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Sparse surface observations have recorded large and incompletely understood changes to
atmospheric methane (CH4) this century. These data are invaluable for contextualizing recent
atmospheric variations to those reported for previous decades, but their ability to reveal the
responsible surface sources and sinks is limited by their geographical distribution that is biased to
northern midlatitudes. Earth-orbiting satellites designed specifically to measure CH4 columns have
been available since 2009 with the launch of the Japanese Greenhouse gases Observing SATellite
(GOSAT). We assess the added value of GOSAT to data collected by the US National Oceanic
and Atmospheric Administration (NOAA), which have been the lynchpin for knowledge about
atmospheric CH4 since the 1980s. To achieve that we use the GEOS-Chem atmospheric chemistry
transport and an ensemble Kalman Filter inverse method to infer a posteriori flux estimates from the
NOAA and GOSAT data using common a priori emission inventories. We find the main benefit of the
satellite data is from its additional coverage over the tropics where we report large increases since
the 2014/2016 El Niño, driven by biomass burning, biogenic emissions and energy production. We
use data from the newest operational satellite instrument, the TROPospheric Monitoring Instrument
(TROPOMI), to show how better spatial coverage and finer spatially resolved measurements allow
us to quantify previously unattainable diffuse sources of CH4 thereby opening up a new research
frontier.
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1. Introduction
Atmospheric methane (CH4) absorbs and emits radiation at infrared wavelengths and therefore
plays a role in determining Earth’s radiative balance. It has a higher global warming potential
than CO2; after carbon monoxide it is the principal sink of the hydroxyl radical (OH), which is
the major oxidant in the global troposphere; and contributes to the production of tropospheric
ozone, another important greenhouse gas. Consequently, it is an ideal target for rapid reductions
to make substantive progress towards meeting the aims of the Paris Agreement [40,41]. For all
of these reasons it is a science priority to address our inability to attribute definitively recent and
large changes in the global mass of atmospheric CH4 since the turn of the century [39,40,57].
In this study, we compare what we understand about recent changes (2010–2019) in global and
regional CH4 emissions from ground-based data and from satellite column retrievals of CH4 at
short-wave infrared (SWIR) wavelengths.

Observed changes in atmospheric CH4 are determined by surface emissions and by surface
and atmospheric sinks [59]. The largest natural source is emissions from wetlands, with smaller
natural emissions from freshwaters, onshore and offshore geological sources, wild animals,
termites, permafrost soils, and open and coastal ocean. Anthropogenic emissions are dominated
by agriculture, including enteric fermentation from ruminants, manure management, and rice
cultivation, and by waste management that includes the microbial decomposition of organic
material in landfills. Emissions from fossil fuels are approximately half to two thirds of those
from agriculture and waste [59] and include coal mining, the oil and gas industry, and transport.
Combustion of biomass and biofuel is also a significant source of CH4. The dominant loss process
for CH4 is oxidation by tropospheric OH, with small losses from stratospheric loss, reaction
with chlorine, and uptake from soils. The resulting steady-state atmospheric lifetime of CH4

is '9 years [55]. The perturbation lifetime of CH4, which accounts for atmospheric chemistry
relaxation times and is more relevant for climate impacts of emission reductions is approximately
12 years [38].

After decades of steady growth in the 20th century, the atmospheric growth of atmospheric
CH4 reduced to approximately zero from 2000 to 2006 [57], a consequence of the production
and loss processes being in quasi-equilibrium. Atmospheric growth has since returned to values
observed in the second half of the 20th century [39,40] and more recently has increased at a
faster rate. There is extensive debate in the literature about which sources are responsible for
these recent observed global-scale changes [23,32,33,36,60,66,74], with some studies emphasizing
that variations in the OH could also be responsible but this appears to be unlikely given the
behaviour of other trace gases that are oxidized by OH [58,68]. A more likely scenario is that some
combination of emission and loss variations are responsible for observed atmospheric variations
in CH4.

Calibrated atmospheric CH4 surface measurements have been collected across the globe
(Figure 1a) by a variety of groups, the most extensive network of which is coordinated by the US
National Oceanic and Atmospheric Administration (NOAA) since the 1980s. The original purpose
of these measurements was to observe large-scale changes driven by natural and anthropogenic
emissions, although the network has grown with time and a growing body of work (including
this study) have used these data to infer continental-scale emission estimates. The preponderance
of these measurement sites, taking advantage of sites established to collect CO2 measurements,
are over North America and Europe and that has implications for understanding sub-continental
changes in CH4 emissions. Colocated measurements of CH4 isotopologues provide additional
information with which to improve source attribution (e.g., [39,56,60–62,76]). In particular,
progressively lighter measurements of δ13CCH4 suggest that recent changes in atmospheric CH4

are due to increased biological activity, e.g. [9,39,60].
Data from the European SCIAMACHY (SCanning Imaging Absorption spectroMeter for

