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CLINICAL RESEARCH ARTICLE OPEN

Language function following preterm birth: prediction using
machine learning
Evdoxia Valavani1✉, Manuel Blesa2, Paola Galdi2, Gemma Sullivan2, Bethan Dean2, Hilary Cruickshank3, Magdalena Sitko-Rudnicka4,
Mark E. Bastin5, Richard F. M. Chin6,7, Donald J. MacIntyre8, Sue Fletcher-Watson9, James P. Boardman2,5 and Athanasios Tsanas1

© Crown 2021

BACKGROUND: Preterm birth can lead to impaired language development. This study aimed to predict language outcomes at
2 years corrected gestational age (CGA) for children born preterm.
METHODS: We analysed data from 89 preterm neonates (median GA 29 weeks) who underwent diffusion MRI (dMRI) at term-
equivalent age and language assessment at 2 years CGA using the Bayley-III. Feature selection and a random forests classifier were
used to differentiate typical versus delayed (Bayley-III language composite score <85) language development.
RESULTS: The model achieved balanced accuracy: 91%, sensitivity: 86%, and specificity: 96%. The probability of language delay at 2
years CGA is increased with: increasing values of peak width of skeletonized fractional anisotropy (PSFA), radial diffusivity (PSRD),
and axial diffusivity (PSAD) derived from dMRI; among twins; and after an incomplete course of, or no exposure to, antenatal
corticosteroids. Female sex and breastfeeding during the neonatal period reduced the risk of language delay.
CONCLUSIONS: The combination of perinatal clinical information and MRI features leads to accurate prediction of preterm infants
who are likely to develop language deficits in early childhood. This model could potentially enable stratification of preterm children
at risk of language dysfunction who may benefit from targeted early interventions.

Pediatric Research; https://doi.org/10.1038/s41390-021-01779-x

IMPACT:

● A combination of clinical perinatal factors and neonatal DTI measures of white matter microstructure leads to accurate
prediction of language outcome at 2 years corrected gestational age following preterm birth.

● A model that comprises clinical and MRI features that has potential to be scalable across centres. It offers a basis for enhancing
the power and generalizability of diagnostic and prognostic studies of neurodevelopmental disorders associated with language
impairment.

● Early identification of infants who are at risk of language delay, facilitating targeted early interventions and support services,
which could improve the quality of life for children born preterm.

INTRODUCTION
An estimated 15 million infants are born preterm (before 37 weeks
of gestation) annually worldwide.1 Although advances in neonatal
intensive care have led to a decrease in infant mortality rates over
time, survivors of preterm birth are at increased risk of long-term
neurocognitive impairment.2 Preterm birth may lead to language
deficits that persist into school age3 and are associated with a
range of negative sequelae across the life span, including poor
academic performance, poor social, emotional and behavioural
functioning, and unemployment.4,5 Neurodevelopmental trajec-
tories are amenable to early intervention, which presents a
window of opportunity to have a profound, long-lasting effect on
later life.6 Therefore, there is a clear unmet clinical need for early

identification of those children who are at high risk of poor
language development.
Multiple outcome studies have demonstrated associations

between prenatal, neonatal, and postnatal factors and early
neurodevelopmental outcomes for preterm infants.7,8 In
addition, preterm birth is closely associated with generalized
microstructural changes in cerebral white matter, inferred from
diffusion tensor imaging (DTI) (fractional anisotropy [FA], mean,
axial, and radial diffusivities [MD, AD, RD]), and alterations in
these have been linked to language delay.9 However, it is rare for
research to combine data from different modalities for the
development of prediction models for neurodevelopmental
outcomes.
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Nonetheless, a few studies have built and validated tools for
prediction of the composite outcome of neurodevelopmental
impairment at 2 years corrected gestational age (CGA) for children
born preterm. Tyson et al.10 investigated the clinical and
demographic characteristics of a cohort of infants born before
26 weeks of gestation and found that the risk of adverse
neurodevelopmental outcome at 18–22 months CGA was
predicted using gestational age (GA), sex, exposure to antenatal
corticosteroids, multiple birth, and birth weight. Ambalavanan
et al.11 reported that neurodevelopmental impairment at
18–22 months CGA was predicted by combining sex, respiratory
illness severity, and enlarged ventricular size, periventricular
leukomalacia, or porencephalic cyst on cranial ultrasound. Vesoulis
et al.12 developed a tool for prediction of risk of neurodevelop-
mental impairment at 18–24 months CGA. This tool comprised of
ventilator days, mode of delivery, exposure to antenatal corticos-
teroids, retinopathy of prematurity (ROP) requiring surgery, and
magnetic resonance imaging (MRI) findings (cerebellar haemor-
rhage size, cerebellar haemorrhage laterality, intraventricular
haemorrhage grade, white matter injury).
However, deficits in different developmental domains require

