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Time-resolved carbamazepine crystallization from wet ethanol has been

monitored using a combination of cryoTEM and 3D electron diffraction.

Carbamazepine is shown to crystallize exclusively as a dihydrate after 180 s.

When the timescale was reduced to 30 s, three further polymorphs could be

identified. At 20 s, the development of early stage carbamazepine dihydrate was

observed through phase separation. This work reveals two possible crystal-

lization pathways present in this active pharmaceutical ingredient.

1. Introduction

Polymorphism occurs when a material crystallizes into more

than one distinct solid form. It is very common in organic

chemistry, affecting 74% of a set of pharmaceutical materials

in one study for which extensive screening had been carried

out (Cruz-Cabeza et al., 2015). Polymorphs differ in solubility,

bioavailability and processing (e.g. tableting) characteristics,

and their evolution during crystal growth and storage is a

complex but fundamental question worth many billions of

dollars to sectors such as opto-electronics, energy storage and

pharmaceuticals (Cruz-Cabeza et al., 2015).

The initial stage of crystal growth, which is stochastic at an

atomistic or molecular level (Gladkov, 2008), has been

observed recently in the nucleation and growth of an NaCl

nanocrystal at the tip of a carbon nanotube (Nakamuro et al.,

2021). This experiment showed an ordered nucleus emerging

directly at the point of nucleation. Alternative ‘non-classical’

crystallization pathways involve initial formation of an amor-

phous particle which grows via the attachment of other

particles (De Yoreo et al., 2015).

The attaching particles may be ions and ion complexes,

droplets or other amorphous or nanocrystalline materials (De

Yoreo et al., 2015). Work on aragonite growth, which follows

this pathway, has shown that partially aligned nanocrystalline

domains spontaneously and simultaneously emerge within the

amorphous framework, subsequently maturing to yield a

crystal (Walker et al., 2017). These pathways have been

extensively studied in inorganic minerals (De Yoreo et al.,

2015), but information on organic systems is sparse.

In this paper we describe the use of cryo-transmission

electron microscopy (cryoTEM) (Dubochet et al., 1988) to

capture the earliest stages of crystallization of the poly-

morphic pharmaceutical carbamazepine. Each stage was flash-

frozen in liquid ethane at 100 K after crystallization times of

20–180 s. CryoTEM allows real space imaging of crystals and

the measurement of diffracted intensities in reciprocal space
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via tilting of the sample in the electron beam, known as three-

dimensional electron diffraction (3D ED) (Wan et al., 2013;

Huang et al., 2021; Gemmi et al., 2019; Clabbers & Xu, 2020;

Jones et al., 2018; Gruene et al., 2018). Subsequent crystal

structure determinations on crystallites measuring only a few

hundred nanometres lead to unambiguous polymorph identi-

fication (Broadhurst et al., 2020). This combination of imaging

and diffraction reveals not only short-lived polymorphs, but

also the non-classical mechanism of crystal growth in this

material (Walker et al., 2017).

Carbamazepine [CBZ, 5H-dibenz(b,f)azepine-5-carbox-

amide] is a neuralgic drug which is often used as a model for

polymorphism studies. There are five unsolvated polymorphs

(Table S1 of the supporting information): triclinic form I

(Grzesiak et al., 2003), trigonal form II (Lowes et al., 1987),

monoclinic form III (Fernandes et al., 2007) and IV (Lang et

al., 2002) and the most recent polymorph discovered orthor-

hombic form V (Arlin et al., 2011). The relative stability is III

> I > V > IV > II (Table S2). In the presence of water, either

aqueous solution or wet solvents such as bench ethanol, a

dihydrate (CBZDH) is formed (Kahela et al., 1983; Kaneniwa

et al., 1987; Young & Suryanarayanan, 1991; Kobayashi et al.,

2000). CBZDH is usually described as monoclinic, though

recent work has defined a disordered orthorhombic model

(Sovago et al., 2016). Form II also contains cavities which can

accommodate solvent (Fabbiani et al., 2007; Cabeza et al.,

2007).

