMs are used to correct the PBM’s error,

as one performance measure.

1.3 Thesis Outline

Chapter 1 has presented a brief overview of attempts to improve physically-based groundwa-

ter model predictions. It also summarizes the scope and arrangement of the thesis. Chapter

2 presents the complementary modeling framework as well as a brief introduction to the

machine learning techniques used to build the DDMs. The chapter also introduces tech-

niques to analyze residuals and measure the performance of PBM and DDMs. Chapters 3

and 4 present two real-world case studies. Detailed implementation of the framework and

the development of DDMs are described. Performance of DDMs are presented and discussed

there. Finally, Chapter 5 summarizes the conclusions and suggests topics for futrue work.
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Chapter 2

COMPLEMENTARY MODELING
FRAMEWORK

2.1 Overview of Framework

This thesis employs the complementary modeling framework proposed in [15] and [14]. This

framework adopts the perspective of optimality instead of equifinality, and works with a

single calibrated model, since calibration is the most common practice in groundwater flow

and solute transport analysis. The framework is based on the observation that a normal

distributed error term with zero mean and small variance is generally not achievable via

regression-based calibration in groundwater modeling. This is due to the limitations of

calibration described in Chapter 1. In fact, systematic error (bias) can be found in the sim-

ulation results of even well-calibrated models, as noted by Demissie et al. [15]. In addition,

the predictions made by the calibrated model are prone to error larger than the uncertainty

inferred from the calibration process, as the latter is artificially made small by potentially

over-tuning parameter values to compensate for the model structural defects. The bias of

the optimal (calibrated) model can be viewed as resulting from the lumped uncertainty that

includes errors associated with model structure, parameters, input stress and measurements.

This suggests the potential of data-driven models (DDMs) to compensate (at least partly)

for the discrepancy between the physically based model (PBM) and the real-world system

[41].

In this thesis, the framework proposed by Demissie et al. [14, 15, 43, 49] is improved and

applied to enhance the head prediction accuracy of groundwater flow models. The task of

the complementary modeling framework (shown in Figure 1) is to use DDMs to learn, from
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the historical errors, the dependency of the error (ε) on selected input variables conditioned

on the state variables of the groundwater flow model. When forecasting, the head prediction

of the PBM (ĥ) is adjusted with the bias predicted by the DDMs (ε̂) to get a more accurate

prediction ĥnew. Since MODFLOW is the most commonly used groundwater modeling tool,

MODFLOW will be used interchangeably with groundwater flow models and PBM in the

remainder of the thesis.

Compared with the framework proposed in [14] and [15], the presented work incorporates a

greater number and variety of machine learning techniques to build DDMs. Their perfor-

mance is compared and analyzed. In addition, clustering is introduced to localize DDMs and

improve computational efficiency in the revisited case study presented in Chapter 3. Fur-

thermore, the improved framework is applied to a new case study as presented in Chapter

4.

The error of a well-calibrated PBM should approximately follow a normal distribution with

zero mean and reasonably small variance. The data-driven models cannot be applied in this

case, since the residuals are considered to be random. As discussed previously, normally

distributed error is usually not achievable in practice via calibration. Nevertheless, it is still

vital to conduct residual analysis before attempting to implement the complementary mod-

eling framework, as the existence of bias and structure in the error of PBM is a key premise

of the effectiveness of DDMs. In the case studies presented in Chapters 3 and 4, historical

residuals (ε) are evaluated to check the presence of spatial and temporal structure, and to

identify the extent and predictability of these systematic patterns.

The Normal probability plot is employed to test the hypothesis that the residuals of the PBM

is normally distributed. It is a quantile-quantile (QQ) plot of the standardized data against

the standard normal distribution. Departure from a straight line indicates departures from

normality.
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The temporal correlation is examined using the Durbin-Watson (DW) statistic [21], which

is defined as

DW =
Nt∑
i=2

(εt − εt−1)2/
Nt∑
i=2

ε2t ,

where εt and εt−1 are the residuals at time step t and t − 1 respectively, and Nt denotes

the number of time steps. If DW substantially deviates from two, then there is evidence of

positive (<2) or negative (>2) correlation. The spatial correlation of the residuals is checked

via the empirical semivariogram of the residuals.

The above-mentioned approaches to detect temporal and spatial structure are limited to lin-

ear dependence, while the Mutual Information (MI) is able to detect and quantify nonlinear

relations among data [9]. Given two random variables X,Y, the MI is defined as

I(X,Y) =

∫ ∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy, (2.1)

where p(x, y) is the joint probability distribution function (pdf ) of X,Y, and p(x), p(y) are

the marginal pdfs of X, Y respectively. If X,Y are independent, then I(X,Y) = 0. On the

other hand, a high value of the MI score indicates a strong dependence between the two

random variables. In practice, the pdfs in Eq. (2.1) are typically unknown, hence they are

estimated from the data or realizations (x1, y1), ..., (xN , yN). The MI score is then computed

using

I(X,Y) =
1

N

N∑
i=1

log
f(xi, yi)

f(xi)f(yi)
, (2.2)

where N is the size of the dataset, and f(xi), f(yi) and f(xi, yi) are the marginal and joint

pdfs estimated at (xi, yi). The base 2 is used in this work.

10



2.2 Overview of Machine Learning Methods

This section provides a brief overview of the machine learning techniques used to develop

DDMs. In contrast with the physical-process-based groundwater flow models, machine learn-

ing techniques learn directly from the data. From a set of training data, a machine learning

algorithm learns a mapping from the inputs (features) to the outputs (target) that can be

generalized to predict on unseen (testing) data.

2.2.1 Clustering

Cluster analysis is an unsupervised data mining technique that partitions data into groups

with the goal of maximizing the similarity of data within the same group and minimizing

the similarity of data among groups. Central to cluster analysis is the similarity (or dissim-

ilarity) measure, based on which the clustering method partitions individual objects [26].

The similarity measure is chosen in accordance with the demands of specific problem.

Clustering is beneficial in two cases. First, if the residual analysis shows local patterns

within the dataset, it is then reasonable to develop “localized” DDMs instead of developing

a global DDM. DDMs that are conditioned on an individual cluster allow for additional

flexibility. Second, in cases of dealing with large datasets, dividing the data into smaller

subsets improves the computation efficiency and makes model selection by cross validation

more feasible.

The k-means clustering and agglomerative hierarchical clustering algorithms are used in this

thesis, as described in the following paragraphs. Both of the algorithms belong to “crisp”

clustering, where an object is assigned to one and only one cluster.
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K-means Clustering

The K-means is one of the most popular clustering algorithms. It is a top-down method that

iteratively minimizes the within-cluster point scatter [26]. It chooses the squared Euclidean

distance to measure the dissimilarity between two objects (data points)

d(xi,xj) = ||xi − xj||2. (2.3)

The within-cluster point scatter is a natural loss (or “energy”) function based on Eqn. (2.3).

Let C(i) denote an assignment that maps an object xi to the kth cluster, C denote the

assignments of all data points and K denote the number of clusters, the loss function is

defined as

W (C) =
1

2

K∑
k=1

∑
C(i)=k

∑
C(j)=k

d(xi,xj). (2.4)

It has been proved that minimizing W (C) can be achieved by solving the enlarged optimiza-

tion problem

min
C,{mk}K1

K∑
k=1

Nk

∑
C(i)=k

||xi −mk||2, (2.5)

where mk denotes the mean vector associated with the kth cluster. The k-means clustering

starts with a initial guess of assignment C, then iterately repeats the following two steps

until convergence [26]:

1. Given current assignment C, minimize Eqn. (2.5) with respect to {m1, ...,mk} yielding

updated cluster centers;

2. Given current {m1, ...,mk}, minimize Eqn. (2.5) by assigning each data point to the

closest cluster center, i.e.

C(i) = argmin
1≤k≤K

||xi −mk||2. (2.6)

MATLABr Statistic ToolboxTM subroutine kmeans is used to implement k-means clustering

in this work.

12



Agglomerative Hierarchical Clustering

As the name suggests, hierarchical clustering arranges the clusters into a natural hierarchy.

At the bottom of the hierarchical structure, each cluster containes one single data point.

The bottom-up agglomerative hierarchical clustering strategy starts at the bottom and at

each level recursively merges a pair of clusters into a single cluster [26].

In this thesis, the Mahalanobis distance

dM(x− µ) =
√

(x− µ)TS−1(x− µ) (2.7)

is used to specify the pairwise dissimilarities between data points. µ and S denote respec-

tively the mean and covariance of the data set x’s. In this work, Ward’s linkage [47] is used

as criterion of joining clusters, that is to minimize the sum of squares of any two clusters

that can be merged at each step. MATLABr Statistic ToolboxTM subroutines linkage and

cluster are used to implement agglomerative hierarchical clustering.

