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Characterising shear-induced dynamics in flowing com-
plex fluids using differential dynamic microscopy

James A. Richards∗, Vincent A. Martinez and Jochen Arlt

Microscopic dynamics reveal the origin of the bulk rheological response in complex fluids. In model
systems particle motion can be tracked, but for industrially relevant samples this is often impossible.
Here we adapt differential dynamic microscopy (DDM) to study flowing highly-concentrated samples
without particle resolution. By combining an investigation of oscillatory flow, using a novel “echo-
DDM” analysis, and steady shear, through flow-DDM, we characterise the yielding of a silicone oil
emulsion on both the microscopic and bulk level. Through measuring the rate of shear-induced droplet
rearrangements and the flow velocity, the transition from a solid-like to liquid-like state is shown to
occur in two steps: with droplet mobilisation marking the limit of linear visco-elasticity, followed by
the development of shear localisation and macroscopic yielding. Using this suite of techniques, such
insight could be developed for a wide variety of challenging complex fluids.

1 Introduction
Throughout the life-cycle of many materials they must flow as
a multi-phase complex fluid. This may happen during process-
ing, for example in making chocolate1 and ceramics;2 transport,
e.g., pumping mine tailings;3 or even in their application, such as
consumer formulations like skin creams.4 At all of these stages
it is essential to understand and control how they respond to the
applied shear stresses and strains. Using our previous examples,
this is to ensure materials form the correct shape, do not block
pipes and give the correct sensory properties. In each case the
complex fluid is often highly concentrated, where the phase dis-
persed in a continuous background solvent is at a high volume
fraction. The dispersed phase may vary, from the colloidal scale
(10nm . diameter, d . 1µm) into the granular (d� 1µm), with
the “particles” composed of a solid, immiscible liquid droplet, gas
bubble, particle aggregate, or even a swollen polymeric gel.5

The high volume fraction of this dispersed phase can arise from a
desire for efficiency, as in reducing the water used in mine tailings3

or cocoa butter in chocolate.1 Alternatively, it may be to give
desirable rheological properties, as at high volume fractions the
system may become arrested and able to support a static stress like
a solid. Returning to our examples, this would enable the system
to retain a formed shape,2 prevent sedimentation of suspended
particles,6 or remain on the skin after dispensing.4 Arrest may

Edinburgh Complex Fluids Partnership and School of Physics and Astronomy, James
Clerk Maxwell Building, Peter Guthrie Tait Road, King’s Buildings, Edinburgh, United
Kingdom, EH9 3FD. E-mail: james.a.richards@ed.ac.uk
† Electronic Supplementary Information (ESI) available: containing parallel sector
echo-DDM comparison, echo-DDM ISF fitting details, fitting details for flow-DDM and
imaging of diluted emulsions.

happen through various mechanisms: a glass transition;7 soft-
jamming where particles are compressed;8 and shear jamming,
with a compressive network.9 The links between these various
states remains an active area of investigation.10

These arrested materials are often termed “soft-solids”, as under
moderate stress (. 103 Pa) the system may begin to flow in a
liquid-like state. Understanding this yielding transition is vital for
controlling a myriad of fluids. The challenge is one ubiquitous to
soft matter as it involves bridging lengthscales, a theme found from
controlling viral infections11 to creating bio-mimetic structural
colours.12 The particular challenge in understanding yielding is
relating particle-particle interactions to the bulk rheology. At the
local level, yielding involves cooperative rearrangements of several
particles. When the system is sheared the particles must move
around one another to accommodate the applied strain. These
shear-induced particle rearrangements are non-affine motion in
addition to the affine shear, i.e. the bulk flow.13 As this motion
results from many particle interactions, much like the thermal
motion in a liquid that causes Brownian motion, it is often treated
as diffusive in nature.14

Much progress has been made in understanding yielding in well-
controlled model systems by simultaneously looking at the local
particle rearrangements using microscopy and measuring the bulk
rheology. This has been achieved in soft-jammed systems with a
silicone oil emulsion in a water-glycerol mixture. This system en-
ables particle-level resolution at high magnification.15,16 Particle
rearrangements have been probed when applying increasing strain
in oscillatory shear, to look at the onset of yielding, and also with a
continuous shear rate, to see how rearrangement types depend on
the rate of bulk deformation. However, such microscopic insights
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are currently restricted to well-controlled model systems and these
simple systems can be challenging to link back to industrially rele-
vant materials. This limitation is due to the need for particle-level
resolution.

To enable looking at a wider variety of systems, we show how
differential dynamic microscopy (DDM), an image analysis method
for looking at the microscopic dynamics of quiescent complex flu-
ids without particle resolution,17 can be adapted to probe local
particle rearrangements under shear. In particular, we develop
"echo-DDM", a novel DDM analysis method to characterise the mi-
croscopic shear-induced particle rearrangements under oscillatory
flow. We verify echo-DDM using a dilute colloidal suspension and
then explore its potential using a silicone-oil emulsion imaged with
rheo-confocal microscopy.18 Using a combination of echo-DDM
and flow-DDM,19 we investigate both oscillatory and steady shear,
respectively, to fully characterise yielding of such a flowing com-
plex fluid. This allows a comparison of the microscopic and bulk
behaviour under both steady and oscillatory shear flows, which
reveal a comprehensive view of the yielding process. Importantly,
without the need for particle-level resolution many more particles
can be monitored at the same time compared to particle-tracking.
This results in rapid data acquisition,20 comparable in time to
rheological tests, making the technique further suited for looking
at various complex fluids.

2 Differential dynamic microscopy
Before looking at flowing systems, we shall consider the analysis of
the microscopic dynamics of a quiescent system using differential
dynamic microscopy. These dynamics could be, for example, diffu-
sive Brownian motion17 or micro-organism swimming.20–22 Here,
we highlight how complications arise in a flowing system and
investigate how the effects of flow may be mitigated. Ultimately
we present a novel analysis scheme that can robustly extract the
microscopic shear-induced particle rearrangements, i.e. non-affine
dynamics, in a flowing system and check that the effects of the
affine flow do not dominate the measurement.

2.1 Quiescent systems

Differential dynamic microscopy17 allows characterisation of the
spatio-temporal density fluctuations within a sample by analysing
the fluctuating intensity due to particle motion from microscopy
movies. Specifically, one computes the differential intensity corre-
lation function (DICF), also known as the image structure function:

g(~q,τ) = 〈|Ĩ(~q, t + τ)− Ĩ(~q, t)|2〉t , (1)

with Ĩ(~q, t) the Fourier transform of the intensity, I(~r, t), at pixel
position, ~r, and time, t; τ is the delay time. Under appropriate
imaging conditions and assuming the intensity fluctuations are
proportional to density fluctuations, the DICF can be related to the
real part of the intermediate scattering function (ISF), f (~q,τ):21

g(~q,τ) = A(~q){1−ℜ [ f (~q,τ)]}+B(~q). (2)