Atmospheric CartograpHY) satellite instrument [8], launched in 2002, were the first space-borne
measurements that were sensitive to changes in boundary layer CH4 [10]. Serious degradation of
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detector pixels from the end of 2005 compromised these data for quantifying regional CH4 fluxes
[16], although they provided invaluable information about year-to-year variations in atmospheric
CH4 [4]. The Japanese Greenhouse gases Observing SATellite (GOSAT) has collected data since
it was launched in 2009 [27]. The main advantage of using satellite data is the global coverage
they provide (Figure 1b,d), although instruments are typically in a sun-synchronous orbit so
they sample the atmosphere at one local time of the sunlit day. The SWIR wavelengths used
to determine CH4 columns that are sensitive to the lower troposphere are also sensitive to
clouds so columns are usually only retrieved in cloud-free scenes, and the columns are difficult
to interpret without a model of atmospheric chemistry and transport. Ground-based upward
looking spectrometers, e.g., the Total Carbon Column Observing Network (TCCON, Figure 1),
play an ongoing key role in ensuring the accuracy of the satellite data [75]. Nevertheless, GOSAT
data have significantly revised our understanding of regional CH4 budgets across the globe, e.g.
[15,17,20,25,32,33,37,47,50,67,72,78]. These include studies focused over the tropics where we have
little other data available to revise our a priori knowledge, e.g. [15,20,32,33,37,72,78], for which in
some examples the inferred emissions can be linked to specific source types, e.g., [32,33,37,53,72].

There remain many outstanding science questions associated with CH4 emissions, some of
which are emerging as we witness more frequent anomalous climate variations while others are
associated with our ability to detect changes in atmospheric CH4 that correspond to national net
zero pledges. The ability of satellite data to help address these science questions will progressively
improve with the length and density of data records, as newer instruments with improved
detector technology and better spatial resolution become available. Here we take advantage of
the decadal record of CH4 column data from GOSAT to explore the value of these data over
and above the information provided by the NOAA in situ network, described in section 2, to
understand CH4 emissions on global to subcontinental spatial scales. We achieve this by inferring
CH4 emissions from these data using common a priori inventories, and a common atmospheric
chemistry transport model and ensemble Kalman filter inverse method, which are all described
in section 2. In section 3 we report a priori and a posteriori CH4 fluxes inferred from NOAA and
GOSAT CH4 data on global and continental spatial scales, with a specific focus on tropical South
America and the Indian subcontinent. We conclude this section by examining the potential of
finer resolution CH4 data from the European TROPospheric Monitoring Instrument (TROPOMI)
by quantifying diffuse coal mining emissions of CH4 over Northern Queensland, Australia. We
conclude the paper in section 4.

2. Data and Methods

(a) In situ Mole Fraction CH4 Data
We use biweekly CH4 values determined from measurements of discrete air samples collected
in flasks and from continuous online analysers from across the NOAA Cooperative Global Air
Sampling Network (Figure 1)

We also use CO2 measurements as part of our novel analysis of GOSAT CH4 proxy
data, as described below. We use (weekly) discrete flask air samples from 105 sites and
(hourly) continuous observations from 52 sites that are part of the global atmospheric
surface CO2 observations network. These are currently described by the Observation Package
(ObsPack) obspack_co2_1_GLOBALVIEWplus_v4.1_2018-10-29 data product provided by the
NOAA Global Monitoring Laboratory.

(b) Satellite Data
We use data from the GOSAT instrument for our comparative analysis with NOAA in situ data,
and data from TROPOMI to show how finer spatially resolved data can be used to infer diffuse
emissions of CH4 from coal mining. Methane columns for GOSAT and TROPOMI (Table 1) take
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advantage of SWIR wavelengths that are sensitive to changes in CH4 in the lower troposphere
but also sensitive to cloud coverage so that we use only cloud-free scenes.

Greenhouse gases Observing SATellite CH4 Column Measurements
GOSAT was launched in 2009 by the Japanese Space Agency (JAXA), in collaboration with the
Japanese National Institute for Environmental Studies and the Ministry of Environment. The
satellite is equipped with a high-resolution Fourier transform spectrometer (TANSO-FTS) that
enables the measurement of concentrations of both CO2 and CH4. GOSAT is in a sun-synchronous
orbit, with a local equator crossing time of 13:00. The instrument has a ground footprint with
diameter of 10.5 km with a pixel spacing of approximately 250 km. GOSAT achieve approximate
global coverage in three days.

We use GOSAT proxy column methane (XCH4) data from the University of Leicester
(version 9.0) [49,51], which has been validated against data from the TCCON network [50] and
occasionally using regional aircraft data (e.g. [71]. The proxy XCH4 retrieval simultaneously
retrieves CH4 and CO2 columns using absorption features around the wavelength of 1.6 µm.
These columns are most sensitive to changes in CO2 and CH4 in the lower troposphere, where
variations are sensitive to surface fluxes. Taking the ratio of these retrieved columns, CH4/CO2,
effectively assumes CO2 is a proxy for modifications along the light path [16] and minimizes the
influence of common factors that affect the retrieval of both gases, e.g., clouds and atmospheric
scattering. Consequently, these ratios are less sensitive against scattering than a full-physics
retrieval approach [11], resulting in higher data density over geographical regions where there is
substantial aerosol loading, e.g., tropical dry seasons. Analyses have shown that these retrievals
have a bias of 0.2%, with a single sounding precision of about 0.72% [50–52].

