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Gastrointestinal (GI) infections in sheep have significant implications for animal health,
welfare and productivity, as well as being a source of zoonotic pathogens. Interactions
between pathogens and epithelial cells at the mucosal surface play a key role in determining
the outcome of GI infections; however, the inaccessibility of the GI tract in vivo significantly
limits the ability to study such interactions in detail. We therefore developed ovine epithelial
organoids representing physiologically important gastric and intestinal sites of infection,
specifically the abomasum (analogous to the stomach in monogastrics) and ileum.We show
that both abomasal and ileal organoids form self-organising three-dimensional structures
with a single epithelial layer and a central lumen that are stable in culture over serial passage.
We performed RNA-seq analysis on abomasal and ileal tissue from multiple animals and on
organoids across multiple passages and show the transcript profile of both abomasal and
ileal organoids cultured under identical conditions are reflective of the tissue fromwhich they
were derived and that the transcript profile in organoids is stable over at least five serial
passages. In addition, we demonstrate that the organoids can be successfully
cryopreserved and resuscitated, allowing long-term storage of organoid lines, thereby
reducing the number of animals required as a source of tissue. We also report the first
published observations of a helminth infecting gastric and intestinal organoids by challenge
with the sheep parasitic nematode Teladorsagia circumcincta, demonstrating the utility of
these organoids for pathogen co-culture experiments. Finally, the polarity in the abomasal
and ileal organoids can be inverted to make the apical surface directly accessible to
pathogens or their products, here shown by infection of apical-out organoids with the
zoonotic enteric bacterial pathogen Salmonella enterica serovar Typhimurium. In summary,
we report a simple and reliable in vitro culture system for generation and maintenance of
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small ruminant intestinal and gastric organoids. In line with 3Rs principals, use of such
organoids will reduce and replace animals in host-pathogen research.
Keywords: mini-guts, three-dimensional (3D) organoids, host-pathogen interactions, in vitro culture systems, stem
cells, crypts, sheep, gastrointestinal
INTRODUCTION

The mammalian gastrointestinal (GI) tract is the site of digestion
and nutrient absorption, as well as a predilection site for many
infectious pathogens, including bacteria, viruses and parasites.
Understanding how pathogens attach and invade cells in the GI
tract will help determine mechanisms of host infection, disease
pathogenesis and enable strategies to prevent and control
infectious disease. Both the gastric stomach and intestine share a
number of common features, including a single luminal layer of
epithelial cells sealed by tight junctions which is renewed
approximately every 3 – 5 days. In both organs, this huge
regenerative capacity is mediated by proliferation and
differentiation of tissue resident adult stem cells (ASCs) (Barker
et al., 2007; Sato et al., 2009; Barker et al., 2010; Xiao and Zhou,
2020). In intestinal tissues, pockets of leucine-rich repeat-
containing G protein-coupled receptor 5 (LGR5)-expressing
ASCs reside in the base of the crypts of Lieberkühn and can
differentiate into all five epithelial cell types of the intestine:
enterocytes, goblet cells, enteroendocrine cells, tuft cells, and
Paneth cells (Barker et al., 2007; Sato et al., 2009). In the
stomach the epithelia is arranged into multiple gastric units,
which comprise of the gastric pit, isthmus, neck and base with
proliferative stem cells located in the isthmus (Barker et al., 2010;
Xiao and Zhou, 2020). The ASCs of the gastric gland can
differentiate into all five epithelial cell types of the gastric
stomach: surface neck mucus cells, parietal cells, chief cells,
enteroendocrine cells (including G cells, D cells, and
enterochromaffin-like cells) and tuft cells (Barker et al., 2010;
Xiao and Zhou, 2020).

The huge regenerative capacity of GI tract and the ability of
ASCs to differentiate into epithelial cell types present in the GI
tract has been exploited to develop GI organoids or “mini-guts”
that reflect the cellular diversity and physiology of the organ
from which they were derived (Sato et al., 2009; Barker et al.,
2010). Organoid models of the GI tract were first developed from
mouse stomach and intestine tissues. To achieve this, researchers
isolated mouse LGR5+ adult stem cells from these organs and
cultured them in a laminin rich extracellular matrix extracted
from the Engelbreth-Holm-Swarm (EHS) mouse sarcoma, with
appropriate growth factors (including Wnt3a, epidermal growth
factor, Noggin and R-spondin 1). The resulting organoids
consisted of organ-specific tissue (gastric or intestinal epithelia)
that self-organised into spherical three-dimensional (3D)
structures with a single epithelial layer and a central lumen
(Sato et al., 2009; Barker et al., 2010). Since this initial discovery,
organoids have been derived from a large number of different
tissue types and from numerous mammalian species using
similar ASC isolation and tissue culture techniques.
gy | www.frontiersin.org 2
The development of in vitro organoid culture systems has
transformed biomedical research as they provide a reproducible
cell culture system that closely represents the physiology of the
host. As the majority of infectious agents enter the body or reside
at mucosal surfaces, organoids derived from mucosal sites such
as the gastro-intestinal, respiratory and urogenital tracts promise
to transform research into host-pathogen interactions as they
allow detailed studies of early infection processes that are difficult
to address using animal models.

Gastrointestinal (GI) disease in small ruminants has significant
implications for animal health and welfare as well as substantial
economic losses because of decreased production efficiency. In
sheep, gastrointestinal nematodes (GIN) have major economic and
welfare impacts worldwide, with the principal GIN of sheep
including: Haemonchus contortus; Nematodirus battus;
Teladorsagia circumcincta and Trichostrongylus spp. (including
T. colubriformis and T. vitrinus) (Nieuwhof and Bishop, 2005;
Roeber et al., 2013). These parasites are transmitted by the faecal-
oral route where infective stage larvae develop in either the small
intestine or abomasum (which is analogous to the gastric stomach)
causing significant mucosal damage associated with host
inflammatory immune responses (Stear et al., 2003; Roeber
et al., 2013). In addition, sheep are natural reservoirs for enteric
zoonotic pathogens of worldwide significance, such as Shiga toxin
producing Escherichia coli (STEC) and Salmonella enterica
(Heredia and Garcıá, 2018). The obvious challenge with studying
interactions between the ovine host and GI pathogens is the lack of
accessibility to the site of infection, making detailed studies
particularly challenging. With the current lack of physiologically
relevant in vitro cell culture systems to study ovine-GI pathogen
interactions, research has relied heavily on use of sheep infection
models, which have led to important insights into host immune
responses against pathogens, immune evasion by pathogens and
pathogen transmission (Stear et al., 1995; McSorley et al., 2013;
Ellis et al., 2014). Despite these successes, animal experiments are
often complex, costly and have ethical implications.