2.2.2 Locally Weighted Learning

Locally weighted learning falls in the category of instance based learning, or lazy learning

[2], which defers processing of training data until a query (prediction request) needs to be

answered. One appealing trait of this class of learning algorithms is that they are straightfor-

ward to interpret, compared to the regression methods introduced later. Instead of using a

single global model to fit all of the training data, as for most learning methods, lazy learning

enables query-specific local models by fitting the training data only in a region most relevant

to the query point. In particular, locally weighted learning methods measure the relevance

with weighting functions. Two types of locally weighted learning are tested in this work.
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Instance Based Weighting

Instance-based weighting (IBW) extends the widely-used lazy learning k-Neareat Neighbor

method (kNN) by introducing a weighting function [2]. For a query x′, IBW first finds its

n nearest neighbors, denoted as {x∗j}, j = 1, 2, ...n, in the training set that contains N data

points ({xi}, i = 1, 2, ..., N), then estimates the residual at x′ by

ε̂(x′) =
n∑
j=1

wx′|x∗j ε(x
∗
j), (2.8)

where wx′|xn
j

denotes the weight of j-th neighbor. From now on we use a hat (ε̂) to differen-

tiate the residuals estimated by DDMs from the real value (ε).

In this thesis, two weight functions are used:

wx′|x∗j =
α

||x′ − x∗j ||p
(2.9a)

wx′|x∗j = βexp(−||x′ − x∗j ||2/q2). (2.9b)

α and β are scaling factors to ensure
∑n

j=1wx′|x∗j = 1, and p, q are parameters to be tuned.

One characteristic of (2.9a) is that, the weight assigned to x∗j very close to the query x′ can

become unboundedly large as the distance approaches to zero (as shown in Figure 2a), so

that other neighbors might be shadowed. In contrast, the weights allocated by (2.9b) are

bounded by one (Figure 2b).

Despite its simplicity, IBW has been very popular and successful [26, 40]. The level of com-

plexity of the estimation suface of IBW can be tuned by varying the parameters, making

this group of methods very flexible. For example, decreasing the size of neighborhood (n),

(and/or) increasing p (and/or) decreasing q, will decrease the mean error (bias), yet increase

the variance of the fit. In some cases, using the same parameters globally may fail to provide

satisfactory estimation. Typically, for kNN, Wettschereck and Dietterich [48] suggested to

vary the value n locally within different parts of the input space to account for varying
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characteristics of the data. In this thesis, the values of the above parameters are tuned via

cross-validation for each subset, as described in section 2.2.1 and 3.4.

Locally Weighted Regression

Locally weighted regression, or loess, fits a regression surface of the predicators (input fea-

tures) using a multivariate smoothing process [11]. It can estimate a much wider class of

regression surfaces than with the usual classes of parametric functions, such as polynomials.

To estimate the target (the residual in this work) at a query point x′, loess first finds a

neighborhood of x′ in the training dataset ({xi}, i = 1, 2, ..., N). Unlike IBW which com-

putes ε̂(x′) by weighted averaging, loess fits a polynomial over the neighborhood, denoted

as {x∗j}, j = 1, 2, ...n. The number of neighbors, n, is typically user-specified, as discussed

later. In contrast with traditional regression which treats every data point equally, loess

weights each point in the neighborhood according to its distance to the query point x′. The

popular weighting function used in loess takes the tri-cubic form,

K(x′,x∗j) =


{

1−
[
||x′−x∗j ||
d(x)

]3}3

||x− x∗j || < d(x)

0 ||x− x∗j || ≥ d(x),

(2.10)

and

d(x) = max
j
||x− x∗j ||. (2.11)

Then a polynomial of degree d is fitted on the neighbors {x∗j} by minimizing the weighted

least squares loss function:

L = min
α(x′),β(x′), j=1,...,d

n∑
j=1

K(x′,x∗j)

[
ε(x∗j)− α(x′)−

d∑
k=1

β(x′)(x∗j)
k

]2
. (2.12)
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The estimated residual at query x′ is therefore given by

ε̂(x′) = α̂(x′) +
d∑

k=1

β̂k(x
′)(x∗j)

k. (2.13)

To achieve satisfactory performance, the user-specified bandwidth of neighborhood (n) needs

to be optimized. This is done by tuning the ratio of n to N , or the span parameter (δ),

via cross validation. Similarly to IBW, there is also a tradeoff between variance and bias in

choosing δ. Larger span indicates that more data points are used to build the local regres-

sion model; therefore the fitted polynomial surface tends to be smoother. As a result, the

variance of the loess model is low while the bias may be large. Smaller value of δ, on the

other hand, yields a more “wiggling” regression surface that fits the data better at the price

of high variance.

Another point to note is the degree of polynomial (d). From Eqn. (2.13), the input variables

themselves are directly used as fitting variables if we fit linear polynomials (d = 1). On the

other hand, if a quadratic polynomial is used, the fitting variables include the input fea-

tures, their squares and their cross-products. Usually d = 1 or 2 suffices to yield satisfactory

estimates, hence higher orders are rarely used. Quadratic polynomials tend to outperform

linear polynomial when the regression surface has substantial curvature.

The loess class in the R software environment is used to implement loess.

2.2.3 Decision Trees

Decision tree (DT) is a conceptually simple yet powerful nonparametric tool for classification

and regression [26]. A tree-based classification and regression algorithm CART is briefly

described here. CART recursively partitions the feature space, in a binary fashion, into

rectangular regions, and fits a constant value in each one. For the purpose of clarity, some

of the notations used in this section are different from other part of the thesis.
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The bold symbol x is still used to denote the input data as vectors, while the capital letters

X1, X2, ..., Xp denote the input features, which are considered as random variables. Within

the framework described in section 2.1, for example, X1, X2 could be the 〈x, y〉 location of

the monitoring wells. A binary split at Xj = s partitions the space into two regions R1 and

R2 such that

R1 = {x|Xj ≤ s} and R2 = {x|Xj > s}. (2.14)

Constant c1 and c2 are then assigned to the data in R1 and R2 respectively. Figure 3a is an

illustration of a tree with two input features X1 and X2. Figure 3b shows the corresponding

partition of the two-dimensional space. The CART algorithm adopts a greedy strategy to

seek the splitting variable j and split point s at every non-terminal node. Starting with all

the data, the algorithm solves the following minimization problem:

min
j,s

[
min
c1

∑
X∈R1

(εi − c1)2 + min
c2

∑
X∈R2

(εi − c2)2
]
. (2.15)

The splitting process is repeated on the resulting regions, and a large tree T0 is grown until

some minimum node size is reached at leaves, or terminal nodes. T0 is then pruned with a

pruning level selected based on the tree cost which is usually estimated by cross validation on

the training dataset. The cost of the tree is the sum over all terminal nodes of the estimated

probability of a node times the cost of a node. The probability of a node is computed as

the proportion of data points that satisfy the condition for the node. For regression trees,

the cost of a node is the mean squared error at that node, i.e.
∑

X∈Ri
(εi − ci)2 for node i

[5]. In this work, tree regression is implemented with the MATLABr classregtree class

of routines, which adopts the above stated algorithm.

The key advantage of regression tree is its straightforward interpretability. On the other

hand, the disadvantages include: (1) Regression trees are unstable and have high variance,

and are sensitive to data noise [33]; (2) The regression surface lacks smoothness; (3) The

representational power of binary splitting is restricted [26]. It is also worth noting that DT
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is similar with IBW in that both of them partition the feature space into regions and fit a

simple model in each region.

2.2.4 Artificial Neural Network

Artificial Neural Network (ANN) has been widely applied to water resources prediction

and forecasting [31]. The representational power of ANN makes it particularly suitable for

learning functions whose general form is unknown in advance. It has been proved that a

feedforward network with three layers can approximate any function to arbitrary accuracy,

given sufficient nodes in each layer. In practice, networks of feasible size are able to represent

a rich space of highly nonlinear functions [33].

Inspired by biological learning processes, ANNs are built out of a densely interconnected

set of units (nodes). Each unit takes a number of real-value d inputs (could be outputs of

other units) and produces a single real-valued output, which may be the input to other units

[33]. In this thesis, we focus on the multilayer perceptron network (MLP) that frequently

appears in hydrological forecasting applications. A typical MLP network is comprised of

an input layer, one or more hidden layers and an output layer. An MLP with one hidden

layer and output layer of one node is represented by the network diagram shown in Figure

4. For feed forward networks, like MLP, information flows from left to right through the

connections between units. Each unit, or neuron, computes a single real-valued output based

on a weighted sum of its real-valued inputs (possibly the output of other neurons) plus a

bias term, and a transfer function. The sigmoid function is typically used for hidden layer(s)

while the linear function is usually used for the output layer. The weights and bias of all

units can be learned by the Backpropagation algorithm, which attempts to minimize the

loss function

E(w, b) =
1

2

∑
i

(ε̂i − εi)2 (2.16)
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where the subscript i denotes the index of the training sample, and ε̂i, εi denote respectively

the estimated and real residuals of training data xi. A typical setting of the Backpropagation

algorithm is to minimize the loss function by Levenberg-Marquardt method and update the

weights and bias of all units by the gradient decent with moment approach.

Since there is no regularization term in the loss function E(w, b), the backpropagation MLP

is prone to overfitting the training data. One approach to prevent overfitting is the early

stopping technique that takes advantage an independent validation dataset. For every iter-

ation step during the training process, the network that is learned from the training set is

tested on the validation set, and the generalization error is monitored. In the early stage

of training, the generalization error normally decreases with the training error, until the

network begins to overfit the data. The training is terminated when the generalization error

continuously increases, and the coefficients at the minimum of the generalization error are

chosen.