The signal amplitude, A(~q), depends on sample properties (e.g., the
particle concentration and form factor) and the imaging system,

and B(~q) is the instrumental noise. The ISF is a function of the
particle displacement δ~r:

f (~q,τ) =
〈

ei~q·δ~r j
〉

t, j
, (3)

with brackets denoting averages over all particles j and time t,
and δ~r j =~r j(t+τ)−~r j(t) is the displacement of particle j between
t and t + τ. Isotropic motion allows radial averaging, so that
f (q,τ) = 〈 f (~q,τ)〉|~q|=q. Fitting the DICF with a parametrised ISF
allows extraction of key dynamical quantities. For non-interacting
Brownian particles, such as a dilute colloidal suspension, the free
diffusion coefficient (D0) can be measured via

fD = exp
(
−D0q2

τ

)
. (4)

For interacting Brownian particles, i.e. a concentrated colloidal
suspension, deviations from this simple exponential, due to particle
interactions, are usually captured through a stretched exponential,
fD = exp[−(q2Dτ)β ], with β < 1 the stretch exponent.23 For very
high concentrations, typical in colloidal glasses, the ISF may no
longer decay to zero, suggesting the existence of ‘fixed’ particles
that do not rearrange, often characterised by the non-ergodicity
parameter.23

2.2 Flowing systems

Under shear, the motion of particles has three components. In
addition to the quiescent microscopic dynamics, particles have
correlated motion due to the bulk flow and extra microscopic
dynamics due to local shear-induced rearrangements. For the
latter, we assume a diffusive form,24 isotropic for simplicity, such
that the particle motion is separated into microscopic diffusive-
like motion and bulk flow: δ~r = δ~rD + δ~rbulk. In contrast to the
non-affine motion, the displacement due to the applied flow will
be deterministic (although for complex fluids it may not be known
a priori) and direction dependent. The ISF can therefore be split
into two components,25

f (~q,τ) = fD(|q|,τ) · fbulk(~q,τ), (5)

where fbulk is anisotropic. This decoupling means that if the system
decorrelates due to affine motion, fbulk = 0, prior to decorrelation
due to diffusive motion, then fD cannot be characterised from
the total ISF (as f = fD · fbulk = 0 contains no information on
the microscopic diffusive dynamics). We must therefore focus
on ensuring fbulk ≈ 1. Additionally, as DDM utilises a temporal
average over t (Eq. 1), we restrict ourselves to rheometric protocols
that measure stationary properties: oscillatory shear (storage and
loss moduli) and steady shear (stress as a function of shear rate,
σ(γ̇)). We use the subscripts “flow” and “osc” to refer to steady
and oscillatory shear, respectively.

2.2.1 Steady shear and flow-DDM

In steady flows, particles are subject to diffusive dynamics and to
advection across the field of view with a fixed velocity,~v. To char-
acterise the non-affine motion of the particles, we must effectively
reduce the impact of the affine motion due to the advective flow.
This is obtained using flow-DDM,19 which we have introduced else-
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where and we present only a brief summary. Crucially, flow-DDM
performs DDM analysis in the co-moving frame by calculating the
flow-corrected DICF, ḡ,

ḡ(~q,τ) = 〈|Ĩ(~q, t + τ)e−i~q·~vτ − Ĩ(~q, t)|2〉t

= A(~q)
[
1− f̄ (~q,τ)

]
+B(~q).

(6)

Equation 6 requires knowledge of ~v, which we measure using ϕ-
DM,26 a Fourier-space method that can be efficiently combined
with DDM.19

To further minimise the impact of flow, we calculate ḡ⊥ by
averaging ḡ over a narrow range of ~q in a sector perpendicular to
the flow direction [±θ = 3°, Fig. 1(a)]. This reduces the impact of
any residual distribution in flow speeds, ±∆v, due to, e.g. the shear
rate across the optical section, as the component in this direction
is small. The microscopic dynamics can then be extracted from
fitting ḡ⊥, using Eqs. 2 and 4, assuming f̄⊥ is mainly dominated
by diffusive dynamics. To check that diffusive dynamics indeed
dominate the decorrelation of ḡ⊥, we compare the perpendicular
sector to an adjacent sector (that is slightly closer to the flow
direction), see ESI† Sec. S1. If the residual velocity distribution
dominates over diffusive dynamics, then the decorrelation time
will depend on sector.19 We find in all results presented below
that the microscopic dynamics dominate decorrelation in ḡ⊥ and
f̄⊥ is indeed mainly related to non-affine motion.

2.2.2 Oscillatory flow and echo-DDM

In contrast to steady shear, oscillatory flow varies strongly with
time as a sinusoidal strain is applied to the sample, γ(t)= γ0 sin(ωt),
with a strain amplitude (γ0) and angular frequency (ω = 2π×
frequency in Hz). At a depth h into the sample, the particle
displacement due to oscillatory flow along x̂ is then,

δ~rosc(τ) = hγ0x̂{sin[ω(t + τ)]− sin(ωt)}.* (7)

The changing speed and direction of flow inherent to oscillatory
shear makes the quantitative determination of ~v(t) challenging
(see Sec. 4 and thus the application of flow-DDM). Instead, we
show below that the periodic return of the sample to the origi-
nal bulk position can be exploited to extract local shear-induced
rearrangements.

If an image is taken at τ = 2π/ω , δ rosc = 0 and fosc≈ exp(i~q ·~0)≈
1. “Stroboscopic imaging” requires timing to the displacement
either with triggering, pausing of the flow,15 or a detailed char-
acterisation and synchronisation of imaging and deformation fre-
quencies.27 However, this allows only a limited number of images
per cycle and requires a detailed integration of imaging and shear
that restricts widespread adoption. If instead a continuous movie
is taken at a frame rate (t−1

f ) higher than the oscillation frequency
(ω/2π) we can guarantee images close to a cycle apart, ±t f , and
record many images per cycle for faster data acquisition. However,
if the oscillation period and imaging frequency are not precisely

* For didactic purposes we assume no slip [v(h=0) = 0] and a uniform velocity gradient.
However, the following results hold without these conditions, as may occur for
complex fluids.

−2 0 2

−2

0
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q
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1 ] g⊥
Osc
Flow

0 1 2
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0.0
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0 1 2
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0.0
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= 10

0 1 2
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0.0

0.5
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c

qhγ0
= 100

(a) (b)

(c) (d)

Fig. 1 Oscillatory flow of a dynamics-free sample. (a) Differential intensity
correlation function at delay time of one oscillation period, gosc(~q,τ = 1s),
dark (purple) to light (green) denotes low to high values. Data for colloids
in high-viscosity solvent (90 wt% glycerol-water, see Sec. 3 for details) at
γ0 = 0.5, h = 10µm. Lines, definition of perpendicular sector (g⊥) relative
to flow (‖) direction (arrow) with sector width, θ = 3°. (b) Parallel ISF
component, f ‖osc(τ), extracted from gosc, with delay time, τ, for moderate
displacement at 1 Hz with q = 2µm−1 → qhγ0θ = 0.5. Lines, numerical
solution of Eq. 8; symbols, data as in (a). (c) Perpendicular sector, f⊥osc(τ),
for same conditions as (b). (d) Perpendicular sector at high displacement,
qhγ0θ = 5. Lines: bold (black), numerical solution to Eq. 8; dashed,
Gaussian approximation (Eq. 9). Symbols from data at γ0 = 2, h = 10µm
and q = 5µm−1.

synchronised this will cause an offset in the images, which will
be greater as γ0h is increased. To maximise the depths and strain
amplitudes that can be probed (taking t f and ω as fixed) we must
minimise the impact of this offset, such that fflow ≈ 1.