The use of stem-cell derived GI organoids or “mini-guts” for
farmed livestock species, including ruminants, is an exciting
recent development that promises to provide a physiologically
relevant and host-specific in vitro cell culture system to
interrogate host-pathogen interactions (Beaumont et al., 2021;
Kar et al., 2021). A recent study has demonstrated the feasibility
of generating organoids from bovine ileum tissue with the derived
organoids expressing genes associated with intestinal epithelia cell
types (Hamilton et al., 2018). However, no ruminant gastric
organoid model has been previously reported. In this current
study, in line with 3Rs principles to reduce and replace the use of
animals in experiments, we develop ovine ileum and abomasum
organoids as physiologically relevant in vitro culture systems to
September 2021 | Volume 11 | Article 733811
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investigate ovine GI infection and disease (Figure 1). Using RNA-
seq of both tissue and derived organoids we demonstrate that the
expression profile of abomasum and ileum organoids are
representative of the tissue from which they were derived. In
addition, we demonstrate the utility of these in vitro organoid
systems to study host-pathogen interactions by performing
challenge studies with the abomasal parasite T. circumcincta
and enteric bacteria Salmonella enterica serovar Typhimurium.
MATERIALS AND METHODS

Animals
All ovine abomasum and ileum tissues used in this study were
derived from 7-8-month old helminth-free Texel cross male
lambs (Ovis aries). The presented research was performed in
line with 3Rs principles, particularly regarding the reduction and
replacement of animals for use in scientific research. Therefore,
the animal tissue used for developing organoids in this study was
derived post-mortem from healthy control animals used in
separate research trials, thereby reducing the number of
animals necessary for research. Due to the timing of the study,
we were limited to tissue derived from male lambs.

Isolation of Gastric Glands and
Intestinal Crypts
Tissues were removed from sheep at post-mortem. Approximately
10 cm2 sections of fundic gastric fold were collected from the
abomasum and approximately 10 cm sections of ileal tissue were
collected from a region ~ 30 cm distal to the ileocecal junction.
Tissues were removed using a sterile scalpel and forceps and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
placed into sterile ice-cold Hank’s buffered saline solution (HBSS)
containing 25 µg/ml gentamicin (G1397-10ML; Sigma-Aldrich)
and 100 U/ml penicillin/streptomycin. To expose the epithelial
surfaces, the abomasum was opened along the greater curvature
and the ileum opened longitudinally using dissection scissors. The
luminal surfaces were rinsed with tap water to remove digesta and
then placed onto sterile Petri dishes. The majority of the mucus
layer was gently removed using a glass slide, after which the
surface mucosal tissue (containing the gastric glands or intestinal
crypts) was collected by firm scraping with a fresh glass slide.
Mucosal tissue was then transferred to a Falcon tube containing 50
ml of HBSS containing 25 µg/ml gentamicin and 100 U/ml
penicillin/streptomycin. Samples were centrifuged at 400 x g for
2 min, resulting in a tissue pellet with a mucus layer on top. The
supernatant and top forming mucus layer were aspirated and
discarded and the tissue was re-suspended in 50 ml of HBSS
containing 25 µg/ml gentamicin and 100 U/ml penicillin/
streptomycin. This process of centrifugation, aspiration and
resuspension was repeated until a mucus layer was no longer
visible above the pellet. To release gastric glands and intestinal
crypts from tissue, pellets were re-suspended in 25 ml of digestion
medium (Dulbecco’s Modified Eagle Medium [DMEM] high
glucose, (11574486; Gibco) 1% FBS, 20 µg/ml dispase
(4942086001; Roche), 75 U/ml collagenase (C2674; Sigma-
Aldrich) 25 µg/ml gentamicin and 100 U/ml penicillin/
streptomycin) and incubated horizontally in a shaking incubator
at 80 rpm for 40 minutes at 37°C. Following digestion, the tube
was gently shaken to loosen the cells and then left briefly at room
temperate to allow large tissue debris to settle. The supernatant
was transferred to a sterile 50 ml Falcon tube and gland/crypt
integrity within the supernatant was assessed by light microscopy.
FIGURE 1 | A schematic of the development of ovine gastric and intestinal organoids for studying host-pathogen interactions. Stem cells isolated from sheep ileum
crypts and abomasum gastric glands can be cultivated into tissue-specific organoids when grown in a three-dimensional culture system. Gastric and intestinal
organoids can be co-cultured with pathogens to model host-parasite interactions in physiologically and biologically-relevant in vitro culture systems. Created with
BioRender.com.
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Samples were then centrifuged at 400 x g for 2 minutes, with the
resulting supernatant containing released glands or crypts. The
gland/crypt-containing supernatant was washed by centrifugation
at 400 x g for 2 minutes and the glands/crypts re-suspended in 1-2
ml advanced DMEM/F12 (12634-010; Gibco) containing 1X B27
supplement minus vitamin A (12587-010; Gibco), 25 µg/ml
gentamicin and 100 U/ml penicillin/streptomycin.

Organoid Culture
Two-hundred to one-thousand gastric glands or intestinal crypts
were re-suspended in 100 µl advanced DMEM/F12 medium
(containing 1X B27 supplement minus vitamin A, 25 µg/ml
gentamicin and 100 U/ml penicillin/streptomycin) and were
then added to 150 µl of BD Growth Factor Reduced Matrigel
Matrix (356230; BD Biosciences). Fifty microliter droplets were
added to consecutive wells of a 24-well tissue culture plate (3524,
Corning). Plates were incubated at 37°C, 5% CO2 for 15-20
minutes to allow the Matrigel to polymerize and then 550 µl of
pre-warmed complete IntestiCult Growth Medium (mouse)
(6005; STEMCELL Technologies) containing 500 nM Y-27632
(10005583; Cambridge Bioscience), 10 µM LY2157299 (15312;
Cambridge Bioscience), 10 µM SB202190 (ALX-270-268-M001;
Enzo Life Sciences) and gentamicin (50 µg/ml) were added to
each well. Plates were incubated at 37°C, 5% CO2 to allow
organoids to develop, replacing complete IntestiCult medium
every 2-3 days. Organoids were typically cultured for 7-14 days
prior to passaging. Phase contrast microscopy was used to image
organoids over the course of 14 days of in vitro growth.

Organoid Passage
IntestiCult media was removed from the cultured organoids and
the Matrigel matrix was dissolved by replacement with 1 ml ice-
cold advanced DMEM/F12. The re-suspended organoids were
transferred to a 15 ml Falcon tube and the total volume of
advanced DMEM/F12 was increased to 10 ml. Samples were left
on ice for 5 minutes to allow organoids to settle and the
supernatant was removed. The organoids were re-suspended in
200 µl advanced DMEM/F12 medium (containing 1X B27
supplement minus vitamin A, 25 µg/ml gentamicin and
100 U/ml penicillin/streptomycin) and then mechanically
disrupted by repeatedly pipetting (approximately fifty times)
using a 200 µl pipette tip bent at a 90° angle. The number of
organoid fragments were counted by light microscopy and
samples diluted to 200-1000 crypts per 100 µl. One-hundred
microliters of fragments were then combined with Matrigel and
plated into 24-well tissue culture plates as described in section 2.4.
Phase contrast microscopy was used to image organoids from
passage one to passage five, following seven days of in vitro growth
at each passage.

Organoid Cryopreservation
IntestiCult media was removed from the cultured organoids and the
Matrigel matrix was dissolved by replacement with 1 ml ice-cold
advancedDMEM/F12. The re-suspended organoids were transferred
to amicrocentrifuge tube and pelleted by centrifugation at 290 x g for
5 minutes at 4°C. Following centrifugation, the supernatant was
removed and organoid pellets were re-suspended in Cryostor CS10
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
cryopreservation medium (STEMCELL Technologies) at
approximately 500-1000 organoids/ml before being transferred to a
cryovial. Cryovials were stored in a cryogenic freezing container for
2 hours at -80°C and subsequently transferred to -196°C for long-
term storage.

