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A Sketching Framework for Reduced Data Transfer
in Photon Counting Lidar

Michael P. Sheehan Y, Member, IEEE, Julian Tachella

Abstract—Single-photon lidar has become a prominent tool for
depth imaging in recent years. At the core of the technique, the
depth of a target is measured by constructing a histogram of time
delays between emitted light pulses and detected photon arrivals.
A major data processing bottleneck arises on the device when
either the number of photons per pixel is large or the resolution
of the time-stamp is fine, as both the space requirement and the
complexity of the image reconstruction algorithms scale with these
parameters. We solve this limiting bottleneck of existing lidar
techniques by sampling the characteristic function of the time of
flight (ToF) model to build a compressive statistic, a so-called sketch
of the time delay distribution, which is sufficient to infer the spatial
distance and intensity of the object. The size of the sketch scales with
the degrees of freedom of the ToF model (number of objects) and
not, fundamentally, with the number of photons or the time-stamp
resolution. Moreover, the sketch is highly amenable for on-chip
online processing. We show theoretically that the loss of information
for compression is controlled and the mean squared error of the in-
ference quickly converges towards the optimal Cramér-Rao bound
(i.e. no loss of information) for modest sketch sizes. The proposed
compressed single-photon lidar framework is tested and evaluated
on real life datasets of complex scenes where it is shown that a
compression rate of up-to 150 is achievable in practice without
sacrificing the overall resolution of the reconstructed image.

Index Terms—Single-photon lidar, empirical characteristic
function, compressive learning, summary statistics.

I. INTRODUCTION

INGLE photon light detection and ranging (lidar) has
S emerged as an important depth imaging technique prevalent
in the automobile [1], [2], defence [3] and forestry industries [4].
This modality has the unique advantage of offering very high
depth resolution [5] even at long-range scenes using low-power
(eye-safe) lasers [6]. The technique has at its core the ability
of emitting light pulses and detecting each single-photon as it
arrives, thereby obtaining a depth estimate by measuring the
round-trip time of individual photons. By using a time correlated
single-photon counting (TCSPC) system, a histogram can be
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Fig. 1. An example of a TCSPC histogram of a pixel in a complex scene

including a semi-transparent material (camouflage) in front of a person which
is depicted by the 2 spikes of the histogram respectively.

formed indicating the time delay between emitted light pulses
and detected photons for each pixel, with a proportion of the
photons originating from background or ambient light (e.g. the
sun). The number of counts per time histogram bin provide
information on the depth and reflectivity of the object or scene.
The presence of a peak in the histogram indicates an object is
present within the range of the lidar system. The location of this
object corresponds to the location of the impulse response. If
the material is semi-transparent (e.g. glass, water, camouflage)
or the laser footprint is large, then multiple peaks with different
intensities may exist within a single pixel [5]. A standard exam-
ple of a TCSPC histogram for a given pixel within a scene is
shown in Fig. 1.

The image restoration task reduces down to inferring the
positions and intensities of the peaks in the histogram for each
pixel in the image. Typically, the time-correlated single-photon
counting data is collected in two main approaches, either: (i)
the time-stamp of each photon is recorded [5], or (ii) a temporal
histogram, as seen in Fig. 1, is constructed which counts the
number of photons detected per histogram bin of time-interval
AT [7], [8]. In either case, the time-correlated single-photon
counting data has to be recorded, stored in memory and trans-
ferred from the chip for each pixel in the scene. The development
of high rate, high resolution, low power ToF image sensors is
challenging due to the large data volumes required. This causes
amajor data processing bottleneck on the device when either the
number of photons per pixel n is large, the time resolution, A,
is fine or the spatial resolution is high, as the space requirement,
power consumption and computational burden of the depth
reconstruction algorithms scale with these parameters [9].

Various existing methods have attempted to tackle the
trade-off between depth resolution and computational/space
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complexities. A number of papers [10]-[14] propose methods
to address the trade-off between depth resolution and the
complexities associated with the TCSPC histogram. Henderson
et al. [10] propose a method that employs a gated procedure to
coarsely bin the detected photons, whilst Ren et al. [11] develop
a sliding window approach to achieve high resolution depth.
Walker et al. [12] calculate the depth directly from the photon
time-stamps. However in all of these approaches, the approx-
imations formed on-chip compromise the depth resolution of
the image. Della Rocca et al. [13], [14] proposes to only collect
the histograms of photon detections when there is a significant
change of activity. This method reduces the data-transfer, as
it is only required during specific moments in time. Similarly,
Hutchings et al. [8] propose a method of discarding photon
detections based on activity. However, these methods can
potentially remain idle when there is a small change in activity,
and can also suffer from a loss of temporal resolution due to
coarse histogram binning. Zhang et al. [7] propose a method of
reducing the transfer of photon detections by performing a coarse
to fine approximation of the ToF data. At each scale, a coarse
histogram is constructed with a limited number of bins. Multiple
histograms of increasing resolution have to be formed, hence the
method has an increased total acquisition time and can also suffer
from a loss of temporal resolution. In [15], Rapp et al. proposed
a subtractive dithering for SPAD arrays that increases depth
resolution without increasing the overall time-stamp resolution.

Compressive sensing strategies have been successfully ap-
plied tolidar [16], [17], focusing on compressing the information
across pixels. Kadambi et al. [16] propose to exploit the sparsity
of natural scenes in some representation domain (e.g. wavelet
transform) to reduce signal acquisition. The depth accuracy is
limited by the level of amplitude noise and decay of the impulse
response and is therefore limited to the case of one surface
per pixel. Furthermore, the proposed method still requires large
amounts of single-photon counting data to be transferred off-
chip and therefore does not tackle the inherent data transfer
bottleneck that we address in this paper. In a similar vein,
Halimi et al. [17] propose an adaptive sampling strategy that
is scene dependent. By building up regions of interest and data
driven depth maps in an iterative manner, they efficiently choose
suitable scan positions to reduce acquisition time by up to 8 times
in certain scenarios. However, the method relies on building
TCSPC histograms and solving a maximization problem at each
iteration of their adaptive algorithm. The method therefore has
limitations for real-time processing especially when the amount
of single-photon counting data is large. These compressive
sensing based methods perform compression within the spatial
domain and not, in the case of our method, throughout the depth
domain and are therefore fundamentally different in practice and
can still suffer from data-transfer bottlenecks. The sketched-
based method proposed in this paper is complimentary to the
compressive sensing based approaches as one can compress
along both the spatial and temporal simultaneously. Another
approach to reduce the data transfer of the information needed
to reconstruct the lidar image is to compress the data on-chip.
As highlighted in [18], standard low-level data compression
methods can be used to compress the data on-chip, however
these methods can only offer up to a modest 50% data reduction
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and in some cases involve significant on-chip computation or
there are limitations with respect to on-chip storage.