A major shortcoming of MLP is that the Backpropagation algorithm is only guaranteed to

converge to some local minima instead of the global minimum. In addition, as a black box,

ANN is difficult to interpret.

In this work, ANN is implemented with the MATLABr Neural Network TooboxTM.

2.2.5 Support Vector Regression

Support vector machines (SVM) comprise a relatively new class of learning algorithm. The

popularity of SVM applied to regression problems can be attributed to: 1) good general-

ization performance, because SVM seeks to minimize an upper bound of the generalization

error rather than minimize the training error; 2) the solution of SVM is always globally op-

timal, while many other machine learning tools (eg. ANNs) are subjected to local minima;
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3) the solution is represented sparsely by Support Vectors, which are a typically small subset

of all training examples [6]. A brief overview of ε-SVR is provided here. For more details,

readers are referred to [44] and [39].

Given a set of training data (x1, ε1), ..., (xN , εN), in SVM regression (hereby abbreviated

as SVR), the input xi is first projected to a higher dimensional feature space by the map

Φ : X → F . Please note that here the feature is different from the input, while in the other

parts of the thesis the two words are used interchangeably. Linear regression to approximate

the unknown function ε(x) is then performed in the feature space Φ(x) instead of the input

space x:

f(x) = w · Φ(x) + b. (2.17)

The coefficients w and b are estimated by solving the optimization formulation of SVR

minimize
1

2
||w||2 + C

N∑
i=1

(ξi + ξ∗i ) (2.18)

subject to

(wTφ(xi) + b)− εi ≤ ε+ ξi, (2.19a)

εi − (wTφ(xi) + b) ≤ ε+ ξ∗i , (2.19b)

ξi, ξ
∗
i ≥ 0, i = 1, ..., N. (2.19c)

Regularization by minimizing ||w||2 ensures the flatness of the solution. The second term in

Eqn. (2.18) is derived from the ε-insensitive loss function

|εi − f(xi)|ε = max{0, |εi − f(xi)| − ε}. (2.20)

The constant C in Eqn. (2.18) determines the trade-off between the flatness of f and the

tolerance of deviations larger than ε.
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Usually the map Φ : X → F is implemented implicitly via kernels such that

〈Φ(xi),Φ(xj)〉 = K(xi,xj)

where 〈·, ·〉 denotes the dot product in F . In this work, the popular radial basis function

(RBF) is used as the kernel:

K(xi,xj) = exp(−γ||xi − xj||2). (2.21)

The kernal width parameter γ is optimized via cross validation.

Chang and Lin [8] recommends ε = 0.1 and to check a grid of values of C and γ by cross

validation and select the hyperparameter setting that yields lowest cross validation error.

On the other hand, Cherkassky and Ma [10] suggests to estimate the best regularization

parameter C and error insensitive parameter ε by

C = max(|µ+ 3σ|, |µ− 3σ|), (2.22a)

ε = τσ0

√
ln N

N
, (2.22b)

where µ and σ are the mean and standard deviation of the training outputs εi’s , τ is a

coefficient usually equals to 3, σ0 denotes the noise level, and N is the size of training

dataset. The reason that cross validation is not used to optimize all hyperparameters is

due to the prohibitively long computation time required to check a number of combinations

of hyperparameter values in a grid-search fashion. In addition, the hyperparameters cho-

sen analytically outperformed the values chosen by a preliminary cross validation attempt

with a relatively coarse grid search. The LIBSVM codes developed by Chang and Lin [8]

were used to implement the SVR. The codes can be downloaded from the LIBSVM website

(http://www.csie.ntu.edu.tw/ cjlin/libsvm/).
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2.3 Performance Evaluation

The performance of the PBM and DDMs is evaluated graphically and by statistical measures

of goodness of fit. RMSE is adopted as the primary measure of the model accuracy. Following

the notations in section 2.1 and letting N denote the number of predictions, hi, ĥi, ĥ
new
i

denote the ith observed, MODFLOW simulated and DDMs updated head respectively, the

root-mean-square error (RMSE) of the PBM predictions is defined as

RMSE(PBM) =

√∑N
i=1(hi − ĥi)2

N
,

and RMSE for the DDMs updated predictions is

RMSE(PBM +DDM) =

√∑N
i=1(hi − ĥnewi )2

N
.

The mean error (ME) is used to measure the overall bias of the models. The performance

of models can also be evaluated graphically via residual plots and cumulative distribution

function (cdf ) plots of mean absolute error (MAE). Their use is demonstrated later in the

case studies.

In addition, the residual analysis is carried out on both the PBM and DDMs updated pre-

dictions. The presence and extent of spatial and temporal structures are compared before

and after DDMs updating, in order to examine the effectiveness of the DDMs to correct the

bias of PBM predictions.
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Chapter 3

CASE STUDY OF THE
REPUBLICAN RIVER COMPACT

ASSOCIATION MODEL

3.1 The RRCA Model

The framework described in Chapter 2 was applied to a regional groundwater flow model

of the Republic River Basin covering portions of eastern Colorado, northwest Kansas and

southwest Nebraska (Figure 5). In the last century, growing water demand for irrigation and

other uses has led to dramatically increased the groundwater pumping, leading to water con-

flicts and litigation among the states. In 2002, the Republican River Compact Association

(RRCA) model was constructed by experts representing Colorado, Kansas and Nebraska to

determine the streamflow depletions to the Republican River due to well pumping in each

state and streamflow accretions to the Republican River from recharge of water from the

Platte River Basin to the north. The model, its documentation, input and output data are

available via the RRCA website (http://www.republicanrivercompact.org/).

The RRCA model uses a modified version of the MODFLOW 2000. The model has a single

layer, a uniform grid size of 1 square mile, and stress period of a month. The main stresses in

the model include recharge, groundwater pumping, evapotranspiration and reservior stage.

Recharge is comprised of natural recharge from precipitation and human-induced recharge

from irrigation of cropland and seepage from irrigation ditches or canals. Parameters that

were calibrated include hydraulic conductivity, precipitation recharge, the minimum satu-

rated thickness, potential evapotranspiration rate spatial multipliers, multipliers to adjust

the average recharge from 1918-1940 for the mound area in the northeastern portion where

there are water transfers into the Republican River Basin from the the Platte River Basin
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to the north. . The model was calibrated based on head measurements at over 10,000 wells

and baseflow at 65 gages from Jan.1918 to Dec.2000. The model was calibrated by “trial and

error” and automated calibration techniques [32], but more detailed information concerning

the calibration process is not available. Since 2000, the model has been run each year using

new input data sets of pumping, canal losses and irrigation return.

3.2 Data Preparation

The database used in this thesis includes simulated and observed waterlevel data from 1918

to 2007. Cell-by-cell head output simulated by the RRCA model until 2007 is available on the

RRCA website. This file follows the format of MODFLOW head output files, therefore it can

be processed with common post-processing programs developed for MODFLOW. The major

part of the waterlevel measurements from 1918 to 2000 were downloaded from the RRCA

website as a group of database (DBF) files. The DBF files contain the data of the wells where

the waterlevel measurement was taken, including the site identity number, x, y coordinates

in the MODFLOW model, latitude and longitude, coordinate system, land surface elevation

and other information. The DBF files also include waterlevel measurements and the mea-

surement time. Waterlevel observations from 2001 to 2007 are downloaded from the USGS

Water Data for the Nation (NWIS) online database (http://waterdata.usgs.gov/nwis/gw).

The information of the wells included in the above mentioned DBF files are submitted for

searching the database for related groundwater data. The waterlevel observations at these

wells are then identified and retrieved in the form of depth to water. The waterlevel is

then computed by subtracting depth to water from the land surface elevation at the well.

Waterlevel measurements at additional wells that entered the NWIS database after the con-

struction of the RRCA model are also retrieved. The geographical coordinates of these

wells are projected to the RRCA model coordinate systems, so that this part of data can

be merged with the others. The simulated waterlevel corresponding to measurements were
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linearly interpolated from the head output file of the RRCA model using mod2obs, a ground-

water data utility code developed by the Watermark Numerical Computing. Instructions to

use this utility code are available in [?]. The waterlevel records of wells range from a single

measurement to continuous measurements at a few locations. Typically, the waterlevel is

measured once each year usually during the non-irrigation season. Some wells that have few

observations or have unreasonably high residual are excluded from the database. Overall,

the database consists of over 300,000 waterlevel data from 1918 to 2007 at 3,078 wells within

the model boundary that have no fewer than 10 observations and absolute mean residual

less than 100 ft.

3.3 Residual Analysis

Considering its complexity and size, the RRCA model was calibrated to represent the hy-

drogeological characteristics of the Republican River Basin to a reasonable degree. However,

normally distributed residuals with zero mean, an indicator of a well-calibrated model (sec-

tion ??, were not achieved. Overall, the mean error (ME) of the head simulated by the model

during the calibration period (1918-2000) is -7.74ft. (negative value indicates simulated head

is greater than the observed head), and the root-mean-square error (RMSE) is 33.38ft. The

normal probability plot of the residual (Figure 6) deviates from the straight line. Further

residual analysis indicated the presence of notable bias and relatively large magnitude of

residuals in the MODFLOW model simulation results.