Cryopreserved organoids were resuscitated by thawing
cryovials in a water bath at 37°C and then rapidly transferring
the organoids into a 15 ml Falcon tube containing 8 ml of
advanced DMEM/F12 medium (containing 1X B27 supplement
minus vitamin A, 25 µg/ml gentamicin and 100 U/ml penicillin/
streptomycin). The cryovial was washed with a further 1 ml of
media and added to the Falcon tube. Samples were pelleted by
centrifugation at 290 x g for 5 minutes at 4°C and then re-
suspended in 200 µl of fresh advanced DMEM/F12 medium
(containing 1X B27 supplement minus vitamin A, 25 µg/ml
gentamicin and 100 U/ml penicillin/streptomycin). Re-
suspended organoids were added to Matrigel and cultivated as
described in Section 2.4. Organoids were imaged by phase
contrast microscopy following seven days of in vitro growth
prior to cryopreservation and post-cryopreservation.

Total RNA Extraction
Total RNA was extracted from gastric and intestinal organoids
after multiple serial passages that included passage 0 (P0) through
to passage 4 (P4). Ovine gastric and intestinal organoids were
prepared as described above; organoids that were formed from
animal tissue-derived crypts were designated P0 and these were
cultured by serial passage until P4. Each passage was cultured in
triplicate wells of a 24-well tissue culture plate and allowed to
mature for seven days before collecting for total RNA extraction.
For total RNA extraction, IntestiCult media was removed from
wells and replaced with 1 ml of ice-cold advanced DMEM/F12.
The resulting suspension containing dissolved Matrigel and
organoids was transferred to 15 ml sterile Falcon tubes and
brought up to 10 ml with ice-cold advanced DMEM/F12.
Organoids were gently pelleted by centrifugation at 200 x g for
5 min and the supernatant removed. Organoid pellets were re-
suspended in 350 µl RLT buffer (Qiagen) containing b-
mercaptoethanol, according to manufacturer’s guidelines and
stored at -70°C. Total RNA was isolated from each sample
using a RNeasy mini kit (Qiagen) with the optional on-column
DNase digest and total RNA eluted in 30 µl nuclease-free water,
according to the manufacturers protocol. Total RNA from each
extraction was quantified using a NanoDrop™ One
spectrophotometer and integrity analysed using a Bioanalyzer
(Agilent) with the total RNA 6000 Nano kit. Purified total RNA
was stored at -70°C until RNA-seq analysis.

Total RNA was also extracted from ovine abomasum and
ileum tissue harvested at post-mortem from five individual
6-month old helminth-free Texel cross lambs and stored in
RNAlater (ThermoFisher). Specifically, samples were taken
from the same tissue regions stated above for crypt isolation.
For total RNA isolation, approx. 30 mg of tissue was
homogenized in 600 µl of RLT buffer conta ining
b-mercaptoethanol using a Precellys® Tissue Homogenizer
with CK28 tubes using x3 10s pulses at 5500 rpm with 5 min
on ice between each pulse (Bertin Instruments™). Total RNA
September 2021 | Volume 11 | Article 733811
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was isolated and quantified as described previously, except the
total RNA was eluted in 50 µl nuclease-free water. Purified total
RNA was stored at -70°C until RNA-seq analysis.

RNA-Seq Analysis
For each sample, 1 µg of total RNAwas used for RNA-seq analysis.
All library synthesis and sequencing were conducted at The
University of Liverpool, Centre for Genomic Research (CGR). In
brief, dual-indexed, strand-specific RNA-seq libraries were
constructed from submitted total RNA sample using the
NEBNext® Poly(A) mRNA Magnetic Isolation Module (NEB
#E7490) and NEBNext Ultra II Directional RNA Library Prep
Kit for Illumina (NEB #E7760). A total of 20 libraries were
constructed [including: ovine abomasum organoid P0-P4
(triplicate pooled wells for each passage); ovine ileum organoid
P0-P4 (triplicate pooled wells for each passage); ovine abomasum
tissues (n = 5); ovine ileum tissues (n = 5)]. The barcoded
individual libraries were pooled and sequenced on a single lane
of an Illumina NovaSeq flowcell using S1 chemistry (Paired-end,
2x150 bp sequencing, generating an estimated 650 million clusters
per lane). Following sequencing adaptors were trimmed using
Cutadapt version 1.2.1 (Martin, 2011) and reads were further
trimmed using Sickle version 1.200 (Joshi and Fass, 2011) with a
minimum window quality score of 20. Reads shorter than 15 bp
after trimming were removed. Sequence reads were checked for
quality using FastQC v0.11.7. Reads were pseudo-aligned to the
Ovis aries transcriptome (Oar_v3.1 GCA_000298735.1) using
Kallisto v0.46.2 with default settings (Bray et al., 2016) and read
abundance calculated as transcripts per million (TPM). Gene
expression data was analysed by principal component analysis
(PCA) using pcaExplorer version 2.12.0 R/Bioconductor package
(Marini and Binder, 2019). Specific genes were also manually
retrieved from our transcriptomic dataset and their TPM values
log2 transformed for presenting in heat maps, which were
generated using GraphPad Prism software (v8.0).

Immunohistochemistry
Abomasum and ileum organoids were cultivated in Matrigel for 7
days in 8-well chamber slides (354118; Falcon) as described in
section 2.4. Tomake organoids accessible to immunohistochemistry
reagents, the culture medium was removed and replaced with ice-
cold 4% paraformaldehyde. For fixation, samples were kept at 4°C
for 20 minutes to also dissolve the Matrigel and prevent it from re-
solidifying. Organoids were washed twice with IF buffer (0.1%
Tween20 in PBS) and then permeabilised with 0.1% TritonX-100
in PBS for 20 minutes at room temperature. Samples were washed
three times with IF buffer and then blocked for 30 minutes with 1%
BSA in IF buffer at room temperature. Next, primary antibodies
diluted in blocking solution were added to the organoids and
samples were left overnight at 4°C. Primary antibodies used
included polyclonal rabbit a-Ki67 (ab15580, abcam, used at a
1:500 dilution), polyclonal rabbit a-EPCAM (orb10618, Biorbyt,
used at a 1:600 dilution), monoclonal mouse a-villin (sc-58897,
Santa Cruz Biotechnology, used at a 1:200 dilution) andmonoclonal
mouse a-pan cytokeratin (used at a 1:100 dilution). For isotype
controls, mouse or rabbit IgG were used in place of the specific
primary antibodies and were diluted at 1:100 or 1:500 for mouse
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
and rabbit IgG respectively. The next day, samples were washed
three times with IF buffer and then secondary antibodies added
(diluted at 1:500 in blocking buffer) and incubated at room
temperature for 1 hour. Secondary antibodies used were goat a-
mouse Alexa Fluor 488 (ab150117, abcam) and goat a-rabbit Alexa
Fluor 488 (ab150081, abcam). Phalloidin-iFluor 555 reagent
(ab176756, abcam, used at a 1:1000 dilution) was also added
during the secondary antibody step to label F-actin. Samples were
washed three times with IF buffer and then Hoechst 33258 solution
diluted 1:200 in IF buffer was added to label nuclei (94403, Sigma-
Aldrich). Samples were incubated for a further 5 minutes at room
temperature before three washes with IF buffer. Finally, slides were
mounted using ProLong Gold antifade mountant (P10144,
ThermoFisher Scientific) and imaged by confocal microscopy
using a Zeiss LSM 710 Inverted Confocal Microscope and Zeiss
Zen Black operating software.