different therapies and targeted support strategies. Thus, tools for
stratification of children at high risk of impairment in specific
developmental domains would be valuable. Recently, Vassar
et al.13 evaluated the predictive value of structural MRI and DTI
variables for classification of very preterm infants at high versus
low risk of language delay. They developed a model for prediction
of language delay that included DTI variables in three brain
regions and achieved 89% sensitivity and 86% specificity. Ball
et al.14 revealed that distinct patterns of brain structure and
microstructure following preterm birth are linked to specific
clinical and environmental factors, and these patterns correlate
with neurodevelopmental outcome at 18–24 months CGA.
Language outcome was associated with specific neuroanatomic
variation, which was linked to age at scan, need for continuous
positive airway pressure, birth weight, GA at birth, parenteral
nutrition, surfactant administration, and mechanical ventilation.
In view of this evidence, we hypothesized that a combination of

clinical, environmental, and imaging factors derived from DTI that
capture generalized white matter dysmaturation would potentially
enhance the prediction of language outcomes at 2 years CGA
following preterm birth. Blesa et al.15 demonstrated that
histogram-based variables derived from DTI (peak width of
skeletonized [PS] FA, MD, RD, and AD), which represent general-
ized water content and myelination, can be used as biomarkers of
microstructural white matter alterations associated with preterm
birth. The advantage of the histogram-based framework is that it
is fully automated, captures generalized white matter dysmatura-
tion that characterizes the encephalopathy of prematurity, is
computationally inexpensive compared with tract-specific
approaches, and has high inter-scanner reproducibility.16

A prediction tool that combines clinical data and imaging
biomarkers for early language development is lacking, and yet
timely identification of future language deficits has clinical and
research implications, because it could stratify infants at most
need for early interventions. Here we aimed to develop a machine
learning model that accurately predicts typical versus delayed
language outcomes at 2 years CGA using a parsimonious feature
set derived from clinical, demographic, and histogram-based
variables computed from neonatal brain DTI.

METHODS
Participants
Participants were selected from a longitudinal cohort of preterm neonates
born at ≤33 weeks of gestation at the Royal Infirmary of Edinburgh
between February 2012 and August 2015.17 Selection from the larger
cohort was based on availability of diffusion MRI (dMRI) scans at term-

equivalent age and 2-year language outcome. Ethical approval was
obtained from the UK National Research Ethics Service (NRES), South East
Scotland Research Ethics Committee (NRES numbers 11/55/0061 and 13/
SS/0143). Written informed consent from parents/carers was obtained for
all neonates. Exclusion criteria for the study were congenital anomalies,
chromosomal abnormalities, congenital infections or major overt parench-
ymal lesions (cystic periventricular leukomalacia, haemorrhagic parench-
ymal infarction), and post-haemorrhagic ventricular dilatation. Infants with
a contraindication to MRI at 3 Tesla were also excluded.

