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The higher order corrections to the equations that describe nonlinear wave motion in shallow
water are derived from the water wave equations. In particular, the extended cylindrical Korteweg-
de Vries and Kadomtsev-Petviashvili equations –which include higher order nonlinear, dispersive
and nonlocal terms– are derived from the Euler system in (2+1) dimensions, using asymptotic
expansions. It is thus found that the nonlocal terms are inherent only to the higher dimensional
problem, both in cylindrical and Cartesian geometry. Asymptotic theory is used to study the
resonant radiation generated by solitary waves governed by the extended equations, with an excellent
comparison obtained between the theoretical predictions, for the resonant radiation amplitude, and
the numerical solutions. In addition, resonant dispersive shock waves (undular bores) governed by
the extended equations are studied. It is shown that the asymptotic theory, applicable for solitary
waves, also provides an accurate estimate of the resonant radiation amplitude, of the undular bore.

Keywords: Solitary waves, undular bores, resonant radiation, asymptotic theory, extended Korteweg-de Vries

equation, extended Kadomtsev-Petviashvili equation.

I. INTRODUCTION

The study of waves on the surface of a fluid is a classi-
cal topic in fluid mechanics, with a mathematical history
dating back to the pioneering work of G.G. Stokes [1, 2],
and summarised in the classic text of H. Lamb [3]. In
fact, water wave theory forms the backbone of much of
oceanography, ocean engineering and water engineering.
While a classical problem, water waves and the solutions
of the water wave equations are an on-going topic of re-
search. The water wave equations are a nonlinear free
surface problem consisting of a linear equation, namely
Laplace’s equation for the motion of the bulk fluid, to-
gether with nonlinear kinematic and dynamic boundary
conditions which give continuity of the surface and conti-
nuity of pressure across the surface, respectively [4, 5]. It
is these nonlinear boundary conditions which mean that
the full water wave equations cannot be solved, in general
[4]. For this reason, the water wave equations have been
studied in various asymptotic regimes, including the lin-
ear and weakly nonlinear limits, leading to Stokes’ expan-
sions and studies of modulational instability [4]. Another
widely studied asymptotic regime is the weakly nonlin-
ear, long wave regime, for which the wavelength of the
wave is much larger than the depth of the fluid, and the
amplitude of the wave is much less than the fluid depth.
This leads to equations of Boussinesq and Korteweg-de
Vries (KdV) type when dispersion and nonlinearity are
balanced [4, 5]. An additional attraction of this asymp-
totic limit is the integrable nature of the KdV equation
[4, 6] and the applicability of the KdV equation to waves
in nature in both the ocean and atmosphere [4, 5, 7, 8], as
well as to waves in plasmas [9, 10], optical fibers [11, 12],
Bose-Einstein condensates [13], nematic liquid crystals

[14], exciton-polariton superfluids [15], and so on.
As stated, the KdV equation can be derived from the

water wave equations in the long wavelength, weakly non-
linear limit using an asymptotic expansion in two small
non-dimensional parameters, the scaled wave height and
the inverse scaled wavelength. Extending this asymp-
totic expansion to the next order results in the extended
Korteweg-de Vries (eKdV) equation

ut +
3

2
uux +

1

6
uxxx

+ ε
(

c1u
2ux + c2uxuxx + c3uuxxx + c4uxxxxx

)

= 0, (1)

where subscripts denote partial derivatives and ε is the
scaled wave height parameter [16]. This eKdV equation
arises in a number of physical contexts. It can be de-
rived from the water wave equations for surface gravity
waves, in which case the coefficient values are c1 = −3/8,
c2 = 23/24, c3 = 5/12 and c4 = 19/360. The full eKdV
equation (1) has been used to study higher order disper-
sive shock waves, termed undular bores in fluid mechan-
ics [17] and solid mechanics [18], transcritical flow over
topography [19], as well as solitary waves in weakly non-
local media [20]. In the special case c2 = c3 = c4 = 0,
so that higher order nonlinearity dominates over higher
order dispersion, the eKdV equation (1) is the Gard-
ner equation, which is integrable; this equation arises
for large amplitude internal water (ocean) waves [21–23],
as well as in plasma physics [24, 25] and quantum fluid
mechanics [26]. As well as studying higher order KdV-
type solitary waves, to be discussed next, the Gardner
equation has been used to study higher order dispersive
shock waves, termed undular bores in fluid mechanics,
[27] and their application to transcritical flow over to-
pography [16, 28]. For c1 = c2 = c3 = 0 the eKdV
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equation (1) reduces to the Kawahara equation [29]

ut +
3

2
uux +

1

6
uxxx + εc4uxxxxx = 0. (2)

This equation arises for gravity-capillary waves when the
Bond number is near 1/3 [30]. As well as studying cap-
illary waves, the Kawahara equation has been used to
study resonant undular bores in nonlinear optics [31, 32].
The introduction of the higher order nonlinear, disper-

sive and nonlinear/dispersive terms to the KdV equation
leads to genuinely new effects, not just small corrections.
The solitary wave solution of the Kawahara equation (2)
is resonant if c4 > 0 in that linear dispersive radiation’s
phase velocity can match the solitary wave velocity, re-
sulting in the solitary wave radiating and decaying [33–
37]. As an undular bore is a modulated wavetrain, in its
standard form with solitary waves at one edge and linear
waves at the other [38], undular bores governed by the
Kawahara equation (2) are also resonant, with the bore
shedding a resonant wavetrain ahead of it [30]. Since the
undular bore is formed from an initial step which con-
nects two distinct levels, one of which is non-zero, this
resonance does not cause the bore to decay, but results
in non-standard forms if the initial step is large enough,
which can include the near total destruction of the bore
structure itself, with only a strong resonant wavetrain
remaining [30, 39]. In addition to water wave theory,
the Kawahara equation (2) has been shown to apply to
the nonlinear optics of nematic liquid crystals [31, 40], so
that resonant undular bores can exist in this medium as
well [31, 32, 41].
Given this importance and widespread use of the eKdV

equation in the one dimensional (1D) setting, in this work
the extended cylindrical Korteweg-de Vries (ecKdV) and
the extended Kadomtsev-Petviashvili (eKP) equations
will be derived from the full water wave equations in
the quasi-1D and two-dimensional (2D) settings, respec-
tively. The KP equation is the 2D equivalent of the
KdV equation when weak lateral dispersion is included
[42, 43], while the cKdV equation is the radially symmet-
ric two space dimensional equivalent of the KdV equation
[44]. It will be found that as well as the inclusion of the
fifth derivative term uxxxxx, as for the eKdV equation—
which can lead to the resonance discussed above— the
ecKdV and eKP equations include nonlocal, integral-type
terms, which lead to qualitatively different behaviour to
the cKdV and KP equations. These extended equations
will be used to study solitary wave resonance due to the
fifth derivative. As noted above, solitary wave solutions
of the Kawahara equation (2) are in resonance with dis-
persive radiation due to the fifth derivative uxxxxx term
leading to non-convex dispersion for c4 > 0 [34]. While
the full water wave eKdV equation (1) with water wave
coefficients ci, i = 1, . . . , 4, has a fifth derivative term
of the appropriate sign to lead to resonance between the
linear wave phase velocity and the solitary wave veloc-
ity, such a resonance has not been observed in numeri-
cal solutions [19]. In the case of the eKdV equation an

