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Abstract

Detail is a double edged sword in epidemiological modelling. The inclusion of mechanistic

detail in models of highly complex systems has the potential to increase realism, but it also

increases the number of modelling assumptions, which become harder to check as their

possible interactions multiply. In a major study of the Covid-19 epidemic in England, Knock

et al. (2020) fit an age structured SEIR model with added health service compartments to

data on deaths, hospitalization and test results from Covid-19 in seven English regions for

the period March to December 2020. The simplest version of the model has 684 states per

region. One main conclusion is that only full lockdowns brought the pathogen reproduction

number, R, below one, with R� 1 in all regions on the eve of March 2020 lockdown. We crit-

ically evaluate the Knock et al. epidemiological model, and the semi-causal conclusions

made using it, based on an independent reimplementation of the model designed to allow

relaxation of some of its strong assumptions. In particular, Knock et al. model the effect on

transmission of both non-pharmaceutical interventions and other effects, such as weather,

using a piecewise linear function, b(t), with 12 breakpoints at selected government

announcement or intervention dates. We replace this representation by a smoothing spline

with time varying smoothness, thereby allowing the form of b(t) to be substantially more

data driven, and we check that the corresponding smoothness assumption is not driving our

results. We also reset the mean incubation time and time from first symptoms to hospitalisa-

tion, used in the model, to values implied by the papers cited by Knock et al. as the source of

these quantities. We conclude that there is no sound basis for using the Knock et al. model

and their analysis to make counterfactual statements about the number of deaths that would

have occurred with different lockdown timings. However, if fits of this epidemiological model

structure are viewed as a reasonable basis for inference about the time course of incidence

and R, then without very strong modelling assumptions, the pathogen reproduction number

was probably below one, and incidence in substantial decline, some days before either of

the first two English national lockdowns. This result coincides with that obtained by more

direct attempts to reconstruct incidence. Of course it does not imply that lockdowns had no

effect, but it does suggest that other non-pharmaceutical interventions (NPIs) may have
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been much more effective than Knock et al. imply, and that full lockdowns were probably not

the cause of R dropping below one.

Introduction

In principle the inclusion of known mechanisms into models used for statistical inference

should improve inference by reducing the bias caused by model misspecification. But there is a

catch. What happens if the mechanisms are themselves described only in an approximate man-

ner by ad hoc sub-models? It is then possible for the assumptions built into the sub-models to

introduce substantial misspecification bias. The real world consequences of such bias could be

substantial if the model is used to determine major public policies. This paper examines and

re-implements the model of [1] to investigate the robustness of the inferences about Covid-19

lockdowns made using it. We show that key results are entirely dependent on strong but inci-

dental assumptions introduced in the model formulation, and that relaxation of those assump-

tions effectively reverses the conclusions.

This may matter in assessing the effectiveness of lockdowns and other stringent blanket

measures, which have consequences in addition to reducing viral spread. For example, they

modify the evolutionary landscape for the pathogen in ways that seem unlikely to offer a selec-

tive advantage for milder strains (see S1 Code). Among mitigation measures full stay-at-home

lockdowns are also particularly severe in terms of creating the economic shocks that may

cause economic hardship and exacerbate inequality in the long term. In England economic

hardship and inequality are associated with very substantial loss of life, as reviewed at length in

[2]. We can not predict the actual future life loss that lock down effects will cause, but figures

are available that at least indicate the scale of the risk. [2] includes a detailed assessment of the

health effects that followed on from the economic shock of 2008, which at minimum constitute

a health burden of some 9 million lost life years for the current UK population (based on the

increase in the deprivation related life expectancy gap, although Marmot argues for a rather

higher figure). For comparison, the extra life loss burden that a minimally mitigated Covid epi-

demic would have caused is estimated at around 3 million years [3]. The Bank of England

characterises the economic shock from UK lockdown and other Covid suppression measures

as the largest in 300 years, much larger than 2008. This suggests that lockdowns (and indeed

other measures) carry a risk of substantial life loss, and that it is therefore important neither to

overstate their clear benefits, nor neglect their downsides, if policy choices are to result in the

imposition of measures that broadly minimise risk of life loss in the round (it is obviously fac-

ile to reduce the question to a binary choice between lockdown and do nothing). Recognising

this, the UK government has made some attempt to assess possible negative health effects of

the measures imposed [3], but, although acknowledging that the long term economic impacts

on health are likely to be large, has not quantified them. Looking beyond the UK, to India,

UNICEF has identified particularly large effects of containment measures, in particular associ-

ated with the period of the Indian lockdown from March 24th 2020 [4]: they estimate about

150,000 extra childhood deaths and 60,000 extra still births for India. Given the age profile of

Covid deaths, this corresponds to a life year loss more than double that implied by the official

Indian Covid death toll to date, and obviously far above the life years saved by the lockdown

according to the Government of India/public health foundation of India estimates of 80,000

deaths avoided [5].
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[1] is the 41st report of the COVID-19 response team from Imperial College London,

whose reports have played a profound role in the shaping of UK government policy on Covid-

19. Report 9 in the series provided a major component of the official justification for the first

UK lockdown from March 24th 2020, and [1] was covered prominently in the UK Sunday
Times, for example. A major message from [1] is that the pathogen reproductive number R
was only reduced below one by full lockdowns in England in March and November (see Fig

1), with incidence apparently increasing until the eve of the March lockdown. We show that

this result does not survive relaxation of some strong modelling assumptions. [1] also present

‘counterfactual’ simulations from the calibrated model from which they draw conclusions

about the deaths that could have been avoided by an earlier first lockdown. We show that these

simulations can not be viewed as ‘counterfactuals’ in the usual inferential sense (see e.g. [6]).