Local patterns can be found in the plot of mean residual at each well during the calibration

period, as shown in Figure 7. For example, the MODFLOW model overpredicted the water-

level in northeastern and western part of the model domain, while the model underpredicted

the waterlevel in many places throughout Nebraska and Kansas. The spatial dependence of

the historical residuals was further analyzed via semi-variograms, as presented in Figure 8.
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In each plot, the variance of the difference between the residuals at two wells increases as

the distance increases. This indicates the existence of spatial dependence.

The DW statistic described in section ?? was used to test the existence of temporal cor-

relation. Since DW statistic works with time series data with uniform time intervals, only

wells that have relatively uniformly spaced waterlevel measurements were included. Figure

9a shows the DW statistics of 51 wells with time step of one month, and Figure 9b shows

the DW statistics of 71 wells with time step of one year. The DW statistics of the majority

wells are substantially smaller than two, indicating that the residuals are correlated in time.

Finally, the correlation coefficient and Mutual Information score were used to quantify the

overall spatial and temporal dependence of historical residuals. Table 1 lists the correlation

coefficients and MI scores between normalized selected variables and the residual at all wells

from 1918 to 2000. Please note that MI scores are not invariant to scaling and hence should

only be compared on a relative scalewith each other. The MI scores show spatial dependency

of the residual, while temporal dependency appears to be weaker. MI scores show that the

x location is more relevant than y location to the residual, which is not reflected in the

correlation coefficients that can only quantify linear correlation.

3.4 Framework Implementation

DDMs were built to forecast the prediction error (ε) of the MODFLOW model’s head sim-

ulation (ĥ). The updated head ĥnew = ĥ + ε̂ was then the final output of the framework.

In accordance with the practical need of predicting using the MODFLOW model, the com-

plementary modeling framework was implemented in three prediction scenarios: temporal,

spatial, and temporal plus spatial prediction. In each case, the DDMs were trained first on

one training dataset, and then validated on an independent testing dataset.
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In temporal prediction (TP) case, the DDMs were trained with historical data (1918-2000),

and validated on data during the prediction period (2001-2007) at the same wells. For spa-

tial prediction (SP), wells were randomly split into group A and B. The DDMs were trained

with the data at wells in group A from 1918 to 2007, and verified on the data of group B

during the same time period. In the scenario of temporal plus spatial prediction (TSP), we

trained the DDMs with 1918-2000 data of group A, then tested them on 2001-2007 data of

group B. The sizes of datasets used in the three scenarios are summarized in Table 2. Please

note that for SP and TSP, the wells are splitted randomly. The size of training and testing

sets may change if the wells are splitted differently.

Table 1 shows that the historical residuals are related to the well location and the water-

level simulated by the MODFLOW model, while the relation to the time of measurement

is weaker. The selection of features were based on this observation, the cross validation

results, and the fact that in the TP and TSP scenario DDMs extrapolate in terms of t. For

TP and TSP the DDMs took as inputs the location of the wells (xw, yw) where the head

measurements were taken as well as the head computed by the MODFLOW model (ĥ). For

SP, the observation time (t) was also included in the input features. Mathematically, the

DDMs can be formulated as

ε̂ =


f(xw, yw, ĥ) TP, TSP

f(xw, yw, ĥ, t) SP.

(3.1)

Local patterns were found in the residuals, as stated in section ??. In addition, the datasets

are large, especially for TP and SP (Table 2). Therefore cluster analysis was implemented

as the first step. For temporal prediction (TP), the 3,078 wells in the database were clus-

tered into 10 subsets using the agglomerative hierarchical clustering algorithm according to

27



their spatial locations, and first and second moments of the head error. The simulation-

measurement pairs in the database are then partitioned into ten subsets according to which

cluster the well (where the measurement is taken) belongs to. Each subset was comprised

of a training dataset containing data during the calibration period and a validation dataset

during the prediction period. DDMs were developed for each subset respectively. In contrast,

for SP and TSP, similar clustering cannot be implemented because training and validation

datasets contain different wells. Instead, the 4 or 3 dimensional (depending on whether t

is included) input data x is clustered by k-means algorithm. Again, each cluster consists

of training and validation/testing dataset, and DDMs were developed for each cluster. The

number of clusters is set as 10 for TP and SP. It was not tuned due to the prohibitively high

computational expense. For the TSP scenario, the dataset include the three clusters out of

the ten clusters used for SP that contain residuals in the prediction period. The result of

k-means clustering is subject to randomness due to the initial guess of cluster center and

the possibility to converge to local minima. Although the hierarchical clustering algorithm

is not subject to this shortcoming, it involves computing the distance between every pair of

data points, which is too computationally expensive in TP and TSP cases.

IBW, loess, DT, SVR and ANN models were built in TSP scenario. The comparison of per-

formance of different DDMs was examined only in TSP case, because: 1) The computational

expense makes it infeasible to conduct such comparison in all cases; the training and testing

dataset are smaller for TSP than for TP and SP, thus the computation time is smaller. 2)

In TSP scenario, the abilities of DDMs to implement both temporal and spatial inferences

are tested, while only one type of inferences is tested in the TP or SP scenario. As will be

shown in the next section, IBW and SVR outperformed other machine learning techniques

in the TSP case, hence only these two DDMs were further tested for TP and SP scenarios.

The parameters of the DDMs were tuned as described in Chapter 2.

Cross validation was used as the primary approach to select parameters for DDMs. Cross
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validation (CV) is a technique for assessing how DDMs will generalize to an independent

data set. K-fold CV first partitions the training dataset into K subsets. For the kth subset,

CV fits the DDM to the other K-1 subsets, and calculates the prediction error of the fitted

model when predicting the kth subset. This process is repeated for k = 1, 2, ..., K, and the

K testing results are averaged to compute the cross-validation estimate of prediction error

[26], herein referred as CV error. Here cross validation is used to choose the optimal values

of weighting function parameters and number of neighbors of IBW, span of loess, tree size

of DT, the number of hidden nodes of ANN, as well as the kernel width of SVR. After

cross validation, the DDMs with chosen parameters will be trained with the whole training

dataset, and then used for forecasting.

The method to partition data during the cross validation (CV) process was adapted for the

specific prediction scenario. For SP and TSP, the wells in the training set were divided into

five groups. For five-fold CV of SP, the observations at the wells of one group were retained

as testing data, and the DDMs were trained on the remaining data. This process was re-

peated five times so that every observation had been included in the testing data once. For

TSP, in each one out of five runs of CV, the testing dataset is comprised of the observations

at the wells of one group from 1995 to 2000, and the training data includes older residuals

(1918-1994) at wells from other groups, unless stated otherwise. On the other hand, there

is no straightforward way to implement a similar CV process for TP, therefore the data was

simply randomly partitioned.

The process of parameter selection for DDMs is reported in detail for the TSP scenario.

The parameters of DDMs in TP and SP scenarios were chosen similarly. Here we present

the cross validation results for one of the three clusters. For IBW, the weighting function

Eq. (2.9a) outperformed Eq. (2.9b) in the TSP scenario. Five-fold cross validation was

implemented with various values of the power p of the weighting function and the number

of neighbors n to find the combination that would yield the lowest CV error. The cross val-
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idation results are shown in Figure 10. The combination p = 5, n = 128 yields the smallest

CV error, and hence is selected for the final IBW model used for forecasting that is based on

the whole training dataset . For loess, second degree polynomial (d = 2) was used for locally

weighted regression following the recommendation in [11, 12]. The span δ which controls

the size of neighborhood was chosen by five-fold cross validation, as shown in Figure 11.

As will be shown later in section 3.5.1, the generalization error of the loess model on one

of the five subsets with any value of δ within the considered range is exceptionally larger

than the generalization error on other subsets. This subset was therefore excluded when

computing the CV error. δ = 0.35 yields smallest CV error; hence the loess model with this

span value was then fitted to the whole training set. For DT, CV determines the optimal

size of the tree by tuning the pruning level. Unlike for other DDMs, cross validation for DT

partitions the training data points into five subsets with roughly equal size. This is because

partitioning the wells into five folds and then splitting the data points according to which

fold the well belongs to would result in subsets that are much smaller than the training

dataset, and that have sizes dramatically different from one another. Since tree levels are

adapted to the sample size, it is more reasonable to determine the tree size based on cross

validation subsets whose sizes are similar to one another, and are more representative of

the size of the training dataset (each subset includes 80% of the training data points in

five-fold CV). For each subset, a tree is fitted to the remaining data and used to predict

the subset. The tree is pruned to subtrees with varying pruning levels, and the correspond-

ing costs for each subset is pooled to compute the cost over the whole training dataset, as

plotted in Figure 12. The CV error monotonically increases as the pruning level increases

without any “turning point” as in the cross validation results of other DDMs. Although

large, complex trees with more than 200 levels is favored by the CV results, they are risky

in terms of generalization capability. From the perspective of parsimony, the best pruning

level is chosen as the one that produces the smallest tree that is within one standard error

of the minimum-cost subtree. Figure 12 shows that the best pruning level is 199, yielding a

subtree that has 73 terminal nodes (|T | = 73). In the case of ANN, a single layer MLP is
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used as recommended in [31, 33]. CV chooses the number of nodes in the hidden layer to

be 18, as shown in Figure 13. For SVR, the values of the regularization parameter C and

the error insensitive parameter ε were selected analytically with Eq. (2.22a) and (2.22b),

respectively. Five-fold cross validation was implemented to tune the kernel width parameter

γ (Eq. (2.21)), as shown in Figure 14. γ = 11 was chosen as it corresponds to the lowest

CV error. The selected values of parameters are summarized in Table 3.