2. Experimental

CBZ was obtained from Alfa Aesar, with a sample purity

quoted as ACS reagent grade (�98.5%); impurities were

identified using ICP-MS. Ethanol was obtained from Fisher

Chemical at analytical reagent grade (�99.8%). The char-

acterization of water content was achieved by Karl–Fischer

titration, carried out using a Mettler Toledo C30S Coulometric

KF titrator equipped with a Mettler Toledo DM 143-SC

electrode. Hydranal Coulomat AD was used as the solvent.

Details of the ICP-MS and Karl–Fischer titrations are avail-

able in the supporting information.

In a typical experiment, a saturated solution of CBZ

(0.1125 g) in ethanol (25.6257 g, water content 0.03% by Karl–

Fischer titration, Table S3) was filtered under gravity to

remove any undissolved CBZ. Fresh solutions were made for

each study. Aliquots of 3 ml solution were pipetted onto a

cryoTEM grid (Quantifoil R2/2) which had been previously

plasma-treated using a PELCO Easiglow discharge cleaning

system for 45 s to improve hydrophilicity. The grids were

allowed to stand under ambient conditions (298 K, 21%

humidity) for periods between 20 and 180 s. The ethanol was

removed by pressure-assisted blotting (Zhao et al., 2021) at

different time-points and the sample immediately vitrified in

liquid ethane to arrest further crystallization and protect the

crystals from beam and vacuum damage when under the

microscope. Fig. S1 of the supporting information summarizes

the procedure, in which rapid blotting was accomplished using

a disk of filter paper secured with a rubber band over the top

of a Büchner flask connected to a water aspirator.

A Tecnai F20 FEG transmission electron microscope

operating at 200 kV (� = 0.02508 Å) equipped with a CMOS

TVIPS F816 camera (8k� 8k pixels) was used for imaging and

3D ED in selected area electron diffraction (SAED) mode. A

Gatan tomography cryo-transfer holder was used, operating at

100 K. During typical 3D ED data collection, diffraction

patterns were collected while rotating the crystal continuously,

going from�40 to +20� (Dubochet et al., 1988; Clabbers & Xu,

2020; Broadhurst et al., 2020; Gemmi et al., 2019; Huang et al.,

2021). The exposure time (0.2 s) and rotation speed (0.95� s�1)

were chosen so that individual diffraction images were inte-

grated over 0.21� of reciprocal space. The estimated dose rate

was 2 e Å�2 s�1, with each collection taking on average 240 s,

the total estimated dose per 3D ED data collection was

480 e Å�2. The diffraction patterns were indexed and inte-

grated with the programs REDp (Wan et al., 2013), XDS

(Kabsch, 2010) and PETS (Palatinus et al., 2019). Details of

structure analysis and listings of crystal and refinement data

are available in the supporting information.

Samples were also prepared after 3 min and 30 s and

measured using powder X-ray diffraction, further details are

provided in the supporting information.

3. Results and discussion

After 180 s, crystals with an elongated morphology [Fig. 1(a)]

had formed across the entire grid. 3D ED data were collected

from seven different crystals (Fig. S2), exhibiting typical

monoclinic unit-cell dimensions of a = 10.38, b = 27.79, c =

5.08 Å, � = 102.52�, characteristic of the dihydrate, CBZDH.

Data collected from seven crystals were merged to produce a

single dataset of 90% completeness, from which the structure

of CBZDH was solved and refined (R1 = 16.31%). The high

value of the R factor reflects the neglect of dynamical effects

during refinement (Clabbers & Xu, 2020) (Table S4), though

the data quality was good enough for the hydrogen atoms to

be located in a Fourier difference map (Fig. S3). CBZDH was

the only phase observed after a crystallization time of 180 s. It

has a distinctive morphology which allowed it to be identified

in all other samples, both repeats and at shorter time-points.

To probe earlier time points of crystallization, a sample was

examined at 100 K after 30 s. At this crystallization stage, no

less than four different forms of CBZ were present and

identified based on their unit-cell dimensions (Table S5).

Alongside CBZDH, which was the dominant form, one crystal

of CBZ-III with a somewhat indistinct morphology was

identified from its monoclinic unit-cell dimensions a = 7.61, b =

11.30, c = 13.89 Å, � = 92.43� [Fig. 2(a)]. 3D ED data were

collected to 52% completeness from this crystallite. Despite

the low data completeness, the structure of CBZ-III could be

solved and refined (R1 = 19.68%). Two more monoclinic

crystals exhibited unit-cell dimensions of a = 27.15, b = 7.30, c =

14.10 Å, � = 110.30�, corresponding to CBZ-IV [Fig. 2(b)].