The avoidable death figures are simple model extrapolations.

The model in [1] is an age-structured SEIR model with age-structured hospital compart-

ments. The population is divided into 5-year age classes with a final 80+ class and two unstruc-

tured classes for care home residents and staff. There are 36 states in each of 19 classes (see Fig

2). The model was specified as a set of ODEs and converted to a discrete time stochastic model

for fitting by the τ-leap method [7]. The model was fitted to daily data on hospital deaths, care

home deaths, hospital admissions, general ward occupancy, ICU occupancy, antibody test

results and PCR test results from surveys, supplied as supplementary material for [1]. [1] also

attempts to fit data on test results from the health system. However the model does not attempt

to deal with the non-random, opportunistic nature of the sampling in this data stream, despite

the continual changes in test capacity, criteria for testing, and operation of the contact tracing

system over the course of the data. We therefore believe that there is substantial danger of

these data simply undermining the analysis and they should not be included in data to be fitted

(we made this decision at the outset, having concluded that we would strongly advice against

Fig 1. Estimates of R by English region against day of year, as reported in [1]. The plot is based on data digitized

from Fig 1 of [1]. Uncertainties were not reported. The vertical lines mark model breakpoints at: 16th March

movement restrictions (work from home advice), 23rd March lockdown announcement, 25th March ‘Lockdown in

full effect’, May 11th initial easing, June 15th shops re-open, July 4th restaurants re-open, August 3rd eat-out-to-help-

out scheme, September 1st schools open, September 14th rule of 6, October 14th Tier system, November 5th

Lockdown. The kinks preceding November 5th are at a further model breakpoint. Prior to the first lockdown the

following interventions occurred for which no breakpoints have been imposed: public information campaign, March

4th; symptomatic self isolation 13th; school and hospitality closures 20th. Full lockdown (stay at home orders and

shutting down of much ‘non-essential’ activity) came into effect on 24th March, having been announced at 20:30 on

23rd March.

https://doi.org/10.1371/journal.pone.0257455.g001
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use of these data if acting as statistical consultants, and have never attempted to fit these data).

Data were available for seven English regions, which were fitted separately. The model has 26

free parameters.

[1] bases model inference (fitting) on particle filtering methods, with full fit to all regions

reported to take over 100 CPU days, despite using only 96 particles per fit. This computational

cost makes model checking difficult, particularly if a more usual number of particles is used

and the stronger model assumptions are relaxed: the latter involves allowing substantially

more free parameters plus hyper-parameters. Additionally [1] specifies massive overdispersion

in all but the test data streams. Decreasing this over-dispersion to levels consistent with the

data would likely increase particle depletion problems in filtering, leading to yet longer com-

puting times. Given these issues, we will work directly with the ODE based model. The neglect

of stochasticity in the state equations seems likely to be a minor issue here, relative to the

other approximations made in the model. In particular, the only non-linearity in the model

Fig 2. Schematic diagram of the model compartments (boxes) and flows (arrows) for a single model age class, following supplementary Fig 2 of [1], but with the

notational modifications used here, stages represented as two sequential compartments indicated with notched boxes, and the location of the extra stage P that we

insert to relax the generation time assumptions shown by the grey arrow and ‘P’. To obtain the rate of flow from one compartment to another, follow the path joining

them in the direction of the arrow, multiplying the source state variable by the rate parameters labelling the segments of the path. Rates with a superscript i vary with age

class. The relative rates in different classes was obtained from a separate analysis reported in [1], with only a common multiplier of the class specific rates left as a free

parameter. For example pi
H ¼ pmax

H c
i
H , where c

i
H is fixed, but pmax

H is free. Evaluation of original Knock et al. age-structured SEIR model and S1 Appendix A have full

definitions.

https://doi.org/10.1371/journal.pone.0257455.g002
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dynamics is in the transmission between infectious and susceptible sub-populations, which

contain large numbers except right at the epidemic start. Other model components are con-

trolled by simple linear flows and are also aggregated over multiple age classes for fitting.

Additionally the data sampling interval and total data duration are fairly short relative to the

model’s dynamic timescales. In any case, any results dependent on stochasticity would then

require a much stronger justification for the stochastic formulation than that it was produced

by discretisation of an underlying ODE model.