As the offset from frame timing will be in the flow direction,
averaging g over a narrow ~q range in a sector perpendicular to
the flow, Fig. 1(a), will minimise the impact flow, just as with
flow-DDM. This is confirmed by numerically calculating

fosc(~q,τ) =
1
T

∫ T

0
cos [~q · x̂δ rosc(t,τ)]dt, (8)

in a sector parallel to the flow, Fig. 1(b), and perpendicular, (c), at
the same oscillation amplitude. At small displacement amplitudes
(γ0h), a sharply peaked, rapid oscillation in f ‖osc is reduced to a
weak modulation in f⊥osc at the oscillation frequency. Sampling at
a finite frequency, the peak (or “echo”) value where the sample
returns to its original bulk position ( fosc = 1) is recovered in the
perpendicular sector, but may be missed in the parallel sector
even at small oscillation amplitudes. The peaks in f⊥osc correspond
to minima in g⊥osc. Locating minima, rather than taking τ = ZT ,
allows for any shift in timing between applied shear and imaging
over the course of the experiment. The microscopic dynamics can
be measured in g⊥echo, constructed from these minima. We term
construction and analysis of g⊥echo, “echo-DDM”.

We now consider the limit of echo-DDM, where the impact of
the flow velocity can no longer be neglected. About τ ≈ ZT , we
can series expand Eq. 8 so that δ rflow(τ, t)≈ hγ0ω(τ−ZT )cos(ωt).
The phase shift in Fourier space is then different for each t, as
the instantaneous velocities vary sinusoidally with t. Away from
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τ −ZT = 0 there is then a summation of many different phase
shifts in Eq. 8 that will lead to rapid decorrelation. This results in
a sharp peak in f⊥osc, Fig. 1(d), with the width set by the oscillation
amplitude. We can quantitatively approximate this peak with a
Gaussian form:

f⊥osc(qθhγ0� 1,τ−ZT � 1)≈ exp

[
−1

2

(
qθγ0hτω

2.45

)2
]
. (9)

The width of the peak in fosc decreases with increasing oscilla-
tion amplitude. With an imaging rate t−1

f , this sets a practical limit
for echo-DDM, as the peak must be wide enough for identification
of the maximum value and recovery of fosc ≈ 1. For ±t f to be
within 95% of the maximum value, we require qθhγ0t f /T < 0.08,
based on the form of the Gaussian peak. Imaging with higher
T/t f would result in better stroboscopic timing, however these
variables are typically fixed by the imaging system (t f ) and the
rheology (T ). For a fixed t f /T , this requirement sets a maximum
qγ0h < 80 (using our set experimental values of θ = 3°, t f = 0.02s,
T = 1s). For a given lengthscale, e.g. set by the fluid structure,
this sets a limit for the displacement amplitude, γ0h. For example,
at q = 3.5µm−1 (see Sec. 4), this corresponds to an amplitude of
±23µm. In complex fluids this quantity may not be known, but
the peak width still gives information on the flow velocity and
whether the impact of flow can be neglected. This protocol there-
fore meets the aims of reducing the impact of oscillatory flow and
determining reliability.

3 Materials and Methods

3.1 Dilute colloidal suspensions

Looking at strain-dependent dynamics creates a particular issue.
With increasing deformation the microscopic dynamics are pre-
dicted to speed up, however the residual effects of affine deforma-
tion measured through both flow-DDM and echo-DDM will also
increase. In this respect, we have previously established the limits
of flow-DDM.19 In Sec. 4.1, we validate echo-DDM and investi-
gate its limits using a system whose dynamics do not depend on
deformation, i.e. a dilute colloidal suspension with a well-defined
diffusion coefficient.

In echo-DDM the dynamics are probed on time scales corre-
sponding to multiple oscillation cycles, τ > T . In an arrested,
highly concentrated system the quiescent dynamics are suppressed
by particle interactions and the rate of dynamics is intrinsically
coupled to the applied strain that sets our temporal resolution.
However, in a dilute system the diffusive Brownian motion could
cause decorrelation within a single cycle (Eq. 4, D0q2τ � 1). To
prevent this and allow echo-DDM to be tested on a dilute col-
loidal suspension a small diffusion coefficient is required. When
applying a 1 Hz oscillation frequency, a Brownian time of multiple
seconds is needed. To reach this criterion with a micron-sized
system, suspensions of 0.5% volume fraction were prepared us-
ing 2.4 µm19 poly-(vinyl pyrrolidone)–stabilised fluorescein-dyed
poly-(methyl methacrylate) particles in a 60 wt% glycerol-water
mixture (ηs = 12mPas→D = 0.014µm2/s). To screen electrostatic
interactions 0.1 M sodium chloride was added. To create a sys-
tem with negligible dynamics a 90 wt% glycerol-water mixture

(a) (c)

Flow direction

(b)

Fig. 2 Rheo-confocal imaging of an emulsion. (a) Cone-plate rheometric
flow, imaging through coverslip. (b) Region imaged for DDM processing
with 20× objective. (c) High-magnification image (63×), see scale bar
and equivalent area shown in (b)

(ηs = 200mPas) was also used.
Suspensions were sheared in a rheo-confocal imaging set-up18

that couples an inverted laser-scanning confocal microscope (Le-
ica SP8) to a stress-controlled rheometer (Anton-Paar MCR 301,
50 mm 1° cone-plate geometry), Fig. 2(a). Samples were imaged at
a depth of 10 µm through a glass coverslip. A 20x/0.75 objective
was used to image a 466µm×116µm region (1024 px × 256 px),
exciting the dye at 488 nm with emission recorded over 500 nm to
600 nm, Fig. 2(b). Movies were recorded at 50 frames per second
for 200 s of continuous oscillation at a given strain amplitude from
γ0 = 1% to 500%. The DICF was calculated using windowing to
reduce edge effects.28 Over many oscillation cycles a slow drift of
the sample in the radial direction (∼ perpendicular to the applied
flow) was observed due to thermal expansion or contraction of the
gap between cone and plate. The DICF was therefore calculated
with a correction for the mean velocity due to radial drift.†

3.2 Concentrated silicone oil emulsions
For probing the non-linear microscopic dynamics of complex fluid,
we used a highly concentrated silicone-oil emulsion. A base
emulsion was prepared from silicone oil (viscosity 50 cSt, Sigma
Aldrich) and a 0.1 M surfactant solution of sodium dodecyl sul-
phate (SDS). The polydisperse oil-in-water emulsion was fraction-
ated.29 This removes large droplets (creaming at < 30mM SDS)
that have been shown to influence microscopic rearrangements
under shear30 and sub-micron droplets (remaining suspended at
> 30mM SDS). The fractionated emulsion was transferred to an
index-matched 53 wt% glycerol-water mixture with 0.2 mM flu-
orescein sodium salt (Sigma Aldrich) as a fluorescent dye, such
that depletion-induced attraction is negligible (SDS concentra-
tion below critical micellar concentration31). The final volume
fraction, φ = 0.69, was reached from centrifugation at ∼ 800g.
Under centrifugal separation the system becomes jammed and
particles are elastically compressed into each other above ran-
dom close packing, φrcp. The resulting sample is shown under