3.5 Results and Discussion

The global performance averaged among cluster/subsets is reported. The TSP results are

presented first, and the effectiveness of different DDMs is compared. The performance of

IBW and SVR in all scenarios are reported in more detail later.

3.5.1 Comparison of DDMs Performance for TSP

IBW, loess, DT, ANN and SVR models were built to forecast the predictive error of the

MODFLOW model in the temporal plus spatial prediction scenario. The parameters were

tuned as stated in section 3.4, and their optimized values are listed in Table 3. Table 4

summarizes the ME and RMSE before and after DDMs updating. In the case of ANN,

to account for the randomness of initial weights, the model is re-trained five times using

different initial weights. The result shown is the average of the testing error over the five

rounds. All DDMs effectively reduce the predictive error of the MODFLOW model, but to

a varying degree. Among them, IBW and SVR yielded smaller RMSE than other DDMs.

The DDMs were also compared with each other in terms of computation cost. Table 4 lists

the time that each DDM took to predict the residuals of the testing data. The comparison is

based on run-time on a desktop with IntelrCoreTM2 Duo 3.16GHz×2 CPU and 4GB RAM.
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The codes used to implement loess, DT, ANN and SVR are described in Chapter 2. Due

to the random initialization of weights, the run-time of ANN is uncertain, yet it is usually

longer than the running time of other DDMs. The computation times of all DDMs are neg-

ligible compared with the PBM. On the other hand, the memory required to process cross

validation of the DDMs generally exceeds the memory of the above desktop computer, and

would take much longer running time, if CV is conducted with the whole training dataset

without clustering.

Improved comparison of the performance of DDMs calls for analyzing the effects of ran-

domly splitting the dataset into training and testing sets. This can be done by repeating the

above-stated implementation of DDMs many times. Each time we may re-split the training

and testing wells, tune the DDMs via cross validation on the training dataset, and test the

DDMs on the testing dataset. This process is cumbersome. A simpler approach was adopted

that took advantage of the five-fold cross validation results. The lowest generalization error

of DDMs on each subset was taken as their testing error, which is shown in Figure 15 and 16.

The performance of DT and especially loess is subject to high variance. This is primarily

because DT is not as robust as the other three DDMs in dealing with noisy data 2.2.3, and

loess is not good at predicting near or beyond the boundary of the training dataset domain

[26]. On the other hand, IBW, ANN and SVR are less sensitive to the splitting of the data

and perform well on all subsets. It is interesting to note that the variation of the performance

of DT and IBW among different training and testing datasets resemble one another, but the

generalization error of DT is no lower than that of IBW in all five cases. IBW and DT are

similar to one another in that they both partition the input space into small subregions,

then fit simple functions within each subregion. However, DT partitions the input space

into non-overlapping rectangular subregions while IBW divides the space into overlapping

neighborhoods of irregular shape based on the number of neighbors. In addition, DT fits

constant values within each rectangular support, thus its regression surface is characterized

by non-continuous “platforms”. It is therefore not surprising that the performance of IBW

32



is better than DT.

While Figure 15 and 16 suggest that ANN performs well with different training and testing

dataset, its performance is subject to instability due to the random initial weights assigned

to the network before being trained, and the algorithm converges to local minima instead

of the global minimum. As mentioned earlier, when used to forecast the PBM’s error after

the year 2000, the ANN model is re-trained five times using different initial weights. The

prediction error of the five trials varies from 18.3 to 22.9 ft. It has been recognized in the

literature [6, 39, 26, 10] that SVR is superior to many traditional regression techniques, in-

cluding ANN, because it is designed to minimize an upper bound of the generalization error

rather than the training error, and is not prone to local minima (please refer to section 2.2.5

for details). Another disadvantage of ANN is its relatively long training time. Consequently

IBW and SVR are considered to be the better DDMs, and are therefore employed in TP

and SP scenarios.

It is interesting to note that the global bias (ME) resulting from different DDMs may have

different signs. For example, ME of DT updated waterlevel predictions is -1.84ft., while the

ME after SVR updating is 1.59 ft. The similar magnitude and opposite signs of ME indicate

that better results can be achieved by combining the results of DT and SVR.

3.5.2 Performance of IBW and SVR

To compare DDMs performance in different prediction scenarios, the mean error (ME) and

root mean squared error (RMSE) of the head predicted by the MODFLOW model (ĥ) and

IBW/SVR corrected model (ĥnew) are summarized in Table 5. In all three prediction sce-

narios, both IBW and SVR effectively improved the accuracy of head prediction of the

MODFLOW model, reducing the RMSE by over 82% (TP), 60%(SP) and 48% (TSP). The

DDMs removed most of the global bias, reducing the ME to around zero. Figure 17 shows the
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estimated cumulative distribution function of the absolute residual before and after DDMs

updating. Point (x, y) in this plot means that y portion of the waterlevel observations have

absolute residual that is no larger than x ft. In all three prediction scenarios, the lines of

DDM-corrected results lie to the left of the thick grey line representing the raw MODFLOW

model results, indicating the reduction in magnitude of residuals.

Best overall performance was achieved in the temporal prediction scenario, mainly due to

the strong temporal correlation in the residuals, and because the prediction lead time (seven

years) is relatively short compared with the time range of the training data (83 years). On

the other hand, the performance of DDMs in SP and TSP cases is not as good as in TP,

due to the varying residual patterns among wells and the relatively sparse data coverage in

space. The improvement of prediction accuracy in TSP is less than that in SP, as the former

involves temporal extrapolation in addition to spatial interpolation.

Figures 19, 20 and 21 present the hydrographs of representative wells at the locations shown

in Figure 18. In general, the DDMs significantly improved the prediction accuracy. For

those wells where the MODFLOW model predicted the trend of water level correctly but

with bias, the DDMs “shifted” the MODFLOW prediction to correct the bias (Figure 19a,

Figure 21a and b). In cases where MODFLOW made inaccurate prediction of the trend,

the DDMs can still compensate, however the effectiveness of DDMs for trend correction

varied for each well. For instance, in Figure 20a, both IBW and SVR corrected the shape of

hydrograph simulated by the MODFLOW model. In Figure 19d, SVR did better than IBW

in adjusting the hydrograph predicted by PBM. In Figure 19b and 20b, SVR corrected the

trend of the MODFLOW model’s prediction and yielded a good fit with the observations,

while IBW maintained the trend of the MODFLOW model prediction. Figure 20c, 21c and

21d show cases in which neither IBW nor SVR effectively corrected the shape of PBM pre-

dicted hydrographs. The performance of DDMs on these wells was not satisfactory.
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In general, both IBW and SVR yielded relatively smooth prediction compared with the

fluctuating measurements, because the DDMs do not account for measurement error, and

the regularization scheme discourages a complex estimation surface. Specifically, the DDMs

had difficulty in recovering the interannual waterlevel fluctuation of the measurements (e.g.

Figure 19c and 20b) at some wells. This problem may be alleviated by adding pumping

rate, evaporation and precipitation data into the input features of DDMs. In some cases,

wiggling occurred in DDMs estimates that was not found in observation or PBM prediction,

because DDMs may choose as neighbors or support vectors those data points that were ac-

tually irrelevant to the query. A likely solution to this problem is to increase the number of

clusters, so that the DDMs can be tuned to better adapt to the local patterns of the residuals.

3.5.3 Discussion on TP Results

The results of temporal prediction case are analyzed in more detail here. The mean error

of the waterlevel simulation at each well during prediction period (2001-2007) is plotted in

Figure 22. The magnitude of residuals was significantly reduced by the DDMs. Residuals

greater than 50 ft or less than -50 ft were eliminated, and the local patterns were largely

removed except in the northeastern part. In that mounding area, the DDMs overly adjusted

the waterlevel simulation of the RRCA model, in that the overpredicting was inversed to

underpredicting. The reason is still unclear.

Figure 23 shows the empirical semi-variograms of the mean error at each well before and

after DDMs updating. It can easily be seen from 23a that some spatial structure exists

with sill around 1100 sft. and range of approximately 40 miles. The spatial dependence

is reduced as shown by Figure 23b. On the other hand, Figure 24 shows that, while the

positive correlation of residuals with time was reduced for most wells, the DDMs introduced

negative temporal correlation (DW¿2) at some wells.
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From the perspective of water resource management, it is important to know how the wa-

terlevel would change in the future, because such trend serves as the major indicator of the

change in groundwater storage, and is related to the efficiency of groundwater development.