The conventional approach is then to scale the ratio with an independent estimate for the CO2

column, often from a model, to infer CH4 columns. This ratio is used to determine CH4 rather
than CO2 because it is generally assumed that CO2 varies much less than CH4. But of course
our knowledge of CO2 is incomplete (e.g., [12,30,46]), particularly over the tropics, so this last
step introduces an unnecessary systematic error to the resulting CH4 columns [50]. We use an
alternative approach, which we previously developed, to directly use the CH4/CO2 by taking
advantage of sparsely distributed in situ that help anchor the GOSAT ratio data, allowing us to
simultaneously infer CH4 and CO2 fluxes [15,17].

TROPOspheric Monitoring Instrument CH4 Column Measurements
The TROPospheric Monitoring Instrument (TROPOMI) on board the Sentinel-5p satellite was
launched in 2017. The satellite is in a sun-synchronous orbit with a local equator crossing time of
13:30. With a swath width of around 2600 km it provides complete daily coverage of the globe at
5.5×7 km2 resolution, upgraded from 7×7 km2 in August 2019. The spectral range of TROPOMI
precludes using the proxy retrieval approach so CH4 columns are determined by a full-physics
approach that uses the CH4 absorption features around the wavelength of 2.3 µm [11,24,31],
which takes into account aerosol and cloud scattering. We use the scientific CH4 data product [31].
These data include an a posteriori correction based on TROPOMI data to account for biases at high
and low albedos, following [43]. These column data have been validated against TCCON and
GOSAT data, with a mean bias (standard deviation) with TCCON of -3.4 (5.6) ppb, and values of
-10.3 (16.8 ppb) compared to GOSAT [31].

(c) GEOS-Chem Global 3-D Atmospheric Chemistry Transport Model
For the experiments reported here, we use the GEOS-Chem atmospheric chemistry and transport
model at a horizontal resolution of 4◦ (latitude) × 5◦ (longitude), driven by the MERRA-2
meteorological re-analyses from the Global Modeling and Assimilation Office Global Circulation
Model based at NASA Goddard Space Flight Center. This model is used to relate a priori emissions
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to 4-D atmospheric fields of CH4. We also describe a priori fluxes for CO2 that we need to infer
simultaneously fluxes of CH4 and CO2.

Our a priori CO2 flux inventory includes: 1) monthly biomass burning emission (GFEDv4.1;
[69]; 2) monthly fossil fuel emissions (ODIAC; [42]; 3) monthly climatological ocean fluxes [65];
and 4) 3-hourly terrestrial biosphere fluxes (CASA; [44]. Our CO2 model calculations follow
closely a recent study [46]. Our a priori CH4 fluxes from nature include: 1) monthly WetCHARTS
v1.0 wetland emissions, including rice paddies [6]; 2) monthly fire CH4 emissions are from
GFEDv4.0; 3) termite emissions [19]. Emissions from geological macroseeps are based on [14] and
[28]. For areal seepage, we use the sedimentary basins (microseepage) and potential geothermal
seepage maps [28] with the emission factor described by [34]. For a priori anthropogenic emissions
we use the EDGAR v4.41 global emission inventory [26] that includes various sources related to
human activities (e.g., oil and gas industry, coal mining, livestock, and waste). We use monthly
3-D fields of the hydroxyl radical, consistent with observed values for the lifetime of methyl
chloroform, from the GEOS-Chem HOx-NOx-Ox chemistry simulation [35,67] to describe the
main loss of tropospheric CH4 [18] and the loss of CH4 in the stratosphere. Using fixed, archived
field of OH allows us to linearly decompose total CH4 into contributions from individual sources
and geographical regions. We also include a simple soil sink of CH4 [18].

(d) Ensemble Kalman Filter Inverse Method
We use an ensemble Kalman Filter (EnKF) framework [15] to estimate simultaneously CO2 and
CH4 fluxes from and satellite measurements of the atmospheric CO2 and CH4 from 2009 to 2019,
inclusively. For these experiments we report net CH4 emission estimates and do not attempt to
distinguish emissions from individual sectors.

Our state vector includes monthly scaling factors for 486 regional pulse-like basis functions
that describe CO2 and CH4 fluxes, including 476 land regions and 11 oceanic regions. We define
our land sub-regions by dividing the 11 TransCom-3 [22] land regions into 42 nearly equal sub-
regions, with the exception for temperate Eurasia that has been divided into 56 sub-regions due
to its large landmass. We use the 11 oceanic regions defined by the TransCom-3 experiment.

We assume the a posteriori CH4 or CO2 flux estimate takes the form [15]:

fgp (x, t) = fg0 (x, t) +
∑
i

cgiBF
g
i (x, t), (2.1)

where g denotes the atmospheric concentration of CH4 or CO2 and fg0 (x, t) and fgp (x, t) describe
their a priori and a posteriori flux inventories, respectively. The pulse-like basis functionsBF g

i (x, t)

represent the sum of different source sectors, which we use to represent their overall spatial
pattern for each month over each sub-region. cgi denotes the state vector that comprises of scaling
factors. As a result, we estimate a total of 104,976 (i.e., 2 (CH4 or CO2) × 108 (months) × 486
(sub-regions)) coefficients, by optimally fitting model concentrations with observations [15]. For
further details we refer the reader to [15].