In this paper, we propose a novel solution to this bottleneck
of existing lidar techniques by calculating on-the-fly summary
statistics of the photon time-stamps, a so-called sketch, based
on samples of the characteristic function of the ToF model.
Distinct to compressive sensing, the goal here is not to recover
the photon counting data but rather the underlying probability
distribution. In this sense, we are estimating the probability
model directly from some summary statistics and therefore our
proposed framework utilises much of the theory found in the
generalised method of moments [19], [20], empirical charac-
teristic function [21], [22] and compressive learning [23]-[25]
literature. The size of the sketch scales with the degrees of
freedom of the ToF model (i.e., number of objects in depth)
and not with the number of photons or the fineness of the time
resolution, without sacrificing precision in depth. The sketch can
be computed for each incoming photon in an online fashion, only
requiring a minimal amount of additional computation which
can be performed efficiently on-chip. The sketch can be shown
to capture all the salient information of the histogram, including
the ability to explicitly remove background light or dark count
effects, in a compact and data-efficient form, suitable for both
on-chip processing or off-chip post processing. Furthermore,
we develop a compressive lidar image reconstruction algorithm
which has computational complexity dependent only on the
size of the sketch. Our proposed method paves the way for
high accuracy 3D imaging at fast frame rates with low power
consumption. In summary the main contributions of the paper
are as follows:

® We propose a principled approach for compressing time-

of-flight information in an online fashion without the re-
quirement to form a histogram and without compromising
depth resolution.

® A compressive single-photon lidar algorithm is proposed

which does not scale with either the number of photons
or the time-stamp resolution in terms of space and time
complexity.

® The statistical efficiency, given a compression rate (or

sketch size), is quantified for different single-photon lidar
scenarios, showing that only limited measurements of the
characteristic function are needed to achieve negligible
information loss.

The remainder of the work is organized as follows.
Section II details the ToF lidar acquisition systems and the ToF
observation model used in single-photon lidar and also presents
the idea of summary statistics used for parameter estimation.
In Section IIT we detail the construction of the sketch using
two different sampling schemes and we further demonstrate
how our sketched lidar approach can be implemented in an
online processing manner. In Section IV we detail our proposed
compressive single-photon reconstruction algorithm that has
computational complexity which scales with the sketch size m
as well as quantifying the statistical efficiency of the estimated
parameters 6. Results of the compressive lidar framework are
analysed on both synthetic and real datasets in Section V. Sec-
tion VI finally summarizes our conclusions and discusses future
work.
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Fig.2. A schematic of a typical lidar pixel where either one or multiple SPADs
and TDCs are used.

II. BACKGROUND

A. Photon Counting Lidar Acquisition

Fig. 2 depicts a simplified schematic of a typical lidar device.
A laser emits a pulse wave of photons to a scene that triggers the
system clock where a single photon avalanche diode (SPAD)
is then used to detect individual photons. The SPAD consists
of a reverse-biased photodiode which, in the presence of a
single photon, induces an avalanche of electrical charge carriers
that are directly detectable. A time-to-digital converter (TDC)
then converts the signal to a digital time-stamp that updates a
timing statistic in an online manner (specific details of the timing
statistic are discussed later in the section).

Conventional lidar devices typically consist of a single SPAD
and a pair of scanning mirrors that raster-scan points in a scene.
In general, these approaches only register the first photon in the
frame therefore multiple laser cycles are required to build an
accurate timing statistic before traversing to a new point in the
scene. In high ambient conditions, a significant pile-up effect
can occur due to the dead-time of the single SPAD [26]. This
problem can be alleviated by using multiple SPADs in parallel
resulting in multi-event time-stamp collection [26]. In contrast
to the first photon approach [27], SPADs and TDCs acting in
parallel can register multiple photons per frame leading to a
richer and larger timing statistic. Flood light illumination can
also be used instead of slower raster-scan processes. As shown
in Fig. 2, multiple SPADs connect to multiple TDCs to allow
efficient parallelization, where each TDC accumulates digital
time-stamps to the timing statistic.

The timing statistic terminology is used to refer to the various
methods of collecting and storing the time-stamps that are then
transferred off-chip to construct a depth map. The most common
timing statistic used is a histogram, seen in Fig. 1, that clusters
the digital time-stamps into discretized bins. This method is
most commonly used when the number of detected photons is
large and can be devised as a compression in itself. In recent
years, however, modern lidar devices can produce finer depth
resolution causing a data transfer bottleneck as the histogram
can become too large to transfer off-chip. To compensate, coarser
bin widths can be used to reduce the size of the histogram [10],

creating a trade-off between depth resolution and quicker data
transfer. In contrast, if the number of photons detected is small,
for example in the photon-starved regime [5], [28], it is more
efficient, from a data processing point of view, to store the
specific time-stamp of all the detected photons. In general, depth
estimation is carried out off-chip as part of a post-processing
stage. In this paper, we propose a novel online timing statistic
that circumvents the need to either construct and store a large
histogram or collect each individual photon time-stamp, leading
to substantial compression. As the sketch is constructed only at
the timing statistic stage in Fig. 2, any existing techniques that
reduce pile-up, e.g. via (parallel) multi-event detection, can be
readily used in conjunction with our proposed technique.

B. Lidar Observation Model

Throughout this section, both the lidar observation model
and the constructed sketches are discussed in terms of a single
arbitrary pixel in the scene. Let 7 denote the physical time-
stamp such that the discretized time-stamp is denoted ¢t = <.
Then, for an arbitrary pixel, the photon count at discretized
time-stamp ¢t = 0,1,...,7 — 1 can be modelled as a Poisson

distribution [29], [30]:
ytk|(r7 b7 tk) ~ P(Th(t_tk) +b)7 (1)

where r > 0 denotes the reflectivity of the detected surface, h(-)
is the impulse response of the system, b defines the level of back-
ground photons and ¢, denotes the location of the kth surface in
the pixel. The number of discretized time-stamp bins over the
range of interest is denoted by 7. For simplicity, here we assume
that the integral of the impulse response H = ZtT;OI h(t) is con-
stant although the proposed approach can accommodate more
complex scenarios. If the lidar system is in free running mode
where multiple acquisitions of a surface/object are obtained, then
the interval [0, 1, ...,T — 1] can be thought of as circular in the
sense that time-stamp 7' is equivalent to the time-stamp O.

Alternatively, one can instead model the time of arrival of the
pth photon detected for a single pixel in the scene. We assume
there are K distinct reflecting surfaces within the pixel, where oy,
and o denote the probability that the detected photon originated
from the kth surface and background sources, respectively.
Furthermore, it is assumed that for a single pixel, a total of n
photons are detected during the whole acquisition window of the
lidar device. Let x;, = 0,1,...,T — 1 denote the time-stamp of
the pth photon where 1 < p < n, then x,, can be described by a
mixture distribution [31]

K
LGtk) = Z arms(Tp|tr) + aomp(xp),

k=1

)
where Zf:o ag = 1 and the symbol 7 denotes a probability
distribution over x,. The distribution of the photons originat-
ing from the signal and background are defined by the dis-
tribution 7 (zp|t) = h(x, —t)/H and the uniform distribu-
tion 7 (x,) = 1/T over [0, 1,...,T — 1], respectively. Often in
practice, the signal distribution 7, is modelled either using a dis-
cretized Gaussian distribution over the interval [0, 1,...,7 — 1]

(x|, ..., ok, t1, ..
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or through the data driven impulse function which is calculated
through experiments. In Section V, we consider both.

C. Summary Statistics

Our acquisition goal is to obtain parameter estimates 6 :=
(g, 1, ..., ax,t1,...,tx) of the signal model in (2), given
the time-stamp of photons detected for each pixel in the scene.
Parameter estimation involves the inference of a set of parame-
ters € © C R2X+1 associated to a probability model 7(- | §)
defined on some space x € R%. In the case of single-photon
counting lidar, the dimension d = 1. Typically, we observe a
finite dataset X' = {x;}?; of n samples which we assume is
sampled from the distribution given in (2). Maximum likelihood
estimation (MLE) is a traditional parameter estimation method
whereby a likelihood function associated with the finite data is
maximized with respect to the model parameters, e.g.