Clinical and demographic features
The selection of clinical and demographic features included in models was
guided by extant literature linking biological and environmental exposures
with neurocognitive development in preterm infants. Specifically, we
studied the contribution towards prediction of language outcome at 2
years CGA of the following features: sex,10,11,18,19 GA (based on first
trimester ultrasound),10,18 birth weight,10,20 maternal age,21 primiparity,19

twin status,10,20 maternal body mass index (BMI),22 medical history of
maternal depression,23 administration of a complete course of antenatal
corticosteroids for foetal lung maturation (defined as two doses 24 h
apart), any antenatal corticosteroid exposure,10,12,19,20 administration of
antenatal magnesium sulfate (MgSO4) for neuroprotection,24 mode of
delivery (spontaneous vaginal delivery or caesarean section),19 total days
requiring intubation while in the neonatal intensive care unit (NICU),11,12,18

bronchopulmonary dysplasia (defined as oxygen requirement at ≥36 weeks
CGA),19,20,25,26 late-onset sepsis (defined as blood stream infection
occurring ≥72 h postnatally with (a) bacterial pathogen isolated from
blood culture or (b) blood culture growing coagulase-negative staphylo-
coccus, along with one or more signs of generalized infection, and
treatment with intravenous antibiotics for ≥5 days),20 necrotizing
enterocolitis (NEC, defined as stages two or three according to the
modified Bell’s staging for NEC27),25,28 ROP treated with laser therapy,12,29

and type of infant feeding at discharge from the neonatal unit
(dichotomized as exclusive maternal breast milk versus exclusive formula
or mixed feeding).30 All infants had placental histopathology performed
and histological chorioamnionitis was defined using an established
system.31 Maternal level of education (dichotomized as secondary school
or below versus college, university or postgraduate studies)18–20 and
socioeconomic status of the family, operationalized as Scottish Index of
Multiple Deprivation 2016 (SIMD16) quintile, where 1 indicates the most
deprived and 5 indicates the least deprived (https://www2.gov.scot/Topics/
Statistics/SIMD), were also included.

Image acquisition
Infants underwent a brain MRI scan at term-equivalent age (38–42 weeks
GA) without sedation, during natural sleep after having been fed and
swaddled. Vital signs were monitored throughout the scan, and hearing
protection was provided for all neonates (MiniMuffs, Natus). All scans were
supervised by a physician and a paediatric nurse trained in neonatal
resuscitation.
A Siemens MAGNETOM Verio 3-Tesla MRI clinical scanner (Siemens

Healthcare Gmbh, Erlangen, Germany) and 12-channel phased-array head
coil were used to acquire dMRI data consisting of 11 T2-weighted and 64
diffusion-weighted (b= 750 s/mm2) single-shot, spin-echo, echo planar
imaging volumes collected in the axial plane with 2mm isotropic voxels
(repetition time= 7300ms, echo time= 06ms, field of view= 256mm,
acquired matrix= 128 × 128, 50 contiguous interleaved slices with 2 mm
thickness, acquisition time=9min 29 s).

Image analysis
For each participant, the dMRI was denoised using a Marchenko-Pastur-
PCA-based algorithm;32,33 eddy current and head movement were
corrected using outlier replacement34–36 and bias field inhomogeneity
correction was performed by calculating the bias field of the mean b0
volume and applying the correction to all the volumes.37 For each
participant, PSFA, PSMD, PSRD, and PSAD were calculated using age-
optimized methods described by Blesa et al.15 In summary, image data
were registered to the Edinburgh Neonatal Atlas50

15 using a tensor
registration,38 and their DTI maps were calculated. Subsequently, the
individual FA maps were projected into the template skeleton and
multiplied by the atlas custom mask. Finally, the peak width of the
histogram values within the skeletonized maps was calculated as the
difference between the 95th and 5th percentiles.16 Figure 1 illustrates a
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summary of the process described. The code necessary to calculate
histogram-based metrics can be found at https://git.ecdf.ed.ac.uk/jbrl/
psmd. Figure 2 shows scatterplots of the values of the PS DTI metrics for all
participants.

Language outcome
All children took part in a developmental assessment with a trained
clinician at 2 years CGA (median age 24.13, range 23.1–28.27 months)
using the Bayley Scales of Infant and Toddler Development, Third Edition
(Bayley-III).39 We used the Bayley-III language composite score (mean 100,
SD 15) as the response variable. The clinical cut-off of 85 (i.e. 1 SD below
the mean) was used in order to assign children into two distinct groups,
thus creating a binary outcome; children whose score was <85 were

considered to have moderate-to-severe language impairment, while scores
≥85 were considered as normal range or higher.40

Data analysis
We compared three feature selection algorithms: (a) Boruta,41 (b) ReliefF
expRank,42,43 and (c) random forests (RF) variable importance.44 The Boruta
algorithm is a wrapper feature selection technique built around the RF
learner, which uses Z score as the importance measure. In other words, it
measures the importance of each feature by dividing the average loss of
accuracy among all trees by the standard deviation of the accuracy loss.
The basic idea of the ReliefF algorithm is to assign a ‘weight’ value to all
features of a data set based on how well their values distinguish between
the instances that are near to each other and thus how useful they are in
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E. Valavani et al.