† Radial drift correction using Eq. 6 and a time-independent~v measured over multiple
oscillation cycles leaves the applied oscillatory shear. As the radial drift is a weak
experimental artefact we do not refer explicitly to ḡ, as with steady shear.
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high-magnification (63x) in Fig. 2(c), consisting of ∼1 µm to 3 µm
droplets. For monodisperse spheres φrcp = 0.64 < φ = 0.69,32 al-
though as φrcp is increased by polydispersity, φ−φrcp is not precisely
known.33

For rheo-confocal imaging a roughened coverslip (roughness ≈
0.9µm) was used to prevent slip.34 In oscillatory shear, amplitudes
of 2.5% to 160% were applied at 1.0 Hz. To reduce the impact of
photobleaching, the sample was pre-sheared at γ̇ = 1.0s−1 for 60 s
before each applied γ0. Movies were recorded from the start of
the first oscillation for 180 cycles. For velocimetry, movies were
also recorded at 0.1 Hz over a smaller number of cycles (30) with
γ0 =2.5 % to 400 %. Under steady shear, movies were taken 20 s
from the start of shear with the frame rate adjusted to the shear
rate, from 10 to 85 fps, see Fig. 6 caption for details. At the highest
frame rate a reduced 1024×128 image was recorded (with θ = 5°
then used in defining ḡ⊥). The shear-induced dynamics were then
extracted from the movies by using a combination of echo-DDM
and flow-DDM using Eqs. 2 and 4.

Experimentally, the bulk response was measured with a rough-
ened 40 mm diameter 1° cone-plate geometry (TA Instruments
ARES-G2). For oscillatory rheology at 1.0 Hz the strain amplitude
was varied logarithmically at 10 pts./decade from 0.02% to 200%.
We report the average of an upsweep and downsweep of γ0. For
steady flow, we report the average of two separately loaded sam-
ples applying γ̇ =0.02 s−1 to 2000 s−1 at 10 pts./decade. At each
point the sample was equilibrated for 10 s and the response mea-
sured for 20 s. The reversibility of the response was ensured for
each sample up to 200 s−1 before each reported set of results.

4 Results

4.1 Echo-DDM of a dilute suspension

Here, we validate echo-DDM and investigate its limits related to
the residual effects of flow. In a system with negligible dynamics
subjected to oscillatory flow only the impact of flow will be mea-
sured, i.e. fosc. This is realised using a dilute colloidal suspension
in a highly viscous background solvent, 90 wt% glycerol-water, to
suppress diffusion (D≈ 10−3 µm2/s, so fD ≈ 1). Even at moderate
oscillatory amplitudes, γ0 = 50%, the extracted ISF in the direction
of shear ( f ‖osc) is strongly impacted by the flow, Fig. 1(b). About
each oscillation period, where the particles return to their original
position, f ‖osc is rapidly oscillating and sharply peaked: recovering
fosc = 1 would require precise stroboscopic timing. In contrast, the
ISF in the perpendicular sector is only weakly modulated at the
oscillation frequency, Fig. 1(c): recovering f⊥osc = 1 can be readily
achieved. A broad peak remains in the perpendicular sector even
when the impact of oscillatory flow is increased at a higher strain
amplitude, γ0 = 200% in Fig. 1(d). However, it should be stressed
that there are experimental limits to echo-DDM due to the rheo-
imaging geometry, as without careful measures over long times
(say τ & 100s) the sample may evaporate, drift due to thermal
expansion of the geometry, sediment or photobleach.

To test how microscopic dynamics can be recovered via echo-
DDM in the presence of oscillatory flow, we look at the same col-
loidal particles but in a less viscous background (60 wt% glycerol-
water), such that diffusion occurs over multiple cycles. To recover
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Fig. 3 Echo-DDM of a dilute colloidal suspension. (a) DICF in perpendic-
ular sector, g⊥(τ). at q = 3µm−1 and applied strain amplitude, γ0 = 50%.
Symbols: open (pink), recorded data; filled (black), g⊥echo, for echo-DDM
from minima fitted using Gaussian (line). (b) Corresponding DICF and
fitting at γ0 = 200%. (c) Reconstructed ISF, f⊥(τ) at q = 3µm−1, based
on fitting to minima values in DICF. For clarity ISF shifted vertically
with decreasing strain amplitude, γ0. Symbols: dark (purple) to light
(yellow) increasing γ0, from 1 to 500% [see (d) for γ0]; open, values of
f⊥echo; and small filled, full ISF, f⊥. Lines, diffusive ISF, fD. (d) DICF
parameters. Symbols: filled, signal strength with strain [A(q)] normalised
by average over γ0, mean and error taken from q = 2.0 µm−1 to 3.5 µm−1;
and open, equivalent for B(q). (e) Extracted diffusion coefficient with
increasing γ0, averaging over q = 2.0 µm−1 to 3.5 µm−1, compared to
D0 = 0.014µm2/s(dashed line)

f⊥osc = 1 we fit a Gaussian peak to the DICF minima at each cy-
cle delay time, ZT ±T/5, Fig. 3(a) at γ0 = 50% and (b) at 200%
(black lines). The reconstructed minima (black squares) then give
the echo-DICF, g⊥echo. Where no peak can be located the points
are taken directly from g(τ = ZT ), for example where the system
has diffusively decorrelated or the impact of flow is negligible.
Through fitting the extracted g⊥echo using A(q), B(q) and D(q) as
fitting parameters, the echo-ISF ( f⊥echo) and full ISF, including
the impact of flow ( f⊥), can be reconstructed, Fig. 3(c) (open
and small symbols, respectively). We find g⊥echo can be well fitted
assuming diffusive dynamics, i.e.

g⊥echo = A(1− fD)+B, (10)

as the system decorrelates over O(10) cycles, enabling the short-
time [B(q)] and long-time plateaus to be captured, Fig. 3. The
signal strength and noise show no systematic trend with the ap-
plied oscillatory flow, Fig. 3(d). However, due to the small number
of particles imaged in a dilute suspension we observe variation
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Fig. 4 Rheological characterisation of a concentrated silicone-oil emulsion.
(a) Oscillatory rheology, storage (G′, filled squares) and loss (G′′, open
circles) moduli vs strain amplitude, γ0 at 1.0 Hz. Defined strains: dotted
line, γLVE = 4%, end of linear elasticity at G′ < 0.9G′(γ0,min = 0.02%);
shaded region, onset of microscopic rearrangements, 4.0% < γ0 < 6.3%;
dashed line, yield strain (γy) where G′ = G′′. (b) Steady-state rheology,
stress vs shear rate, σ(γ̇). Symbols, data with open circles (above),
increasing γ̇; filled diamonds (below), decreasing γ̇ to evidence absence of
hysteresis.; solid line, three component model fit, see text; dashed line,
yield stress defined from crossover of oscillatory moduli

in A(q) from run to run. For a concentrated system this would
not occur, hence both A(q) and B(q) could be taken as a strain-
independent constants.