R 1 n
0 = arg max, Z log m(x; | ). 3
i=1

1) Generalised Method of Moments: In some cases, the like-
lihood function might not have a closed form solution nor a com-
putationally tractable approximation [19]. Generalised method
of moments [19], [20] (GeMM) is an alternative parameter esti-
mation method where one estimates § by matching a collection
of generalised moments with an empirical counterpart computed
over a set of finite data sampled from the distribution 7(x | ).
Given a nonlinear function g : R? — C™, then we define the
expectation constraint

Eg(x;0) =0, 4)

where [E denotes the expectation with respect to the probability
distribution 7 (x | €). Typically, the GeMM estimator is obtained
by minimising a quadratic cost of the empirical discrepancy with
respect to 6 to try impose the moment constraints of (4). Let us
define

1 n
gn(X30) := — > g(xi:0), ©)
=1

calculated over X = {x;}?_;, then a GeMM classically takes
the form [19], [20]

0= arg mingyg, (X; H)TWgn(X; 0), 6)

where W is a symmetric positive definite weighting matrix that
may depend on 6.

2) Compressive Learning: Building on the concept of
GeMM, compressive learning [23], [24] utilises generalised
moments of the data but with the distinct goal of reducing signal
acquisition, space and time complexities. The link to GeMM
is established by separating the function ¢ into the following
particular form:

g(x;0) = ¢(x) — Ep®(x), @)

where ® : R? — C™ is often referred to as the feature function.
The separable form decouples the measured moments, ®(x),
from the parameters 6 that are to be estimated. This is not a
usual assumption in GeMM, although it may arise in particular
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cases. By denoting the empirical mean or the so-called sketch
as

Zy = — Z D(x;), ®)

we can estimate 6 solely from the sketch z,, by minimising
0 = arg min||z,, — Eq®(x)||%, )

which is the particular compressive GeMM loss of (6). In
Section IV, we explicitly define the weighting matrix W for
compressive single-photon counting lidar. The separable form
of g in (7) allows a sketch statistic z,, to be formed with a single
pass of the data without the need to store X, and it can easily
be updated on the fly with minimal computational cost. The
sketch statistic has size m, or size 2 m if decoupled into its
real and imaginary components, which, fundamentally, scales
independent of the dimensions of the dataset X, which in the
case of single-photon lidar is the photon count n or the binning
resolution 7.

3) Empirical Characteristic Function: A specific type of
GeMM is the empirical characteristic function (ECF) estima-
tion [21], [22], [32], and occurs when the generalized moment
is chosen to be ®(x) = [ei‘”J’Tx];ﬁ:l, where i = /=1 and w;
is a discrete set of frequencies. It is of particular interest as
the expectation of ®, namely ¥ (w) = Ege" >, is specifically
the characteristic function (CF) of the probability distribution
m(x | 0) at frequency w. The CF exists for all distributions, and
often has a closed form expression. Moreover, it captures all
the information of the probability distribution [33], therefore
giving a one-to-one correspondence between the CF and the
probability distribution 7 (x | €). The CF also has the favourable
property that it decays in frequency, i.e. ¥ (w) — 0asw — o0,
under mild conditions on the probability distribution 7(x | €)
[33], [34]. For a single depth observation model in (2) (i.e.
K =1) and a discrete impulse response function h, we define
the characteristic function of the observation model

Uo(w) = aq¥Un, (W) + agPn, (w)
o (10)
= Oélh(UJ)€IWt + QQD% (CU)

where D, (z) = S22 56 the Dirichlet kernel func-

27 sin(z/2)
tion [35] and h denotes the (discrete) Fourier transform of the
impulse response function h. It should be noted that we could
consider different distributions 7, and hence CFs, to model the
detected photons originating from more complex background
sources, for example highly scattering environments like fog.
However, this is beyond the scope of this paper.

The feature function ¢ is a complex valued function of
size m. With regards to hardware implementation, it is often
preferable and convenient to work directly with real valued
functions. The complex term e!“? can be alternatively written
as cos(wz) + isin(wr), where €% has been decoupled into its
real and imaginary components. As a result, the feature function
® can be equivalently written as a real valued feature function
® : R — R?™, consisting of 2 m real valued terms by stacking
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the real and complex components, for e.g.

[ cos (w1)

oS (Wi, )

sin (wyx)

| sin (W) ]

For sake of fair comparison to existing hardware implemented
methods in the literature, the results and figures presented
represent a sketch of size 2 m, consisting of 2 m real valued
measurements. The nature of the feature function, in terms of it
being represented by a complex or real valued function, will be
made clear in its context throughout the paper.

III. SKETCHED LIDAR

We start with a warm up example to highlight the potential of
using a sketch for single-photon lidar and to motivate the design
of the sketch sampling procedure which will be discussed in
Section III-B1.

A. Compressing Single Depth Data

In the absence of photons originating from background
sources and the presence of a single surface or object, the sample
mean of all the photon time-stamps (®(z) = x) is the simplest
summary statistic for estimating the single location parameter
t1. This only holds in the noiseless case as the sample mean
estimate is heavily biased toward the centre of the histogram
when background photons are detected.

Suppose, we instead observe the cosine and sine of each

photon count z with angular frequency w = 2%, namely

) = [cos (T)] |

sin (252)

(an

and denote z,, the real valued sketch of size 2 (m = 1) computed
over the dataset X asin (8). Itis possible to recover an estimate of
the single depth location parameter ¢; directly from the sketch,
without recourse to the data X, via the trigonometric sample
mean

. T =
t, = p phase ;cos (

2w . " . 2mx;
T >+1Zsm( T )
J=1
(12)

where phase denotes the phasor angle. As the background
photons are distributed uniformly over the interval [0,7" — 1]
(mp(z) = %), the expected moment of the photons originating
from background sources is zero, E .-, ®(z) = 0. The resulting
estimate of the single depth parameter f, is therefore an unbiased
estimator of the location parameter ¢;. The estimator in (12)
coincides with the circular mean estimator detailed in [36]. Here
the circular mean requires the first (non-zero) frequency.

n
o

I Detected Photon a
Circular Mean .,

= Mean {

=== Ground Truth t; 7

-
(9]
T

Photon Count
o >
. :
|

0 500
Time Stamp ¢

1000

Fig. 3. The TCSPC histogram with ¢; = 320. The circular mean estimate
(yellow) and the standard mean estimate (red) superimposed.

Throughout the paper, we consider the detection point SBR,

defined as %{1%, and not the raw sensor SBR which can be
much lower in practice [37]. We summarise the above using a
simulated example, where a pixel of 7" = 1000 histogram bins
with a detection point signal-to-background ratio (SBR) of 1
and a total of n = 600 photons is simulated, where the time-
stamp of each photon is denoted by X = {x;} ;. The data was
simulated using a Gaussian impulse response function with o =
15 and a true position at time-stamp ¢; = 320. Computing the
sketch z,, from (8) and using (12) we obtain the sketch estimate
tem = 323.3 and the sample mean estimate of t = 434.1. The
TCSPC histogram along with both the circular and standard
mean estimates as well as the location parameter ¢; are shown
in Fig. 3 where it is evident that the circular mean estimate does
not suffer from the noise bias inherent in the sample mean.
Importantly, the sketch formed using the moment in (11)
is equivalent to the complex valued ECF sketch z, =
% ?:1 €l“?i sampled at w = 2%, decoupled into both its real
and imaginary components. In fact, the estimate 7, in (12) is
the optimal estimator to the compressive ECF sketch detailed
in (9) (see Appendix VIII). Principally, we only need to store
and transfer 2 values to accurately estimate the depth location
of the object or surface, without the requirement to recourse to
the original photon time-stamped data. For the remainder of this
section, we generalize the approach of forming a sketch in (8)
of arbitrary size and sampling the ECF at multiple frequencies
[wi]™ . This will enable us to obtain statistically efficient esti-
mates for the single surface case and to solve more complex lidar
scenes including several surfaces with varying intensities where
more salient information of the observation model is required.