asymptotic study will show that there is a node in the
resonant wave amplitude for certain combinations of ci,
i = 1, . . . , 4. It is found that the water wave coefficients
nearly satisfy one of these nodal relations. The existence
of this resonant wave amplitude node in higher dimen-
sions is investigated using the eKdV and ecKdV equa-
tions derived in this work. This study of the dependence
of the resonant radiation on the higher order coefficients
is extended to resonant undular bores governed by the
extended KdV and cKdV equations, with resonant wave
amplitude minima found for the water wave coefficients,
as for resonant solitary waves.
Although the above analysis and results refer to the

shallow water wave problem, we also show that a con-
nection with other physical contexts is also possible. In
particular, we employ an asymptotic expansion method –
similar to the one used to treat the Euler system– and re-
duce a generic nonlocal 2D nonlinear Schrödinger (NLS)
model that governs beam propagation in media featuring
a spatial nonlocal nonlinearity [45] (such as nematic liq-
uid crystals [46, 47]) to the ecKdV equation. The latter
has a form similar to the one which was derived for shal-
low water waves, which suggests that phenomena that
occur in shallow water may also occur in optical systems.
Our presentation is organized as follows. In Section II,

we present the framework of the Euler (or water wave)
equations, while in Sections III and IV, we derive the
ecKdV and the eKP equations, respectively. In Sec-
tions V and VI we analyze solitary wave and undular
bore resonance, respectively, for both the 1D and quasi-
1D (polar coordinate) setting. In Section VII, we present
the derivation of the ecKdV equation from a nonlocal
NLS model. Finally, in Section VIII, we summarize our
conclusions.

II. WATER WAVE EQUATIONS

Let us consider gravity waves on the surface of an in-
compressible, inviscid fluid of undisturbed depth h. The
fluid velocity u can then be expressed in terms of the ve-
locity potential φ as u = ∇φ. The x and y coordinates
are taken in the horizontal plane with the z direction
vertically upwards, opposite to the direction of gravity,
the acceleration due to gravity being denoted by g. The
displacement of the fluid surface from the undisturbed
state is taken as z = η(x, y, t), so that z = 0 is the undis-
turbed level. The water wave equations are then set in
non-dimensional form, with the z coordinate scaled by
the depth h, x and y by typical wavelengths λx and λy

in these directions, respectively, time t by λx/
√
gh, the

surface displacement η by a typical wave amplitude a and
the velocity potential is measured in units of λxga/

√
gh.

It is noted that c0 =
√
gh is the linear long wave speed.

The dimensionless water wave equations for surface grav-
ity waves are then [4, 5]

φzz + µ2φxx + µ2δ2φyy = 0, −1 < z < εη, (3)
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which is Laplace’s equation, in the fluid bulk, together
with the impenetrable boundary condition:

φz = 0, z = −1, (4)

at the fluid bottom and the dynamic and kinematic
boundary conditions

φt +
ε

2

(

φ2
x + δ2φ2

y +
1

µ2
φ2
z

)

+ η = 0, z = εη, (5)

µ2
[

ηt + ε
(

φxηx + δ2φyηy
)]

= φz , z = εη, (6)

In these non-dimensional water wave equations, the non-
dimensional wave parameters are ε = a/h for the wave
amplitude, δ = λx/λy for the ratio of the wavelengths
in the x and y directions and µ = h/λx for the wave-
length, that is dispersion. In the present work, we con-
sider weakly nonlinear long waves, that is the wavelength
is much greater than the water depth, i.e., µ ≪ 1, and
the wave amplitude is much less than the fluid depth, so
that ε ≪ 1. The usual KdV-type balance between weakly
dispersive and weakly nonlinear effects will be used with
ε = µ2 [4].

III. EXTENDED CKDV EQUATION

Let us now consider the water wave equations (3)–(6)
in the weakly nonlinear, long wave limit for the special
case of quasi-1D circularly symmetric waves, leading to
the cKdV equation [44], but extended to the next order
in the asymptotic expansion, leading to the ecKdV equa-
tion. In this case, taking δ = 1, the water wave equations
in plane polar coordinates read:

φzz + ε

(

φrr +
1

r
φr

)

= 0, (7)

in the fluid bulk, together with the boundary conditions

φz = 0 at z = −1, (8a)

φt +
ε

2

(

φ2
r +

1

ε
φ2
z

)

+ η = 0 at z = εη, (8b)

ηt + εφrηr =
1

ε
φz at z = εη. (8c)

Following the derivation of the standard cKdV equa-
tion [7] (see also [48]), we introduce the stretched radial
R and time T variables and scaled velocity potential Φ
and surface displacement H :

R = ε(r − t), T = ε4t, φ = εΦ, η = ε2H. (9)

We now asymptotically expand the velocity potential Φ
as follows:

Φ = Φ0 + ε3Φ1 + ε6Φ2 + ε9Φ3 + · · · . (10)

Laplace’s equation for the fluid, Eq. (7), then becomes:

(R+ T/ε3)Φ0zz + T (Φ1zz +Φ0RR)

+ε3 [RΦ1zz + TΦ2zz + (RΦ0R)R + TΦ1RR]

+ε6 [RΦ2zz + TΦ3zz + (RΦ1R)R + TΦ2RR] = O(ε9).

Solving this equation at each order of ε, and applying the
bottom boundary condition (8a), gives

Φ0 = A(R, T ), Φ1 = − (z + 1)2

2
ARR,

Φ2 = − (z + 1)
2

2T
AR +

(z + 1)
4

24
ARRRR,

Φ3 =
(z + 1)2R

2T 2
AR +

(z + 1)4

12T
ARRR

− (z + 1)
6

720
ARRRRRR, (11)

where any homogeneous solutions that arise in higher-
order terms are absorbed into the leading order solution
Φ0. These solutions are then substituted into the surface
boundary conditions (8b) and (8c), keeping terms up to
O(ε6).
Differentiating the dynamic boundary condition (8b)

with respect to R yields:

HR − wR + ε3
(

wT + wwR +
1

2
wRRR

)

+ε6

(

1

2T
wRR +HRwRR +

1

2
wRwRR − 1

2
wRRT

+HwRRR − 1

2
wwRRR − 1

24
wRRRRR

)

= 0, (12)

while the kinematic boundary condition (8c) yields:

−HR + wR + ε3
(

1

T
w +HT + (Hw)R − 1

6
wRRR

)

+ ε6

(

− R

T 2
w +

1

T
Hw − 1

3T
wRR

− 1

2
(HwRR)R +

1

120
wRRRRR

)

= 0, (13)

where we have introduced the new variable w with A =
wR. To make equations (12) and (13) consistent, we set

w = H + ε3w1 + ε6w2 + . . . , (14)

and retrieve from compatibility the functions w1 and w2:

w1 = −1

4
H2 +

1

3
HRR − 1

2T
(∂−1

R H), (15a)

w2 =
1

8
H3 +

3

16
H2

R +
1

2
HHRR +

1

10
HRRRR

+
1

T

[

1

6
HR − 1

16
(∂−1

R H2)

]

+
1

T 2

[

1

2
(∂−1

R RH) +
5

8
(∂−2

R H)

]

. (15b)
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Here, the operator ∂−1
R is defined as

∂−1
R H =

∫ R

0

H(R′, T ) dR′. (16)

Finally, substituting these expressions for w1 and w2,
and hence w, into the kinematic boundary condition (12)
gives the extended cylindrical KdV (ecKdV) equation:

HT +
3

2
HHR +

1

6
HRRR +

1

2T
H + ε3

(

− 3

8
H2HR +

23

24
HRHRR +

5

12
HHRRR +

19

360
HRRRRR

)

+
ε3

T

[

3

16
H2 +

1

4
HRR − 1

2
HR∂

−1
R (H)

]

+
ε3

T 2

[

−R

2
H +

1

8
∂−1
R (H)

]

= 0. (17)

Note that in the 1D case, i.e., ignoring the terms with 1/T
and 1/T 2 which result from the φr/r term in Laplace’s
equation, the above extended cKdV (ecKdV) equation
reduces to the usual, 1D, extended KdV equation for
surface gravity waves [16, 49]. It should also be men-
tioned that, while the radially symmetric water wave
equations (8) have no dependence on the polar angle θ, it
still describes radially symmetric water waves which are
not purely1D objects.
We additionally note that the higher dimension has

introduced terms in the ecKdV equation which are non-
local due to the operator ∂−1

R . However, we note that for
large time T , the ecKdV equation reduces to the eKdV
equation. This is expected as for large T the radius of
curvature of a wave will be small as it propagates into
large R, so that the wave is essentially one dimensional.
This will become more apparent in the fully 2D case that

we study below.
We conclude this Section with a comment on the con-

nection between the ceKdV equation (17) with its Carte-
sian counterpart. We recall that, in the absence of higher-
order effects, the “regular” cKdV and KdV equations
can be linked to each other via a transformation [44, 50].
Such a transformation also exists for the ecKdV equa-
tion (17) that maps it to a perturbed KdV equation. In
detail, upon defining:

H =
R

3T
− 1

2T
u(ξ, τ)− 4ε3

3
ξ2τ2 log τ, (18)

R =
ξ

τ
, T = − 1

2τ2
, (19)

we may transform the ecKdV equation (17) to the per-
turbed KdV equation

uτ +
3

2
uuξ +

1

6
uξξξ + ε3

[

− ξ

6
(11 + 24 log τ)u − ξ2

2
(1 + 4 log τ)uξ −

1

6
∂−1
ξ (u)

]

+ ε3τ

[

− 1

8
u2 +

1

2
ξuuξ

−41

36
uξξ −

5

18
ξuξξξ + uξ∂

−1
ξ (u)

]

+ ε3τ2
[

−3

8
u2uξ +

23

24
uξuξξ +

5

12
uuξξξ +

19

360
uξξξξξ

]

= O(ε6). (20)

We note that the O(ε3) “correction” to the original trans-
formation for H in (19) serves to cancel any inhomoge-
neous terms produced up to that order.

IV. THE EXTENDED KP EQUATION

Next, we derive the fully 2D extended KP equation
as an approximation to the water wave equations in the
weakly nonlinear, long wave limit for which there is weak
lateral dispersion [42, 43]. As for the derivation of the
ecKdV equation, the dimensional water wave equations
for water waves propagating over a flat bottom consist of

Laplace’s equation for the fluid bulk:

φzz + ε(φxx + εδ2φyy) = 0, −1 < z < εη, (21)

together with the bottom boundary condition,

∂φ

∂z
= 0 at z = −1, (22)
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and the dynamic and kinematic boundary conditions on
the free surface,

φt +
1

2
ε

(

φ2
x + εδ2φ2

y +
1

ε
φ2
z

)

+ η = 0 at z = εη,

(23a)

ηt + ε
(

φxηx + εδ2φyηy
)

=
1

ε
φz at z = εη. (23b)

We note that, once again, the parameter δ2, measuring
the ratio of wavelengths in the x and y directions, is of
order O(1) and while it can be absorbed trivially via a
change of coordinates, it is left to act as a measure of the
dimensionality contribution.
Similarly to the derivation of the ecKdV equation, we

expand the velocity potential φ as:

φ = φ0 + εφ1 + ε2φ2 + ε3φ3 + · · · . (24)

Substituting this expansion into Laplace’s equation (21)
gives:

φ0zz + ε(φ1zz + φ0xx + δ2φ0yy)

+ ε2(φ2zz + φ1xx + δ2φ1yy)

+ ε3(φ3zz + φ2xx + δ2φ2yy) = O(ε4). (25)

We now solve Laplace’s equation at each order of ε using
the bottom boundary condition (22). Again, solving the
differential equations at each order of ε and applying the
bottom condition gives the solutions:

φ0(x, y, z, t) = A(x, y, t),

φ1(x, y, z, t) = − (z + 1)2

2
(Axx + δ2Ayy),

φ2(x, y, z, t) =
(z + 1)

4

24
(Axxxx + 2δ2Axxyy + δ4Ayyyy),

φ3(x, y, z, t) =
(z + 1)

6

720
(Axxxxxx + 3δ2Axxxxyy

+ 3δ4Axxyyyy + δ6Ayyyyyy). (26)

Differentiating the dynamic boundary condition (23a)
with respect to x, substituting the solutions (26) of
Laplace’s equation and introducing A = wx, casts

Bernoulli’s equation (23a) and the kinematic boundary
condition (23b) into the forms:

wt + ηx + ε

(

wwx − 1

2
wxxt

)

+ ε2

[

δ2wy(∂
−1
x wy)

− 1

2
δ2wyyt − ηxwxt +

1

2
wxwxx − ηwxxt

− 1

2
wwxxx +

1

24
wxxxxt

]

= 0, (27)

and

ηt + wx + ε

[

δ2(∂−1
x wyy) + (ηw)x − 1

6
wxxx

]

+ ε2

[

δ2η(∂−1
x wyy) + δ2ηy(∂

−1
x wy)−

1

3
δ2wxyy

− 1

2
(ηwxx)x +

1

120
wxxxxx

]