Exsheathment of Teladorsagia
circumcincta Third Stage Larvae (L3)
T. circumcincta L3 (Moredun isolate MTci2, CVL) were exsheathed
and labelled using modified protocols previously published (Dinh
et al., 2014; Bekelaar et al., 2019). Nine millilitres of Earle’s balanced
salts solution (EBSS) buffer in a 15 ml Falcon tube was preheated in a
water bath to 37°C and CO2-saturated over 1 hour using an incubator
tube connected to a CO2 tank. Approximately 5x104 T. circumcincta
L3 in 1 ml of tap water were added to the CO2-saturated EBSS and
the sample continued to be saturated for a further 15 minutes. The
Falcon tube was then sealed with Parafilm® M and inverted 6 times
before being placed horizontally into an incubator at 37°C, 5% CO2

for 4 hours. Following incubation, the whole sample was transferred
into a 25 cm2 vented cap flask and incubated overnight at 37°C/5%
CO2, to allow L3s to continue exsheathing. Exsheathment was
validated the following morning by light microscopy. The larvae
were then washed 4 times by repeated centrifugation at 330 x g for 2
minutes and re-suspension in 50ml of distilled water (pre-warmed to
37°C). After the final wash, the L3 larvae were re-suspended in 1 ml
distilled water and transferred to a microcentrifuge tube. Exsheathed
L3 (exL3) were fluorescently labelled by the addition of 2 µl PKH26
dye (1 mM stock concentration) from the MINI26 PKH26 Red
Fluorescent Cell Linker Kit (Sigma-Aldrich) and mixed by pipetting.
Parasites were incubated with the dye for 15 minutes at room
temperature, protected from light. Excess dye was removed by
washing the larvae five times with distilled water as described above
before finally re-suspending them in 1 ml of complete IntestiCult
organoid growth medium.

Teladorsagia circumcincta L3-Organoid
Co-Culture
Abomasum and ileum organoids were cultivated in Matrigel for
7 days in 8-well chamber slides (354118; Falcon) as described in
section 2.4. Immediately prior to organoid-T. circumcincta
co-culture, complete IntestiCult media was removed from the
cultured organoids and replaced with 250 µl of fresh pre-warmed
complete IntestiCult. Twenty to 50 PKH26 labelled
T. circumcincta exL3 in 50 µl complete IntestiCult media were
added to each well of organoids and organoid-larval cultures
incubated at 37°C, 5% CO2. Note that organoids were not
September 2021 | Volume 11 | Article 733811
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removed from their Matrigel domes prior to the addition of
T. circumcincta L3. Upon observation of multiple organoids
containing T. circumcincta L3 within their lumen (after ~24-48
hours of organoid-T. circumcincta co-culture) the samples were
fixed with 4% PFA for 30 min, followed by 3 washes with PBS, and
stored at 4°C until fluorescence staining. Organoids were
permeabilized, blocked and probed with Phalloidin-488 and
Hoechst 33258 as described for organoid immunohistochemistry
above. Images were captured using a Zeiss LSM 710 Inverted
Confocal Microscope and Zeiss Zen Black operating software.

Generation of Apical-Out Organoids
Epithelial polarity was inverted in gastric and intestinal ovine
organoids by following a previously published method for
reverse polarity in human intestinal organoids (Co et al.,
2019). Briefly, gastric and intestinal organoids were grown in
Matrigel as described above for 7 days. Matrigel domes
containing developed organoids were gently dissolved by the
addition of 500 µl ice-cold 5 mM EDTA in PBS, taking care not
to rupture the organoids. The resulting suspension was
transferred to a 15 ml Falcon tube that was subsequently filled
with 14 ml of 5 mM EDTA in PBS. Samples were placed on a
rocker and mixed gently for 1 hour at 4°C. Organoids were
pelleted by centrifugation at 200 x g for 3 min at 4°C and the
supernatant was removed. Pellets were re-suspended in complete
IntestiCult growth media (containing 500 nM Y-27632, 10 µM
LY2157299, 10 µM SB202190 and gentamicin (50 µg/ml), with
the addition of 10% advanced DMEM/F12 medium (containing
1X B27 supplement minus vitamin A, 25 µg/ml gentamicin and
100 U/ml penicillin/streptomycin). Re-suspended organoids
were transferred to the wells of 8-well glass chamber slides and
incubated at 37°C, 5% CO2 for a period of 72 hours, prior to
being fixed and stained with Phalloidin-iFluor 555 reagent and
Hoechst 33258, as described in section 2.9. Confocal imaging was
performed as described in section 2.9.

Infection of Apical-Out Organoids With
Salmonella enterica Serovar Typhimurium
The polarity of gastric and intestinal organoids was inverted as
described above. Salmonella Typhimurium strain ST4/74 was
chosen for this experiment as its full genome sequence is available
(Richardson et al., 2011) and it has been shown to efficiently invade
theovine ilealmucosaandelicit inflammatory responses inanovine
ligated ileal loop model (Uzzau et al., 2001). To aid visualization of
thebacteria inorganoids, the strainwas electroporatedwithplasmid
pFPV25.1 which carries gfpmut3A under the control of the rpsM
promoter resulting in the constitutive synthesis of green fluorescent
protein (Valdivia and Falkow, 1996). Stability of the plasmid in the
absence of antibiotic selection during Salmonella infection has been
confirmed (Vohra et al., 2019). The bacteria were grown on Luria
Bertani (LB) agar supplemented with 100 µg/ml ampicillin at 37°C
overnight. Single colonies were transferred to LB broth
supplemented with the same antibiotic and grown for 20 hours
shaking at 180 rpmat 37 °C.The liquid cultureswere diluted to 3.3 x
106 CFU/ml in complete IntestiCult growth medium, described
above, and300µlof thedilutionwas added tohalf of thewells,which
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
already contained organoids that had already been maintained in
conditions for generating apical-out organoids for 72 hours. The
other half of the wells acted as negative controls, with organoids
being re-suspended in 300 µl of complete IntestiCult growth
medium alone (no bacteria). After 30 minutes of incubation
another 300 µl of complete IntestiCult growth medium with
200 µg/ml gentamycin was added to kill extracellular bacteria. The
slides were incubated at 37°C, 5% CO2 for a total of 6 hours. At the
end of the incubation period the entire volume of the liquid from
each well, including the organoids, were transferred to separate
15ml Falcon tubes (Corning, UK). All centrifugations for organoid
collection during washing were done at 200 rpm for 5 minutes. The
supernatant was removed and the organoids were washed twice in
PBS, and then re-suspended in 4% PFA for 30 minutes for fixation.
The organoids were processed for immunohistochemistry as
described in section 2.9 and stained with Phalloidin-iFluor 555
reagent, prior to mounting with ProLong Diamond antifade
mountant (P36961, ThermoFisher Scientific). Confocal imaging
was performed as described in section 2.9.
RESULTS

Growth of Ovine Gastrointestinal
Organoids In Vitro
Fragmented gastric glands and intestinal crypts isolated from the
abomasum fundic fold and the ileum of 7 to 8-month old Texel
cross lambs were embedded in Matrigel and grown in complete
IntestiCult organoid growth medium. Under identical growth
conditions, epithelial stem cells from these two different organ
tissues were able to develop into organoids in vitro (Figure 2A).
By 24 hours, sealed spherical structures containing a central
lumen had formed in both the abomasum and ileum organoids.
However, while the ileum organoids became branched after 5-7
days of in vitro culture, the vast majority of abomasum organoids
retained a spherical structure that persisted for the duration of a
culture passage (Figures 2A, B).