B. Sampling the ECF

Recall that the observation model 7 in (2) is discretized over
the interval [0, 7 — 1] which we can consider to be a sufficient
sampling if the distribution in (2) is approximately bandlimited.
As a result, the characteristic function ¥, (w) has a finite basis
characterized by the set of frequencies

.
{7” j:O,l,...,T—l}.

T (13)

We can generalise the approach from Section III-A by sampling
multiple frequencies from the finite basis in order to construct the
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ECEF sketch. As is the case for the circular mean, the frequencies
w = 2% forj =1,2,...,T — 1 correspond to the zeros in the
Dirichlet kernel function associated with the background pdf 7
seen in (10). We can therefore construct a sketch of arbitrary
dimension m that is also blind to photons originating from
background sources by avoiding the zero frequency w = 0 of
the finite basis. As a result, we define the set of orthogonal
frequencies by

Q.= {wj =

We coin this set the orthogonal frequencies as it defines re-
gions over the interval of the observation model’s characteristic
function where the signal’s contribution is orthogonal to the
background’s contribution.

1) Sampling Schemes: In order to construct a sketch, we are
ultimately interested in retaining sufficient salient information
of the characteristic function W, such that we can identify and
estimate the unique location and intensity parameters ¢ of the
observation model 7(x | #) defined in (2). It was discussed
in Section II that the CF of a probability distribution decays
in frequency, i.e. ¥, (w) — 0 as w — oo. Furthermore, as the
observation model is discretized over the interval, we assume
that the characteristic function of the observation model is
approximately band-limited. A natural sampling scheme would
therefore be to sample the first m frequencies of the orthogonal
frequencies (2 to capture the maximum energy of the CF. In other
words, we could truncate the CF of the observation model whilst
avoiding the zero frequency.

Alternatively, in [23], [24], provable guarantees for estimating
mixture of Gaussian models have been provided, under certain
conditions based on random sampling (cf. compressive sens-
ing [38]) of the CF. It is understood that the higher frequencies
of the CF may provide further information to help discriminate
distributions that are close in probability space. Moreover, if the
CF decays slowly in frequency then the energy of the CF will be
spread more throughout the set of orthogonal frequencies. We
therefore provide an alternative sampling scheme whereby we
randomly sample the set of orthogonal frequencies with respect
to some sampling law A. In a similar design to the frequency
sampling pattern proposed in [39], we sample the orthogonal
frequencies by
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j1,2,...,T1}. (14)

(Wi, w2,y wim) ~ A, (15)

where A; o h. To formalize, we consider the follow sampling
schemes in order to construct our ECF sketches:
1) Truncated Orthogonal Sampling: Sample the first m fre-
quenciesi.e j = 1,2,...,m from €.
2) Random Orthogonal Sampling: Sample the set of frequen-
cies randomly, governed by the distributing law A;,.
Depending on the circumstances of the lidar device we might
expect one or the other sampling scheme to perform better.

C. Practical Hardware Considerations

1) Online Processing: One of the major advantages of form-
ing a sketch z,, as in (8), is that it is naturally amenable
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Algorithm 1: Sketch Online Processing.
Initialisation: z = 0,n = 0
while Acquisition Window do
if New Photon Arrival x; then
z <+ z+ ®(xj)
n<n+1
end if
end while
z < z/n
Output: The sketch z is transferred off-chip for
post-processing.

to online processing. Recall that for an arbitrary pixel in the
scene, the resulting sketch that can be transferred off-chip is
zn, = y ., ®(x;). Algorithm I demonstrates how the sketch for
a given pixel is updated in real time during an acquisition window
where n photons are detected by the SPAD array. For each
photon arrival &; during the acquisition window, an intermediate
sketch is accumulated as well as an integer counter. Once the
acquisition window 1is over, the resulting sketch is transferred
off-chip for post-processing.

This is very beneficial as all that is needed to be stored on-chip
is the sketch z of size 2 m and an integer counter. As such, form-
ing the sketch in an online processing manner, as in Algorithm
1, circumvents the need to compute and store a large histogram
or store each individual photon time-stamp. Moreover, it should
be noted that no further hardware is required to form the sketch
and existing lidar devices can be easily adapted to implement
our proposed technique.

The computation of the sketch itself requires the calculation of
the Fourier features i.e. cos(2mw; /T") and sin(27w; /T'), which
would have to be computed in real time for each time-stamp.
However, various efficient logic-based schemes already exist for
performing such computations [40] based on either the classic
CORDIC algorithms or polynomial approximations. Alterna-
tively, in [41], Schellekens et al. show that in principle one can
also replace the Fourier features by alternative periodic functions
(e.g. square waves or triangle waves) in conjunction with random
dithering. Subsequently, we will assume that we have access to
sufficiently accurate sketch values and leave details of specific
hardware implementation for future work.

IV. SKETCHED LIDAR RECONSTRUCTION
A. Statistical Estimation

Once the ECF sketch is constructed using either sampling
scheme, we must estimate the parameters 6 of the observation
model 7(x | 0) solely from the sketch z,. In general, there is
no closed form expression to estimate 6 from the sketch of
arbitrary size as is the case for the circular mean estimate in
(12). Itis well documented in the ECF and GeMM literature, e.g.
[19]-[21], that a complex valued ECF sketch z,, of size m,
computed over a finite dataset X' = {x1,...,x,}, satisfies the
central limit theorem. Formally, a sketch z,, € C™ converges
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asymptotically to a Gaussian random variable

Zn S5 N (0715, (16)

where X € C™*™ has entries (3g);; = Ur(w; —w;) —
U (w;)Ur(—wj) for 4,5 =1,2,...,m. The asymptotic nor-
mality result in (16) naturally leads to a sketch maximum likeli-
hood estimation (SMLE) algorithm that consists of minimising
the following

arg min, % log det(Zg) + n(z, — ZQ)TEgl(zn —zy), (17)

where for convenience we denote zg = [¥ (w;)]’7L ;. For an ob-
servation model consisting of K surfaces and a general impulse
response function h, recall that

K
o lZ argh(uo; )t
k=1

and 0 = (ap,1,...,aKk,t1,...,tx). Note that we have
dropped the Dirichlet kernel function on the assumption that
we are using one of the proposed sampling schemes. Minimis-
ing (17) is equivalent to minimising the compressive GeMM
objective function defined in (9) with the weighting function
chosen to be W = E;l. The weighting matrix W = 251 is
asymptotically optimal in the sense that it minimises the variance
of the estimator 6 from the sketch z,, [20].