The form of the full ISF shows that in the perpendicular sector
the impact of flow is negligible until γ0 = 10%, with the data
following a diffusive form (line). Above this strain, the full ISF is
impacted by the flow with an oscillation at the applied frequency,
even in the perpendicular sector. However, the diffusion coefficient,
Dosc, measured from f⊥echo remains constant until γ0 = 100% and
comparable to the predicted D0, Fig. 3(e). Only at γ0 ≥ 200% does
Dosc increase as the peaks in f⊥ become too narrow to reliably
extract f⊥echo. This occurs at the limit based upon a 95% peak value
within T ± t f , with affine displacements γ0h = 20µm, see Sec. 2.2.2.
We have therefore shown the effects of oscillatory flow on DDM,
where the impact has been minimised by using a narrow sector
perpendicular to the flow, the importance of which is highlighted
by comparison with the sector in the flow direction (ESI† Sec. S2).
The microscopic diffusive dynamics can be recovered up to a limit
based upon q, the displacement of the flow and the ratio of frame
rate to oscillation frequency. Finally, the peak width in the full
DICF gives a qualitative interpretation of the impact of flow, to
establish whether the measurement of the microscopic dynamics
is reliable.

4.2 Concentrated silicone-oil emulsion
Having established echo-DDM to measure microscopic dynamics
in systems undergoing oscillatory shear, we now demonstrate
that a combination of echo-DDM and flow-DDM allows a relation
of microscopic dynamics to bulk rheology in a non-Newtonian
complex fluid in both oscillatory and steady flow using a highly-
concentrated silicone oil emulsion.

4.2.1 Oscillatory flow

With an applied oscillatory strain, at low γ0 the mechanical be-
haviour of the emulsion is solid-like, with the storage modulus
(G′ ≈ 300Pa) higher than the loss modulus (G′′), Fig. 4(a). The
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Fig. 5 Microscopic dynamics for concentrated silicone-oil emulsion under
oscillatory shear at 1 Hz with increasing strain amplitude. (a) DICF
shown for perpendicular sector, g⊥(τ) at q = 2µm−1. Lines: dark (indigo),
γ0 = 4%; medium (purple), 10%; and light (violet), 16%. Open symbols,
extracted DICF values, g⊥echo. (b) Reconstructed ISF. Points, data for
q = 2µm−1 for given γ0 (see legend). Lines: solid, diffusive fit with
varying proportion of mobile particles; and dotted, stretched exponential
shown for γ0 = 6.3% and 10%. Inset: extracted diffusivities, Dosc, with
γ0. Symbols: black triangles, diffusive fit; dark (blue) squares, varying
nmob; light (blue) circles, stretched exponential. Shaded regions where
decorrelation is not captured in f⊥echo, diffusivity is too slow (tmax setting
D > 10−4 µm2/s) or fast (T setting D < 1µm2/s; hatched region, transition
range between γ0 = 4.0% and 6.3%; dotted line, diffusivity proportional
to irreversible strain rate, Dosc = (γ0− γc)×2µm2/s. Average performed
over q =2.0 µm−1 to 2.3 µm−1, error from standard deviation

stress is in phase with the applied strain. With increasing strain
amplitude, after the initial plateau of the linear elastic regime
(γLVE = 3.6%, dotted line) the emulsion begins to yield and transi-
tion to a fluid-like response: G′ drops and G′′ rises. At γy = 36% the
moduli cross (dashed line), a point that is conventionally defined
as yielding.35 At higher strains, with G′ sharply dropping below
G′′, the stress response is liquid-like and in phase with the applied
shear rate. The wide range of strain in this transition, from the
moduli leaving the linear visco-elastic region to crossing-over, rep-
resents that macroscopic yielding is a gradual transition, which is
not clearly defined from the bulk response alone. We show below
that echo-DDM allows one to determine a far narrower range of
strain for the yielding transition from the microscopic dynamics.

On the microscopic level, using echo-DDM we probe a range of
strains from the linear visco-elastic region (γ0 = 2.5%) to above
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the bulk yield point, γ0 > 40%. The full DICF in the perpendicular
sector, g⊥, is shown for several strain amplitudes, all below the
macroscopic yield point, γ0 = 4%, 10% and 16%, Fig. 5(a) (lines).
The microscopic dynamics are again isolated by reconstructing
the minima of g⊥ at each oscillation cycle to yield g⊥echo (open
points). In contrast to a dilute colloidal suspension, the micro-
scopic dynamics depend strongly on the applied strain amplitude.
At γ0 = 4%, g⊥echo is near constant and the system remains cor-
related over the length of the experiment [dark (indigo)]. At
γ0 = 10%, g⊥echo increases from the first cycle and continues to
increase over multiple cycles as the system decorrelates and the
droplets rearrange [medium (purple)]. However, at this strain
amplitude no clear long–delay-time limit can be established. As
the strain amplitude increases further, γ0 = 16%, the dynamics
speed up and a fully decorrelated state is clearly reached [light
(violet)]. To quantitatively extract the dynamics we must therefore
combine information from all strain amplitudes. For slow dynam-
ics, γ0 ≤ 16%, the high-τ limit [and hence A(q)] can be established
from the largest strain amplitude, using an average of g⊥echo over
the final 10 delay times. Similarly, where decorrelation occurs
rapidly (γ0 > 40%) the short-τ behaviour of g⊥echo [B(q)] can be
fixed from the lowest strain, γ0 = 2.5%. This enables reconstruc-
tion of the echo-ISF, f⊥echo, Fig. 5(b) (points), see ESI† Sec. S3.
From the echo-ISF the rate of microscopic rearrangements can
then be extracted.

Assuming diffusive rearrangements, i.e. f⊥echo = fD, fitting g⊥echo
using Eq. 10 yields the diffusion coefficient of microscopic re-
arrangements under oscillatory flow, Dosc, as a function of γ0

[Fig. 5(b) (inset)]. We find the dynamics transition from being
slower than the duration of the experiment (Dosc < 10−4 µm2/s)
at γ0 ≤ 4% to faster than a single oscillation cycle at γ0 ≥ 100%
(Dosc > 1µm2/s) (solid lines). This is an increase of over 4 or-
ders of magnitude in Dosc over . 1.5 decades of strain amplitude,
Fig. 5(b)[inset] (black points). However, as the rate of rearrange-
ment first increases the decorrelation in f⊥echo is observed not to
be simple diffusion, Fig. 5(b) (purple). To capture the dynam-
ics at γ0 = 6.3 to 10%, we use either a generalised exponential,
f⊥echo = exp[−(Doscq2τ)β ] (dashed lines), with a stretch exponent,
β < 1, or we allow the proportion of mobile particles (nmob) to
be less than unity, f⊥echo = nmob exp(−Doscq2τ)+ (1− nmob) (solid
lines), with 1−nmob the non-ergodicity parameter. For β , nmob < 1,
the dynamics at these strains are heterogeneous, see ESI† Sec. S3.
A stretched exponential (β < 1) implies a range of relaxation rates,
with some of the dynamics on a much slower timescale. Similarly,
if the ISF, f⊥echo, no longer decays to 0 (nmob < 1) this suggests
there is a proportion of ‘fixed’ particles that do not rearrange. In
both cases, the physical interpretation is that just above the onset
of rearrangements a proportion of the droplets do not rearrange
over many oscillation cycles. We found that both approaches give
similar quantitative measurements for measurable Dosc within
experimental noise, Fig. 5(b) [inset].