Abomasum and ileum organoids could be serially passaged by
removal from Matrigel, fragmentation by pipetting and
re-embedding in Matrigel. At each passage, ileum organoids
continued to form into branched structures, while the abomasum
organoids persistently formed spherical structures. (Figure 2B).
Organoids that were cryopreserved in liquid nitrogen after
7 days of in vitro culture could be thawed and re-cultured,
demonstrating the potential to store organoids long-term and to
resuscitate when required. Furthermore, we found that the
cryopreserved organoids can be resuscitated after at least 18
months of storage in liquid nitrogen. Abomasum and ileum
organoids retained their spherical and branched structures,
respectively, following resuscitation and 7 days of in vitro
culture (Figure 2C).

Epithelial Cell Markers Associated With
Ovine Gastric and Intestinal Organoids
Immunohistochemistry was performed to identify key structural
features associated with both abomasum and ileum organoids.
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Individual Z-stack images of organoids stained with phalloidin to
label F-actin clearly demonstrated that the apical surface of the
epithelium is present on the interior of the organoid, for both
abomasum and ileum organoids, indicated by the presence of a
solid F-actin-positive boundary (Figures 3A, 4A). This imaging
also confirmed the presence of a hollow lumen within the
organoids (Figures 3A, 4A).

The proliferation marker Ki67 was detectable in both the
abomasum and ileum organoids, indicating that cell division
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
continued to take place at 7 days of in vitro culture
(Figures 3B, 4B). The epithelial cell markers EpCAM
(epithelium cell adherence molecule), villin (epithelium-specific
actin-binding protein) and cytokeratin (epithelial cell
cytoskeleton filament protein) were each detectable in
abomasum and ileum organoids at seven days of in vitro
culture (Figures 3B, 4B), confirming the differentiation of
stem cells into epithelium cell-containing organoids. Control
samples of organoids probed with mouse and rabbit serum IgG
A

B

C

FIGURE 2 | In vitro growth of ovine abomasum and ileum organoids. (A) Representative images of abomasum and ileum organoids grown over 14 days in the
same culture conditions. (B) Representative images showing the growth and development of mature abomasum and ileum organoids across multiple consecutive
passages (P1 - P5) at seven days of in vitro culture. (C) Representative images of abomasum and ileum organoids grown for seven days, both pre-cryopreservation
and after resuscitation. Scale bars = 10 µm.
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A

B

FIGURE 3 | Characterisation of ovine abomasum organoids by immunofluorescence confocal microscopy at seven days of in vitro culture. (A) Representative
Z-stack images of an individual abomasum organoid with a closed luminal space and an internal F-actin-expressing brush border. Red = F-actin and blue = Hoechst
(nuclei). (B) Representative images of abomasum organoids probed for either the cell proliferation marker Ki67, or the epithelial cell markers EpCAM, villin and
pan-cytokeratin (all green). F-actin (red) and Hoechst (blue). Scale bars = 10 µm.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org September 2021 | Volume 11 | Article 7338118

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Smith et al. Sheep Gastric and Intestinal Organoids
A

B

FIGURE 4 | Characterisation of ovine ileum organoids by immunofluorescence confocal microscopy at seven days of in vitro culture. (A) Representative Z-stack
images of part of an individual branched ileum organoid with a closed luminal space and an internal F-actin-expressing brush border. Red = F-actin and
blue = Hoechst (nuclei). (B) Representative images of abomasum organoids probed for either the cell proliferation marker Ki67, or the epithelial cell markers EpCAM,
villin and pan-cytokeratin (all green). F-actin (red) and Hoechst (blue). Scale bars = 10 µm.
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did not label positive for any of the epithelial cell markers,
confirming the specificity of the epithelial cell labelling
(Supplemental Figures 1, 2).

Transcriptional Analysis of Abomasum and
Ileum Organoids and Tissue
Gene expression profiles from: ovine ileum organoids (P0 – P4);
ovine abomasum organoids (P0 – P4); ovine ileum tissue (n = 5)
and ovine abomasum tissue (n = 5) were compared by RNA-seq
analysis. The global gene expression profiles of the complete
dataset, consisting of 20 individual samples, were initially
compared by principal component analysis (PCA) (Figure 5).
The PCA analysis resulted in four statistically significant clusters
(95% confidence intervals), with each cluster representing a
sample type (i.e. ileum organoids; abomasum organoids; ileum
tissue; or abomasum tissue). This demonstrates that the global
transcriptome profile of ovine abomasum tissue (n = 5) and
ovine ileum tissue (n = 5) are different (Figure 5). Based on
global gene expression profiles, organoids also grouped by the
tissue type from which they derived, with ileum and abomasum
organoids forming separate statistically significant clusters (95%
confidence intervals) in the PCA analysis (Figure 5).
Importantly, for both ileum and abomasum organoids, each
passage (P0 – P4) is represented in each cluster, showing that
there was no global change in the transcriptome profile following
serial passage (Figure 5).

The expression profiles of the top 40 most variable genes (of
genes ranked by inter-sample variation) were compared from
ileum and abomasum organoids from serial passages (P0 – P4)
and ileum and abomasum tissue derived from five lambs (n = 5)
(Figure 6). This analysis broadly identified three categories of
genes, including genes with: i) abomasum (tissue and organoid)
specific expression; ii) ileum (tissue and organoid) specific
expression and iii) ileum and abomasum (tissue only) expression.

Based on gene expression profiles, genes that were highly
expressed in abomasum tissue and abomasum organoids, but
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
absent in all ileum samples, included genes of known gastric
function, such as: claudin-18; gastrokine; gastric lysozyme and
pepsin. Similarly, ileum specific genes were detected in both
ileum tissue and ileum organoid samples, but absent from all
abomasum samples included: galectin; lingual antimicrobial
peptide; guanylin (a 15 amino acid peptide secreted from
goblet cells). Interestingly, genes shared by ileum tissue and
abomasum tissue, but largely absent from organoid cultures,
were predominantly immune related genes (such as: C-C motif
chemokine 5, regakine-1-like and various immunoglobulin
chains) and likely reflect the presence of immune cells in ileal
and abomasal mucosal tissue samples, which were not
represented in ASC derived ileum and abomasum organoids.
In summary, based on transcriptional profiles, abomasum and
ileum organoids are broadly representative of the tissues they
were derived from and appear to be transcriptionally stable over
multiple passages.
Expression of Cell- and Tissue-Specific
Genes in Abomasum and Ileum Organoids
and Tissues
The ovine gastrointestinal transcriptomic database generated
here was manually searched for genes that are representative of
specific cell and tissue markers. A total of 151 genes were
searched in this way and their expression in abomasum and
ileum organoids and tissue was presented in heat maps. A
number of cell junction markers were consistently expressed in
both organoids and tissue, including genes encoding proteins
related to tight junctions, gap junctions, adherens junctions and
desmosomes (Supplemental Figure 3).