In practice Yy is 6 dependent as it is a function of the underly-
ing parameters 6 that are to be estimated. There are various well
established methods in the GeMM and ECF literature [19], [20]
that tackle the difficulty of approximating ¥y and estimating
0 simultaneously. In [33], they use the K-L method which
iteratively estimates Yy and € in a two stage procedure by fixing
and updating one at a time, resulting in a computation complexity
of O(m3 ) due to inverting Xg. Some particular methods [42] fix
Yg after only a few iterations of the K-L approach to reduce
the computational complexity of the algorithm, although this
typically comes at the cost of introducing sample bias [43].
Occasionally, the covariance matrix is set throughout to be
the identity, Xy = I, reducing (17) to a standard least squares
optimization and a computational complexity of O(m), however
this generally results in a less statistically efficient estimator
é[ 19]. In this paper, we estimate >y and 6 simultaneously at each
iteration. This approach is commonly referred to as Continuous
Updating Estimator (CUE) [42] and obtains estimates that do
not produce sample bias like the two-step K-L approach [43]
and can often lead to more statistically efficient estimators [19].
However, the SMLE method is not restricted to the CUE and in
certain situations practitioners may choose to sacrifice unbiased
and efficiently optimal estimators for a reduced computational
complexity by considering the other methods discussed.

The optimisation problem in (17) is also typically non convex
and can suffer from spurious local minima. For the case when
there is only a single surface, we initialise the SMLE algorithm
using the analytic circular mean solution in (12) with mini-
mal added computational overhead. From our experience with
synthetic and real data, the circular mean estimate generally
initialises the SMLE algorithm within the basin of the global
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Fig.4. Histograms of the estimation error (£ — ¢1 ) for increasing photon count
n where the sketched lidar estimate (circular mean) is denoted by . The expected
error distribution in (16) is depicted in red.

minima, hence the issues associated with non-convex optimiza-
tion are circumvented. For the case of multiple surfaces, we
form a coarse uniform grid across [0, 7' — 1]% and initialise at
the smallest SMLE loss.

In the orthogonal sampling scheme, one could alternatively
zero-pad the sketches, perform an inverse FFT (iFFT) and find
the maximum peak to estimate the depth position of the surface.
However, this approach is fundamentally different to that of the
orthogonal truncated sketch as the iFFT method is simply a
low pass approximation of the TCSPC histogram whereas the
proposed SMLE algorithm performs nonlinear parameter fitting.
As a result, the iFFT method will be particularly inaccurate at
distinguishing between closely spaced reflectors. In contrast to
the proposed sketched lidar acquisition, the iFFT method does
not take into account the particular nature of the IRF and achieves
poor depth accuracy in the presence of a non-symmetric IRF
(see Appendix XII). Furthermore, the iFFT approach requires
O(T) off-chip memory complexity in comparison to O(m) of
our proposed SMLE algorithm.

B. Central Limit Theorem

One of the main advantages of the SMLE lidar approach from
(16) is that even at low photon levels (i.e. small n), the SMLE
estimates quickly follow the central limit theorem (CLT) and
provide a good approximation of its expectation. In contrast, the
TCSPC histogram used for many estimation methods, discussed
in Section I, is a poor approximation to its expectation as each
time-stamp bin ¢ has only a small number of photons. Thus
efficient processing of the full histogram data requires careful
consideration of the underlying Poisson statistics [44]. This is
illustrated in Fig. 4 which shows four separate histograms of
the error (f — ¢;) for increasing photon count n, along with the
asymptotic Gaussian distribution from (16). The estimate # was
obtained from a real valued sketch of size 2 (m = 1) using the
circular mean estimate in (12). The simulated data was the same
as the motivation example in Section III-A where a Gaussian
IRF with ¢ = 15 was used. The SBR was set at 1 and the total
number of time-stamps was 7" = 1000. The total photon count
varied from n = 10 to n = 10000 increasing by a factor of 10
each time. For each photon count, we estimated the location
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parameter ¢ a total of 1000 times where the data X' = {x;}7*,
was simulated independently for each trial.

Even at extremely low photon counts of n = 10, the error
(f — t1) can be reasonably approximated by a Gaussian random
variable centred around 0. This suggests that the estimate ¢
quickly satisfies the central limit theorem with respect to the pho-
ton count n. Further analysis of the proposed SMLE algorithm in
the photon starved regime can be seen in Appendix X. In the large
photon regime (n = 10000), the estimation error is concentrated
tightly around zero and mostly contained within 5 time-stamps.
These results suggest that the sketched lidar CLT results of (16)
hold even for low photons levels, hence the SMLE loss in (17)
is a well-justified loss to minimise. A further potential benefit
from this asymptotic normality is that it permits us to directly use
plug-and-play Gaussian denoising algorithms to further improve
the imaging performance [9], [45].

C. Statistical Efficiency

In this section, we calculate the theoretical statistical effi-
ciency of the sketched lidar estimates, ¢, that parametrize the
observation model 7(z | §) in (2), and compare them with
the estimates obtained using the full data (i.e no compression)
using the relative error percentage. The relative error percentage,
which will be defined later, is a key metric allowing us to quantify
the relative loss of information given a sketch of size m from a
statistical point of view.

Statistical efficiency is a measure of the variability or quality
of an unbiased estimator 6 [46]. The Cramér-Rao bound gives a
lower bound on the mean squared error of 0 [47] and therefore
provides a best case scenario on the variability of the param-
eter estimates. Given the observation model 7(z | #) and the
corresponding Fisher information matrix (FIM), defined as

Ologm(x | 0) ’
|5 |

then the optimal Cramér-Rao mean squared error, in terms of
the full data, is defined as

Idata(e) = (19)

2K

Z[Idata(e)il]{kk}'

k=1

RMSE,, := (20)

Equivalently, we can compute the FIM for the sketched case
using the normality result stated in (16), where the FIM of a
multivariate Gaussian distribution [47] is defined as

9z¢ 271%
00; "% 00’

where zg is the sketch defined in (18). Similarly, we define the
optimal sketched Cramér-Rao mean squared error as

(Isketch(a))ij =n (21)

2K

Z [Isketch (9) _1]{kk} .

k=1

RMSE,, := (22)

To quantify the statistical efficiency of an estimate obtained
from a real valued sketch of size 2 m, we use the relative error
percentage (REP) metric which compares the optimal sketch
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root mean squared error RMSE,,, with the corresponding full
data root mean squared error RMSE,,, defined by

(23)

RMSE,, — RMSE,,
REP := 1
00 ( RMSE,, )

Notably, the FIM of the sketched statistic in (21) scales with n,
hence the REP metric is independent of the photon count. We
compare the statistical efficiency of the sketched lidar estimates
to the alternative compression technique of coarse binning [10]
discussed in Section I. The coarse binning approach can be seen
to be equivalent to constructing a summary statistic

20 =Y {lg-ansan @)}, (24)
i=1

where Az, = {%W denotes the down-sampling factor, m denotes
the number of measurements equivalent to the real-valued sketch
size (i.e. m =2m) and I, 1,4 A ] () is the indicator function
defined as

» (o) i 1 ifzel(j—1)Amn jAm),
(G028 0 Otherwise.
(25)
Once the coarse binning sketch has been constructed, traditional
estimation methods, for e.g matched filtering [48] or expectation
maximization [49], can be employed to estimate the parameters
of the observation model.

Lidar scenes typically have only O, 1 or 2 reflectors in the
scene, although in some specific applications, for example air-
borne lidar [50], tree-canopy foliage canreturn X > 2 reflectors.
Our proposed method can handle greater number of reflections,
however in the following experiments we only consider the
typical case where K = 1, 2. Moreover, we choose the setting of
the lidar scene (e.g. binning resolution, peak location, intensity)
to best replicate a realistic setting as seen in Section V-C. In each
experiment, we consider two different impulse response func-
tions (IRF), exhibiting both a short and long-tail. Fig. 5 depicts
the contrasting IRFs and the magnitude of their corresponding
characteristic functions, U (w) = h(w)e“!. We evaluate the
statistical efficiency of the sketched and coarse binning estimate
using the REP as a function of the number of real measurements
2 m and examine both the random and truncated orthogonal
sampling schemes discussed in Section III-B1.
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Fig. 6. The REP as a function of the number of real measurements (2 m) for
a single peak lidar scene.