Furthermore, a generic strength and weakness of the particle filtering methods used in [1]

is that they necessarily filter the state variables as well as model parameters. This is advanta-

geous for state forecasting, but can be more problematic for inferential tasks. For an ill-speci-

fied dynamic model the filter is often forced to repeatedly select state transitions that are

improbable under the model, in order to be sufficiently close to the data. This can result in the

filtered states being in an extreme tail of the posterior predictive distribution of the model: that

is, of the distribution implied by simulating unfiltered states from the model given the poste-

rior distribution of parameters. Hence model adequacy needs to be checked by comparison of

the data with simulations from the posterior predictive distribution. [1] does not report such

checks, instead showing the filtered outputs. This is problematic when reality is then con-

trasted to ‘counterfactual’ simulations, necessarily from the posterior predictive distribution.

The simple ODE approach used here does not filter. Instead the states are determined entirely

by the model equations and the parameter values. This approach is unforgiving of model mis-

specification: adequacy is directly assessable from the model fit. It also reduces fit time by four

orders of magnitude.

Evaluation of original Knock et al. age-structured SEIR model

In this section we review the model of [1], before presenting some corrections and assumption

relaxations in section Modification of the Knock et al. model. Fig 2 is a schematic showing the

compartments in each 5-year age or care home class. The exposed, but pre-symptomatic, E
stage is modelled by two sequential compartments. It is assumed that no infections are caused

by this class. Symptomatic and asymptomatic stages IC and IA follow and cause infections,

both are single compartment. The duration of the IC stage is set from data on time from onset

of symptoms to hospital admission. The absence of pre-symptomatic infection will lead to lon-

ger generation times than are reported in the literature (e.g. [8, 9] p. 26), elevating the R esti-

mates required to achieve observed epidemic growth rates. Care home residents are not

hospitalised, and the Gi
D class shown actually only receives patients for the care home resident

class.

Model compartments for PCR and antibody test positivity are fed by the infection rate and

the progression rate from the E state, respectively. The infection rate is driven by an age-struc-

tured mixing model with contact matrix, C, based on the POLYMOD survey data for the UK

[10]. Most elements of C are multiplied by a function b(t) modelling the impact of NPIs, and

effects such as weather, on contact rates. In [1] b(t) is piecewise linear with 12 breakpoints

(and 12 free parameters) at policy change points. A major aim here is to relax the very strong

assumptions built in to such a restrictive model. Care home contact rates are separately

parameterized.

Hospitalized patients follow an ICU or general ward route. There are separate compart-

ments for those eventually recovering or dying on the general ward. The ICU route has a pre-

ICU compartment, from which patients enter compartments for those dying in ICU, entering

ICU but dying later on the general ward, or entering ICU and recovering on the general ward.

All compartments are duplicated for confirmed Covid (starred) and not yet confirmed (not
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starred), with a parameter, γU, controlling the rate of testing based transfer from unconfirmed

to confirmed. It is assumed that, from the start, 25% of patients arrive at hospital with con-

firmed Covid. This is improbable given initial testing capacity.

The model captures many features in impressive detail, but several aspects are not modelled:

1. Separation into locked down and key worker sub-populations at lockdown is not modelled,

despite the very different values of R that must apply in these sub-populations, if lockdown

is effective.

2. The assumed linearity of b(t) during lockdown precludes compensation for point 1 in

fitting.

3. Seasonality or other non-NPI temporal effects on transmission are not modelled explicitly

and are therefore confounded with the NPI effects, invalidating counterfactual manipula-

tions of the latter.

4. Region-to-region transmission at the epidemic start is not represented, compromising early

model fit and R estimates, as imported cases are modelled as local.

5. The assumption of no pre-symptomatic infectivity is inconsistent with empirical estimates

of the serial interval and generation time, reviewed in [9], for example.

6. Within hospital transmission is not modelled, although hospital-acquired infections have

been reported to account for a quarter of hospitalized cases at times in both waves [11],

reports which are corroborated by public NHS data [12], and there is good evidence that

the actual figure was higher [13]. This will compromise the hospital data fit.

7. No interaction between NPIs and age is allowed, which is unlikely given the risk-by-age

profiles.

8. Differential transmission rates between symptomatics and asymptomatics are not

modelled.

9. The reported differences in disease progression between men and women (see [14], for

example) are not modelled.

10. Changes in testing rates with capacity changes are not modelled.

Any biological model for a complex system necessarily makes many simplifying assump-

tions, often without substantial detriment to statistical inference within the range of the data

being modelled. However causal inference based on statistical methods puts much heavier

requirements on the model, since it is then required to extrapolate. Counterfactual statements

made using a model are of this causal character, and in the current case require the model to

behave essentially as a mechanistic representation of reality (since we know of no causal infer-

ence strategy that could alleviate the effects of mis-specification in this sort of model, and [1]

does not report any). Given this requirement for high mechanistic accuracy, any of the preced-

ing omissions may be problematic. We note also that although we do not seek to extrapolate in

this paper, most of these points will have some impact on our results. The hospital acquired

infection issue makes it particularly difficult to exactly match hospital data with the model, for

example.