We identified genes associated with particular epithelial cell
subpopulations that were consistently expressed in abomasum
and ileum organoids across multiple passages (P0-P4), as well as
in ileum and abomasum tissue samples from five individual
animals. These include numerous markers associated with stem
cells, enterocytes, secretory and mucus-producing cells and
Paneth cells (Figure 7). In particular, expression of the stem
cell marker LGR5 was higher in both abomasum and ileum
organoids compared to the respective tissue samples, indicating
the presence of a relatively higher stem cell subpopulation in the
organoids compared to tissues (Figure 6). Three enterocyte
genes associated with ileum tissue were not detected in ileum
organoids, namely ALPI, APOA4 and APOC3 (Figure 7). These
enterocyte markers were not detected in abomasum organoids or
abomasum tissue from any of the five individual animals.
Expression of several genes associated with homeostasis in
gastrointestinal cells was conserved between tissue samples and
organoids, for both abomasum and ileum samples. This included
HES1, ADAM10, ADAM17, FGF20 and SHH (Figure 7).

A number of genes associated with specific epithelial cell
subpopulations were differentially expressed in ileum and
abomasum tissue. For example, the early enterocyte precursor-
associated gene REG3G, the Paneth cell marker DEFB1, the
enteroendocrine cell marker REG4 and the enteroendocrine
cell-derived hormone GCG were expressed in ileum tissue and
not in abomasum tissue (Figure 7). These genes were also
FIGURE 5 | Principal component analysis (PCA) of RNA-seq expression of
the top 500 most variant genes (of genes ranked by inter-sample variance) in
ovine abomasum and ileum organoid and tissue samples. Sample type is
indicated in the key and includes: abomasum organoid (red); abomasum
tissue (green); ileum organoid (blue); ileum tissue (purple). Ellipses indicates
95% confidence intervals for each cluster.
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expressed in intestinal organoids and not abomasum organoids,
indicating the conservation of tissue-specific differences in the cell
subpopulations of the two different types of organoids.

Various genes were found to be specific for the abomasum,
being expressed in both abomasal tissue and abomasum
organoids but not in ileal tissue or ileum organoids. These
included PGA5, CCKBR and CBLIF (GIF) (Figure 8). We also
found that some genes specifically expressed in abomasal tissue
were not expressed in abomasum organoids, including SLC5A5,
DUOX2, MCT9, PGC, ATP4A, AQP4, and HDC (Figure 8).

The expression of immune-related genes, including toll-like
receptors (TLRs), c-type lectin receptors (CLRs), chemokines,
cytokines and antimicrobials were examined in abomasum and
ileum tissue and organoids. The TLRs - TLR3, TLR5 and TLR6,
and CLR Dectin-1 were expressed in abomasum and ileum
organoids and their respective tissues (Supplemental Figure 4).
A number of chemokines were expressed in abomasum organoids
and abomasal tissue, including CXCL16, CCL20, CCL24 and
ACKR3. Interestingly, the chemokine CCL17 was up-regulated in
abomasum and ileum organoids compared to the respective
tissue samples (Supplemental Figure 4). The expression of
cytokine associated genes IL18BP, IL27RA, IL4I1, IL13RA1 and
IFNGR1 was detected in abomasum and ileum organoids
(Supplemental Figure 4). Of note, the antimicrobial gene SBD2
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was found to be highly expressed in ileum and ileal tissue, but was
not expressed in either abomasum organoids nor abomasal tissue
(Figures 6 and Supplemental Figure 4).

Organoid Co-Culture With the Helminth
Teladorsagia circumcincta
In order to use gastrointestinal organoids to study host-pathogen
interactions in vitro, it is important to be able to challenge
organoids with the pathogen-of-interest. Here, we co-cultured
abomasum and ileum organoids with larvae of the important
ruminant helminth parasite T. circumcincta. Infective, third stage
larvae (L3) were ex-sheathed in vitro and labelled with the
lipophilic dye PKH26. Labelled larvae were added directly to
the well of a 24-well tissue culture plate containing abomasum or
ileum organoids embedded in Matrigel and complete IntestiCult
growth media. A number of T. circumcincta L3 penetrated the
Matrigel, of which approximately 50% subsequently burrowed
into central lumen of the organoids by 24 hours post-incubation,
with some individual L3 invading the organoids as early as
2 hours. This indicated that it was possible to infect the
organoids with the parasite in the correct orientation (i.e. with
the parasite residing at the luminal surface of the organoid)
without having to mechanically disrupt the organoids to allow
access to the central lumen. T. circumcincta L3 were equally
FIGURE 6 | Heat map showing expression level of top 40 most variant genes (of genes ranked by inter-sample variance) from ileum (ile) and abomasum (abo)
organoids from serial passages (P0 – P4) and ileum (ile) and abomasum (abo) tissue derived from five lambs (T1 – T5). Colours indicate level of expression from low
(blue) to high (red). The dendrograms indicate similarity between samples. Details of genes included in the heat map, including ENSOART sequence identifiers, are
shown in Supplemental File 1.
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effective at infecting both abomasum and ileum organoids and
motile larvae were still present after 14 days of co-culture. While
we mainly observed abomasum organoids containing single
larvae (Figure 9A), we found multiple larvae residing in the
lumen of the larger ileum organoids (Figure 9B). Z-stack
analysis on fixed samples showed worms were present within
the lumen of the organoids and demonstrated L3 larvae
burrowing directly through the epithelium of abomasum and
ileum organoids to access the central lumen (Figure 9C).

Generation of Apical-Out Organoids and
Infection With Salmonella typhimurium
It is necessary to expose the apical surface of the organoid
epithelia in order to have a working co-culture system for
some pathogens. A recently published protocol (Co et al.,
2019) described a method to invert the basal-out orientation of
the abomasum and intestinal organoids. When the organoids
were removed fromMatrigel and incubated in 5 mM EDTA for 1
hour, the polarity of both the abomasum and intestinal
organoids was reversed following 72 hours’ incubation in
complete IntestiCult growth medium. F-actin staining of fixed
organoid samples clearly highlighted the apical surface of the
epithelium, which is initially internally located in basal-out
abomasum and ileum organoids; however, after removing the
extra cellular matrix from the organoids, the apical surface
became positioned on the exterior surface of the organoids,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
with a microvilli brush edge apparent by confocal microscopy
(Figures 10A, B).