1) One Surface: We first evaluate the REP for a single peak
case positioned at ¢; = 430, a window size of 1" = 1000. We
consider both low and high background photon count levels,
where the SBR was set at 10 and 1, respectively. Fig. 6 shows
the REP metric as a function of the number of real measurements
2 m for the truncated orthogonal (blue), random orthogonal (red)
and coarse binning (orange) compression techniques, where the
high (SBR=10) and low (SBR=1) background photon levels are
denoted by a solid and dashed line, respectively. The top and bot-
tom plots depict the short and long-tailed IRF, accordingly. We
first observe that both sketched lidar sampling schemes approach
0% as the real measurements increase and only a modest number
of measurements is needed to obtain a low REP. In contrast, the
coarse binning approach exhibits a slow convergence REP and
remains high throughout the measurement range. Importantly,
we see that the different sketch sampling schemes outperform
each other depending on the tail of the IRF and hence the rate of
decay of the CF. For instance, the truncated scheme produces a
lower REP for the short-tailed IRF, while the random sampling
scheme achieves a quicker convergence and a significantly lower
REP throughout the measurement range for the long-tailed IRF.
This can be explained by Fig. 5, the CF of the short-tailed IRF
has the majority of its energy contained within the first few
(m = 10) frequencies, while the CF of the long-tailed IRF has
its energy spread more throughout its frequency.

2) Two Surfaces: We now evaluate the REP for a two peak
case positioned at (¢1,t2) = (320,570), a window size of T' =
1000. The intensity of the two peaks is given by 75% and
25%, respectively, simulating an object that is positioned behind
a semi-transparent surface. We simulate both low and high
background levels, where the SBR was again set at 10 and 1,
respectively. Fig. 7 shows the REP metric as a function of the
number of real measurements 2 m for the truncated orthogonal
(blue), random orthogonal (red) and coarse binning (orange)

Short Tailed IRF

REP %

40
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20
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—==Trun. Orth. (SBR=1) === Rand. Orth. (SBR=1)

Coarse Binning (SBR=10)
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Fig. 7. The REP as a function of the number of real measurements (2 m) for
a lidar scene with 2 surfaces.

compression techniques, where the high (SBR=10) and low
(SBR=1) background photon levels are denoted by a solid and
dashed line, respectively. The top and bottom plots depict the
short and long-tailed IRF, accordingly. We see the same pattern
as the single surface case where the REP remains high for the
coarse binning compression technique while, in contrast, the
sketched lidar converges towards a relatively low REP in a
modest number of measurements. We again observe that the
truncated scheme performs best on a fast decaying CF, while the
random sampling scheme outperforms the truncated counterpart
when there is a slow decaying CF. The doubling of the dimension
of the parameter 6 by estimating two peaks and intensities, does
not have a significant impact on the required number of measure-
ments needed to achieve a relatively low REP. For instance in the
high SBR (solid) scenario, the truncated orthogonal sampling
scheme requires 20 real measurements (m = 10) to achieve
a REP less than 1% for the unimodal case compared with a
requirement of 24 real measurements (m = 12) to achieve the
same level of REP for the bimodal case. These theoretical results
on the statistical efficiency of the lidar sketch show that only
a moderate sketch size is needed to achieve negligible loss of
information. The results are based on the asymptotic normality
property discussed in (16), and we have seen in Section V-B
that in practice this normality result holds even for small photon
counts of n = 10.

In coarse binning, it can be beneficial to broaden the impulse
response (while keeping laser power constant) such that it covers
more than a single coarse bin. This strategy can achieve (coarse)
sub-bin resolution (see for example [26]). Furthermore, Gyongy
et al. [26] proposed an algorithm that estimates the depth po-
sition continuously, in contrast to quantization limited matched
filtering [48]. We further compare our proposed sketched lidar
method to the wide pulse width coarse binning and algorithm
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used in [26] for a range of SBR values. In the simulation, the
photon count was set at n = 100 and a Gaussian IRF was used.
For the wide pulse width, we replicate the lidar device by setting
o1 = 0.4. To compare with the narrow pulse width settings, we
set o9 = 5. In both scenarios, a total of 2m = 16 coarse bins
are used. For our proposed SMLE algorithm, we compare the
same compression be taking a (real-valued) sketch of size 16
(m = 8). We evaluate the depth estimation over SBR values
ranging between 107! to 102 for 250 Monte-Carlo simulations.
The coarse binning CRB is calculated where the best pulse width
has been optimally selected for each SBR level.

As shown in Fig. 8, the coarse sub-bin resolution can indeed
improve the resolution with respect to coarse binning in large
SBR regimes, but it still falls significantly behind the resolution
obtained using the narrowest IRF with a fine scale time-stamp
of our proposed sketch method. For instance, at an SBR of 0.23
the wide pulse width achieves a RMSE of 264.6 bins compared
to 31.1 and 4.5 bins for the narrow pulse width coarse binning
and SMLE, respectively. As the pulse width optimised algorithm
in [26] only exhibits significant improvement in the high SBR
scenario we do not consider it further in the paper.

V. EXPERIMENTS

A. Experimental Set up

In this section, we evaluate our compressive lidar framework
on synthetic and real data with increasingly complex scenes.
Our method is compared with classical algorithms working on
the full data space (i.e no compression) namely matched filter-
ing [48] and expectation maximization (EM) [49]. Moreover,
we also compare our results to the alternative compression
technique of coarse binning [10] discussed in Section I and
(24). Both the matched filtering and EM algorithms estimate the
location parameters using the full data and therefore the results
obtained from these methods set a benchmark to the estimation
accuracy when no compression takes place. For sake of fair
comparison, we use the real valued sketch in all the subsequent
results, such that the number of real measurements is equivalent
to2 m.

1) Processing: Restoration of depth imaging of single-
photon lidar consists of estimating a 3D point cloud from a
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lidar data cube containing the number of photons n; ; ; in pixel
(i,7) at time-stamp ¢, where i = 1,2,...,N,, 5 =1,2... N,
and t =0,1,...,7 — 1. We denote the average photon count
for each pixel by 7 and process each pixel (i, j) of the data cube
and estimate the true location and intensity parameter, denoted ¢
and «, respectively. The intensity of a point in pixel (¢, j) of the
point cloud is calculated by the number of photons in the pixel
multiplied by the proportion of the signal i.e. o 25;01 Nt A
data driven impulse response is given for each dataset and we
can obtain the characteristic function of the IRF by using (10).