Merging of the two 3D ED datasets (66% completeness)

enabled the structure to be refined (R1 = 19.86%). A third
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crystalline form present in the same sample exhibited rhom-

bohedral unit-cell dimensions of a = 36.24, c = 5.31 Å, � = � =

90�, � = 120� indicative of CBZ form II [Fig. 2(c)]. Although

the quality of data obtained precluded structure solution, the

crystal form was unambiguously identified from the unit-cell

dimensions.
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Figure 1
(a) Low-magnification image of CBZDH crystallized after 3 min on the TEM grid at 100 K showing an elongated morphology. Scale bar = 5 mm.
(b) Selected crystal of CBZDH used for collection of 3D ED data. Scale bar = 2 mm. Inset shows a diffraction image from the dataset. (c) Disordered
structure of CBZDH.

Figure 2
(a)–(c) Crystals of form III, IV and II, respectively, found in a sample after crystallization for 30 s on a TEM grid. Scale bars = 2 mm. The insets show
representative frames from the data collections. (d)–( f ) Corresponding 3D ED reciprocal lattice reconstructions all viewed along b*. All images were
measured at 100 K.



The identification of forms II, III and IV is the first time that

any polymorph other than the dihydrate has been observed in

the crystallization of CBZ from (wet) ethanol. The fact that

they were only present as tiny fractions of samples otherwise

consisting exclusively of the expected dihydrate demonstrates

the ability of cryoTEM and 3D ED to identify minor phases

and thier potential importance in polymorph discovery. The

results obtained after 180 s, which showed the presence only of

CBZDH, showed that these minor phases are short-lived and

re-dissolve or transform into CBZDH in a matter of minutes.

To obtain bulk measurements of the crystals forming in the

solution after 3 min and 30 s of crystallization, powder X-ray

diffraction data were collected. At both time points, the only

form detected was CBZDH (Figs. S6 and S7). The absence of

the other forms at 30 s is possibly due to them being present as

crystallites that are too small and too few in numbers to be

detected by powder X-ray diffraction. These findings do

illustrate the power of ED for phase identification within a

small quantity of sample. Further details are provided in the

supporting information.

To investigate even earlier stages of the crystallization,

samples were examined after 20 s (Fig. 3). No crystals were

observed. Instead, dark droplet-like structures ca 150–200 nm

in diameter were contained within a thinner film (area I in Fig.

3). Area II shows the droplet-like particles which lack a film of

the mother liquor surrounding them and are slightly darker,

suggesting that they are further developed particles of CBZ

(see below). Areas III and IV show these droplet-like struc-

tures coalescing inside and outside the electron-dense film.

The absence of Bragg reflections in the diffraction images of

these particles showed that they were amorphous, and that the

sample had been captured at a pre-crystallization stage.

The images showed that CBZDH crystallizes via a non-

classical phase separation mechanism that begins with the

formation of an initial film which separates into droplet-like

structures (areas I and II). The coalescence of these droplet-

like structures (areas III and IV) then signals the next stage of

crystal growth and development. The time difference between

the images in Fig. 3 and those consisting of CBZDH, along

with CBZ forms II, III and IV (Fig. 2) is only 10 s, indi-
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Figure 3
Images taken at 100 K after crystallization for 20 s and vitrification. Scale bar = 2 mm. I shows the droplet-like structures with a surrounding film of
mother liquor and II shows the same structures without the surrounding film. III and IV show these structures coalescing inside and outside the film.



cating the time scale of the transition from the droplets to

crystals.

Pressure-assisted blotting (Zhao et al., 2021) removes most

of the mother liquor from the grid. As the image in Fig. 3

shows, some residue remains, but crystallization is completely

halted by freezing in liquid ethane 1–2 s after blotting. A

further sample was prepared after 20 s of crystallization,

blotted and placed into the microscope at room temperature.

The TEM vacuum (’10�5 Pa) also stops crystallization by

removing residual solvent, but the procedure is not as quick as

plunge-freezing as it involves insertion of the sample into the

microscope in a non-vitrified state, so that crystal growth can

continue for a few seconds longer.