In addition to the hydrographs at representative wells shown in Figure 19 to 21, the global

trend of waterlevel is plotted in Figure 25. Only the wells that have waterlevel measure-

ments from 2001 to 2007 are included in the plots. The complementary framework with SVR

generated better prediction of the change in waterlevel than the MODFLOW model in the

western part of the basin. However it worked no better than the PBM in the northeastern

part (the mound area).

3.5.4 MI Scores Before and After DDMs Updating

The DW test and semi-variogram test results of SP and TSP are not presented here to avoid

redundancy. Instead, the change in MI scores between input features and the residuals be-

fore and after applying the complementary framework are summarized in Figure 26. To

compute the MI scores, the input features (xw, yw, t, ĥ) were scaled so that the values of each

feature had zero mean and unit variance. The residuals were not scaled because scaling ε, ε̂

respectively would make the MI scores incomparable. Comparison cannot be made across

prediction scenarios, because the input features are scaled differently. Generally, the DDMs

reduced the dependence of the residuals on space and time, as well as computed head, with

the only exception a slight increase of MI scores associated with t in TP case. Hence the

temporal and spatial dependency of the residual reported in section 3.3 have been alleviated.

3.6 Summary

The complementary framework described in Chapter 2 was tested on a case study based on

the RRCA model. The results presented in this chapter show that given structure existing

36



in the error of the PBM, DDMs can learn the temporal and spatial patterns of the residual

from historical data. The trained DDMs effectively predicted the error of PBM in differ-

ent testing scenarios (TP, SP and TSP). It is shown that the head prediction corrected by

DDMs more closely fits the observations than the simulation of the MODFLOW model. In

addition, the DDMs reduced the degree of temporal and spatial dependence of the residual.

Furthermore, the performance of several types of machine learning techniques is compared

in TSP scenario. It is found that IBW, SVR and ANN yield more accurate head prediction

than loess and DT. ANN requires longer training time than other DDMs, and its perfor-

mance is not stable. Consequently IBW and SVR are considered as superior and are hence

further tested in TP and SP cases.

While the DDMs prove to be effective, their performance at some wells is still unsatisfac-

tory. This suggests that a part of the residual cannot be modeled based on the input features

included. By incorporating more inputs, for example, pumping rate, precipitation and evap-

oration, the DDMs could be improved to better compensate for the structural defects and

parametric uncertainty of the PBM.
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Chapter 4

CASE STUDY OF THE SPOKANE
VALLEY RATHDRUM PRAIRIE

MODEL

4.1 The SVRP Model

As the second real-world case study, the complimentary modeling framework was applied

to improve the head prediction of the Spokane Valley-Rathdrum Prairie (SVRP) model.

The SVRP aquifer covers approximately 326 square miles across the states of Idaho and

Washington, and supplies drinking water to more than 500,000 residents. A MODFLOW-

2000 model was jointly developed by the USGS, Idaho Department of Water Resources, the

University of Idaho, and Washington State University. The model has a uniform cell size

of 1,320 by 1,320 ft., and stress period of 1 month from September 1990 through Septem-

ber 2005. The SVRP aquifer is represented by one active layer except in Hillyard Trough

and Little Spokane River Arm. In those areas, the model has three active layers (shown

in Figure 27). The model was calibrated by PEST (version 10), a model independent pa-

rameter estimation tool, using as calibration targets over 1,500 groundwater level measure-

ments and 313 measurements of streamflow gains and losses along segments of the Spokane

and Little Spokane Rivers during October 1995 to September 2005. The first five years

of the simulation are considered as the warm-up period, thus observations prior to Oc-

tober 1995 are excluded from the calibration data. Model parameters calibrated include

hydraulic conductivity, specific yield, vertical hydraulic conductivity of riverbed sediments,

and hydraulic conductance of riverbed and lakebed sediments. For more details about the

model, readers are referred to the documentation [29] that is available on the project website

(http://wa.water.usgs.gov/projects/svrp/summary.htm). The cell-by-cell head output file of

the model and calibration targets were obtained from the model developer.
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The database used in this case study consists of the waterlevel calibration dataset, plus

additional observations from October 1995 to September 2005 that became available via the

USGS Water Data for the Nation online database (http://waterdata.usgs.gov/nwis/gw) after

construction of the model. The data preparation process is similar to the process described

in section 3.2. In contrast with the RRCA case study, no data beyond the calibration period

is included because of the lack of publicly available input or output data after September

2005. As in the RRCA case study, simulated waterlevel corresponding to a measurement is

linearly interpolated from the cell-by-cell head output file of the MODFLOW model using

mod2obs. In total, the database contains 2196 simulated and measured head pairs.

Water-level measurements at several wells in the calibration dataset are excluded from the

calibration data. A well is excluded if it is in bedrock, or meets the groundwater mound

beneath the losing segment of the Spokane River, or is located along the model boundary.

The latter two cases are considered as model defects, and thus are expected to be modeled

by the DDMs. Because of this, and also due to the lack of information to identify wells that

are in the bedrock, these wells are included in the database used in this thesis.

4.2 Residual Analysis

The residuals from Oct. 1995 to Sep. 2004 were analyzed. As will be explained in the next

section, data during October 2004 to September 2005 were retained as testing data, and

thus were considered unknown at this stage.

Calibration of the SVRP model was implemented as nonlinear least square regression that

sought to minimize the discrepancy between observation and simulation. The model was

well calibrated, and a satisfactory match to calibration targets was achieved. The mean

error at calibration wells is as low as -0.23 ft., and the RMSE is 3.65 ft. On the other hand,
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the ME and RMSE of simulated head at non-calibrated wells have larger magnitudes, being

15.29 ft. and 29.97 ft., respectively. Overall, for all the observations in the database, the

ME is 4.48 ft., and the RMSE is 15.73 ft. The residuals are plotted against the standard

normal distribution in Figure 28. While approximately 60% of the residuals fit the normal

distributions well, their distributions are tailed and skewed (asymmetric). In addition, the

prediction of the MODFLOW model is overall biased, with the mean error deviating from

zero.

Mean error at each well is shown in Figure 29. In contrast with the RRCA case study, the

strong spatial structure or local patterns of residuals exhibited in Figure 7 is not found in

this plot. The weaker degree of spatial dependence is further shown in Figure 30 a-c. The

empirical semivariograms show a more prominent nugget effect and smaller range (if it exists

at all) compared with Figure 8. Nugget refers to the height of the jump of the semivariogram

at the discontinuity at the origin. It represents variations of the residuals at a much smaller

scale than any of the measured pairwise distances, for example, due to measurement error.

It can be seen that the ratio of the nugget to the sill (limit of the variogram tending to

infinite distance) in Figure 30 a-c is larger than that in Figure 8. The range refers to the

distance at which the difference of the semivariogram from the sill becomes negligible. It

indicates the spatial scale of the structure of the residual, and a short range suggests weaker

spatial dependency.

While the spatial dependence is weak, strong temporal dependence is found in the residuals.

Figure 30d plots the DW statistics calculated at 38 wells selected from the 351 wells included

in the database. These wells are monitored with relatively uniform time interval, and their

locations are scattered throughout the model domain. The DW statistics of most wells are

significantly smaller than 2, an indication of the presence of temporal correlation stated in

section ??.
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4.3 Framework Implementation

The residual analysis results reveal strong temporal yet weak spatial dependence, therefore

DDMs were applied only in the temporal prediction (TP) scenario. Unlike in the RRCA

case study, the SVRP model is not run by the model developers beyond the calibration

period to forecast the groundwater flow condition in the future with new input data. To

run the model in temporal prediction mode, a variety of input stress data including well

pumping, recharge, and inflow from tributary basins and lakes to the SVRP aquifer needs

to be updated. Calculating new recharge input requires data on precipitation, and return

flow infiltration rate, amount and distribution of (im)permeable surface, and transmission

time of downward infiltration to the groundwater table. Calculating the pumping rate re-

quires pumping records of water utilities to compute domestic water usage, and irrigation

acreage and crop water demand to estimate agricultural widthdrawal. Much of this required

information is not available in public domain, and consequently it is not possible to prepare

new input data to run the SVRP model in the future. As a result, no waterlevel predic-

tion is available beyond the calibration period (October 1995 to September 2005). It is

therefore not possible to use DDMs to predict the forecast error of the calibrated model

after September 2005. Instead, the data from October 1995 to September 2004 was used

as the training set, and the data from October 2004 to September 2005 is used to vali-

date the DDMs. The validation set is considered as unknown during the stages of residual

analysis and development of the DDMs. The training set is comprised of 1,556 data val-

ues at 346 wells, and the validation set includes 635 values at 53 wells out of the 346 wells

in the training set. Five wells which only have observations since October 2004 are excluded.

IBW and SVR models were built to forecast the error (ε) of the SVRP model simulated

head (ĥ), and the updated head ĥnew was then computed by adding the error ε̂ to ĥ. The

DDMs took as input features the well location (xw, yw) and MODFLOW computed head ĥ.