We assume a fixed uncertainty of 40% for coefficients corresponding to a priori CO2 fluxes
over each sub-region, and a larger uncertainty (60%) for the corresponding CH4 emissions. We
also assume that a priori errors for the same gas are correlated with a spatial correlation length
of 600 km and with a temporal correlation of one month. We also assume that each single
GOSAT proxy XCH4:XCO2 ratio retrieval has an uncertainty of 1.2% to account for possible model
errors, including the errors in atmospheric chemistry and transport. We assume uncertainties of
0.5 ppm and 8 ppb for the NOAA in situ observations of CO2 and CH4, respectively. Following
our previous work [15], we assume a model error of 1.5 ppm and 12 ppb for CO2 and CH4,
respectively. We adopt a larger percentage value for the CH4 model error to account for difficulties
in modelling chemical sinks of atmospheric CH4 [18,54].
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3. Results
Here we report global CH4 fluxes and how they vary across zonal bands, progressively ascribing
values to smaller geographical regions. For the sake of brevity, we focus our attention on a
few geographical regions and refer the reader to other papers dedicated to changes elsewhere
(e.g., [20,32,33,37,73]). We also highlight the ability of the newer TROPOMI instrument to identify
example diffuse emissions from Australian coal mining.

(a) Global and Continental Net CH4 Budgets
Figure 2a and Table 2 show global emission budgets inferred using NOAA in situ and GOSAT
CH4 from a common a priori estimate. Generally, we find that the global annual a posteriori
estimates are within 1% of a priori values at the start of the decade and typically higher by 5%
('30 Tg) after 2014. This difference increases to 10–20% after 2014 for tropical a posteriori estimates.
Figure 2a shows that this annual increase mainly reflects changes during boreal summer months.
There are also differences between a priori and a posteriori values during austral summer months
but they are generally smaller. On this global scale, there is excellent agreement (<1%) between
emissions inferred from in situ and GOSAT data, as expected, as they are determined by global
mass balance.

Figure 2b shows the a priori and a posteriori statistics of annual CH4 fluxes integrated over 30◦

zonal bins. We find agreement in the broad latitudinal distribution of CH4 fluxes. The largest
fluxes are found in the northern tropics, northern extratropics (30◦N–60◦N), and the southern
tropics. Emissions from the poles and southern extratropics are comparatively small. Again, the
two sets of a posteriori estimates are statistically consistent, with increases relative to the a priori
in the tropics and a decrease in the northern extratropics. Figure 2c shows annual anomalies
relative to the corresponding the a priori and a posteriori 2010–2019 annual mean values. The largest
anomalies are over the southern tropics (0◦S–30◦S) and the northern tropics, with significant
variations over the northern extratropics and northern pole. The NOAA a posteriori fluxes show
the largest relative variations over the northern tropics and GOSAT shows the largest relative
variations over the southern tropics.

Figure 3 shows the Siegel linear trends for a priori and a posteriori CH4 fluxes during 2010–
2019 and during the second half of that decade to minimize the impact of the El Niño. We use the
Seigel non-parametric estimator [63] to fit a line to our data because the method is less sensitive to
outliers that would otherwise compromise the linear trend estimate and the resulting estimated
trend has a lower variances; we find similar trend estimates using the Theil-Sen estimator. In our
2010–2019 calculations (n = 120), we want to estimate the secular trend without considering the
large-scale perturbation from, for example, the 2014–2016 El Niño. By definition this approach
also removes large CH4 pulses that we have previously attributed to anomalous precipitation
[33]. We discard trends with an absolute value <0.025 Tg CH4/yr yr−1 to focus on the largest
positive and negative trends. We find that there are small, localized a priori trends that are mainly
associated with fire inventories that are already influenced by satellite data. In contrast, our
a posteriori fluxes 2010–2019 (Figures 3c,e) show large positive and negative trends across the
tropics, particular over tropical South America, Central Africa, India, and southern China. Trends
are generally larger for GOSAT, but their broad distribution is similar for both NOAA and GOSAT,
which is remarkable given the comparatively small number of NOAA data over the tropics.

When we consider only the second half of the decade (2016–2019, n = 48) we find that
the trends over the tropics are larger and there are more extra-tropical regions with trends
>0.025 Tg CH4/yr yr−1 (Figures 3d,f). In contrast, trends driven by the a priori inventories
(Figures 3b) are mostly limited to small geographic regions over North America and Siberia.
We also find broad geographical agreement between a posteriori fluxes inferred from NOAA and
GOSAT data, although there are differences in the magnitude of trends (e.g. India) and there is
widespread discrepancy across tropical South America and Australia. The largest negative trend
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is over Russia, west of the Ob River. We now investigate in more detail the temporal variations in
estimated fluxes over India and tropical South America.

(b) Tropical South America
Figure 4a shows the monthly and annual timeseries of a priori and a posteriori CH4 fluxes (Tg/yr)
over tropical South America (broadly defined by 30–85◦W, -20◦S–13◦N) from 2010 to 2019;
the corresponding annual values are also reported in Table 2. Even on this large spatial scale
there are periods of substantial deviation from fluxes inferred from NOAA and GOSAT and the
commmon a priori inventory, most notably during the 2014–2016 El Niño, suggesting both these
data contain information about this broad geographical region. We find a strong seasonal cycle of
CH4 emissions, particularly at equatorial latitudes (Figure 4b), that peaks in the first half of each
calendar year and is driven by rain-fed wetland emissions. This seasonal cycle is less obvious for
the regional monthly means (Figure 4a).