= 0. (28)

To make these two equations consistent we again set

w = η + ε(w1 + δ2w12) + ε2(w2 + δ2w21) + . . . , (29)

where we have isolated different corrections to emphasize
the role of the added dimensionality. Substituting this
expansion into (27) and (28) gives:

w1 = −1

4
η2 +

1

3
ηxx, (30a)

w12 = −1

2
∂−2
x ηyy, (30b)

w2 =
1

8
η3 +

3

16
η2x +

1

2
ηηxx +

1

10
ηxxxx, (30c)

w21 =
1

6
ηyy −

3

8
∂−1
x (η∂−1

x (ηyy))

+
5

8
∂−2
x (ηηyy + η2y) +

3δ2

8
∂−4
x (ηyyyy). (30d)

We note that w1 and w2 have already been found in Ref.
[49]. Finally, substituting these wij into the kinematic
boundary condition (28) gives the extended KP (eKP)
equation:

(ηt + ηx)x + ε

(

3

2
ηηx +

1

6
ηxxx

)

x

+ εδ2
(

1

2
ηyy

)

+ ε2
(

−3

8
η2ηx +

23

24
ηxηxx +

5

12
ηηxxx +

19

360
ηxxxxx

)

x

+ ε2δ2

[

9

8
η2y +

1

4
ηηyy +

1

4
ηxxyy −

1

2
ηxx∂

−2
x (ηyy)−

3

8
ηx∂

−1
x (ηyy) + ηxy∂

−1
x (ηy)−

δ2

8
∂−2
x (ηyyyy)

]

= 0. (31)

It is clear that the effect of the higher dimensionality
in this eKP equation is more pronounced than for the

ecKdV equation (17). Indeed, the additional terms ap-
pearing over those in the ecKdV equation, measured by
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the parameter δ, are highly nonlocal due to the operator
∂−1
x , which now occurs in multiple terms.
Notably, the eKP (31) and ecKdV (17) equations are

related. Indeed, as the radius of the waves grows, or

in the limit T ≫ 1, the wave front becomes locally flat
and the ecKdV equation (17) may be approximately de-
scribed by the eKdV equation

ηt + ηr + ε

(

3

2
ηηr +

1

6
ηrrr

)

+ ε2
(

−3

8
η2ηr +

23

24
ηrηrr +

5

12
ηηrrr +

19

360
ηrrrrr

)

= 0,

where all variables are defined as in (9).

V. SOLITARY WAVE RESONANCE

A. One space dimension

Let us now consider the behaviour of solutions, partic-
ularly solitary wave solutions, of the eKdV equation (1)
and the ecKdV equation (17). To connect directly with
previous work on (1 + 1) dimensional eKdV equations,
we shall rescale the eKdV equation (1) to:

vτ + 6vvξ + vξξξ

+ε1
(

d1v
2vξ + d2vξvξξ + d3vvξξξ + vξξξξξ

)

= 0, (32)

where we have used the scalings:

ξ = x, τ =
1

6
t, v =

3

2
u,

ε1 = 6εc4, d1 =
4

9

c1
c4
, d2 =

2

3

c2
c4
, d3 =

2

3

c3
c4
. (33)

For the choices d1 = d2 = d3 = 0 this equation is the
Kawahara equation (2). It is well known that the Kawa-
hara equation possesses solitary wave solutions in reso-
nance with dispersive radiation as the linear dispersion
relation ω = −k3 + ε1k

5 is non-convex if ε1 > 0, so that
the linear phase velocity can coincide with the solitary
wave velocity [34–37]. However, in the general case with
all the higher order terms present in the eKdV equa-
tion the amplitude of this resonant radiation depends
markedly on the values of the higher order coefficients
d1, d2 and d3. In particular, if the higher order coeffi-
cients satisfy the relation

d = 90 + d1 − 3d2 − 6d3 = 0, (34)

then exact solitary wave solutions with no associated res-
onant radiation exist, see (22) in [33]. The relation (34)
includes well known families of integrable higher-order
equations such as the Lax hierarchy and the Sawada-
Kotera equation. For the eKdV equation (32) the coeffi-
cients for water waves, see (1), are

d1 = −60

19
, d2 =

230

19
, d3 =

100

19
, ε1 = ε

19

60
. (35)

While these coefficients (35) do not satisfy the node re-
lation (34), numerical solutions of this equation for sur-
face water wave undular bores show that the amplitude
of the generated resonant radiation is very small [19].
The resonant radiation generated by solitary wave solu-
tions of the eKdV equation will now be investigated using
asymptotic theory. Resonant undular bores will then be
studied, noting that undular bores are a modulated peri-
odic wave with solitary waves at one edge. This analysis
will verify the small resonant wave amplitude in the sur-
face water wave case, both for solitary waves and undular
bores, which was observed from numerical solutions.
Let us consider a travelling wave solution of the eKdV

equation with u = u(θ), where θ = ξ − cτ . The eKdV
equation then has the leading order asymptotic solitary
wave solution:

v = 2γ2sech2(γθ) + b sin(kθ + φ), (36)

b = −2πK

ε1
exp

(

−πk

2γ

)

, c = 4γ2 + ε116γ
4, (37)

for small |ε1|, where b is the amplitude, k the wavenumber
and φ the phase constant of the resonant wavetrain [34].
Note that at O(1) this solitary wave is just the KdV
soliton, with an attached small amplitude periodic wave
of amplitude O(b) at next order. The O(ε1) correction
to the solitary wave itself is not needed for the current
analysis. For resonance the phase velocity of the linear
wavetrain is equal to the solitary wave velocity, giving
ω/k = −k2 + ε1k

4 = c. Hence,

k = ε
−1/2
1 (1 + 4ε1γ

2)1/2. (38)

Now it can be seen from (36) that the amplitude b of
the resonant radiation is exponentially small as b ∼
ε−1
1 exp(ε

−1/2
1 ) as ε1 → 0.

As the resonant tail amplitude is exponentially small,
the techniques of exponential asymptotics must be used
to obtain the amplitude of this tail [51]. To determine
this resonant wavetrain, we rescale the eKdV equation
(32) for the travelling wave solution u = u(θ) by

w = ε1v, q = ε
−1/2
1

[

θ − (2n+ 1)iπ

2γ

]

, (39)

where the form of the spatial variable q is related to the
structure of the poles of the soliton solution, see [33].



7

This transformation is made so that q is small near the
poles of the soliton solution, near where the matching
between the solitary wave and resonant radiation occurs.
To leading order the eKdV equation then becomes:

6wwq + wqqq + d1w
2wq + d2wqwqq (40)

+ d3wwqqq + wqqqqq = 0.