Over the full range of strain amplitudes, the rate of rearrange-
ments, Dosc, shows a highly non-linear behaviour. A ‘jump’ is seen
between γ0 = 4% (� 10−4 µm2/s) and γ0 = 6.3% (∼ 10−2 µm2/s),
Fig. 5(b) [inset (hatched region)]. As the strain amplitude in-
creases further the increase in Dosc is approximately linear. The

rate of rearrangement is captured by a critical form, Dosc ∝ (γ0−γc),
with γc = 6%, Fig. 5(b) [inset]. This gives the rate of rearrange-
ment as proportional to the strain accumulated above a critical
microscopic yield strain, γc, which is the onset of irreversible mo-
tion. Below γc the system deforms elastically and particles return
to their original position after each cycle. Above γc, the particles do
not return to the same position as the strain is repeatedly reversed
in oscillatory flow.

Compared to the bulk rheology, the microscopic yield strain
[γc = 6%, Fig. 4(a) (shaded region)] for the onset of irreversible
deformation is lower than the bulk yield strain where the moduli
cross over (γy = 36%, dashed line). Instead, the onset of micro-
scopic rearrangements is more closely linked to the end of the
linear visco-elastic regime (γLVE = 4%), with the initial decrease
in the storage modulus and rise in the loss modulus. As the sys-
tem rapidly decorrelates, within one cycle at γ0 ≥ 40%, we can
no longer use echo-DDM to measure the microscopic dynamics
of the emulsion. However, the dynamics may continue to evolve
with larger deformations. To probe the yielded state under large
deformations, we can instead consider steady flow and compare
to the dynamics just above yielding at γ0 & γc.

4.2.2 Steady flow

For the bulk response under a constant applied shear rate, at low
shear rates, γ̇� 1s−1, the stress σ(γ̇) is only weakly dependent on
rate and is independent of whether the rate is increasing or decreas-
ing, Fig. 4(b) (points). This low-shear stress is taken to represent
the response to γ̇ → 0s−1, i.e. the solid-like response. Above a
critical shear rate γ̇c, σ begins to increase, transitioning to σ ∝ γ̇1/2

scaling at� 10s−1. The yield stress, σy, and γ̇c, can be extracted
using a phenomenological “three component” model (solid line),
σ(γ̇) = σy[1+(γ̇/γ̇c)

1/2]+ηsγ̇ .36 This gives σy = 31.0(4)Pa, compa-
rable to the oscillatory yield stress defined by moduli cross-over
(dot-dashed line). In steady flow measurements, all deformation
is plastic or irreversible, as shear is in a continuous direction after
pre-shear (such that any yield strain is exceeded), and we hence-
forth refer to the irreversible shear rate, γ̇ = γ̇irrev. In σ(γ̇irrev),
below the critical shear rate, γ̇c = 13.8(8)s−1, while the flow is
plastic the stress is dominated by the stored elastic compression
of the droplets, σ ≈ σy.36 It is in this regime that the shear rates
applied in oscillatory flow, γ̇ = ωγ0 (Sec. 4.2.1), and steady flow
(see below) all lie. At γ̇irrev > γ̇c, dissipation from plastic events
begins to dominate as the stress increases.

To extract the rate of microscopic dynamics in steady shear we
use flow-DDM, Sec. 2.2.1, imaging at h = 10µm over the low-rate
regime (γ̇irrev = 10−3 s−1 to 10 s−1). From the drift-corrected DICF
in the perpendicular sector, ḡ⊥, we extract f̄⊥ and from this the
diffusion coefficient under steady flow, Dflow, using Eq. 4. The
diffusivity is averaged over q = 2.0 µm−1 to 3.5 µm−1; no clear
q dependence is found, see ESI† Sec. S1. When normalised by
the irreversible shear rate, the rate of rearrangements per unit
strain, Dflow/γ̇irrev, is almost independent of the shear rate, Fig. 6
[symbols], with D/γ̇irrev = 2.0(1)µm2 up to γ̇ = 1s−1 (dashed line).‡

‡ Fitting a power law dependence for γ̇ ≤ 1s−1 gives Dflow ∝ γ̇0.9(1).
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Fig. 6 Comparison of steady shear and oscillatory flow. Diffusivity per
unit irreversible strain vs apparent irreversible shear rate, D(γ̇irrev)/γ̇irrev.
Symbols: filled, steady shear (for frame rate see inset legend); open,
oscillatory flow. Shaded (grey) regions: dark, max measurable diffusivity
for steady flow; light, oscillatory flow. Irreversible shear rate equal to
applied shear rate, γ̇, for steady flow and γ̇irrev = 4(γ− γc)/T for oscillatory
flow. Critical strain for irreversible flow, γc = 6%. Dotted lines: bold
(black) Dflow/γ̇irrev = 2.0(1)µm2; fine (blue), Dosc/γ̇irrev = 0.5(1)µm2

This range of γ̇irrev is below γ̇c = 14s−1, and the flow is ‘slow’. A
constant Dflow/γ̇irrev is therefore consistent with simulations and
experiments where the system has time to relax between each
rearrangement.16,24 During relaxation the elastic forces between
droplets are damped by viscous forces of the background solvent.
Above this point the extracted strain-dependent diffusivity appears
to decrease. However, these measurements are at the limit of
the frame rate (dark grey shading) and we can only investigate
low-rate flows, γ̇ . γ̇c, where there may not be a change in the
type of rearrangement dynamics.16

To compare steady flow with oscillatory yielding we consider
the relevant shear rate for oscillatory flow. In unidirectional steady
shear, as stated, the applied shear is all irreversbile. However,
for oscillatory flow the direction of flow continually reverses, so
that elastic strain is accumulated and returned at each direction
change. From Dosc(γ0), Fig. 5(b) (inset), we identified this strain
as γc. By then assuming that all strain below this is purely elastic
and all above is irreversible we can define γ̇irrev = 4(γ0− γc)/T ,
where we divide the total irreversible strain accumulated in an
oscillation cycle by the period.§ The rate of rearrangement with
irreversible strain in oscillatory shear then appears independent
of rate, Fig. 6 (large open symbols), although with only a limited
number of points. This is consistent with the system yielding
to a steadily flowing state (Dosc ∝ γ̇irrev), rather than undergoing
an evolution over larger strains.37 This gives a qualitative view
of the microscopic dynamics of yielding in oscillatory flow. We
note that Dosc ≈ Dflow/4 potentially suggests that shear-induced
rearrangements in oscillatory shear are quantitatively different
to those in continuous shear. However, these microscopic shear-
induced diffusivities are written in terms of the macroscopically
applied strain, which we have implicitly assumed to be uniform
across the height, h, of the sample. We show in the next section

§ Over a cycle, a strain of 2γ0 occurs in both directions. On reversal of the flow
direction there is a recovery of γc elastic strain from the previous flow direction and
accumulation of γc elastic strain in the new direction; this gives γirrev = 2(γ0− γc) in
each direction and hence γ̇irrev = 4(γ0− γc) for γ0 > γc or γ̇irrev = 0 for γ0 < γc.
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Fig. 7 Flow profile. (a) Comparison of steady shear (filled symbols)
and oscillatory flow [open: 0.1 Hz, light (orange); 1 Hz dark (blue)] at
h= 10µm with changing applied shear rate. Velocity normalised by velocity
for homogeneous flow (dashed line), v/hγ̇ (for oscillatory flow γ̇ = 2πγ0/T ).
(b) Velocity for steady flow with changing sample depth, h, normalisation
by velocity of upper cone at imaging radius (vupper) and height (hupper).
For applied γ̇ see legend in (c). Lines: dashed, homogeneous flow; dotted,
pure slip. (c) Measured diffusivity, Dflow, with local shear rate, γ̇loc, derived
from gradient in v(h). Dot-dashed line, Dflow = 0.8(1)µm2× γ̇loc; h = 50µm
not shown due to insufficient signal strength

that this approximation is not fulfilled.