Broadly, below the equator, GOSAT a posteriori fluxes are higher than fluxes inferred from
NOAA data in the first half of each calendar year, usually dominated by wetland emissions during
regional wet seasons, and lower during the second half of the calendar year when emissions are
dominated by dry-season fire emissions that tend to be further south. Above the equator, we find
the highest emissions are during the second half of the year and focused over the Orinoco River
floodplain that spans Venezuela and Colombia.

The 2010 CH4 pulse represents the largest anomaly in the decadal record for emissions over
Tropical South America inferred from NOAA (Figures 4b,c) and for GOSAT (Figure 4e), but the
distribution of these pulses are spatially distinct from each other (Figure 4d) and from the a priori
inventory (not shown). The spatial distribution of the CH4 pulse during August–September 2010
inferred from GOSAT data is focused over the Amazon forest that intersects the Brazilian states
of Goiás, Tocantins, and Mato Grosso, and the Bolivian portion of the Amazon forest, closely
resembles the distribution of maximum climatological water deficit that has been used previously
as a metric for drought intensity [29] and likely due to elevated fire emissions.

The spatial distribution of elevated a posteriori emissions inferred from NOAA and GOSAT
data during February–April 2019 closely follow the a priori inventory for wetlands, focused over
Ilha de Marajó in the Brazilian state of Pará; Iquitos, Peru; following the Amazon river across
the Brazilian state of Amazonas; and along the northern section of the Beni River in Bolivia. We
do not currently have an explanation for this pattern of elevated emissions during early 2019.
We find no evidence for elevated rainfall, surface temperatures, or fires. Variations in wetland
emissions of CH4 are also driven by changes in the carbon supply that supports methanogenesis.
So that a plausible explanation for higher CH4 emissions in 2019 is that elevated fire activity
from the previous dry season increased the pool of carbon available for methanogenesis (per.
comm.: A. A. Bloom, JPL, May 2021), but further data are needed to improve understanding of
the biogeochemical processes that control Amazonian wetland emissions of CH4 [7].

(c) Indian Subcontinent
Figure 5a shows the monthly and annual timeseries of a priori and a posteriori CH4 fluxes (Tg/yr)
over the Indian subcontinent (broadly defined by 65–95◦E, 5–35◦N), which includes parts of
Pakistan, Bangladesh, Bhutan, and western Myanmar. Annual values are also reported in Table
2. There is a clear regional seasonal cycle that peaks during July–October over the region broadly
defined by 20–30◦N (Figure 5b) and 75–85◦E (centred over Utter Pradesh) consistent with the
main Kharif rice growing season that is sown in June–July and harvested in November–December.
The timing of the peak is consistent with these rice plants being sufficiently mature during July–
October to allow effective transmission of CH4, produced by rhizospheric methanogens, through
their aerenchyma [1]; we acknowledge that current knowledge about plant-mediated transport of
CH4 remains incomplete due to lack of convenient collection methods [5].
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Generally, a posteriori estimates deviate from a priori estimates throughout the year with the
largest values during January–October (Figure 5a). A posteriori CH4 emission estimates inferred
from GOSAT tend to be larger than a priori estimates during the peak of the seasonal cycle over
Utter Pradesh, as described above, and comparable or slightly smaller at the seasonal trough.
We find that a posteriori flux estimates inferred from NOAA show less year to year variability in
the seasonal peaks than those inferred from GOSAT data (Figure 5a,d), although their monthly
anomalies with respect to their own 2010–2019 mean show some consistency during periods when
the regional seasonal peaks are at their largest (Figure 5c,e), e.g. during the El Niño period and
2017. In general, our year to year variations in CH4 fluxes up until 2015 are more consistent with
those from [37] than [20]. Since 2017, GOSAT fluxes (and to a lesser extent NOAA fluxes) show a
step-wise increase in emissions (Figure 3) over Northest India and northern Bangladesh, although
the resolution of our a posteriori fluxes precludes further localization. Seasonal flooding, changes
in rice production, and increased coal mining to support growing national energy demands are
potential culprits but further investigation of this observation is outside the scope of this study.

(d) New Satellite Data Allows Hotspot Mapping: Australian Case Study
Satellite observations from the TROPOMI satellite provide daily global spatial coverage, subject to
cloud cover and aerosol loading, at higher spatial resolution than previous Earth-orbiting sensors
(Figure 1). This high spatial resolution allows us to focus on smaller source regions or even
large individual emitters of CH4. There are many examples in the literature that use TROPOMI
data in this way, particularly focused on the oil and gas sector that is an exemplar of a large
point source of CH4 [13,48,70,77]. These studies have largely focused on the use of individual
overpasses and plumes of CH4 measured by TROPOMI on certain days. However, cloud coverage
can hinder regular observations of a particular source and even at the 5.5×7 km resolution of
TROPOMI, the underlying source may not be resolved because the emission rate corresponds
to a CH4 column perturbation comparable to the measurement noise in which case combining
measurements collected successively over a region is required.