The solution to this inner problem for the resonant ra-
diation must be found and then matched to that of the
full problem with the solitary wave. The inner solution
in the KdV case (no higher-order terms) is w = −2/q2,
which suggests a series solution of the form:

w = − 2

q2
+

∞
∑

n=2

an
q2n

. (41)

This series solution (41) is now substituted into the scaled
eKdV equation (40), which then gives a recurrence rela-
tion for an. At lowest order we obtain a2 = − 2

9
d, so that

if the nodal relation (34) is satisfied, then a2 and all the
higher-order coefficients are zero and K = 0. In this case
no radiation is generated and exact steady solitary wave
solutions exist.
The coefficients an are calculated numerically from the

recurrence relation for given choices of the di. The se-
quence of coefficients an is divergent, however. For large
n it can be shown that the recurrence relation has the
asymptotic solution an = K(−1)n(2n − 1)!. Dividing
our numerically obtained coefficents an by the large n
asymptotic solution gives a sequence of approximations
for the constant K. Multiple applications (five to ten)
of Aitken convergence acceleration (see [52]) are applied
to the sequence for K in order to obtained a converged
soution before round-off affects the result.
For the Kawahara equation, for which d1 = d2 = d3 =

0, we find K = 19.97, which reproduces the result of [33].
For the water wave coefficients (35) we find K = 0.768,
which is about 4% of the magnitude of K for the Kawa-
hara case. This result explains the numerical observation
of the small amplitude of the resonant radiation for sur-
face water waves [19].
The eKdV equation (1) was solved numerically using

the pseudo-spectral method of Fornberg and Whitham
[53], as extended to enhance its stability at high
wavenumbers through the use of an integrating factor
to propagate the linear dispersion uxxx and uxxxxx in
the eKdV equation (1) or HRRR and HRRRRR in the
ecKdV equation (17)[54, 55]. This enhancement of sta-
bility is particularly important for the eKdV equation
due to the fifth order dispersion. The nonlinear terms
in these equations involving derivatives of u and H are
calculated in Fourier space. The equations are then prop-
agated forward in time t using the fourth order Runge-
Kutta method. This propagation is done in Fourier space
using the aforementioned integrating factor to propagate
linear dispersion as this enhances the stability of the nu-
merical scheme as the (high order) dispersion is propa-
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FIG. 1: Numerical solutions of the extended KdV equation
(1). Green (dotted) line: KdV soliton initial condition at
t = 10; red (full) line: solution at t = 30. (a) Water wave
coefficients c1 = −3/8, c2 = 23/24, c3 = 5/12 and c4 =
19/360, (b) fifth order derivative only c1 = 0, c2 = 0, c3 = 0
and c4 = 19/360, (c) higher order term uuxxx vanishing, c1 =
−3/8, c2 = 23/24, c3 = 0 and c4 = 19/360. Here, a = 1 for
the KdV soliton (42) and ε = 0.15.

gated exactly [54, 55], in contrast to propagating in phys-
ical space for which very small time steps ∆t are needed
for stability due to the fifth order dispersion [53].

Figure 1 displays numerical solutions of the eKdV
equation (1) for the KdV solitary wave initial condition

u = asech2
√
3a

2
(x− 10). (42)
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The initial KdV soliton is centred at x = 10 as the corre-
sponding variable to x for the ecKdV equation (17) is the
polar radius R. Choosing the centre of the initial condi-
tions the same for the eKdV and ecKdV equations allows
direct comparisons between solutions of these two equa-
tions. For these comparisons, we use the scalings (33)
which link the eKdV equation (32) used for the resonant
radiation analysis back to the original eKdV equation,
Eq. (1).

Many examples of the experimental generation, prop-
agation and measurement of surface solitary water waves
can be found in the literature. Lee et al [56] generated
solitary waves with amplitude to depth ratios ε = 0.11,
0.19 and 0.29 and measured the wave profiles and particle
velocities for each case. Hsu et al [57] undertook exper-
iments to investigate the particle trajectories beneath a
solitary water wave and considered wave amplitude to
depth ratios in the range ε = 0.182 to 0.428. Hence,
our choice of ε = 0.15 for the eKdV equation (1) and
ε3 = 0.15, ε = 0.5313 . . ., for the ecKdV equation (17)
used in the numerical simulations of this paper is a rea-
sonable choice within the lower end of the range of am-
plitudes used for experimental work on surface solitary
waves. In order to have valid comparisons between the
eKdV and ecKdV equations a high amplitude to depth
ratio then needed to be chosen for the circularly symmet-
ric equation.

Figure 1(a) shows the resonant wavetrain shed by
the solitary wave for the higher order coefficients ci,
i = 1, . . . , 4, taking the water wave values. The numer-
ical tail amplitude is 1.5 × 10−3, while the theoretical
tail amplitude (36) is 1.6 × 10−3. The comparison be-
tween the numerical and theoretical tail amplitudes is
excellent and provides a theoretical explanation for why
the tail amplitude is very small in the water wave case.
Figure 1(b) displays a solution for the Kawahara equa-
tion (2). The resonant radiation shed by a solitary wave
governed by the Kawahara equation has been well stud-
ied [34–37]. The numerical tail amplitude is 5 × 10−2,
while the theoretical amplitude is 4.1 × 10−2, about 25
times larger than for the water wave case. The resonant
radiation now has a significant amplitude, which results
in a significant decrease in the amplitude of the solitary
wave as the radiation is formed from the solitary wave
itself. The critical dependence of the resonant wave am-
plitude on the exact values of the higher order coefficients
ci, i = 1, . . . , 4, is further illustrated in Figure 1(c) for
which only the coefficient of the higher order term uxuxx

vanishes. For this case K = 6.05 and the numerical tail
amplitude is 1.8× 10−2, while the theoretical tail ampli-
tude (36) is 1.3× 10−2. This is an intermediate case for
which the amplitude of the resonant radiation is signifi-
cantly reduced over that for the Kawahara equation case,
but it is still not the trivial amplitude of the water wave
eKdV equation.

B. Radially symmetric two space dimensions

As the ecKdV equation (17) is in the polar radial vari-
ableR, to enable the use of a pseudo-spectral method, the
even extension of H into R < 0 was used in the pseudo-
spectral numerical scheme used for the eKdV equation
and outlined in the previous subsection. The extension
of the results of the previous subsection for the eKdV
equation will now be investigated for the ecKdV equa-
tion (17). Since as T → ∞, the ecKdV equation (17)
approaches the eKdV equation (1), it is expected that
the resonant solitary wave solutions of these two equa-
tions should be similar, in particular, the dependence of
the resonant radiation on the coefficients of the higher
order terms. The water wave ecKdV equation (17) has
the coefficient values c1 = −3/8, c2 = 23/24, c3 = 5/12
and c4 = 19/360.