2) Evaluation Metrics: Two different error metrics are used
to evaluate the performance of our proposed sketched lidar
framework. We consider the root mean squared error (RMSE)
between the reconstructed image and the ground truth. Given
that ¢; ;1. is the location of the kth peak in pixel (i, 7) and ; ; »
the estimated counterpart, then the root mean squared error of
the reconstructed image is

RMSE := KNN;ZZ ik —

The compression of both the sketched lidar and coarse binning
approach is measured in terms of the dimension reduction
achieved by the statistic with respect to the raw TCSPC data and
is quantified by the metric max 27'“ , 27"‘ , which is dependent on
the dimensions, 7" and n, of the lidar scene and where the number
of real measurements (2 m) is used for sake of fair comparison.

k). (26)

B. Synthetic Data

We evaluate the sketched lidar framework on a synthetic
dataset simulating a pixel in a scene which consists of a single
peak response. We chose the parameters that best replicated a
realistic lidar scene and that were akin to the real datasets which
will be discussed in V-C. Therefore, we set the binning resolution
at 7' = 250, and impulse response was generated with a true
Gaussian function where o = 5. We ran a Monte-Carlo simula-
tion with 1000 trials to evaluate and compare the performance of
our sketched lidar framework for photon counts . € (100, 1000)
with varying SBR levels and number of real measurements
2 m. For each trial, we uniformly chose t; ~ U/(0,249), and
estimated ¢ for the sketched lidar approach, the iFFT method
discussed in Section IV as well the alternative compression
technique of coarse binning. As a reference, we computed the
matched filter estimate as well as estimating the maximum peak
of the full histogram which represent the estimates over the
full data (i.e. no compression). We varied the total number of
real measurements between 2 (m = 1) and 50 (m = 25) and
increased the SBR ratio from 1072 to 102 on a log-scale. Here
we only show the results for the truncated orthogonal sampling
scheme but we observed in practice that the alternative random
orthogonal sampling scheme produces similar results. Figs. 9
and 10 show the contour plots of the RMSE level of 10A7 (left)
and 2Ar (right) for both n = 100 and n = 1000, respectively.
The sketched lidar (solid blue), coarse binning (orange) and
the iFFT (red) methods are depicted alongside the full data
approaches of matched filtering (solid black) and maximum
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10AT (left) and 2A7 (right). The legend is defined for both plots.
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Fig. 10. RMSE level set contour plots for varying SBR levels and number of
real measurements 2 m for a photon count of n = 1000. The RMSE level are
10AT (left) and 2A7 (right). The legend is defined for both plots.

peak estimation (green). As discussed in Section IV-C, the full
data (dashed black) and the sketched (dashed blue) Cramér-Rao
bound are given as reference and define the lower bound to
the contour plot. Both the sketched lidar and iFFT approach
converge quickly towards the full data estimate of matched
filtering within 10 real measurements for both RMSE level sets
and photon counts. In contrast, the coarse binning approach
needs approximately 30 real measurements to achieve a similar
performance as our sketched lidar method in achieving a RMSE
of 10 bins. Moreover, coarse binning does not attain an RMSE
of 2 for 2m < 50 hence does not appear in the right subplot of
Fig. 9. It can be seen for a larger number of real measurements,
the iFFT approach begins to diverge. This is because for larger
number of measurements, the iFFT produces a less smooth
linear approximation of the histogram and therefore it is more
challenging to estimate the depth position.

Figs. 11 and 12 show the 95% of peaks detected within
the level sets of 10A7 (left) and 3A7 (right). Our proposed
sketch method achieves the same estimation performance as
the full data matched filtering approach within approximately
12 real measurements (m = 6) for all varying SBR ratios and
photon counts. In contrast, the coarse binning approach requires
approximately 45 real measurements, equating to a modest
compression of 0.25, to achieve 95% of detections within 10A7.
Furthermore, the coarse binning method could not achieve 95%
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Fig. 11. RMSE level set contour plots for varying SBR levels and number
of real measurements 2 m for a photon count of n. = 100 for detecting 95% of
peaks within the level sets of 10AT (left) and 3AT (right). The legend is defined
for both plots.
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Fig. 12. RMSE level set contour plots for varying SBR levels and number

of real measurements 2 m for a photon count of n = 100 for detecting 95% of
peaks within the level sets of 10AT (left) and 3AT (right). The legend is defined
for both plots.

of detections within 3AT for all the real measurements consid-
ered. These initial results on synthetic lidar data for a range of
different SBR ratios and photon counts highlight the clear trade-
off between compression and loss of temporal resolution for
the coarse binning approach. In contrast, our proposed sketched
lidar method overcomes the trade-off between compression and
loss of resolution and only requires a very modest sketch size to
achieve the same estimation performance as matched filtering
using the whole data.

C. Real Data

In this section we evaluate our sketched lidar framework
on two real datasets of increasing complexity. Namely, a
polystyrene head imaged at Heriot-Watt University [5], [30]
which consists mostly of a single peak, and a scene where two
humans are standing behind a camouflage net, depicted in [9],
[51], which contains of 2 objects per pixel with varying intensity.

1) Polystyrene Head: The first scene consists of a
polystyrene head placed 40 meters away from the lidar device.
The data cube has width and height of 141 pixels, N, = N, =
141 and a total of 7' = 4613 time-stamps. A total acquisition
time of 100 milliseconds was used for each pixel resulting in an
average photon count of n = 337 with an SBR of approximately
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Fig. 13.  The CF (bottom) of the data driven impulse response function (top)
of the polystyrene head dataset.

6.82. The vast majority of pixels consist of a single peak,
although there are a minority of pixels around the borders of the
head that consist of two peaks. The parameter set to be estimated
for each pixel is 6 = (¢, «) of dimension 2. We compare our
results with the ground truth obtained from the experiment as
well as the full data algorithm of matched filtering and the coarse
binning compression technique. As the matched filter is the
maximum likelihood estimation of a single peak, we assume
each pixel has one surface for the sake of comparison. As a
result, we set the SMLE algorithm to estimate a single peak,
however in practice we can use detection algorithms, for instance
the sketch-based detection scheme proposed in [52], to detect
the number of surfaces present before estimation. The coarse
binning approach is computed using matched filtering once the
data cube is down-sampled.

The data driven impulse response function and its correspond-
ing CF obtained from (10), are shown in Fig. 13. We only present
the results for the truncated orthogonal sampling scheme, from
Section III-B1, but we observed in practice that the alternative
random orthogonal sampling scheme produces similar results.
We initialise the sketched lidar algorithm using the analytic
circular mean solution in (12).

Fig. 14 shows the reconstructed images of the sketched lidar,
coarse binning and matched filter approaches, as well as the
ground truth image. We first notice that our sketched lidar
method sufficiently reconstructs the polystyrene head scene for
all sketch sizes, even for the circular mean estimate (m = 1) in
(a). In contrast, the coarse binning approach fails for all cor-
responding measurements 7 with significant staircase artifacts
arising. Fig. 15 shows the RMSE, in comparison to the ground
truth, as a function of the number of real measurements (2 m).
Here we omit the small proportion of pixels that consist of two
peaks from the RMSE calculation for sake of fair comparison
with the existing methods that can only estimate a single peak.
We observe that our sketched lidar method produces a smaller
RMSE as the measurement size increases and achieves a smaller
RMSE than the LMF approach for larger measurements. In com-
parison, the coarse binning method obtain estimates that produce
a large RMSE consistently throughout. As such, this suggests
that our sketched lidar approach does not compromise reduced
resolution in favour of compression which is very apparent in
the coarse binning method.

Fig. 14.
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The face dataset lidar reconstructions of the sketched lidar and coarse
binning method for the real valued measurement size 2,8,20. Both the matched
filter reconstruction and the ground truth image are given for comparison.