We demonstrate the capability of TROPOMI data to observe ands quantify emissions on the
scale of large individual coal mines. We focus on the Bowen basin region of Queensland (QLD),
Australia (Figure 6). Data from individual overpasses indicate the presence of significant CH4

sources within the Bowen basin. However, as a region containing over 40 coal mines, it is not
clear from where exactly the high CH4 concentrations emanate. To resolve this, we use a temporal
oversampling approach [64,79] to average CH4 column data collected from individual overpasses
onto a regular fine resolution grid (in our example, 0.02◦×0.02◦) to isolate the major sources of
emissions within the Bowen basin. We use a simple point radius based approach to the temporal
oversampling, following [79]. For each 0.02◦ target grid cell we find all TROPOMI pixels whose
centre is within 5 km of the centre of the target grid cell. We then use one year of data to build up
a 0.02◦×0.02◦ grid of CH4 concentrations during 2019.

Figure 6 shows the oversampled TROPOMI data over the northern part of the Bowen basin.
Clear CH4 enhancements of up to 20 ppb are seen over several sets of coal mines. These mines are
identified in the figure as Moranbah North / Broadmeadow (MN), Hail Creek (HC), Coppabella
(CB) and Capcoal (CC). The oversampled data demonstrate the ability of TROPOMI to isolate
large sources of emissions such as these mines.

To quantify the annual mean CH4 emissions from each of these mines we use a simple mass
balance approach, following [25]. Given an enhancement in atmospheric CH4 column (∆X) over
a source region, the emissions rate, Q, can be defined as:

Q=
∆XMCH4UWp

Matmg
, (3.1)

where U is the mean 10 m wind speed, W is the size of the box, p is the dry atmospheric surface
pressure, g is the gravitational constant and the Mx terms represent the molar mass of CH4 and
the atmosphere. We use values of U and p from MERRA-2 reanalyses, as used by the GEOS-Chem
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model. For this illustrative calculation we do not take into account changes in wind direction over
the oversampling period.

Table 3 shows the annual mean emission estimates from each of the selected mines alongside
the respective production statistics and reported annual total greenhouse gas emissions, described
as CO2 equivalent values assuming a global warming potential of 28 [38], under the Australian
reporting system for national highest emitters. We acknowledge these estimates are not directly
equivalent to our CH4 emissions, but the majority of CO2-equivalent emissions from coal mines
are from CH4 rather than CO2 so they can be reasonably compared.

Moranbah North and Capcoal have the largest reported emissions, reflecting that they are
underground coal mines that generally emit more CH4 than surface mines because of the higher
gas content of deeper coal seams. Our emission estimates for both these mines are broadly
equivalent to the reported total. In contrast, our emission estimates for the two surface mines,
Coppabella and Hail Creek, are four and two times larger than the reported amounts, respectively.
This discrepancy may reflect large errors in emission factors for surface coal mines. We find that
other surface mines in the region do not have similarly detectable CH4 enhancements, despite
having larger total coal production. So our larger emission estimates may also be a result of mine-
specific activities or enhanced gas content in these particular coal seams. We also acknowledge
that our estimates have large uncertainties that reflect uncertainties associated with the assumed
uniform wind speed, quantifying the CH4 column enhancement relative to the local background,
and the definition of each source region. Some of these uncertainties could be reduced by using
a high-resolution 3-D meteorological model but nevertheless the enhancements over the Bowen
basin (Figure 6) demonstrate the capability of the current generation of satellite data to identify
the largest CH4 emitters so they can be compared with national reporting mechanisms (e.g. [21]).

4. Concluding Remarks
We have shown that the added value of satellite data for understanding the contemporary CH4

budget is mainly from its superior spatial coverage, particularly over the tropics where there
are very few in situ measurements. On a global scale we find excellent agreement between
CH4 fluxes estimated using data collected by the NOAA surface network and by the Japanese
Greenhouse gases Observing SATellite (GOSAT), as expected. Differences begin to appear when
these a posteriori fluxes are described on 30◦ latitudinal bins but they are mostly within the
associated a posteriori uncertainties. Even on large continental scales, long-term trends (2010–
2019) in emissions from NOAA and GOSAT data are mostly consistent. It is only when we
investigate shorter term variations and sub-continental spatial scales that we see a significant
discrepancy between the distribution and magnitude of CH4 flux estimates. We demonstrate this
by examining fluxes over tropical South America and the Indian subcontinent, regions that have
recently experienced large-scale climate perturbations. Recent increases in the global atmospheric
CH4 growth rate are linked to large and rapid changes in emission sources, particularly over
tropical continents where GOSAT can provide more spatially resolved information than NOAA
data.

For the sake of brevity, we have limited our analysis to CH4 column data and consulted
other data as part of the narrative. In practice, we have a wealth of in situ and satellite data to
help attribute observed changes in CH4 to changes in fire, hydrology, anthropogenic emissions
[45]. Integrating those auxiliary data into a coherent narrative about changing CH4 emissions is
already possible. Formal integrating data that describe the carbon cycle and water, for example,
within a Bayesian framework represents an important next step for the community. Only with this
approach can we move towards a more process-level understanding of, say, wetland emissions
that can then be challenged and developed with targeted fieldwork measurements. This formal
approach requires that we characterize the error budget of the remotely sensed data, which
requires a sustainable and transparent ground-truthing framework (e.g. [2,3,75]).