The basic SEI(R) model

For concreteness we describe the core of the SEIR model, giving the equations for other

compartments in S1 Appendix A. Denoting the time derivative of a variable x by _x, then for
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the ith class,

_Si ¼ � liðtÞSi ð1Þ

_Ei;1 ¼ liðtÞSi � gEEi;1 ð2Þ

_Ei;2 ¼ gEEi;1 � gEEi;2 ð3Þ

_I iA ¼ ð1 � pcÞgEEi;2 � gAIiA þ Ið2 < i < 13Þ�t0 ;st
ðtÞ ð4Þ

_I iC ¼ pcgEEi;2 � gcIiC: ð5Þ

λi(t) is the force of infection defined below, and is the only interesting interaction between age

classes. pc is the proportion of the infected showing symptoms, and the γ parameters determine

between compartment flow rates, given in [1]. Ið�Þ is an indicator function and �t0 ;st
is an

Nðt0; s2
t Þ p.d.f. where t0 is a free parameter. This initialization differs slightly from [1] who put

10 individuals in the age 15–20 asymptomatics at t0. It is unclear why this is sensible, although

it may slightly delay the first wave model care home epidemic. Susceptibles, Si, are initialized

from regional demography supplied in the [1] supplementary material. Care home sizes are

supplied in the sircovid package by the carehomes_parameters() function [15].

The effective reproductive number of the pathogen, R, attempts to measure the number of

new infections that each infected individual produces on average. Since this number obviously

depends on the time course of the epidemic, there are various ways of defining it as an instan-

taneous quantity (see [9] for a review). For the current model structure the well established

definition of [16] is appropriate, and ensures that R = 1 forms a sharp boundary between long

term increase and decrease of the epidemic (that is, once R falls below 1, long term decline is

guaranteed until it exceeds 1 again). [1] uses this approach for each region, and we follow this.

See S1 Appendix A.3 for details. Our fitting also requires the derivatives of the model states

with respect to the parameters: the sensitivities. These follow directly from the model specifica-

tion. For example if Si
yj

is the differential of Si w.r.t. θj,

_Si
yj
¼ �

@li

@yj
Si � liS

i
yj
:

Generically each term in the model equation involving a state gets replaced by that state’s

derivative w.r.t the parameter of interest, and to this are added any terms relating to direct

dependence on the parameter of interest. For example, if γC was a free parameter then

_I iCgC ¼ pcgEEi;2
gC
� gcIiCgC � IiC. (Note that the same principle applies to the coefficients of the

model component function b(t) introduced below. b(t) is represented using a basis expansion,

and while the basis functions are time varying, the corresponding coefficients are not).

Force of infection

Writing I for the vector of infectious individuals in each class, then the model for the force of

infection in each class is λ = MI where

M ¼

bðtÞC bðtÞcchw �bðtÞC�;16

bðtÞcchw mchw mchw

�bðtÞC16;� mchw mchr

0

B
B
B
@

1

C
C
C
A
:
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�, mchw and mchw are free parameters. b(t) is a parameterized function of time controlling the

variation of infection causing contact over time. C is a symmetric matrix of contact rates and

cchw a vector (derived from it for carehome workers). Ij is the sum of asymptomatic (IjA) and

symptomatic infectious (IjC) in class j. S1 Appendix A.1 has the force of infection expressed so

that sensitivities follow by inspection.

C is based on the POLYMOD survey [10] accessed through the socialmixr R package

[17]. This had 1011 UK participants, who each recorded their contacts on one day. There were

7 participants in the 75–80 age group and none over 80. S1 Appendix A.2 gives details.

The likelihood

The likelihood is constructed from binomial components for the PCR and antibody test data

(see S1 Appendix B.2), and negative binomial components for the hospital death, care home

death, hospital admissions, general ward occupancy and ICU occupancy data. For the negative

binomial components [1] sets κ = μ2/(σ2 − μ) equal to 2 in all cases without justification

offered. This is a huge level of overdispersion, heavily down-weighting the data relative to the

priors. For example, hospital deaths show no evidence of over-dispersion relative to Poisson.

But for an expected death rate of 200 the choice of κ raises the standard deviation from 14, for

a Poisson deviate, to 140. Although such a choice will reduce particle depletion problems in fil-

tering, it is not easy to justify as a statistical model. Still more problematic is the assumption

that observed daily bed occupancy is given by a negative binomial deviate with expectation

given by the model, with these deviates independent between days. We are at a loss to under-

stand what mechanism could give rise to such a model. A reasonable model might have daily

arrivals and discharges as independent random variables with means given by the model, but

occupancy obviously integrates these arrival and discharge rates over days, leading to strong

dependence between days. The stochastic version of the model might model some of this

dependence, but leaves even less justification for additional independent negative binomial

variability.

Modification of the Knock et al. model

In this section we present modifications of the Knock et al. model in order to deal with some

of the deficiencies identified above. They consist of a number of corrections and minor modifi-

cations and, more fundamentally, relaxing some of the stronger modelling assumptions made

in [1].