The measurement time t was excluded because: 1) in the TP scenario, DDMs were used
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for extrapolation in terms of t; 2) cross validation error with t as an input was larger than

the error without t; 3) the MI scores between the residual in the training set with x, y, t, ĥ

is 0.185,0.193,0.092,0.1394 respectively, thus t is less related to the residual. Input features

were scaled to the interval (−1, 1) to ensure that they had the same magnitude and to

improve numerical stability and efficiency. Local patterns were not found in the residuals

and the dataset is small, hence it is not necessary to implement clustering analysis before

implementing DDMs updating. Thus the IBW and SVR models were trained with the whole

training set.

Preliminary experiments showed that for IBW, the inverse distance weighting function (Eq.

(2.9a)) outperformed the exponential weighting function (Eq. (2.9b)), therefore the former

was adopted. The parameters of IBW, the number of neighbors (n) and the power p in Eq.

(2.9a) were tuned via five-fold cross validation with the training set. For details of imple-

menting cross validation, please refer to section 3.4.The cross validation results are shown

in Figure 31. In Figure 31b the CV curves of higher powers are rather flat beyond 100. The

largest number of neighbors plotted is 1,244, corresponding to the largest value possible in

cross validation. From Figure 31b it is appealing to choose n = 1244, p = 2. Figure 31b,

however, shows that this set of parameters yields relatively large bias (-0.61 ft.) that exceeds

a standard error above the lowest bias. A compromise between minimizing the magnitudes

of RMSE and ME is to choose n = 1244, p = 3, which yields ME of -0.27 ft. and RMSE of

8.38 ft.

The parameters of SVR were chosen analytically and via cross validation, as described in

section 2.2.5. The parameter C that determines the trade-off between goodness-of-fit and

model complexity was computed by Eq. (2.22a), and the error insensitive parameter ε was

given by Eq. (2.22b). The kernel width parameter γ was tuned by five-fold cross validation

implemented on the training set, as shown in Figure 32. The averaged CV error appears to

favor larger γ which means smaller kernel width. However the CV results of IBW suggest
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to use large number of neighbors. Here we follow the one-standard error rule recommended

by [26], that the most parsimonious model whose error is no more than one standard error

above the error of the best model should be chosen.Small value of γ indicates larger kernel

width (Eq. (2.21)), and tends to yield a smoother regression surface. Consequently γ = 450

is selected. It corresponds to mean error of -3.95 ft., slightly lower than the best ME (-3.75

ft.). The selected parameters for IBW and SVR are summarized in Table 6.

4.4 Results and Discussion

The DDMs with the selected parameter values were tested with the validation set. The

performance of DDMs is shown in Figure 33. Both IBW and SVR effectively reduced the

residuals. IBW slightly outperformed SVR, reducing ME and RMSE by 69%, 78% respec-

tively. The effectiveness of DDMs is further demonstrated in the residual plots in Figure 34.

The bias shown in Figure 34a is largely removed in Figure 34b and 34c. For example, the

SVRP model tends to underpredict the head in the range of 1950 2000 ft. This is corrected

by IBW and SVR. The mean error at each well of the testing set (October 2004 - September

2005) before and after DDMs updating is shown in Figure 35. IBW reduced the mean errors

of all wells to the range of -10 to 10ft.

Figure 37 shows the hydrographs of representative wells. The locations of the selected wells

are shown in Figure 36. IBW improved the head prediction accuracy at all four wells. It

yields a rather wiggling regression surface despite of the large number of neighbors used.

This is because the weighting function with power p = 3 assigns small weights except to a

few nearby neighbors (Figure 2a). In Figure 37d, IBW adjusted the hydrograph so that its

shape fits the observations better, but did not improve the shape of hydrograph in b and

c. On the other hand, SVR yielded smoother estimation surface and could not replicate the

water level fluctuation. It reduced the error of MODFLOW model in Figure 37a-b, but did
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not perform well in c-d.

Figure 38 shows the semi-variograms of the residuals in the validation set before and after

correction by IBW and SVR. The semivariograms in Figure 38b have a larger nugget than

the semivariogram in Figure 38a. It can be seen that the ratio of the nugget to the sill in Fig-

ure 38b is larger than that in Figure 38a. This suggests that after the DDMs updating, the

random error (for example the measurement error) becomes the principle component in the

uncertainty while systematic residuals have been largely removed. On the other hand, the

DDMs reduced but did not eliminate the temporal dependence of the residuals. As shown

in Figure 39, the DW statistics of residuals increase after the correction by the DDMs, con-

sistent with a reduction in temporal correlation.

It is interesting to note that the DDMs parameters are adapted to the structure of residual.

For example, residual semivariograms in the RRCA case study (Figure 8) have larger range

compared with the semivariograms in this case. As a result, the SVR model developed in this

chapter adopted a smaller kernel width. Taking into account the scaling factors of input fea-

tures, the kernel width parameter γ = 450 corresponds to a distance of 1.18×104ft., which is

of the same order of magnitude with the range of the semivariograms (approximately 2×104

ft.). Rigorous inference of the DDMs parameter, of course, calls for semivariogram analysis

in the three-dimensional input space.

4.5 Summary

In this chapter, the complementary modeling framework described in Chapter 2 was tested

on a second case study based on the SVRP model. Unlike the RRCA model, the SVRP model

is calibrated to a better degree using nonlinear regression techniques. Strong temporal de-

pendence but weak spatial dependence is found, hence the framework is only implemented in
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the temporal prediction scenario. It has been shown that the DDM parameters are related

to the residual structure, which can be revealed by residual analysis techniques. Both DDMs

significantly reduced the head prediction error of the MODFLOW model, and IBW slightly

outperformed SVR. The effectiveness of DDMs of correcting the trend of waterlevel trend,

however, needs to be improved.

It should be noted that while the SVRP case study serves as a good example where the PBM

is more sophisticatedly calibrated than the RRCA model, it is not as rigorous a validation

test case as the RRCA model, because no PBM predictions beyond the calibration period are

available, as explained in section 4.3. Because of this, the DDMs were trained on residuals

from the first nine years of the calibration period.
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Chapter 5

CONCLUSION

This work presents an extension of the complementary data-driven framework developed

and applied in [15, 14, 43, 49]. Although a well-constructed and calibrated physically based

model can provide useful information about the system behavior, the unaccounted uncertain-

ties involved in conceptualization, parameterization and calibration can lead to predictions

contaminated by systematic bias. The framework constructs data-driven models based on

machine learning techniques and trains them using historical residuals of the physically based

groundwater flow models. The trained DDMs are expected to have the capability to com-

pensate for the defects of the PBM. These DDMs are used to correct the forecast of the

PBM, leading to reduction in bias of the forecast.

In this thesis, cluster analysis was introduced to make the framework more robust and effi-

cient for complex real-world case studies. Localized DDMs conditioned on the data within

each cluster can better adapt to the local patterns of the residual, and are thus more flex-

ible than global DDMs without clustering. It is also found that the use of cluster analysis

before implementing DDMs updating sufficiently reduces the computational cost required

by training and calibration of the DDMs. Five machine learning techniques (IBW, loess,

DT, ANN and SVR) were employed to build DDMs, and their performance to enhance the

predictive ability of the PBM was compared in the TSP scenario of the RRCA case study.

It was shown that IBW, SVR and ANN yielded more accurate waterlevel prediction than

loess and DT. Among the DDMs, ANN requires significantly longer training time than other

models. Consequently IBW and SVR were selected and further tested in the TP and SP
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scenario, and the SVRP case study.

This framework is shown to successfully improve the head prediction accuracy of two re-

gional groundwater flow models in various prediction scenarios. In the RRCA case study,

the DDMs reduced the RMSE by 82% (TP), 60% (SP) and 48% (TSP). In the SVRP case

study, the DDMs reduced the RMSE for the TP scenario from 17.47ft. to as low as 3.74 ft. in

one-year forecasting. It should be noted that the RRCA model is a more valid test case, be-

cause PBM predictions beyond the calibration period are available unlike in the SVRP case

study. Best overall performance is found in the temporal prediction scenario, because of the

relatively short lead time of forecast, denser data coverage and stronger temporal correlation.

Compared with the conventional approaches for improving model predictions reviewed in

Chapter 1, the strength of the presented approach lies in:

• It can handle error from multiple sources. Compared with calibration and multimodel

approaches that only account for parameter and/or structural error, the presented

framework is advantageous if the sources of prediction error are multiple and not easily

identifiable.

• The framework does not invoke any assumption on the error distribution, in contrast

to conventional regression-based calibration and the statistical residual modeling ap-

proaches.

• The approach is easy to implement. It is computationally efficient compared with cali-

bration and Monte-Carlo simulation based methods that run the PBM numerous times.

In addition, the framework does not call for the establishment of a set of competing

conceptual models, which is required by multimodel methods.

• The framework shares the advantage of data-assimilation techniques in that newly avail-

able data can be easily incorporated to update the DDMs.
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One limitation of the method is that the effectiveness of the DDMs depends on the presence

and degree of spatial and temporal patterns in the residuals. A possible solution to enhance

the robustness of DDMs is to incorporate more input features and to use more sophisticated

feature selection and extraction techniques. Another limitation lies in the well-known prob-

lem of extrapolation of machine learning techniques, that generalization of DDMs would

be risky if the situation represented by a query is beyond the scope of the training data.