Newer instruments such as TROPOMI that have better daily coverage and finer spatial
resolution open up new research directions. For example, we used these data to estimate
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diffuse emissions from Australian coal mines. Other groups have already started using these
data to study emissions from large urban centres, power plants that effectively represent large,
fixed-point sources, and to improve understanding the controls of wetland emissions, moving
beyond what can be achieved using GOSAT. The next generation of satellite instruments, e.g.,
GHGSat (https://www.ghgsat.com/), MethaneSat (https://www.methanesat.org/),
Space Carbon Observatory (https://scarbo-h2020.eu/), and the constellation of sensors
aboard the Copernicus CO2 service, will dramatically increase the volume of high spatial
resolution quality CH4 data.

The grand challenge is to use data to improve predictive Earth system models so we can use
them to better understand what is in store for us and to develop effective climate policy (Figure 7).
To achieve the necessary but ambitious goals of the Paris Agreement requires that we understand
emissions from human ecosystems (e.g., urban centres, oil and gas industry, food production) and
natural ecosystems (e.g., wetlands). They represent complementary measurement and analysis
challenges. On spatial scales of our largest cities (<100 km) we need to make better use of new
technology alongside more established instruments. We suggest that the internet of things should
incorporate environmental measurements, taking advantage of fixed (e.g. buildings) and moving
(e.g. transport) urban structures. Individual small-scale atmospheric sensors are less accurate and
precise than research-grade equipment, but AI network algorithms can help integrate sensor
kilo- or mega-clusters (calibrated with gold-standard equipment) to describe CH4 (and CO2)
variations associated with the continual movement of millions of people. Machine-learning
techniques will be important to infer surface carbon fluxes from the unprecedented volumes of
data. A sustainable global observing system requires a business model. We propose that the global
scale observing backbone, delivered by calibrated ground-based networks and satellites, should
be funded by public money, reflecting the climate commons. Urban ecosystem measurement
systems, including commercial satellites, should be funded by emitters and climate finance and
by potential customers, e.g., insurance industry and hedge funds, to promote decarbonization
projects. More accurate information about city emission trends will help create new markets that
are not covered by current carbon trading schemes.

It is encouraging that most of the technological and scientific expertise necessary to address
our challenges already exists in different disciplines and sectors (Figure 7). Part of our
transformational challenge will be how to harness that expertise. Meeting the demands of the
Paris Agreement also requires major structural changes in the way we live, the way we produce
and consume energy, and the way we do business. Collectively, these will be generation-defining
changes.

Ethics. No methane molecules were harmed in our experiments.

Data Accessibility. All the data and materials used in this study are freely available. The NOAA ObsPack
data products (https://esrl.noaa.gov/gmd/ccgg/obspack/) are available subject to their fair use policies. The
University of Leicester GOSAT Proxy v9.0 XCH4 data are available from the Centre for Environmental Data
Analysis data repository [49]. The presented material contains modified Copernicus TROPOMI CH4 data,
available from ftp://ftp.sron.nl/open-access-data-2/TROPOMI/tropomi/ch4/. The GEOS-Chem model
code is available at http://acmg.seas.harvard.edu/geos/.

Authors’ Contributions. P.I.P., L.F., and M.F.L. contributed equally to the data analysis presented in this
paper, P.I.P. led the writing of the paper with contributions from coauthors L.F., M.F.L., R.J.P., H.B., X.L., A.L.,
and T.B..

Competing Interests. The authors declare that they have no competing interests.

Funding. P.I.P., L.F., R.J.P. and H.B. acknowledge support from the UK National Centre for Earth
Observation funded by the National Environment Research Council (NE/R016518/1); P.I.P. and M.F.L.
acknowledges funding from the Methane Observations and Yearly Assessments (MOYA) project
(NE/N015916/1); R.J.P. and H.B. also acknowledge funding from grant NE/N018079/1.

Acknowledgements. We thank all the scientists that submitted data to the CO2 and CH4 Observation
Package (ObsPack) data products, coordinated by NOAA GML, and making them freely available for carbon

https://www.ghgsat.com/
 https://www.methanesat.org/
https://scarbo-h2020.eu
f
h


11

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

cycle research. We thank the Japanese Aerospace Exploration Agency, National Institute for Environmental
Studies and the Ministry of Environment for the GOSAT data and their continuous support as part of the
Joint Research Agreements at the Universities of Edinburgh and Leicester. This research used the ALICE High
Performance Computing Facility at the University of Leicester for the GOSAT retrievals. The TROPOMI data
processing was carried out on the Dutch National e-Infrastructure with the support of the SURF Cooperative.
We also thank the GEOS-Chem community, particularly the team at Harvard who help maintain the GEOS-
Chem model, and the NASA Global Modeling and Assimilation Office (GMAO) who provide the MERRA 2
data product.

Disclaimer. NA.