3

Pediatric Research

https://git.ecdf.ed.ac.uk/jbrl/psmd
https://git.ecdf.ed.ac.uk/jbrl/psmd


predicting the response variable. The important features will have a large
weight, while the redundant ones will have a low weight. In RF variable
importance, variable importance is computed using the mean decrease in
Gini index. We can measure the total amount that the Gini index is
decreased by splits over a given feature, averaged over all trees. A large
value indicates an important feature. In all cases, we obtain a feature
ranking indicating in descending order their contribution towards
prediction of the response variable. The final feature subset for each
feature selection algorithm was selected using leave-one-out cross-
validation (LOOCV), using only the training data set in each cross-
validation iteration and following the process described by Tsanas et al.45

Subsequently, the selected feature subset was presented into a RF
classifier46 in order to predict the binarized language composite score.
Partial dependence plots (PDP)47 were constructed in order to assess how
the selected features influence the prediction of the RF classifier. To
quantify the strength of the association between the selected features, we
used correlation analysis (the Spearman’s rank correlation coefficient was
used to quantify the strength of the association between two continuous
features, the phi coefficient was used to quantify the association between
two binary features, and the point-biserial correlation coefficient was used
to quantify the strength of the association between a continuous and a
binary feature).
The data set is imbalanced since only 16% of the study group had a

language composite score <85. To overcome the class imbalance problem
in the data set, we explored different data balancing techniques: under-
sampling of the majority class, over-sampling of the minority class, and the
synthetic minority over-sampling technique (SMOTE),48 which has been
previously used in similar unbalanced applications in the healthcare
domain.49–53 We found that SMOTE yields the best results, which are
presented in the paper. SMOTE is a training data enrichment method,
where the minority class is over-sampled by creating new synthetic
samples, to create a balanced data set. For each minority class sample, the
k minority class nearest neighbours were identified (using the suggestion
of Chawla et al. with k= 5) and synthetic samples were introduced along
the line segments joining any or all of the k minority class nearest
neighbours. Model validation was implemented using LOOCV. LOOCV
involves holding out a single observation to be used as the test set, while
the learner is trained using the remaining n− 1 observations (n is the total
number of observations). The process is repeated n times and each time a
different observation from the original data set is used as the test set. The
result is n estimates of the test error. The final test error rate is the average
of these n test error estimates. The accuracy of the model was assessed by
constructing a confusion matrix, which is a contingency table of the
observed and predicted classes. Missing data for both numeric and
categorical features were imputed using multiple imputation by chained
equations (five imputed data sets were created in each LOOCV
iteration),54,55 based only on the information in the training set
independently within each LOOCV iteration. Data analysis was conducted
in R. The R packages used were: tidyverse, dplyr, caret, randomForest,
CORElearn, Boruta, mice, ggplot2, DMwR, Hmisc, RGraphics, grid, gridExtra,
and gridGraphics.

RESULTS
Two-year language data and dMRI of the brain at term-equivalent
age were available from 89 children; demographic and clinical
characteristics of the study population are presented in Table 1. At
median age 24.13 months (range 23.24–28.27 months), 14
children had a language composite score <85. The percentage
of missing values in the data set was 0.2% (1 participant had
missing histological chorioamnionitis data, 2 participants had
missing SIMD16, and 3 participants had missing maternal BMI).
Figure 3 illustrates the out-of-sample performance of the RF