Corrections and minor modifications

Rates. The γ parameters controlling rates of progression between model compartments

are either taken from the literature, or are estimated from CHESS (COVID-19 Hospitalisations

in England Surveillance System) data that are not available for checking. There are at least two

identifiable problems with the durations used in [1]. Firstly they set the mean duration of the E
stage to 4.6 days citing [18]. That paper actually reports a mean of 5.5 days, with 4.6 days lying

just above the lower 95% confidence limit for the median. Here we used the mean of 5.8 days

from the meta-analysis of [19], which includes [18] as one of the studies. In fact the most statis-

tically careful analysis we found [20] gives an estimated mean incubation period of 9.1 days

(n = 1211), and generation time of 5–6 days. Secondly [1] assumes that the mean time from

symptoms to hospitalization is 4 days based on [21], but that paper gives 4 days as the median.

An exponential distribution is used for time from symptoms to hospitalization (a model which

the figures reported in [21] do seem to support), so the median is log2 of the mean. Based on
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the male and female medians of 5 and 4 days reported in [21], we therefore used a mean time

to hospitalization of 6.5 days. In fact [21] is based on early data (up until April 19th 2020) from

the ISARIC study. From the much larger ISARIC sample available by October 2020, the mean

time from first symptoms to hospitalization is reported as 7.7 days [22], but we will neverthe-

less follow [1] in using Docherty et al., simply correcting the incorrect use of the median in

place of the mean.

Another issue is the assumption that 25% of patients were arriving at hospital with a test

confirming their status from the start of the epidemic. In fact, as documented in [23], there

was no testing of patients outside of hospitals between 12 March 2020 and 28th April 2020,

with very little capacity before this time and close to full testing capacity not reached until mid

June 2020 (see Fig 1 of [23]). To crudely capture this we allowed p� to increase linearly from 0

to 0.25 between days 120 and 170, staying at 0.25 thereafter.

Priors. The priors used were not exactly those in [1], rather priors were set to be vague on

a working parameter scale. Any limits on parameter were set by the prior intervals reported in

[1]. Parameters were optimized on a working scale—either untransformed, log transformed or

scaled logit transformed. Gaussian priors on the working scale were also applied, but except

for t0 these were vague, and their only purpose was to allow ready detection of any parameters

that were not identifiable. See S1 Appendix B.1 for details.

The negative binomial likelihood

While our basic conclusions are in fact unchanged if we use the likelihood given in [1] for the

hospital occupancy data, we can see no valid justification for this part of the model formula-

tion, and therefore replaced it with a likelihood based on the daily change in occupancy. In

particular we model the ward (or ICU) arrivals and departures as independent overdispersed

Poisson deviates, the difference in which gives the daily change in occupancy. A difficulty with

applying this model directly is that hospital arrivals and discharges tend to have weekly pat-

tern. This pattern shows up strongly in the ACFs and PACFs of occupancy first differences for

some regions, especially east of England, but is absent from the model. We therefore base the

likelihood on weekly changes. Since the changes in occupancy carry no information on the

level of occupancy, we also add the sum of daily bed occupancies as a final datum to be fitted,

treating this as close to Poisson (by setting κ to a very high constant). See S1 Appendix B.2 for

details.

For the total daily hospital admissions data and the care home deaths data we retain the

negative binomial model, with the respective κ parameters free to be estimated. Some overdis-

persion here is a pragmatic way to deal with likely model mismatches in these components.

For example, in addition to the mismatches expected from not modelling hospital acquired

infections (e.g. [13]), it seems likely that there was some on the ground variability in the sever-

ity of disease sufficient for hospitalization, and in rates of discharge, particularly early in the

epidemic and when loads were high. For the hospital deaths we set κ = 2000, which gives a like-

lihood very close to Poisson. There is no legitimate reason to expect overdispersion here, if the

model is at all fit for purpose.

Relaxing the model assumptions

The largest change made here is to relax the strong assumption that b(t)—which represents the

effects of NPIs, the weather and other factors—is a piecewise linear function with slope changes

only at 12 selected NPI change points. Here, b(t) is instead represented semi-parametrically by

a logistic transform (see S1 Appendix B.1) of an adaptive smoothing spline, with 80 coefficients

and 5 smoothing parameters, in which the degree of smoothness is allowed to vary smoothly
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with t. See section 5.3.5 of [24] for details. The point of this change is to use a representation of

b(t) that allows for a much wider range of possible function shapes and a well founded data

driven means for choosing between them, thereby greatly increasing the role of the data in the

estimation of b(t), while reducing the role of prior assumptions. Of course it does nothing to

remove the confounding of NPIs with weather and other effects, such as spontaneous beha-

vioural changes, but it does avoid the implication that the weather and people’s behaviour

change their course only in response to government announcements.

We also relaxed the assumption that all the γ parameters are fixed and known. Firstly, the

reference used to justify the choice of γG, controlling the rate of progression of fatal disease in

care homes [25], appears to contain no information on this parameter, so we allowed it to be a

free parameter, which slightly reduces care home death mistiming. Secondly, the model also

has difficulty matching the general ward and ICU occupancy data, tending to over-estimate

both in the Midlands and two northern regions. To reduce this problem it seemed reasonable

to relax the assumption that all the rate parameters controlling progression through the health

system were fixed and known. In particular we relaxed the parameters for which there seemed

likely to be most scope for some latitude in clinical judgement, perhaps driven by local circum-

stances, to make substantial differences. So we relaxed the assumptions on the rates related to

movement of recovering patients through the system. That is gICWr
, gWr

and gHr
were treated as

free parameters.