12

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

a

b

d

c

e

Figure 1. Geographical locations of data collected by a) ground-based measurements operated by NOAA, daily

distributions of clear-sky methane columns observed by b) GOSAT and c) TROPOMI satellite instruments on 20th

June 2019, and the corresponding monthly distributions for d) GOSAT and e) TROPOMI for June 2019. Ground based

measurements include flask measurements (green dots) and in situ continuous analyzer measurements (red dots) of

CH4 operated by NOAA, a subset of which we use to determine a posteriori flux estimates, and the methane columns

measured the Total Carbon Column Observing Network (TCCON, [75]).
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Figure 2. a) Time series of global monthly methane fluxes (Tg/yr) inferred from GOSAT and NOAA methane

measurements from 2010 to 2020, and the corresponding common a priori values. The corresponding annual methane

fluxes (Tg/yr) are reported in Table 2. The blue dashed and dotted horizontal denote the 2010-2019 mean seasonal peak

value and the ±1-σ values, respectively. b) Box and whiskers plot of the annual mean methane fluxes (1012 Tg/yr) from

2010 to 2019. The top, middle, and bottom values in each triplet correspond to fluxes inferred from GOSAT and in situ

data, and to the common a priori data. Estimates are described across 30◦ zonal bands. c) The corresponding annual

mean anomalies, calculated by removing the 2010–2019 mean flux from all years. Red dots denote outliers that lie outside

1.5× the inter-quartile range.
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a priori: 2010-2019a a priori: 2016-2019b

NOAA: 2010-2019c NOAA: 2016-2019d

GOSAT: 2010-2019e GOSAT: 2016-2019f
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0.15 0.10 0.05 0.00 0.05 0.10
Tg CH4/yr yr 1

Figure 3. Linear trend estimates, determined by the Siegel repeated median estimator, (Tg CH4/yr yr−1) of a posteriori

CH4 fluxes taken from (top row) a priori inventories, and inferred from (middle row) NOAA in situ measurements and from

(bottom row) GOSAT column data for (left column) 2010–2019 (n = 120) and (right column) 2016–2019 (n = 48). We

discard absolute trends < 0.025 Tg CH4/yr yr−1 to emphasize the largest positive and negative trends. Green dashed

boxes denote our definitions of tropical South America and the Indian subcontinent used in subsequent analyses.
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Figure 4. a) Monthly a priori and a posteriori CH4 flux estimates (Tg/yr) for tropical South America, (broadly defined by

30–85◦W, -20◦S–13◦N) from 2010 to 2019. A posteriori estimates are inferred from (black) NOAA in situ measurements

(black) and (grey) GOSAT column measurements (grey) using (green) common a priori estimates. Corresponding annual

flux estimates are denoted by squares. b) A posteriori flux estimates inferred from in situ data as a latitude-time Hövmoller

plot, and c) the corresponding monthly flux anomalies relative to 2010–2019 monthly means. d) Monthly a posteriori flux

estimates inferred from GOSAT data relative to the monthly in situ a posteriori estimates. e) Monthly GOSAT a posteriori

flux anomalies relative to 2010–2019 monthly means
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Figure 5. As Figure 4 but for the Indian subcontinent, broadly defined 65–95◦E, 5–35◦N.
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Figure 6. Oversampled TROPOMI column data (ppb) over the Bowen Basin in Queensland, Australia. CB, CC, HC, and

MN denote Coppabella, Capcoal, Hail Creek, and Moranbah North/Boradmeadow (MN) mines (Table 3).
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Instrument Data Wavelength Orbit, LECT, Ground footprint
Availability coverage repeat frequency dimension

SWIR Instruments
SCIAMACHY (nadir) 2002–2012 SWIR SS, 1000d, 3 30×60 km2

GOSAT-1/TANSO 2009–present SWIR/TIR SS, 1300d, 3 10.5 km diameter
GOSAT-2/TANSO 2019–present SWIR/TIR SS, 1300d, 3 10.5 km diameter
TROPOMI 2018–present SWIR SS, 1330a, 1 5.5×7 km2

Table 1. Satellite instruments that have contributed to our understanding of atmospheric CH4 and the the corresponding

regional distribution of emissions. LECT refers to the local equatorial crossing time and the repeat frequency refers to the

approximate time between successive measureements over a particular region, subject to clear-sky criteria.
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Mine Type Annual
production
(Mt)

Reported
emissions
(Mt CO2-eq)

Estimated
emissions
(Mt CO2-eq)

∆XCH4

(ppb)

Capcoal Underground
& Surface

11.81 2.80 3.1 ± 1.5 17

Moranbah North
/ Broadmeadow

Underground 13.01 3.18 3.3 ±1.5 15

Coppabella Surface 3.61 0.19 0.9±0.4 7
Hail Creek Surface 7.66 0.50 1.2±0.6 12

Table 3. Production statistics, reported and estimated emissions and TROPOMI annual mean enhancement from selected

mines in the Bowen Basin, Queensland, Australia. Coal production statistic are taken from https://www.data.

qld.gov.au/dataset/coal-industry-review-statistical-tables, last accessed 26th March

2021. CO2-equivalents are calculated using a GWP of 28 from IPCC AR5.

 https://www.data.qld.gov.au/dataset/coal-industry-review-statistical-tables
 https://www.data.qld.gov.au/dataset/coal-industry-review-statistical-tables
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