Discrete, electron-dense droplet-like structures ca 50–

150 nm in size were again present, covering the grid (Fig. 4).

The existence of these features after removal of solvent

demonstrates that the electron-dense droplets observed in Fig.

3 are probably amorphous CBZ particles. Although they are

similar to those observed at 100 K [Fig. 3(b)], they now exhibit

‘roughened’ or ‘textured’ edges [Fig. 4(a)] as a result of

solvent removal by the TEM vacuum. The images also show

structures with a morphology characteristic of CBZDH [Fig.

4(b)], but the lack of Bragg reflections indicates that they are

also non-crystalline. This absence of long-range order can be

explained by dehydration of the CBZDH crystals by the high

vacuum in the TEM at room temperature. Crystallinity is lost,

but with preservation of morphology. The effect can be

reproduced by exposing crystalline CBZDH to the TEM

vacuum (Fig. S4).

Three areas of particular interest are highlighted in Fig.

4(b). Area I shows a part of the grid where the initial stages of

the coalescence of the droplet-like particles into a pre-crys-

talline form of CBZ can be seen, this is comparable to what is

shown in Fig. 3, areas III and IV. Fissures appearing along the

length of this developing crystal are either a feature of vacuum

damage as the ethanol is drawn off or that a thin crystal has

been interrupted at a fragile stage of its early development.

The maturing crystal is visible below this point (II), running

from the left of the image down to the bottom. The more

mature character of this part of the crystal is demonstrated by

its more uniform texture and by the absence of particles

around it, due to their incorporation into the insipient struc-

ture. The crystal in Fig. 4(b) area III is, by the same criteria,

more mature: it is more uniform, with no fissures along its

length while its darker colour indicates it is thicker. Finally,

there are no roughened droplet-like structures surrounding

this crystal, as found in areas I and II.

4. Conclusions

Following the crystallization of CBZ using cryoTEM was

made possible by combination of rapid sample preparation,
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Figure 4
Images taken at room temperature after crystallization for 20 s and no vitrification. (a) Droplet-like features with roughened edges after removal of their
surrounding mother liquor by the vacuum in the TEM. (b) Coalescence of the droplet structures producing two crystals of CBZDH, identified from
morphology. White boxes labelled I, II and III show magnified areas within the sample. Scale bars = 2 mm.



imaging and 3D ED, revealing unprecedented insights into the

crystal growth of an organic material. Growth begins with the

formation of pre-concentrated areas of CBZ within a film of

the mother liquor. Phase-separation into electron-dense, non-

crystalline particles is followed by coalescence of the particles.

We infer that initial crystallization occurred spontaneously in

a matter of 2–3 s in some coalesced particles. Although this

stage is not explicitly observed here, it has been captured in

the crystallization of aragonite (Walker et al., 2017).

However, the subsequent stage, consisting of a mixture of

crystalline CBZDH growing by attachment of amorphous

particles, has been captured by arresting growth on exposure

to the TEM vacuum. Fig. 4 shows this process occurring at one

end of a CBZDH crystal which is mature and fully developed

at the other end.

The results establish a non-classical crystallization

mechanism for CBZDH, with the whole sample becoming

crystalline after only 30 s. While the bulk of the sample at 30 s

consists of crystalline CBZDH, the presence of three minor

forms (CBZ-II, III and IV) indicates that other crystallization

routes are available. Alternative non-classical and classical

growth mechanisms have been observed for CaF2, depending

on the identity of ligands used to cap precursor nanocrystals

(Mashiach et al., 2021). Whether CBZ-II, III and IV develop

classically or non-classically is not yet established. Here, they

form as isolated crystallites (Fig. 2), lacking proximity to CBZ

in other parts of the sample precluding the attachment

mechanism by which CBZDH develops as discussed above.

These minor forms either transform or re-dissolve, so that by

180 s the entire sample consists of crystalline CBZDH.

Finally, our results highlight the ability of time-resolved

cryoTEM, coupled to 3D ED, to reveal transient phases in a

crystallization process which are present in amounts too small

to be detected by bulk techniques such as powder X-ray

diffraction.

5. Related literature
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