This dependence of the amplitude of the resonant ra-
diation generated by a solitary wave on the higher or-
der coefficients is now examined in Fig. 2 for the ecKdV
equation (17) using the same choices of coefficients as
for the eKdV equation. This dependence is much less
pronounced than for the eKdV equation, with little vari-
ation in the radiation amplitude as the higher order co-
efficients change. It should be noted that the amplitude
of the solitary wave is decaying due to the 1/T terms
in the ecKdV equation (17), as well as due to the shed
radiation. In addition, the H/(2T ) term in the ecKdV
equation (17) results in the amplitude of linear waves de-
caying as (T − T0)

−1/2. Indeed, the shed radiation has
amplitude 1.69×10−2 for the water wave coefficients, see
Fig. 2(a), amplitude 2.48× 10−2 for the Kawahara equa-
tion case of Fig. 2(b) and amplitude 1.33× 10−2 for the
ecKdV equation with only the higher order termHHRRR

vanishing, as shown in Fig. 2(c). In particular, there is
no large reduction of the resonant radiation amplitude for
the water wave coefficients as for one dimension. These
results show that the 1/T terms of the ecKdV equation
have a major effect on the initial evolution of the resonant
radiation. However, incorporating the decay (T−T0)

−1/2

into the theory for the eKdV equation of the previous
subsection does not predict these resonant radiation am-
plitudes. The amplitude of the resonant radiation de-
cays, so that the large amplitude resonant radiation for
the Kawahara equation with c1 = c2 = c3 = 0 in (1+1)D
does not occur for the cylindrical Kawahara equation. In
this context, it is noted that the ecKdV equation (17)
approaches the eKdV equation as T → ∞, so that in the
long term the resonant radiation generated by the eKdV
and ecKdV equations should converge. The analysis of
this radiation is much more difficult than for the eKdV
equation due to the lack of a suitable solitary wave solu-
tion of the cKdV equation on which to base this analysis
and the time dependence of the solutions.
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FIG. 2: Numerical solutions of the extended circular KdV
equation (17). Green (dotted) line: KdV soliton initial condi-
tion at T = 10; red (full) line: solution at T = 30. (a) Water
wave coefficients c1 = −3/8, c2 = 23/24, c3 = 5/12 and
c4 = 19/360, (b) fifth order derivative only c1 = 0, c2 = 0,
c3 = 0 and c4 = 19/360, (c) higher order term HHxxx vanish-
ing, c1 = −3/8, c2 = 23/24, c3 = 0 and c4 = 19/360. Here,
a = 1 for the KdV soliton (42) and ε3 = 0.15.

VI. UNDULAR BORE RESONANCE

The dependence of the amplitude of the resonant radi-
ation on the coefficients of the higher order terms in the
(1+1)D eKdV equation (1) and the ecKdV equation (17)
will now be investigated for resonant undular bores. The
simplest initial conditions which will generate an undular

bore is the step initial condition:

u(x, 0) =

{

u−, x < x0,
u+, x > x0,

(43)

at t = t0 for the (1 + 1)D eKdV equation (1), and the
step initial condition:

H(R, 0) =

{

H−, 0 ≤ R < R0,
H+, R > R0,

(44)

at T = T0 for the cylindrical eKdV equation (17). For an
undular bore to form, we require u− > u+ andH− > H+.
Figure 3(a) shows the resonant wavetrain shed by an

undular bore for the higher order coefficients ci, i =
1, . . . , 4, taking the water wave values as governed by the
eKdV equation. The parameter values are the same as for
the solutions displayed in Fig. 1(a) for a resonant water
wave solitary wave. As for the resonant solitary wave, the
resonant radiation is of very low amplitude for the wa-
ter wave coefficients, as was noted for resonant flow over
topography governed by the eKdV equation with water
wave coefficients [19]. This is to be expected as this reso-
nant radiation is determined by matching the velocity of
the lead solitary wave of the bore and the phase velocity
of linear radiation [30].
However, an undular bore is a modulated wavetrain

which evolves from a solitary wave at the leading edge to
linear waves at the trailing edge. Each of the component
waves of the bore can then resonate, not just the lead soli-
tary wave [32]. This resonance of the entire modulated
structure then makes the determination of resonance be-
tween radiation and the bore more involved than for a
solitary wave. Indeed, it has been found that applying
resonance with the lead solitary wave can lead erroneous
predictions [58]. The issue of resonance of radiation with
an undular bore deserves extensive study. For the case
of the evolution of a single solitary wave the shed res-
onant wavetrain is stable and has an amplitude that is
near uniform. However, it is seen that the resonant radi-
ation shed by the undular bore is unstable and that it has
a highly modulated amplitude with the radiation in the
form of a series of pulses. This is expected as the weakly
nonlinear phase of the instability will be governed by an
NLS-type equation. This same instability was found for
resonant undular bores governed by the Kawahara equa-
tion, the eKdV equation with just the higher order fifth
derivative [30]. As a simple approximation, we assumed
that the radiation profile can be approximated by a si-
nusoidal curve, and hence the average pulse amplitude
is 2/π times the maximum amplitude. This calculation
gives the resonant wave amplitude as 5.1 × 10−3. For
the evolution of a single solitary wave the theory of Sec-
tion VA gives that the theoretical resonant wave ampli-
tude is 1.6× 10−3. While the theoretical prediction does
not strictly apply to the scenario of bore evolution since
a bore is an extended modulated wavetrain, as discussed
above, this is nevertheless a reasonable comparison.
Figure 3(b) displays a bore solution for the Kawahara

equation (2). In this case the average amplitude of the
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FIG. 3: Numerical solutions of the extended KdV equation
(1). Green (dotted) line: step initial condition (43) at t =
t0 = 10; red (full) line: solution at t = 50. (a) Water wave
coefficients c1 = −3/8, c2 = 23/24, c3 = 5/12 and c4 =
19/360, (b) fifth order derivative only c1 = 0, c2 = 0, c3 = 0
and c4 = 19/360, (c) higher order term uuxxx vanishing, c1 =
−3/8, c2 = 23/24, c3 = 0 and c4 = 19/360. Here, u

−
= 0.5,

u+ = 0, x0 = 100 and ε = 0.15.