2) Humans Behind Camouflage: The second scene consists

of two humans standing behind a camouflage net approximately
320 metres away from the lidar device. Further details can be
found of the scene in [51], [53]. The data cube has width and
height of 32 pixels, V,, = N, = 32 and atotal of 7" = 153 time-
stamps. A total acquisition time of 5.6 milliseconds was used for
each pixel resulting in an average photon count of n = 871 with
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of the camouflage dataset.

an approximate SBR of 2.35. The vast majority of pixels have 2
surfaces (the camouflage net and a human) where the net (first
peak) accounts for the biggest intensity. The parameter set to
be estimated for each pixel is @ = (¢1, t2, @1, a2) of dimension
4. We compare our results with the full data EM algorithm
as well as the coarse binning compression technique. For this
experiment, the coarse binning algorithm uses the EM estimate
once the data cube has been down-sampled as the matched
filtering algorithm is only applicable to single peak cases. Due to
the lack of a ground truth, we compare the reconstructions of the
camouflage scene to the full data EM algorithm reconstruction
and equate the relevant compression of both the sketched lidar
framework and the coarse binning technique. The data driven
impulse response function h and its corresponding CF obtained
from (10), are shown in Fig. 16. Again, we only present the
results for the truncated orthogonal sampling scheme, from
Section III-B1, but we observed in practice that the alternative
random orthogonal sampling scheme produces similar results.
We uniformly sampled 10 starting points for each of peak ¢; and
to and initialised with the smallest sketched cost function from
).

Fig. 17 shows the reconstructed images of the sketched lidar,
coarse binning and EM algorithm methods. Evidently, the re-
construction of our sketched lidar approach becomes better as
the number of real measurements (2 m) increases, for instance
the torso of the human positioned near 600 cm has greater
clarity in sketch size 20 compared to sketch size 4 where
more spurious peaks are detected. However, the sketched lidar
reconstruction for m = 2 is still sufficient in comparison to the
EM reconstruction in (g), while in contrast the coarse binning
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Fig. 17. The camouflage dataset lidar reconstructions of the sketched lidar and
coarse binning method for the real valued measurement size (2 m) of 2,8,20.
Both the matched filter reconstruction and the ground truth image are given for
comparison.

method fails to reconstruct either human for the corresponding
number of measurements. The coarse binning method once
again suffers from the stair case effect as seen by the lack of
width of the first human standing at position 200 cm in (f).
Furthermore, the compression due to the coarse binning results
in poor depth accuracy as seen by the position of the camouflage
net in reconstruction (b) which has a disparity of approximately
120 cm in comparison to the EM reconstruction. Once again, this
suggests that our sketched lidar approach does not compromise
reduced resolution in favour of compression which is apparent
in the coarse binning method.
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VI. CONCLUSION

In this paper, we proposed a novel sketching solution to
handle the major data processing bottleneck of single-photon
lidar caused by the fine resolution of modern high rate, high res-
olution ToF image sensors. Our approach involved sampling the
characteristic function of the observation model to form online
statistics that have dimensionality proportional to the number of
parameters of the model. Furthermore, we developed an efficient
sketching algorithm, inspired by ECF estimation techniques,
which has space and time complexity that fundamentally scales
with the size of the sketch m, and is independent of both photon
count and depth resolution. Two sampling schemes are proposed
that sample in regions of the characteristic function that are
blind to photons originating from background sources. As a
result, our method obtains estimates of the location and intensity
parameters that are unbiased. Our novel sketch based acquisition
removes the trade-off between depth resolution and data transfer
complexity that is apparent in existing methods. Here we have
only considered a simple pixel-wise depth estimate method in
the form of the sketched MLE. It should be straightforward
to incorporate the sketched statistics into more sophisticated
state-of-the-art reconstruction algorithms, such as the real-time
3D algorithm in [9] due to the Gaussian nature of the sketch
statistics seen in Section IV-B. However, we leave this for future
work. Another line of future work would be to use the sketch
statistics for other algorithmic purposes such as target detection
and multi-reflection detection.
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APPENDIX A
DERIVING THE CIRCULAR MEAN ESTIMATE FROM THE ECF
ESTIMATION

Given a single frequency w € R, we can define the sketch as

— 1 n iwx : .
Zn = 5 D _j—1 €% and the goal is to solve:

0 = arg ming (2, — ¥, (w))?. 27

Clearly, (27) is minimised when ¥, (w) = z,, and equating the
real and complex components we get:

ae% cos(wt) — (1 — OZ)DTl(CU) = %ZCOS(W%’) (28)
j=1

(wt)?

ae 2 sin(wt) = % Z sin(wx;). (29)
j=1
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estimation in the photon starved regime.
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Notably, we can optimally choose the frequency to be w = =

resulting in D% (w) = 0 and thereby ensure the characteristic
function is sampled in a region where the background noise is

not present. Consequently, dividing (28) by (29) we get

™
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APPENDIX B
PHOTON STARVED REGIME

We evaluate the performance of our proposed sketched lidar
method in the photon starved regime in comparison to trans-
ferring the photon time-stamps directly off-chip and estimating
the depth of the surface. For fair comparison, we let 2m =n
for each photon count n in the photon starved regime. Both the
matched filter and maximum peak estimate the depth location
using the full photon count. Here we simulate a pixel of a lidar
scene with a time window of 7" = 100 using a Gaussian IRF with
pulse width ¢ = 0.03 7 for photon counts n = [1,3,5...,15]
and SBR varying between 0.01 and 100. For each photon count
and SBR pair, 1000 Monte-Carlo simulations were executed
with randomly chosen depth position ¢y € [1,2,...,T] and the
RMSE was calculated.

Furthermore, we use the RMSE ratio between the sketched
lidar and matched filter depth estimation, defined as

RMSEsketch
RMSEyk

where RMSEg.cn and RMSEyr denote the RMSE of the
sketched lidar and matched filter estimation, respectively. An
R > 1, indicates that the matched filter achieves on average a
smaller RMSE than sketched lidar. Similarly an R < 1, indicates
the sketched lidar estimation achieves on average a smaller
RMSE than matched filter approach. Figs. 18 and 19 show that
the proposed sketched lidar approach does not suffer from a drop
in estimation performance in both the photon starved regime

R= (32)
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Fig.19. Comparison of the depth reconstruction of sketched lidar and matched
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the photon starved regime. Sketched Lidar performs favourably compared to
matched filtering for the majority of SBR values.
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Fig.20. Comparison of the depth reconstruction of sketched lidar and the iFFT
method using the RMSE ratio R for varying SBR levels and photon counts for a
non-Gaussian asymmetric IRF. Sketched Lidar performs equally or favourably
to iFFT for all SBR and photon count pairs.

and in the case of extremely low SBR in comparison with the
matched filter that estimates the depth using all the detected
photons.

APPENDIX C
COMPARISON TO THE IFFT APPROACH

In Section V-B, we compared our proposed sketched lidar
approach to the iFFT approach. The iFFT approach cannot
incorporate information about the impulse response function
while in the sketched lidar method the impulse response function
is integrated throughout. To demonstrate this, we compare the
performance of the sketched lidar and iFFT techniques for
the non-Gaussian asymmetric IRF used in Section V-C1 (See
Fig. 13). For a signal-to-background ratio varying between
0.1-100 and a photon count ranging between 10-1000, a pixel
from a lidar scene was simulated with randomly chosen depth
position between 1,...,7T. A total of 1000 Monte-Carlo ex-
periments were simulated for each SBR/photon count value
with the RMSE recorded. For fair comparison we include an
asymmetric correction for the iFFT approach to offset the bias
of the asymmetric impulse response function. In Fig. 20, the
ratio between the RMSE of the sketch results and the RMSE of
the iFFT estimation, for e.g.:

RMSEsketch

R=

(33)

is displayed for m = 2.
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The improvement using the sketched lidar method over the
iFFT approach is apparent. For the majority of the SBR/photon
count pairs the sketched lidar method achieves approximately
half'the RMSE of that of the iFFT approach, highlighting the lack
of information of the IRF the iFFT approach has incorporated
into its depth estimation.
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