To demonstrate the utility of apical-out ovine gastric and
intestinal organoids as an in vitro model for host-pathogen
interactions, the apical-out organoids were exposed to the
bacterial pathogen Salmonella enterica serovar Typhimurium,
which is known to invade the epithelium via the apical surface
(Finlay and Falkow, 1990). After 6 hours of organoid-bacteria co-
culture freely suspended in complete IntestiCult growth medium,
GFP-expressing S. Typhimurium were identifiable attached
to the apical surface and within epithelial cells of the
organoids by confocal microscopy. Although S. Typhimurium
is an intestinal pathogen, here we observed GFP-expressing
bacteria attached to both abomasum and ileum apical-out
organoids (Figure 10C).
DISCUSSION

Ruminants are key food-producing animals worldwide, providing
a nutrient source to billions of people. Furthermore, dependency
upon ruminants as a food source continues to increase in order to
meet growing global dietary requirements. Gastrointestinal
disease in ruminants is a major concern and accounts for
significant economic losses and reduction in production
efficiency. It is therefore important that ruminant health and
FIGURE 7 | Heat map showing the expression of genes associated with gastrointestinal epithelia in abomasum and ileum tissue and organoids. RNA-seq analysis
was performed to compare gene expression in abomasal and ileal tissue derived from five lambs and abomasum and ileum organoids across multiple passages.
Squares from left to right under “abomasum tissue” and “ileum tissue” represent lambs T1-T5. Squares from left to right under abomasum organoids and ileum
organoids represent passages P0-P4. Scale = log2 transcripts per million reads. Ee: enteroendocrine. Details of genes included in the heat map, including ENSOART
sequence identifiers, are shown in Supplemental File 2.
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welfare is improved through prevention and control of disease in
order to meet ethical, economic and nutrient demands
(Sargison, 2020).

An obvious challenge with studying gastrointestinal host-
pathogen interactions in vivo is the internal nature of infections
and the physical barriers associated with directly observing them.
Therefore, a useful advancement for studying such infections is
the development of a physiologically relevant in vitro model
systems that allows experimental interrogation of host and
pathogen interactions in fine detail. Stem cell-derived organoids
have become a prominent feature of modern cell and tissue
biology in recent years, representing in vitro cell cultures that
retain structural and functional properties of the in vivo organ/
tissue they represent (Clevers, 2016). To date, organoid
cultivation has been achieved for numerous and diverse organs
and tissues from different host species. In particular, organoids
derived from gastrointestinal tissue have been generated for
numerous livestock species, including cattle (Hamilton et al.,
2018; Beaumont et al., 2021). However, the vast majority of
these have been organoids representing the intestinal tract.
Here, we demonstrated the ability to cultivate organoids from
gastric and intestinal tissues of a small ruminant host and, to our
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
knowledge, this is the first demonstration of organoids
representing the gastric system of a ruminant.

Following the same protocol and using the same in vitro
culture conditions, we report the ability to cultivate tissue-
specific gastric and intestinal organoids from sheep. By
comparing gene expression profiles between tissue and
organoids, we found that when grown in identical conditions
in vitro, stem cells from gastric glands developed into organoids
that retained key characteristics associated with abomasum
tissue. Stem cells from ileal crypts, on the other hand,
developed into organoids which conserved important gene
expression profiles associated with the ileum. It is important to
note that there are differences in the global transcriptome
between organoids and the tissue from which they are derived.
This is largely due to the complexity associated with ex vivo tissue
which contains immune cells, fibroblasts, a microbiome, as well
as digested material at the point of collection and this will
influence overall gene expression. By contrast, the organoids
characterized here specifically represent the epithelium layer of
the organ from which they were derived, resulting in a less
complex gene expression profile than that associated with their
respective whole tissue. Despite this, the cell diversity, self-
organising properties and the conserved expression of tissue-
specific gene markers associated with organoids makes them the
most physiologically representative in vitro cell culture systems
developed to date.

Ruminants, including cattle, sheep and goats are polygastric,
in that they have a four-chambered gastric system. The fourth
chamber, the abomasum, is most closely akin to the stomach of
monogastric animals. An important differentiating characteristic
between abomasum and ileum tissue is the expression of the
digestive stomach enzyme pepsinogen in the abomasum (Mostofa
et al., 1990). Another digestive protease associated with the
abomasum in ruminants is lysozyme, which is highly expressed
in this compartment (Stevens and Hume, 1998). Importantly, we
found that both pepsinogen and lysozyme are expressed in
abomasum organoids and not in ileum organoids. We also
found evidence of parietal cells specifically present in
abomasum organoids and not ileum organoids. This was
indicated by the detection of CCKBR mRNA only in
abomasum organoids and tissue following transcriptomic
analysis. CCKBR is a cholecystokinin receptor expressed in the
gastric and central nervous systems and more specifically it is
associated with parietal cells in the stomach (Kulaksiz et al., 2000;
Schmitz et al., 2001; Engevik et al., 2019). Conversely, we also
identified genes whose expression was specific to ileum tissue that
were also expressed in ileum organoids and not in abomasum
organoids. For example, REG4, a marker of enteroendocrine cells
(specifically enterochromaffin cells) in intestinal epithelia (Gehart
et al., 2019) and SBD2, an antimicrobial sheep beta-defensin
associated with the mucosal surface of small intestinal crypts
(Meyerholz et al., 2004) were found to be specifically and
abundantly expressed in ileum tissue and organoids and not
abomasum. Specific expression of SBD2 in the intestinal samples
indicates this gene plays a role in antimicrobial defence of
intestinal crypts, but not in gastric glands. Collectively, these
FIGURE 8 | Heat map showing the expression of genes associated with
gastric epithelia in abomasum and ileum tissue and organoids. RNA-seq
analysis was performed to compare gene expression in abomasal and ileal
tissue derived from five lambs and abomasum and ileum organoids across
multiple passages. Squares from left to right under “abomasum tissue” and
“ileum tissue” represent lambs T1-T5. Squares from left to right under
abomasum organoids and ileum organoids represent passages P0-P4.
Scale = log2 transcripts per million reads. Details of genes included in the
heat map, including ENSOART sequence identifiers, are shown in
Supplemental File 2.
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key differences in gene expression indicates that the two different
types of organoid are tissue-specific and representative of the
tissue from which the stem cells are derived. Intriguingly, we
noted that while certain mucin genes are expressed in the
organoids, the expression of particular mucins is lower than in
their respective tissue. For example,muc2 shows lower expression
in ovine ileum organoids than in ileum tissue. However, muc2
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 14
expression in ovine ileum organoids is similar to that previously
reported for bovine ileum organoids (Hamilton et al., 2018), albeit
there was no direct comparison of gene expression in tissue for
the bovine ileum organoids. We predict that this lower expression
of certain mucin genes in the organoids is due to the sterile system
in which they were cultured that does not contain a microbiome,
pathogens or food within or passing through the lumen and it
A

B

C

FIGURE 9 | Ovine gastric and intestinal organoids modelling a helminth infection. (A) Representative images of ovine abomasum and ileum organoids challenged
with the helminth parasite Teladorsagia circumcincta. Following 24 hours of co-culture, L3 stage T. circumcincta (red) are visible within the lumen of abomasum and
ileum organoids. (B) Representative images of individual ileum organoids presenting an enlarged lumen containing multiple worms (red). (C) Representative Z-stack
images showing L3 stage T. circumcincta (red) migrating through the epithelial layer in abomasum and ileum organoids. F-actin (green) and Hoescht (blue). Scale
bars = 10 µm.
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would be interesting to see if mucin gene expression is increased
in ruminant gut organoids in response to these stimuli in
future studies. Interestingly, the relatively high muc1 gene
expression associated with abomasum tissue was maintained in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 15
the abomasum organoids, which could be a necessary response to
protect the epithelium against secreted host enzymes such as
pepsin and lysozyme. We also found that a number of genes used
in previous studies as gastrointestinal epithelial markers
A