resonant radiation is 5.4 × 10−2, while the theoretical
amplitude is 4.1× 10−2. As for the evolution of a single
solitary wave the resonant radiation amplitude is large,
which results in a significant decrease in the amplitude
of the waves that form the undular bore. Again, the
resonant wavetrain is unstable, as is the undular bore it-
self. The general classification of resonant undular bores
terms this undular bore a CDSW, a cross-over dispersive

shock wave as it is intermediate between a stable bore
and fully resonant bore for which the bore form itself
largely disappears as it is shed into the resonant radia-
tion [30]. Figure 3(c) displays a bore solution of the eKdV
equation for which only the coefficient of the higher order
term uxuxx vanishes. In this case, the numerical resonant
wave amplitude is 1.5 × 10−2, while the theoretical tail
amplitude is 1.3 × 10−2, again an excellent comparison
given that an undular bore is not solely a solitary wave.
In summary, the results for these three examples of un-

dular bore evolution show a qualitatively similar picture
to that for the evolution of single solitary waves. For the
water wave case the amplitude is an order of magnitude
smaller than for the Kawahara equation, while the exam-
ple with the uuxxx term absent presents an intermediate
case. The theoretical predictions based on resonant soli-
tary wave theory are very good, despite this theory not
being directly applicable to the evolution of an undular
bore.
The dependence of the details of the resonant radia-

tion for resonant undular bores governed by the ecKdV
equation (17) will now be investigated. The equivalent
circular bore solutions to those of Fig. 4 are shown in
Fig. 3. The dependence of the amplitude of the resonant
radiation is the broadly consistent with the one dimen-
sional eKdV equation, with the resonant wavetrain be-
ing unstable. However, particularly for the cylindrical
Kawahara equation, the amplitudes of both the resonant
radiation and the undular bore itself are reduced over the
equivalent eKdV case due to the decay term H/(2T ) in
the ceKdV equation. In addition, the undular bore so-
lution of Fig. 4(c) shows that the resonant radiation for
the ecKdV equation with the HRHRR term missing has a
reduced amplitude over that for the full ecKdV equation
with water wave coefficients, as was the case for the res-
onant solitary wave solution of the eKdV equation with
the uxuxx term missing displayed in Fig. 2(c). This is
in contrast to the one dimensional eKdV equation. The
reason for this difference between solutions of the one
dimensional and circular equations deserves study. Fi-
nally, as for the ecKdV resonant radiation, the addition
of (T − T0)

−1/2 decay into the theory of subsection VA
does not predict the amplitude of the resonant radiation
for these bore solutions.

VII. A CONNECTION WITH NONLINEAR
OPTICS

The above derivations of weakly nonlinear, long wave
equations from the water wave equations may suggest
that these equations and related phenomena are exclu-
sive to the shallow water wave problem. However, here
we make an unlikely connection with nonlinear optics.
In optics the commonly used model is the NLS equation
and its variants. The NLS equation is directly associ-
ated with deep water waves [5]. Nevertheless, using the
above multiscale expansion methodology, we will asymp-
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FIG. 4: Numerical solutions of the extended cylindrical KdV
equation (17). Green (dotted) line: step initial condition (44)
at T = T0 = 10; red (full) line: solution at T = 50. (a)
Water wave coefficients c1 = −3/8, c2 = 23/24, c3 = 5/12
and c4 = 19/360, (b) fifth order derivative only c1 = 0, c2 =
0, c3 = 0 and c4 = 19/360, (c) higher order term HHxxx

vanishing, c1 = −3/8, c2 = 23/24, c3 = 0 and c4 = 19/360.
Here, H

−
= 0.5, H+ = 0, R0 = 100 and ε3 = 0.15.

totically reduce a nonlocal variant of the NLS equation to
an appropriate ecKdV equation, thus suggesting that the
results of this paper may also find applications in optics.

We will thus consider a prototypical NLS model that
governs optical beam propagation in nonlocal, nonlin-
ear media, such as nematic liquid crystals [46, 47, 59]
and thermal optical media [60]. In normalized form, this

model reads [45, 46, 60]:

iuz +
1

2
∇2u− 2θu = 0, (45a)

ν∇2θ − 2qθ = −2|u|2. (45b)

Here, u = u(x, y, z) is the complex electric field envelope
of the optical beam propagating in the medium, which
evolves along the z-direction, and ∇2 ≡ ∂2

x + ∂2
y is the

transverse 2D Laplacian. In the context of nematic liquid
crystals, the real function θ = θ(x, y, z) is the optically
induced rotation of the molecular optical axis from its
static value in the absence of the light beam, ν > 0 mea-
sures the strength of the response of the nematic in space
(with a highly nonlocal response corresponding to large
ν) and the parameter q > 0 is related to the square of
the applied, external static electric field which pre-tilts
the nematic dielectric [46, 47, 59]. For thermal optical
media, θ is the temperature of the medium. It should be
noted that a nematic is a focussing medium, so that the
nonlinear term 2θu in (45a) has a positive coefficient. A
nematic can be made a defocusing medium through the
addition of azo dyes which alters the medium response
through the order parameter [61]. In contrast, thermal
optical media are typically defoccusing [60].
We now seek solutions of Eqs. (45) with radial sym-

metry, depending only on the radius r. In this case,
Eqs. (45) take the form:

iuz +
1

2

(

urr +
1

r
ur

)

− 2θu = 0, (46)

ν

(

θrr +
1

r
θr

)

− 2qθ = −2|u|2. (47)

We now introduce the Madelung transformation:

u = u0

√
ρeiφ, (48)

where ρ = ρ(r, z) and φ = φ(r, z) denote the density
and phase of the field u, and u0 ∈ R is a constant. On
substituting the polar form (48) into Eqs. (46)–(47), and
separating real and imaginary parts, we obtain the sys-
tem:

−2rθρ2 − rρ2φz +
1

4
ρρr −

1

8
rρ2r −

1

2
rρ2φ2

r +
1

4
rρρrr = 0,

(49)

rρz + ρφr + rρrφr + rρφrr = 0, (50)

ν

(

θrr +
1

r
θr

)

− 2qθ = −2u2
0ρ. (51)

Next, we seek solutions of this system in the form of the
asymptotic expansions:

ρ = 1 + ερ1 + ε2ρ2 + ε3ρ3 + · · · , (52)

φ = −2u2
0

q
z + ε1/2φ1 + ε3/2φ2 + ε5/2φ3 + · · · , (53)

θ =
u2
0

q
+ εθ1 + ε2θ2 + ε3θ3 + · · · , (54)
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where the unknown functions ρj , φj and θj (j =
1, 2, 3, . . .) now depend on the stretched variables:

R = ε1/2(r − cz), Z = ε3/2z, (55)

with c being an unknown velocity, to be determined
through self-consistency. The small parameter ε mea-
sures the deviation of the solution from the background
level u0, so that these asymptotic expansions are relevant
to small amplitude waves.
Substituting the expansions (52)-(54) into Eqs. (49)-

(51), we obtain a set of equations at the different or-
ders in ε. In particular, at the leading order, namely at
O(ε−1/2), we derive the following equations:

cqφ1R − 2u2
0ρ1 = 0, qθ1 − u2

0ρ1 = 0, (56)

while at O(1) we obtain:

φ1RR − cρ1R = 0. (57)

The compatibility condition of the above linear equations
yields c2 = 2u2

0/q, i.e., c is the so called “speed of sound”.
At the next order of approximation, i.e., at O(ε1/2),

we obtain the following set of nonlinear equations:

c2Zφ2R − 2cZθ2 +
1

4
cZρ1RR − 2Rθ1 − 4cZθ1ρ1

−cZφ1Z + cRφ1R + 2c2Zρ1φ1R − 1

2
cZφ2

1R = 0, (58a)