classifier (trained on approximately 150 samples in each LOOCV
iteration) as a function of the number of features selected by the
different feature selection algorithms. These data show that feeding
a subset of eight features selected by the Boruta feature selection
algorithm (a wrapper feature selection technique built around the
RF learner) to the RF classifier gives the highest balanced accuracy.
The selected feature subset comprises PSFA, twin status (yes or no),
antenatal steroid exposure (complete or incomplete course), any
antenatal steroid exposure (yes or no), sex (male or female), PSRD,
PSAD, and feeding at discharge from the NICU (exclusive maternal

breast milk versus exclusive formula or mixed feeding). Figure 4
shows the importance attributed to each feature by each of the
feature selection algorithms. PSFA, twin status, the course of
antenatal steroid exposure, any antenatal steroid exposure, sex,
PSRD, PSAD, and feeding are the jointly most predictive features
towards the prediction of the binarized language outcome. PDP
were used to visualize relationships between the selected features
and the response based on our model (see Fig. 5). The PDP provide
insight into the effect of changing one or two features in terms of
the model’s prediction (binary response variable, indicating whether
language composite score <85). Regarding the histogram-based
variables derived from DTI, the PDP show that the predicted
language impairment probability rises with increasing PSFA, PSRD,
and PSAD values. PSRD and PSAD are presented in the same plot
because they are highly correlated as illustrated in the correlogram
and correlation matrix in Fig. 6. Language composite score <85 at 2
years CGA is more likely following a twin pregnancy, an incomplete
course of antenatal corticosteroids, or no exposure to antenatal
steroids. Female sex and feeding with exclusive breast milk reduce
the risk of future language delay.
Table 2 shows the confusion matrix of the out-of-sample

classification performance of the RF classifier when mapping the
selected feature subset (i.e., PSFA, twin status, antenatal corticos-
teroid exposure, sex, PSRD, PSAD, and feeding at discharge) to the
binarized language composite score. Our model achieved
balanced accuracy: 91%, sensitivity: 86%, and specificity: 96%.
Finally, we repeated the analysis to investigate separately the

performance of the model when presented only with either
clinical or MRI features, which led to reduced model performance.
As shown in Table 3, the model that comprises clinical and MRI
features outperformed the models using only clinical or MRI
features. The combination of clinical and DTI features enhances
the prediction of language outcomes at 2 years CGA following
preterm birth.

DISCUSSION
We developed a parsimonious machine learning model that
accurately identifies preterm infants who are likely to develop
language impairment in early childhood. We explored the
predictive value of 24 clinical, demographic, and brain imaging
features and found that a robust subset of eight clinical
characteristics and imaging biomarkers best predicts a language
composite score <85 on the Bayley-III: PSFA, PSRD, PSAD, twin
status, administration of an incomplete course of antenatal
corticosteroids, no exposure to antenatal corticosteroids, male
sex, and feeding with exclusive formula milk or mixed formula and
breast milk. Overall, we demonstrated out-of-sample balanced
accuracy: 91%, sensitivity: 86%, and specificity: 96%.
Feature selection was conducted by comparing three feature

selection algorithms: (a) Boruta, (b) ReliefF expRank, and (c) RF
variable importance. Feature selection methods can be broadly
considered into three main categories: filter, wrapper, embedded
methods. Filter feature selection methods work independently of a
statistical learner relying on the general statistical properties of the
data and thus select a feature subset that is not tuned or optimized
towards a specific learning algorithm. Wrapper methods take a
particular machine learning method into account in order to
choose the best subset of the original features. They evaluate
multiple models by training and testing in the feature space, thus
optimizing the performance of the particular machine learning
model that was used. Embedded methods choose the subset of
features while the learning model is being constructed. This means
that the resulting feature subset is specific to a particular learning
algorithm. We chose to use a feature selection algorithm from each
main category for our exploration; ReliefF is a filter technique,
Boruta is wrapper feature selection technique built around the RF
learner, and RF variable importance is an embedded method. The
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use of ReliefF and the RF importance have been extensively used
and validated in many different applications and we have
previously conducted a thorough empirical study56 where they
performed very competitively against many established feature
selection approaches. In general, we would expect a wrapper or
embedded method to perform better for a particular choice of a
classifier, although it might not necessarily generalize very well
with the choice of different classifiers.
Our findings suggest that PSFA, PSRD, and PSAD, which detect

generalized white matter microstructural alterations in preterm
infants compared to infants born at term,15 are predictive of
impaired language development at 2 years CGA. We explored the
predictive value of whole-brain measures of PS DTI metrics,
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Table 1. Demographic and clinical characteristics of the study group.