4.2.3 Flow velocity profile

In complex fluids even when the stress is applied uniformly, the
system may flow inhomogeneously. This may be a property of the
sample, as in shear banding where the fluid can exist at, e.g. differ-
ent shear rates under the same stress.38 Alternatively, in pure slip
a layer of the background fluid may lubricate flow between the
droplets and the shearing surface.34 As part of the analysis pro-
cess, flow-DDM also gives information on the mesoscale dynamics,
i.e. the local flow velocity as a function of the height of the focal
plane within a sample, v(h), via the method of phase dynamic
microscopy.26 Up to this point we have discussed deformation
in terms of the average strain over the whole gap. However, for
γ̇ . 1.0s−1, the extracted velocity from flow-DDM, v, is ≈ 20×
the expected velocity for a uniform shear rate across the gap, hγ̇,
Fig. 7(a). This suggests that as the system yields the flow is lo-
calised near the lower plate. At higher γ̇, the normalised flow
speed decreases and approaches one, suggesting that the flow be-
comes less localised and the critical shear rate, γ̇c, may plausibly be
related to the onset of the formation of a homogeneously flowing
state, reminiscent of banding in thixotropic systems.39

As we use optically sectioned confocal microscopy, we can in-
vestigate the flow profile in steady shear by imaging at multiple
heights: 2, 5, 10, 20 and 50 µm for two applied shear rates γ̇ = 0.1
and 1.0 s−1, Fig. 7(b). The extracted velocity, v(h), normalised
by the velocity of the upper surface of the geometry vupper at
hupper = 200µm, shows the velocity profile. At γ̇ = 0.1s−1 [thin
(purple) diamonds], shear is highly localised near the lower sur-
face. The lowest height imaged, h = 2µm, is comparable to the
surface roughness. The speed of the upper geometry is reached
at h = 20µm, above this the sample is rotating as a solid. Between
these two points (≈ 10% of the gap) the sample is sheared and
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Fig. 8 Local velocity in oscillatory shear. (a) Parametric plot of extracted
velocity, v(t) vs applied strain, γ(t) at 0.1 Hz over 8 cycles for γ0 = 10%.
Time increases in a clockwise direction. Lines: dotted, homogeneous flow
velocity, v = γ̇h; dashed, localised, v� γ̇h based on value in Fig. 7(a);
solid, linking v(t) data. (b) γ0 = 16%. (c) γ0 = 25%. (d) γ0 = 40%

the local shear rate, γ̇loc can be estimated from the gradient in
v(h). For h ≤ 10µm, γ̇loc > γ̇. With a higher applied shear rate,
γ̇ = 1s−1, Fig. 7(b) [fat (green) diamonds], the sheared region ex-
tends further into the bulk of the sample, with v(h=50µm)< vcone.
Although shear is localised compared to homogeneous flow, cf. sym-
bols and dashed line [Fig. 7(b)], in contrast to pure slip (dotted
line) droplets are still sheared past one another within a finite
layer.

Within the sheared region, we found the extracted diffusivity
under steady flow is proportional to the local shear rate, Dflow ≈
γ̇loc×0.8µm2, Fig. 7(c). To compare this to the diffusivity at h =

10µm as a function of applied rate, Fig. 6 (filled symbols), we can
estimate γ̇loc(h = 10µm) ≈ 2γ̇. Neglecting the weak dependence
on applied shear rate, the diffusivity per unit strain [Fig. 6 (filled
symbols] can be estimated in terms of the local shear rate: Dflow ≈
1.0µm2× γ̇loc, far closer to the diffusivity extracted with changing
h, Fig. 7(c). Therefore, for steady flow at low γ̇ there is a single
well-defined microscopic diffusivity per unit local strain. However,
this is accompanied by complex and changing shear-localisation
dynamics.

With this insight we return to oscillatory flow. Using the ve-
locity measurement technique of flow-DDM on short subsections
of several oscillatory cycles, we estimate v(t) through out a cycle,
with the maximum velocity shown in Fig. 7(a). For 1.0 Hz [(dark
(blue) squares], at the lowest strains, γ0 ≤ 4% (and correspond-
ingly γ̇ = ωγ0 ≤ 0.25s−1)¶, the velocity is consistent with a near
homogeneous strain across the gap (γ̇ ≈ γ̇loc). As γ0 increases
≥ 6.3% (γ̇ ≥ 0.4s−1), v/hγ̇ increases to� 1 and the applied strain
is localised near the lower plate. However, the degree of local-
isation is consistently lower than for steady flow (cf. open and
filled symbols), even at γ0 ≥ 100%. A comparable sequence can be
seen from velocimetry on a limited number of cycles at a lower
frequency, 0.1 Hz[(orange) circles].

At 0.1 Hz we can also observe the strain-dependent shear local-

¶ As both elastic and plastic strain causes bulk motion, we return to the conventionally
defined oscillatory shear rate.

isation within a cycle, Fig. 8. To examine intracycle dynamics,
we parametrically plot the applied strain, γ(t), and the locally
measured velocity, v(t) (shaded symbols), for a range of strains
(10% ≤ γ0 ≤ 40%) above γc. For most of the cycle the system is
strongly shear-localised (v� hγ̇, black dashed lines). However,
immediately upon reversal (i.e. about v(t) = 0µms−1) the velocity
is lower for ≈ 6%(= γc) before rising to the banded state in an-
other ∼ 5%. The transient intracycle velocity is then consistent
with the intercycle measurements of peak velocity increasing with
γ0, Fig. 7(a) (open symbols): as strain is applied, the system first
deforms uniformly (. γc) before localising.

5 Discussion and Conclusions
Using a combination of echo-DDM and flow-DDM we have demon-
strated how differential dynamic microscopy can reveal the micro-
scopic shear-induced dynamics in flowing complex fluids. As an
example, we have investigated rearrangements of droplets in a
concentrated silicone oil emulsion to probe the yielding transition
on a microscopic level. Insight is gained into the complete yield-
ing process by a comparison of echo-DDM for oscillatory shear
and flow-DDM analysis of steady shear. Together, these reveal
both the diffusive dynamics and the local flow velocity, which
ultimately enables us to relate the changing local processes to the
bulk rheology.