A final rigidity in the model structure is that there is assumed to be no infection before indi-

viduals could at least potentially become symptomatic on leaving the E stage. At the same time

the mean duration of the symptomatic infective stage is set equal to the mean time from symp-

tom onset to hospitalisation. This makes for a very long generation time, much longer than the

5–7 days reported in the literature for the serial interval or generation time (see p. 26 of [9] for

a review). One consequence of this is that R estimates need to be higher than those usually

quoted to meet the initial rate of increase in the disease ([1] actually limits R in a way that

avoids estimates being too high). To relax this link between clinical disease progression rates

and the generation interval, we introduced an extra compartment between Ic and hospitaliza-

tion (see the grey ‘P’ on Fig 2).

_P ¼ gCIc � gphP

where P replaces Ic in all flows into hospital compartments and the R state. By appropriate

choice of γph, this state allows us to shorten the E state and Ic state, hence reducing the genera-

tion time, without changing the literature based mean time from infection to hospitalisation.

Specifically, we shortened the E state to have an average of 3 days to infectivity, and the IC state

to be 4 days, yielding a generation time of 6.2 days (accounting for the duration of IA, which

was unchanged). The P state then has an average duration of 5.3 days so that the total time

from infection to hospitalization still matches the literature based 5.8 + 6.5 days discussed

previously.

Estimation and inference

The sensitivities of the model states with respect to the parameters were obtained for all 703

model state variables, yielding a system of 65379 sensitivity ODEs. Model and sensitivities

were solved by fourth order Runge-Kutta integration (see e.g. [26]) with a one day time step

(having confirmed that halving the step made negligible difference to the evaluated likelihood).

Hence the log likelihood and its derivatives w.r.t. the free parameters could be readily evalu-

ated. Due to sparsity and cache efficiency, the sensitivity system less than doubles computing

time for the model. Computing the likelihood, likelihood derivatives and R series for the full
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model takes less than a second on a single core of a low specification laptop—it is considerably

faster for the original [1] model with fewer free parameters.

Given the log likelihood and derivatives, the penalized log likelihood and derivatives are also

readily evaluated, so the posterior modes of the free parameters can be obtained by quasi-New-

ton optimization. The smoothness of b(t) was controlled by a Gaussian smoothing prior, with 5

free smoothing parameters, which were estimated by the approximate marginal likelihood opti-

mization method of [27]. Uncertainty was assessed using the large sample approximate poste-

rior covariance matrix of the parameters, and the delta method. See S1 Appendix B.3.

Results

Fig 3 shows the fit of the model with the various assumption relaxations applied. The model

fits imperfectly, with some systematic errors in the fit to hospital occupancy and arrival data as

expected: without modelling the hospital acquired infections (which are included in the data

and, as discussed previously, often made up a substantial portion of the total hospitalized), as

well as possible time variability in on-the-ground admission criteria, it is unlikely that better

fits could be achieved. Given the ambitious nature of the fitting task, it seems reasonable to

view the results as useful in the statistician George Box’s ‘all models are wrong, but some are

useful’ sense.

Figs 4 and 5 show the corresponding inferences about incidence and R. All regions have

peak incidence prior to the first lockdown with total incidence for England in decline well

before lockdown. The regional incidence picture is more mixed at the second lockdown,

although the total is again falling well before lockdown. Furthermore all regions have R≲ 1 by

either lockdown, with average R< 1 some days before either lockdown. Several regions rela-

tively distant from London have the inferred R initially increasing. This is probably an artefact

caused by the independent initialisation of each region, which cannot capture the initial

region-to-region spread. As in [1] the plotted uncertainties would be over-optimistic, even if

we assumed a correct model structure, as they do not account for the uncertainty in most of

the rate constants.

Although it could also be partially weather driven, the systematic pattern of R continuing to

fall after the first lockdown is introduced, and then increasing again well before the lockdown

restrictions were lifted, is to be expected. R is the average number of new infections per existing
infection. Immediately after lockdown most infections are in the locked down population, with a

low R, and only a minority are in the key worker population with higher R (assuming lockdown

has an effect), so the average is low. After the locked down population runs out of household

members to infect, the proportion of infections among key workers must increase, due to their

higher R. So the average R must increase too as most of the infections to average over are now in

the higher R population. Although the simple arithmetic mechanism underlying this effect

results from having locked down and key worker strata, we only observe aggregate data, reflect-

ing the change in R, but not what causes it. The model also deals only with populations aggre-

gated over the two strata, but can still capture the change in R apparent in aggregate data, if b(t)
is flexible enough. However, the piecewise linear b(t) of [1] is not flexible enough in this regard.