Although not examined in the two case studies presented here, temporal forecasting with

long lead time might be challenging for the DDMs, particularly if the structural patterns

in the residuals change over time. In addition to the problem of extrapolation, DDMs are

often criticized for being difficult to interpret. Indeed, except for DT that can be straight-

forwardly expressed as a tree structure, other machine learning techniques used to construct

the DDMs are considered as black boxes. As another limitation, using DDMs in the pre-

sented complementary fashion cannot preserve mass balance, which is the basis for the PBM.

The research presented in this thesis can be further extended in the following directions.

The effectiveness of the DDMs can be enhanced with more sophisticated techniques of fea-

ture selection. The parameters of DDMs can be selected with the aid of residual analysis

which reveals the data patterns. Furthermore, the potential of DDMs to facilitate prediction

uncertainty quantification needs to be explored. In addition, the complementary framework

can be extended to other types of predictions of interest and for solute transport problems.

Applied to aggregate predictions like baseflow, the DDMs may be faced with the challenge

that much less data are available, unlike in the presented two case studies with sufficient

waterlevel measurements
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Chapter 6

FIGURES

Figure 1: The framework of using complementary DDMs to improve head prediction of PBM.
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(a) Weight function (2.9a) (b) Weight function (2.9b)

Figure 2: The two weight functions defined in Eqn. (2.9) with varying p, q. The horizontal axes denote
the Euclidean distance ||x′ − x∗j ||, and the vertical axes show the corresponding weight wx′|x∗j . The scaling

factors α, β are set to one.
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(a) (b)

Figure 3: A decision tree with two input features (a) and its partition (b). Taken from [26].
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Figure 4: ANN with one hidden layer that estimates the residual based on input features of well location,
observation time and MODFLOW computed head.
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Figure 5: Republican River Basin covering portions of eastern Colorado, northwest Kansas and southwest
Nebraska.
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Figure 6: Normal probability plot of the residuals of the MODFLOW model.
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Figure 7: Mean error at individual well during calibration period (1918-2000).
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(a) Mean error (b) Jan. 1940

(c) Jul. 1970 (d) Jan. 2000

Figure 8: The empirical semi-variograms of the residuals. The red dashed lines indicate the variance of the
residuals. (a) is computed based on the mean error at each well, (b) is based on the data observed in Jan.
1940, (c) is based on data in Jul. 1970 and (d) is based on data in Jan. 2000.
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(a) (b)

Figure 9: DW statistics of selected wells of one-month (a) and one-year (b) lag. The wells are sorted in
terms of DW statistic. The horizontal axes show the index of wells.
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Figure 10: Cross validation results of IBW for selecting number of nearest neighbors n and the power p in
weighting function. The horizontal axis denotes the values of n, and the lines represent different values of p.
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Figure 11: Cross validation results of loess for selecting the span parameter δ.
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Figure 12: Cross validation results of DT for selecting the pruning level δ. The red dashed line is one
standard error above the lowest CV error.
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Figure 13: Cross validation results of ANN for selecting the number of hidden nodes.
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Figure 14: Cross validation results of SVR for selecting the kernel width γ of the RBF kernel defined in Eq.
(2.21).
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Figure 15: DDMs generalization error on five subsets. The numbers on the horizontal axis denote the
individual cross validation subsets.
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Figure 16: Box plot of the performance of various DDMs on five cross validation subsets. The central red
line in each box is the median, the edges of the box are 25th and 75th quantiles, the whiskers extend to the
most extreme data points not considered outlier, and outliere is marked as red plus sign.
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Figure 17: The Empirical CDF plot of absolute residuals before and after correcting using IBW and SVR
of TP(a), SP(b) and TSP(c).
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Figure 18: Locations of the selected wells in Figure 19, 20 and 21.
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Figure 19: Measurements, MODFLOW predicted and DDMs-updated hydrographs at representative well
locations of temporal prediction.
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Figure 20: Measurements, MODFLOW predicted and DDMs-updated hydrographs at representative well
locations of spatial prediction.

68



Figure 21: Measurements, MODFLOW predicted and DDMs-updated hydrographs at representative well
locations of temporal+spatial prediction.
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Figure 22: Mean error at each well (2001-2007) of the MODFLOW model (top), IBW corrected MODFLOW
model (middle) and SVR corrected MODFLOW model (bottom).
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(a) (b)

Figure 23: The empirical semi-variograms of the mean error at each well before (a) and after (b) DDMs
updating.
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Figure 24: The DW statistic of residuals at selected wells (2001-2007) of one-year lag before and after DDMs
updating.
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Figure 25: Change in waterlevel at monitoring wells according to the measurements (top), the MODFLOW
model (middle) and SVR updated results (bottom). Negative values indicate declining groundwater table,
while positive values indicate rising groundwater table.
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(a) TP

(b) SP

(c) TSP

Figure 26: MI scores between the residuals and well location (xw, yw), time of measurement (t), and MOD-

FLOW model computed waterlevel (ĥ).
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Figure 27: The Spokane Valley-Rathdrum Prairie aquifer on the border of Washington and Idaho. The
Spokane River is shown in blue. The three layers are shown in different colors. The grids represent the
spatial discretization of the MODFLOW model.
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Figure 28: Normal probability plot of the residuals from Oct. 1995 to Sep. 2004.
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Figure 29: Mean error at each well from Oct. 1995 to Sep. 2004.
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(a) Mean error (b) Jan. 2001

(c) Jul. 2004 (d) DW Statistic

Figure 30: (a-c): The empirical semi-variograms and DW statistic of the residuals. The red dashed lines
indicate the variance of the residuals. (a) is computed based on the mean error at each well, (b) is based on
the data observed in Jan. 2001, (c) is based on data in Jul. 2004, (d): The DW statistics of the residuals at
selected wells.
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(a)

(b)

Figure 31: Cross validation results of IBW for selecting the number of neighbors and the power of weighting
function. The square curves show the mean testing ME (a) or RMSE (b) of the five folds, and the error bars
indicate one standard deviation of ME or RMSE of the five folds.
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(a)

(b)

Figure 32: Cross validation results of SVR for selecting kernel width parameter γ. The square curve show
the mean testing ME (a) or RMSE (b) of the five folds, and the error bars indicate one standard deviation
of ME or RMSE of the five folds.
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Figure 33: ME and RMSE before and after DDMs updating.
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(a)

(b)

(c)

Figure 34: Plot of residuals versus the head computed by the MODFLOW model (ĥ). (a). The residuals of
the MODFLOW model; (b). Residuals after corrected by IBW; (c). Residuals after corrected by SVR.
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Figure 35: Mean error at each well during Oct. 2004 to Sep. 2005 of the MODFLOW model (top), IBW
corrected MODFLOW model (middle) and SVR corrected MODFLOW model (bottom).
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Figure 36: Locations of the selected wells in Figure 37.
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Figure 37: Observed, MODFLOW predicted and DDMs-updated hydrographs at representative wells.

(a) (b)

Figure 38: The empirical semi-variograms of the mean error at validation wells during Oct. 2004 - Sep. 2005
before (a) and after (b) DDMs updating.
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Figure 39: The DW statistic of residuals at selected wells ( Oct. 2004 - Sep. 2005) of one month lag before
and after DDMs updating.
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Chapter 7

TABLES

Table 1: The correlation coefficients and MI scores between the residual (from 1918 to 2000) and other
variables.

xw yw t ĥ
corr. coef. -0.0283 0.1197 -0.0858 -0.1064

MI 0.3057 0.1323 0.0672 0.1879

87



Table 2: Number of monitoring wells and waterlevel measurements of the datasets used in TP, SP and TSP
scenario.

Training Data Testing Data
# Wells # Samples # Wells # Samples

TP 3357 310130 1476 12226
SP 2846 198370 1597 81346

TSP 1213 57652 627 6332
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Table 3: The selected values of DDMs parameters for TSP for each cluster that contains residuals in the
prediction period.

IBW loess DT ANN SVR
Cluster p n d δ |T | H ε C γ

1 5 128 2 0.35 73 18 1.07 106.86 11
2 2 64 2 0.2 116 18 0.79 126.61 1.5
3 1 32 2 0.5 47 12 2.15 181.91 0.8
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Table 4: Summary of DDMs performance and run-time (second) in the TSP scenario on Inter(R) Core(TM)2
Duo CPU E8500 3.16GHz×2.

MODFLOW IBW loess DT ANN SVR

ME -6.94 -0.10 -0.99 -1.84 0.29 1.59
RMSE 33.95 17.50 19.28 19.85 21.38 17.60

Time (s) >1800 67.5 199.7 18.9 (approx.) 462.7 117.1
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Table 5: The error of head prediction before and after corrected by DDMs, averaged over all clusters, for
TP, SP and TSP.

ME (ft.) RMSE (ft.)
TP SP TSP TP SP TSP

MODFLOW -2.29 -9.71 -6.94 30.23 34.46 33.95
MODFLOW+IBW 0.81 -0.72 -0.10 5.32 13.84 17.5
MODFLOW+SVR 0.03 0.22 1.59 5.16 13.05 17.6
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Table 6: The selected values of DDMs parameter values.

Model IBW SVR
Parameter p n ε C γ

Value 3 1244 0.72 49.73 450
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