2cqZθ2 − 2cu2
0Zρ2 + 2qRθ1 − 2u2

0Zρ1 − cνZθ1RR = 0,

(58b)

while the equation obtained at O(ε) reads:

cZφ2RR − c2Zρ2R + cZρ1Z − cRρ1R

+φ1R + cZρ1Rφ1R +Rφ1RR + cZρ1φ1RR = 0. (59)

We now remove ρ2, φ2 and θ2 from the equations at the
orders O(ε1/2) and O(ε). We thus derive the cylindrical

KdV (cKdV) equation for the field amplitude ρ1

ρ1Z +
3c

2
ρ1ρ1R − α

8c
ρ1RRR +

1

2Z
ρ1 = 0, (60)

where the parameter α is given by α = 1−2c2ν/q. Notice
that the above cKdV equation has been used to describe
ring dark (for α > 0) and antidark (for α < 0) solitons
in nonlocal, nonlinear media [62, 63].

Proceeding to the higher-order of approximation, we
obtain at O(ε3/2) the following equations:

2cqZθ3 − 2cu2
0Zρ3 + 2qRθ2 − 2u2

0Rρ2 − νθ1RR

−νRθ1RR − cνZθ2RR + c2Zφ3R − 2cZθ3 − 2Rθ2

−4Rθ1ρ1 − 4cZθ2ρ1 − 2cZθ1ρ
2
1 = 0, (61a)

−4cZθ1ρ2 −Rφ1Z − 2cZρ1φ1Z − cZφ2Z +
1

4
ρ1R

−1

8
cZρ21R + 2cRρ1φ1R + c2Zρ21φ1R + 2c2Zρ2φ1R

−1

2
Rφ2

1R − cZρ1φ
2
1R + cRφ2R + 2c2Zρ1φ2R

−cZφ1Rφ2R +
1

4
Rρ1RR +

c

4
Zρ1ρ1RR +

c

4
Zρ2RR = 0,

(61b)
and at O(ε2) the equation:

Rρ1Z + cZρ2Z − cRρ2R − c2Zρ3R + ρ1φ1R

+Rρ1Rφ1R + cZρ2Rφ1R + φ2R + cZρ1Rφ2R

+Rρ1φ1RR + cZρ2φ1RR +Rφ2RR

+cZρ1φ2RR + cZφ3RR = 0. (62)

We now remove the fields ρ3, φ3 and θ3, and employ the
equations obtained at the previous orders to express the
fields θ1,2 and φ1,2 in terms of the amplitudes ρ1 and ρ2.
In this manner, we obtain the equation:

c2q + 2u2
0

cq
ρ2Z +

[

cq
(

−c2q + 2u2
0

)

R+ 4u2
0

(

c2q + u2
0

)

Zρ1
]

c2q2Z
ρ2R +

−c2q + 2u2
0(1− α)

4c2q
ρ2RRR

+
2u2

0

(

cq + 2
(

c2q + u2
0

)

Zρ1R
)

c2q2Z
ρ2

[(

cq
(

−3c4q2 + 2c2qu2
0 + 8u4

0

)

R+ 6u4
0

(

−3c2q + 4u2
0

)

Zρ1
)

ρ1
]

2c4q3Z
ρ1R

+
u2
0

2c2qZ2
∂−1
R ρ1 −

(

c2q + 2u2
0

)

R

2c2qZ2
ρ1 −

2cqu2
0

(

c2q + 2u2
0

)

2c4q3Z
∂−1
R ρ1ρ1R +

(

7c2q − 8u2
0

)

u2
0

4c3q2Z
ρ21

+
11c4q2 + 4u4

0 (2− α)− c2qu2
0 (18− 7α)

8c4q2
ρ1Rρ1RR − 3c2q − 2u2

0 (1− α)

8c3qZ
ρ1RR

+
3c4q2 + 8u4

0 − 2c2qu2
0 (3 + α)

8c4q2
ρ1ρ1RRR +

cq − c2qR (2− α) + 2u2
0 (2 + 2R− 2α−Rα)

8c4q2Z
ρ1RRR

+
−c2qα+ u2

0

(

4− 6α+ 3α2
)

32c4q
ρ1RRRRR = 0 (63)
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To simplify this higher order equation, we multiply
Eq. (63) by ε, and add it to the cKdV equation Eq. (60).
We then introduce the combined amplitude function:

Q = ρ1 + ερ2,

and obtain the extended cKdV equation for the field
Q(R,Z):

QZ +
3c

2
QQR − α

8c
QRRR +

1

2Z
Q+ ε

(

−3c

8
Q2QR +

8 + 5α

32c
QRQRR +

α− 2

16c
QQRRR +

4− 8α+ 3α2

128c3
QRRRRR

)

+
ε

Z

(

3

16
Q2 − 3α

16c2
QRR − 1

2
QR∂

−1
R Q

)

+
ε

Z2

(

−R

2c
Q+

1

8c
∂−1
R Q

)

= 0. (64)

VIII. CONCLUSIONS

In this work, starting from the Euler (or water wave)
equations, we have derived the extended cylindrical
Korteweg-de Vries (ecKdV) equation in polar coordinates
and the extended Kadomtsev-Petviashvili (eKP) equa-
tion in Cartesian coordinates. In so doing, all higher or-
der nonlinear, dispersive and nonlinear-dispersive terms
at the next order were found and, additionally, an inher-
ited property that only arises in such higher dimensional
settings was revealed: both the ecKdV and eKP equa-
tions incorporate nonlocal terms that are not present in
the (1 + 1)D case— i.e., in the extended KdV model.
Furthermore, these higher order corrections were used

to examine the resonant radiation generated by soli-
tary wave and undular bore solutions of these extended
equations. It was found that the form of the reso-
nant radiation is highly dependent on the coefficients
of the higher order nonlinear, dispersive and disper-

sive/nonlinear terms. While the overall form of the reso-
nant radiation is broadly similar for the one dimensional
and circularly symmetric cases, there are some differ-
ences which deserve further examination and analysis.
In addition, while there is an existing asymptotic theory
for resonant solitary waves governed by the (one dimen-
sional) eKdV equation, no such theory exists for circular
solitary waves governed by the ecKdV equation, nor for
one dimensional or circularly symmetric resonant undu-
lar bores. Again, the issue of resonant undular bores
deserves further analysis as these also arise for gravity-
capillary waves [30].

Finally, borrowing the same asymptotic expansion
method, we made a connection between the water wave
context with that of nonlinear optics and derive from
a nonlocal NLS equation the same extended cylindrical
KdV system (with appropriate coefficients). This sug-
gests that phenomena that can be predicted and observed
in shallow water may also occur in optics.
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