From echo-DDM analysis on oscillatory shear, we measured a
critical shear strain for the onset of rearrangements, γc ≈ 6%. At
small strains, γ0 < γc the system deforms elastically. On the micro-
scopic level in echo-DDM, where the system is probed each time it
returns to the same bulk position, it is seen that droplets do not
rearrange even over 100 cycles, Fig. 5(a) [dark line]. The shear-
induced diffusivity Dosc is below the minimum measurable rate
set by the length of the experiment, Fig. 5(b) [inset]. This elastic
deformation is close to homogeneous, Fig. 7(a) (open symbols),
where the strain is near uniform across the gap (v ≈ γ̇h). In the
bulk rheology this corresponds to the linear viscoelastic regime,
Fig. 4, with a constant elastic modulus (G′) that is much larger
than the loss modulus (G′′): the emulsion behaves as a solid.

As the strain amplitude increases droplets must rearrange. For
6.3% ≤ γ0 ≤ 10%, the system decorrelates over multiple cycles,
Fig. 5(b). Just above γc, the dynamics are highly heterogeneous.
Fitting to a stretched exponential or including a proportion of
non-mobile particles (1− nmob) that limits full decorrelation of
the ISF, shows that there is a population of droplets where the
dynamics remain slow. This aligns with previous observations
of a super-mobile population under oscillatory shear measured
stroboscopically,15 although heterogeneity could also be plausi-
bly caused by the droplet polydispersity, Fig. 2(c). As the strain
amplitude is increased up to γ0 = 40%, the rate of rearrangements
increases, until the droplets have rearranged within one cycle,
Fig. 5(b) [inset]. The transition in the behaviour at γ0 = 6.3% is
accompanied by a non-linear ‘jump’ in the measured diffusivity,
or rate of rearrangements. The dependence of Dosc is instead
described by proportionality to the plastic strain, γ0− γc, which is
that above the strain that can be accommodated elastically. The
transition in Dosc and increase in the proportion of mobile particles
could be more precisely located through finer spacing of γ0. So, at
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small strain, deformation is rearrangement free (on experimental
timescales) and elastic until the critical strain is reached, after
which all further strain is plastic and drives rearrangement events.
In general this separation may not be as clear, highlighting the
importance of measurements at the microscopic level.40

The onset of irreversible, plastic deformation is accompanied
by shear localisation from γ0 = 6.3% to 16%, this is apparent
from the flow velocity, Fig. 7(a) (open symbols). During a low-
frequency cycle this transition from homogeneous elastic flow
to localised plastic flow can be seen within a single cycle upon
direction reversal at large amplitude (γ0 � γc), Fig. 8. With a
region of high shear rate near the lower plate the local shear
rate at h, γ̇loc, is no longer given by just the macroscopic strain.
The yielding process that begins with departing the linear elastic
regime at γLVE, Fig. 4(a), then corresponds to shear localisation
dynamics. Bulk yielding defined by moduli crossing over, γy = 36%,
is therefore after a localised flow profile is established within a
cycle.

Under steady flow, a velocity profile can be measured by
recording at varying heights and using the velocity extracted
from flow-DDM, Fig. 7(b). The local shear rate is given by
the velocity gradient in h. The diffusivity extracted from flow
DDM for 2µm≤ h≤ 20µm is proportional to the local shear rate,
Dflow = γ̇loc×0.8µm2. This behaviour is comparable to simulations
of soft particle systems where droplets have time to relax between
each rearrangement event at slow shear rates, γ̇ < γ̇c.24 At a given
lengthscale, this gives an irreversible strain for the system to re-
arrange, γR = γ̇locτD with τD = 1/q2Dflow the characteristic time
of diffusion in steady flow. Using q = 2µm−1 (lower q limit for
echo-DDM and flow-DDM), γR = (q2 × 0.8µm2)−1 = 30%, for a
lengthscale (L = 2π/q≈ 3µm) corresponding to the largest droplet
size, Fig. 2(c). At higher shear rates, above our measurement
range, γR is relevant to the onset of changes in σ(γ̇).24

In oscillatory flow the peak velocity at h = 10µm is below that
of steady shear at the same applied rate, cf. open and filled sym-
bols, Fig. 7(a). Therefore, the shear localisation dynamics are
different in oscillatory and steady flow. We cannot then relate
the macroscopic plastic strain, γ0− γc to a local shear rate in the
diffusivity relation for echo-DDM at 1 Hz, Dosc = 2µm2/s×(γ0−γc)

Fig. 5(b) [inset (line)]. If the relation from steady shear holds,
Dflow = 0.8µm2× γ̇loc, the local shear rate at h= 10µm in oscillatory
shear is less than the macroscopic irreversible strain, γloc = 0.6γ̇irrev.
Further work probing oscillatory flow at multiple heights would
test this prediction.

Typically, shear localisation, in the form of banding, is reported
for attractive emulsions where an excess of the surfactant (SDS)
causes depletion interactions.31,41 Diluting the emulsion in the
background solvent used shows separate droplets rather than clus-
ters, see ESI† Sec. S4. Attraction between droplets is therefore
minimal. Banding in systems with only soft elastic interactions
has become an area of recent exploration.42,43 These suggest how
the system is prepared or annealed is crucial as it can control a
transition from ductile to brittle yielding with increased thermal
annealing. However, our experimental system is prepared by me-
chanical pre-shearing. Understanding the impact of pre-sheared
states on the banding dynamics in athermal amorphous materials

is an active area of theoretical work44 and thus their future exper-
imental characterisation using a combination of echo-DDM and
flow-DDM appears of great interest.

In conclusion, we have shown how DDM can be adapted to
study rearrangements in flowing complex fluids. For oscillatory
shear, we have developed echo-DDM and validated it using a sam-
ple whose dynamics do not depend on the applied shear. Carefully
minimising and accounting for the impact of flow was found to
be critical. In this work, using a combination of echo-DDM and
flow-DDM on oscillatory shear and steady shear, respectively, we
show it allows a comprehensive microscopic picture of yielding
in non-Newtonian complex fluids. We demonstrate it using a con-
centrated silicone-oil emulsion imaged with confocal microscopy.
Using the extracted diffusivities (Dosc and Dflow) quantifying the
shear-induced microscopic rearrangement under oscillatory and
steady flow, and the measured flow velocities, yielding was re-
vealed as a two-step process. In the first step the particles begin
to arrange, with heterogeneous behaviour close to this threshold.
In the second step the applied shear becomes localised near the
lower plate, leading to macroscopic yielding based on the bulk
rheology. As both echo-DDM and flow-DDM are based on differ-
ential dynamic microscopy, there are several advantages to be
exploited. Firstly, it is independent of microscopy method: the
local flow velocity can be extracted without confocal sectioning19

and diffusivity has been measured with multiple methods.17,45,46

Secondly, particle resolution is not needed and with this comes
a large field of view that allows rapid data acquisition suitable
for a high-throughput technique20 and information on multiple
lengthscales.47 This suite of analysis methods and experimental
protocols can therefore illuminate the yielding process in mate-
rials that are not amenable to particle-level methods, such as
suspensions with complex interactions.48,49
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