Fig 6 shows how the lockdown 1 timing result depends on the various changes made to the

[1] model, when they are applied sequentially. All panels use the corrected likelihood. The top

left panel then uses the incubation period and time to hospitalization used by [1], and the

same serial interval, but has the piecewise linear b(t) replaced by an adaptive spline. Rather

than R being much larger than 1 on the eve of lockdown it is around 1. The top right panel

modifies the model further, by reducing the serial interval to about 6.2, making it closer to the

literature range—if anything this moves the R = 1 point slightly later. The bottom left panel is
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Fig 3. Model fits (posterior 95% credible bands for expectations) to the death, hospital and testing data, with one region per row, against day of year.

In the leftmost ‘deaths’ column, grey points are hospital deaths and red points care home deaths. In the second ‘occupancy’ column, grey is general ward

occupancy and red ICU occupancy. For the deaths and hospital admissions 95% prediction interval limits are shown as dashed curves. Prediction intervals

are not reported for occupancy, where the likelihood is based on differencing, or for the test data, where highly variable sample sizes gives intervals showing

no statistical problems, but which are visually unpleasant. Note some substantial discrepancies in the two northern regions.

https://doi.org/10.1371/journal.pone.0257455.g003
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then the model with the incubation period and time to hospitalization set to the literature val-

ues consistent with the papers cited in [1] as the sources of these durations. This panel is sim-

ply an enlargement of the relevant portion of Fig 5. Finally the lower right panel shows the

results when the smoothing penalty is downweighted by a factor of 4. This checks whether

the timing results could be driven by smoothness assumptions, by substantially reducing the

amount of smoothing relative to the estimated level. The results do not appear to be a smooth-

ing driven artefact.

If fits of this model to data are viewed as a reasonable basis for inference about the timing of

incidence and R levels, then the implication is that R< 1 probably occurred some time before

both the first two English lockdowns, and that incidence was already in sharp decline before

either. The contrary result of [1] relies on a very restrictive model for b(t) and on setting incu-

bation and hospitalization times to values less than those given in the papers cited as their

source.

Discussion

Three major claims are made in [1]. Whereas the first is of a descriptive nature, namely that

the two English Covid-19 lockdowns in March and November 2020 coincide with a major

Fig 4. Inferred incidence, for all regions (coloured) and whole of England (black). Notional 95% credible bands are shown. These do not reflect all the uncertainty

in rate parameters and assume a correct model structure: hence they provide a lower bound on uncertainty. Vertical dashed lines show some policy changes. The 4

preceding lockdown I are information campaign, symptomatic self isolation, work from home advice, school and hospitality closures. ‘Eat out to help out’ was a

scheme encouraging people to use the restaurants and pubs. The re-opening of schools after the first lockdown is also shown. Subsequent policies introduce increasing

levels of restriction.

https://doi.org/10.1371/journal.pone.0257455.g004
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drop in the reproduction rate of Covid-19 in the UK, the other two are of a so-called “counter-

factual” nature: (i) if England had not gone into lockdown, then there would have not been an

associated drop in reproduction rate and (ii) if England had gone into lockdown earlier (or

later) then a lot of lives would have been saved (or lost, respectively).

The key challenge is that a counterfactual cannot be directly observed and must be approxi-

mated with reference to a comparison group. There are various accepted approaches to

determining an appropriate comparison group for counterfactual analysis, ideally using a

prospective design. When this is not available, such as in this case, a retrospective approach is

necessary. But there are stringent conditions on a retrospective design in order for it to have

counterfactual validity, such as avoiding confounding, contamination, and impact heterogene-

ity (see [6] for an introductory treatment). Confounding occurs where certain factors, for

example the various social distancing measures in place prior to the lockdowns, are correlated

with exposure to the intervention and, independent of exposure, are causally related to the out-

come of interest. Confounding factors are therefore alternate explanations for an observed, but

possibly spurious, relationship between intervention and the outcome; in this case between

lockdown and the reduction in R. The pre-lockdown social distancing measures are also an

example of contamination, which may also invalidate any counter-factual statements. Contam-

ination occurs when members of treatment group (i.e. the actual population) and/or compari-

son groups (i.e. the counterfactual populations) have access to another intervention which also

Fig 5. Inferred R for all regions (colour) and the infectives-weighted average for the whole of England (black). Notional 95% credible bands are shown. These do

not reflect all the uncertainty in rate parameters and assume a correct model structure: hence they provide a lower bound on uncertainty. Vertical dashed lines as Fig 4.

https://doi.org/10.1371/journal.pone.0257455.g005
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affects the outcome of interest. Additionally, there is the issue of impact heterogeneity: the

impact of the lockdown will be very different in the locked down subset of the population,

compared to key workers, who are less restricted. Finally, [1] explicitly states that b(t) is model-

ling both the effects of NPIs and the weather. There is therefore no basis on which the model

can identify the effect of lockdown independent of the weather, enabling the counterfactual

manipulation of one while appropriately controlling the other. But such control is absolutely

fundamental to causal reasoning with counterfactuals. We conclude that the model and infer-

ence of [1] do not form a reasonable basis for making counterfactual statements about how

many people would have died if lockdown had occurred at a different time. Even without the

preceding general problems, there is the specific problem that lockdown can not have caused

R to drop below one if this event preceded lockdown, but the counterfactual statements rely on

such a causal link.