Characteristics Neonates with
language
composite score
≥85
(N= 75)

Neonates with
language
composite score
<85 (N= 14)

Antenatal

Any antenatal
corticosteroids

73 (97) 11 (79)

Complete course of
antenatal corticosteroids

56 (75) 5 (36)

Antenatal MgSO4 for foetal
neuroprotection

39 (52) 8 (57)

Perinatal

Sex

Male 35 (47) 12 (86)

Female 40 (53) 2 (14)

GA (weeks) 28.84 ± 3.28
(23.28 to 33)

28.92 ± 2.18
(23.28 to 30.28)

Birth weight (g) 1137 ± 376.5 (568
to 1500)

1040 ± 410 (550
to 1635)

Birth weight z score −0.16 ± 1.15
(−2.63 to −1.17)

0.12 ± 1.30
(−1.77 to −1.0)

Apgar score at 5 min 7.5 ± 2 (2 to 9) 8 ± 2 (5 to 9)

Mode of delivery

SVD 32 (43) 3 (21)

Caesarean section 43 (57) 11 (79)

Primiparity 52 (69) 8 (57)

Twin status 21 (28) 10 (71)

Postnatal

BPD 25 (33) 6 (43)

LOS 20 (27) 5 (36)

NEC 5 (7) 0 (0)

ROP 5 (7) 1 (7)

Histologic chorioamnionitis 22 (31) 3 (21)

Days of intubation 1 ± 5.5 (0 to 39) 1 ± 1 (0 to 43)

Feeding at discharge

Exclusive maternal
breast milk

36 (48) 2 (14)

Exclusive formula or
mixed feeding

39 (52) 12 (86)

Demographics

Maternal race

Asian 5 (6) 0 (0)

White 66 (88) 13 (93)

White/Asian 1 (1) 0 (0)

White/Black 2 (2) 1 (7)

Other mixed 1 (1) 0 (0)

Maternal age (years) 32 ± 8 (17 to 43) 33 ± 8 (23 to 40)

Maternal BMI 24.7 ± 4.5
(17.4 to 43)

24.1 ± 6.9 (18
to 30.9)

Medical history of maternal
depression

10 (13) 1 (7)

Maternal education

Secondary school
or below

33 (44) 6 (43)

College/University/
postgraduate studies

42 (56) 8 (57)

Table 1 continued

Characteristics Neonates with
language
composite score
≥85
(N= 75)

Neonates with
language
composite score
<85 (N= 14)

SIMD16 quintile

1 8 (11) 3 (21)

2 23 (32) 3 (21)

3 11 (15) 3 (21)

4 12 (16) 3 (21)

5 19 (26) 2 (14)

Histogram-based variables derived from DTI

PSFA 0.3 ± 0.03 (0.25
to 0.37)

0.32 ± 0.02 (0.24
to 0.36)

PSMD 0.63 ± 0.07 (0.49
to 0.79)

0.61 ± 0.07 (0.49
to 0.79)

PSRD 0.71 ± 0.09 (0.54
to 0.88)

0.72 ± 0.07 (0.6
to 0.83)

PSAD 0.77 ± 0.08 (0.68
to 0.89)

0.76 ± 0.09 (0.69
to 0.91)

Bayley-III

Language composite score 100 ± 24
(86 to 132)

77 ± 11 (56 to 83)

Variables are presented in the form median ± IQR (range) or number (%).
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instead of tract-specific segmentations, because preterm brain
dysmaturation is a substantially generalized process,57 and
language development draws on broad cognitive capacities. We
have found that the probability of language delay is higher with
increased PSFA, PSRD, and PSAD. These features are consistent
with delayed myelination, less coherent white matter organiza-
tion, and altered axonal integrity in the preterm brain.15,58

Previous research has also shown that abnormalities in brain
structure following preterm birth are correlated with long-term
neurodevelopmental outcome.59