B

C

FIGURE 10 | Reverse polarisation of ovine gastric and intestinal organoids for modelling host-pathogen interactions across the apical surface. Basal-out and apical-
out abomasum (A) and ileum (B) organoids imaged by differential interference contrast (top) and confocal immunofluorescence microscopy (bottom). White arrows
indicate the F-actin-expressing brush border associated with the apical surface of the epithelia. Yellow arrow in the inset panel indicates microvilli at the externally
located brush border in apical-out organoids. (C) Cross sections of apical-out abomasum and ileum organoids imaged by confocal microscopy. GFP-expressing
Salmonella enterica Typhimrium (green), indicated by white arrows, are detectable on the surface of and within epithelial cells. F-actin (red) and Hoechst (blue). Scale
bars = 10 µm.
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(Hamilton et al., 2018) were not detected in our transcriptomic
analysis of ileal or abomasal tissue from five individual animals,
suggesting these genes are not reliable markers of gastrointestinal
epithelia in sheep.

A necessary feature of an organoid cell line is the conservation of
gene expression profiles across multiple passages. Transcriptomic
analysis of abomasum and ileum organoid samples collected across
five consecutive passages revealed that gene expression profiles
were consistent. Further analysis of the expression of specific cell
markers indicated that the diversity of epithelial cell types was also
maintained across multiple passages. That the different organoid
types maintain their tissue specificity and cell diversity, as well as
the ability to cryopreserve them makes them a robust model that
will ensure reproducibility across experiments, as well as reducing
the reliance on deriving material from animals and thereby
reducing the number of animals used in associated research.

To demonstrate the effectiveness of ovine gastric and intestinal
organoids for modelling pathogen infections in vitro, we exposed
abomasum and ileumorganoids to different pathogens and showed
they could invade them. It has been recognized that gastrointestinal
organoids could represent useful in vitro models for studying
helminth infections (Duque-Correa et al., 2020). However, to-
date this has been limited to applying worm excretory and
secretory products to organoids, or growing organoids from
helminth-infected mice, as opposed to live host-parasite co-
cultures (Eichenberger et al., 2018a; Eichenberger et al., 2018b;
Nusse et al., 2018; Luo et al., 2019; Duque-Correa et al., 2020).Here,
we applied a very simple method of adding ex-sheathed T.
circumcincta L3 directly to the growth media of organoids that
were embedded in Matrigel. We found that after 24 hours, worms
had burrowed through the Matrigel dome and into the lumen of
individual organoids. We were also able to capture direct T.
circumcincta invasion through the epithelium in both abomasum
and ileum organoids. Furthermore, motile worms were observed at
least 14 days following organoid invasion, demonstrating the
potential to prolong parasite survival in vitro and to perform
more long-term studies on the parasite compared to worms
cultured under previous in vitro methods (pers comms). While
invasion across the epithelium, particularly from the basal side, is
not necessarily a behaviour associated with T. circumcincta larvae,
the homing capacity of larvae tomigrate to the organoid lumen and
interact with the apical surface of the epithelium provides a suitable
in vitro system for studying host-pathogen interactions between
host and helminth. Furthermore, the ability of worms to invade the
organoids themselves allows organoids to be infected with the
worms following a minimally disruptive method.

Gastrointestinal pathogens that invade the epithelial mucosa
commonly interact with the apical surface of epithelial cells.
However, the innate polarity of mammalian gastrointestinal
organoids grown in Matrigel is with the apical surface on the
inside of the organoid. Various approaches have previously been
used to expose pathogens to the apical surface of the epithelium,
including microinjection directly into the lumen of the organoid,
fragmentation of organoids and open-format 2D monolayers. A
recent publication also demonstrated the ability to reverse the
polarity of human ileum organoids by the removal of Matrigel
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 16
and extracellular matrix proteins (Co et al., 2019). This has since
been replicated in porcine ileum organoids (Beaumont et al.,
2021) and here, we showed that ruminant ileum organoids can
also have the polarity reversed following the same method. We
also demonstrated that the polarity of gastric organoids can be
reversed to an apical-out conformation. The ability to expose the
apical surface of gastric and intestinal organoids to the culture
supernatant facilitates direct interaction of the organoids with
microbes, as we showed here by infecting apical-out organoids
with S. Typhimurium. Since this method does not require the use
of specialist equipment to administer pathogens into a central
organoid lumen, this makes modelling host-pathogen infections
in vitro significantly more practical.

In summary, the results from this study demonstrate the ability
to isolate stem cells from gastric glands and crypts of the sheep
abomasum and intestine, respectively and show that they
differentiate into tissue-specific organoids when grown under
identical conditions. The robustness of both gastric and intestinal
organoids from sheep was demonstrated by showing that tissue-
specific gene expression is maintained across multiple passages.
Finally, both gastric and intestinal sheep organoids can be invaded
by important bacterial and parasitic pathogens and they therefore
represent a useful tool for modelling host-pathogen interactions.
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Supplementary Figure 1 | Negative controls for immunofluorescence antibody
labelling in abomasum organoids. Representative confocal microscopy images of
abomasum organoids probed with non-specific host IgG followed by indirect Alexa
Fluor® 488-conjugated secondary antibody labelling. Marker name in green
brackets indicates the antibody labelling control each organoid image represents.
Scale bars = 10 µm.

Supplementary Figure 2 | Negative controls for immunofluorescence antibody
labelling in intestinal organoids. Representative confocal microscopy images of
ileum organoids probed with non-specific host IgG followed by indirect Alexa Fluor®

488-conjugated secondary antibody labelling. Marker name in green brackets
indicates the antibody labelling control each organoid image represents. Hoescht,
blue. Scale bars = 10 µm.

Supplementary Figure 3 | Heat map showing the expression of cell junction-
related genes in abomasum and ileum tissue and organoids. RNA-seq analysis was
performed to compare gene expression in abomasal and ileal tissue derived from
five lambs and abomasum and ileum organoids across multiple passages. Squares
from left to right under “abomasum tissue” and “ileum tissue” represent lambs T1-
T5. Squares from left to right under abomasum organoids and ileum organoids
represent passages P0-P4. Scale = log2 transcripts per million reads. Details of
genes included in the heat map, including ENSOART sequence identifiers, are
shown in Supplemental File 2.

Supplementary Figure 4 | Heat map showing the detection of immune-related
gene expression in abomasum and ileum tissue and organoids. RNA-seq analysis
was performed to compare gene expression in abomasal and ileal tissue derived from
five lambs and abomasum and ileum organoids across multiple passages. Squares
from left to right under “abomasum tissue” and “ileum tissue” represent lambs T1-T5.
Squares from left to right under abomasum organoids and ileum organoids represent
passages P0-P4. Scale = log2 transcripts per million reads. TLRs, toll-like receptors;
CLRs, C-type lectin receptors. Details of genes included in the heat map, including
ENSOART sequence identifiers, are shown in Supplemental File 2.
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