Fig 6. Comparison of inference around Lockdown I (March 24th 2020, day 84), for different modifications of the model of [1]. a. Piecewise linear b(t) replaced by

adaptive spline. b. As a, but adjusting serial interval down towards literature range. c. The fully corrected model. As b, but with incubation period and time to

hospitalisation set to values given in the papers cited by [1] for these quantities. d. As c, but with the smoothing parameters reduced by a factor of 4 from their

estimated values as a sensitivity check. The numeric intervals given are nominal 95% CIs for the day on which R< 1 first occurred.

https://doi.org/10.1371/journal.pone.0257455.g006
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While this paper was in review, more direct evidence emerged which aligns with our con-

clusions, but not with [1]. [28] used a direct statistical deconvolution approach to infer inci-

dence from hospital death data and three published infection to death distributions. The study

gives similar results for incidence and R to the whole England results obtained here, and its

conclusions are strengthened by the close match between the disease duration distributions

used and more recent disease duration data reported by [22] based on more than 24,000 fatal

cases. The results here and in [28] also correspond to the reconstructions of the number of

newly symptomatic infections each day, reported by [29]. This latter study is based on symp-

tom onset dates reported by antibody positive subjects in a properly randomized surveillance

sample. Lagged by the average latent period this gives a direct estimate of incidence, and the

results are shown in the left panel of Fig 7. The incidence reconstruction can also be used to

infer R by the method given in section 5.1 of [28], and this reconstruction is also shown.

Finally, the UK Office for National Statistics has published incidence estimates based on its

properly randomized Covid-19 surveillance survey. The survey was not yet active at the time

of the first peak, but its results (see Fig 7, right) are in agreement with [28, 29] and the results

reported here for the second half of 2020. Hence our model fitting based results are consistent

with the relatively direct estimates based on the three least biased data sources available.

After we had received referees reports for this paper (on 18th June 2021), and revised

accordingly, [1] was published in Science Translational Medicine [31], having been submitted

there on 14th April 2021. The published paper does not refer to our work, but made some

changes relative to [1], of which the most significant appear to be: (i) introducing a pre-hospi-

tal non-infectious stage, equivalent to our ‘P’ stage, to shorten the generation time/serial inter-

val to be consistent with the literature and (ii) estimating two common negative binomial κ
parameters, thereby avoiding simply setting them to 2 (the number of particles used in filtering

has been increased accordingly). An extra ‘community deaths outside hospital’ data stream

(comparatively small numbers) was also fitted. The main results of [31] are essentially the

same as [1], although the new equivalent of Fig 1 now shows London as having R< 1 before

the first lockdown, and R for other regions is slightly reduced on the eve of lockdown. Signifi-

cantly, given our results, the b(t) model was unchanged and the time to hospitalization, incu-

bation time and hospital occupancy likelihoods remain uncorrected in [31]. No modification

appears to have been made that might enhance the statistical validity of the ‘counterfactuals’

Fig 7. a. continuous curves are onset of new symptoms per day from the REACT-2 study digitized from [29], and lagged by the average 5.8 days from infection to first

symptoms to give incidence: blue is raw and black is spline smoothed. Jan 1 2020 is day 1 and vertical dashed red lines show the lockdown dates. The grey band shows a

95% credible interval for R reconstructed from the smoothed incidence curve by the method given in section 5.1 of [28]. The horizontal dashed line shows R = 1.

Incidence peaks about 9 days prior to lockdown 1 (day 84, March 24th 2020), and R< 1 four days before lockdown 1. b. [30] published estimated incidence with 95%

confidence limits. Red lines show the dates of the second and third UK lockdowns—the survey was not running at the first.

https://doi.org/10.1371/journal.pone.0257455.g007
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presented. Hence we do not believe that the changes made between [1] and [31] address the

most substantial issues raised here or undermine our results.

Our results on the timing of R< 1 and peak incidence obviously do not imply that the lock-

downs had no effect. Indeed the dip and recovery seen in R after the first lockdown is only
expected if lockdown reduces spread in the locked down population, relative to those not

locked down. The point is rather that the additional effect, on top of the cumulative effects of

other behavioural changes pre-dating lockdown, seems likely to have been greatly overstated.

In our view, determining definitively what caused R to drop below one is not possible. In

March especially, policy and behavioural changes were so rapid (public information campaign,

March 4th; symptomatic self isolation 13th; work from home advice, 16th; school and hospital-

ity closures 20th; full lockdown, 24th) that there would simply have been insufficient time to

determine what had worked, even if adequate data had been gathered to answer this question.

In fact, there was no surveillance testing at that point. However, it seems difficult to make the

case that full lockdowns were necessary to bring R below one, whether region-by-region or in

aggregate for England. In densely populated London, by far the UK’s largest city where the

control problem should be most difficult, the evidence is particularly strong that R< 1 well

before full lockdown. While not impossible, it would be quite counter-intuitive if stronger

measures were in fact necessary for control in the less densely populated regions.
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