The data show that twin status is associated with increased
risk of impaired language development. This finding is consistent
with studies in the extant literature which have found that
multiple pregnancy is associated with neurodevelopmental
impairment10,20,60 and language delay61 at 2 years CGA. Language
delay in twins can be attributed to postnatal environmental
factors;62,63 twins receive a less focussed and less elaborated
communicative interchange with their parents than do singletons.
Thorpe et al.62 compared families with twins to families with pairs
of closely spaced singletons. This study found that language delay
in twins compared to singletons may be explained by patterns of
parent–child interaction and communication. Antenatal corticos-
teroid administration is associated with lower risk of language
deficits, which has been previously proved by research.10,12 Our
findings suggest that male sex is a risk factor for language
impairment in early childhood, consistent with previous studies
that have associated male sex with poorer neurodevelopmental
outcome following preterm birth.10,11,18,19

Moreover, previous work has shown that exclusive breast milk
feeding in the weeks following preterm birth can enhance brain
development,30 and in the general population breast milk intake
in infancy is associated with improved performance on intelli-
gence tests.64 In line with this, we found that exclusive
breastfeeding is associated with improved language outcomes
compared to formula feeding or mixed breast and formula
feeding. It is surprising that GA at birth was not included in the
final feature set. However, its influence on long-term outcome

may be captured by PSRD and PSAD, which are strongly correlated
with GA at birth.15

This study is the first to investigate the use of PS DTI metrics as
predictors for language development in the preterm population.
The advantage of using these image biomarkers is that their
calculation is fully automated, computationally inexpensive, and
has high inter-scanner reproducibility,16 meaning that they can be
easily obtained for preterm neonates who undergo a dMRI scan at
term-equivalent age and can be used for multi-centre studies.
Thus, our model comprises features that can be easily obtained for
future clinical application.
Hitherto, few studies have focussed on developing and validating

prediction models for early neurodevelopmental outcomes for
children born preterm. Most tools predict the composite outcome of
neurodevelopmental impairment.10–12 However, deficits in different
developmental domains require different interventions. Therefore,
tools for timely identification of children at risk of impairment in
specific developmental domains are valuable. The developed model
predicts language deficits at 2 years CGA. Recently, a model was
developed for classification of very preterm infants at high versus
low risk for language delay, which achieved 89% sensitivity and 86%
specificity.13 That model included DTI variables in three brain
regions: MD of right sagittal stratum and right inferior occipital gyrus
and AD of right lingual gyrus. However, whole-brain calculation of
DTI variables is computationally expensive; hence, we investigated
the predictive value of histogram-based variables derived from DTI.
We have shown that combining DTI metrics with perinatal factors,
along with the use of advanced machine learning techniques, can
further improve identification of children at risk of language
impairment.
The main strength of our study is that we had a longitudinal

cohort of preterm infants that is deeply phenotyped with brain
imaging and biological information that enabled us to investigate
a large number of clinical, demographic, social, and DTI variables.
We acknowledge some limitations in our study. The sample size is
relatively small, and this is a single-centre study, so despite our
best efforts with standard model validation techniques to assess
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model generalization we would need to further validate findings
in a different cohort. Nonetheless, the study population was fairly
representative of NICU populations in terms of comorbidities that
have been associated with long-term neurodevelopmental out-
comes. In addition, cortical grey matter was not assessed in this
study. We focussed on alterations in white matter microstructure,
since it is the most consistently abnormal finding in preterm
infants, by measuring a functionally tractable property using a tool
that is readily applied to clinical image data. Future studies could

aim to validate our model in additional external cohorts and also
apply machine learning techniques for prediction of motor,
cognitive, and social–emotional outcomes for children born
preterm.

CONCLUSION
A combination of clinical perinatal factors and neonatal DTI
measures of white matter microstructure best predict language
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impairment at 2 years after preterm birth. This model has the
potential to enable clinicians identify infants who are at risk of
language delay, thus facilitating targeted early intervention and
support services. The model comprises clinical and MRI features
that have potential to be scalable across centres, so it offers a
basis for enhancing the power and generalizability of diagnostic
and prognostic studies of neurodevelopmental disorders asso-
ciated with language impairment.
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