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Abstract

In this paper, we discuss an important aspect of speech privacy:
protecting spoken content. New capabilities from the field of
machine learning provide a unique and timely opportunity to re-
visit speech content protection. There are many different appli-
cations of content privacy, even though this area has been under-
explored in speech technology research. This paper presents
several scenarios that indicate a need for speech content privacy
even as the specific techniques to achieve content privacy may
necessarily vary. Our discussion includes several different types
of content privacy including recoverable and non-recoverable
content. Finally, we introduce evaluation strategies as well as
describe some of the difficulties that may be encountered.

Index Terms: privacy, speech coding, speech recognition

1. Introduction

Speech content privacy refers to the ability to conceal or mask
sensitive content information within the speech signal. Deter-
mining what would be considered sensitive information ulti-
mately depends on the use-cases. Private content may be found
within particular keywords or keyphrases such as named enti-
ties (places, dates, locations, organizations etc.), or financial and
medical details. In this paper, we use the term speech content
to mean semantically meaningful words. However, this defini-
tion could be reasonably extended to paralinguistic information
including mannerisms, patterns of disfluency, or high-level per-
ceptual features like prosody and emotion.

Traditionally, speech content privacy has been rooted in
the idea that a signal-emitting device can be set up within a
physical space, such as an office room, to conceal what people
say during private conversations. This device emits a special
type of noise to mask semantically-relevant speech sounds, like
words or phonemes [1, 2, 3]. Such approaches can effectively
mask speech content to the point of rendering it unintelligible
to nearby eavesdroppers. However, this approach provides a
blanket solution. It is heavily dependent on specific room and
speaker characteristics, making it challenging for the technol-
ogy to generalize to a variety of scenarios [4].

Furthermore, it may not always be desireable to mask en-
tire conversations but instead only specific content that would
be considered sensitive in nature. Perhaps the most well-known
form of content privacy comes from broadcasting where a sen-
sitive phrase is masked or replaced using a ‘bleep’ sound. There
are downsides to using a ‘bleep’: it does not preserve speaker
characteristics, it interrupts the listening experience, and it may
be irreversible. In fact, it may be preferable to simply re-
place a sensitive phrase with a less-sensitive counterpart. If
there were perfect text-to-speech (TTS) synthesis and perfect
automatic speech recognition (ASR), we could find a sensitive

phrase automatically via ASR and we could replace it with a
less-sensitive phrase, while maintaining characteristics of the
original speakers’ voice and style. The current deep learning
approaches for ASR and TTS are not ideal, but, still it is possi-
ble to produce such results with these applications’.

Although there has been recent scientific focus on speaker-
centric privacy and security [5], now there is an increasing need
to expand speech privacy to ensure that spoken content is also
protected. Solutions to speech content privacy have not yet been
fully explored because new use-cases are still emerging. While
more and more people adapt to voice-based technologies, two
main privacy issues have become prominent. First, many people
have a reasonable expectation of privacy when it comes to how
their devices store, process, and transmit their voice data [6].
Second, some people modify their personal behavior due to pri-
vacy concerns, such as never using voice-enabled devices in
open or public spaces [7]. Both of these issues must be ad-
dressed in order for voice technology to reach full potential.

During the past few years, there were significant ad-
vances in machine learning, especially for deep neural networks
(DNNs). This has been transformational to the speech technol-
ogy landscape. Because of DNNGs, it is possible to train models
using federated learning wherein models are adapted to specific
user data without the need to transmit data away from a per-
sonal device [8]. DNNs have also enabled the development
of neural vocoders that produce extremely high-quality syn-
thetic speech [9, 10] as well as multiple different approaches
to speech signal disentanglement that separates speech content
from speaker identity [11, 12]. This paper explores how new
forms of content privacy can be developed with different use-
cases in mind and provides an opportunity to re-imagine how
content privacy can be used to meet the needs of society.

2. Recent Work

There is an apparent trade-off between content-based privacy
and the ability to use speech in downstream tasks. Recent work
in [13] examined how privacy-transformed data affects the abil-
ity to train models for automatic speech recognition (ASR) by
masking named entities in the text data during model training.
In particular, they sought to adapt existing text language mod-
els to account for missing (or ‘masked’) words from the data.
While content privacy initially reduced overall ASR system per-
formance, they successfully developed a method to adapt text
language models and regained some performance. They did not
describe any methods for masking the speech audio.

The Bavarian Archive for Speech Signals (BAS) offers
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an online webservice? that will mask speech content using a
pipeline approach. An audio file is submitted to the webservice
along with a list of target words. ASR is used to obtain forced
alignments of words and timestamps from the audio file. The
content is masked with white noise, silence, or a bleep, and a
new audio file is produced. While this pipeline approach could
be useful for static databases, the required forced alignments
makes this solution too computationally expensive to extend to
privacy scenarios that require real-time performance.

Another aspect of content privacy is related to speech
codecs and compression. A new generative DNN architecture
was introduced in [14] and [15], independently, with different
speech technologies in mind. The architecture is a dual-encoder
vector quantized variational autoencoder (VQ-VAE) that learns
to disentangle speech content and speaker identity information
in the speech signal while simultaneously creating a discrete
and compressed representation of the speech. In [14] the goal
was to use VQ-VAE to compress the speech signal and enhance
it by removing unwanted noise. They measured compression
rate as bits/sec as well as human judgements of the enhanced
speech naturalness. In [15], they took advantage of the discrete
representations to mask the content of targeted phrases using
different types of masks. They measured the resulting intelli-
gibility and human judgements of speaker consistency. Taken
together, work on this VQ-VAE architecture is promising for
content-based privacy because it effectively separates content
from other information in the speech signal. The VQ-VAE de-
sign is also useful for the privacy scenario that involves speech
compression and transmission, discussed in the next section.

3. Content Privacy Scenarios

Content privacy extends to any situation where sensitive infor-
mation is delivered using voice. In this section, we outline four
prominent scenarios that are timely and relevant given the cur-
rent state of the art for speech technology. There may be some
overlap between the privacy needs of the scenarios, however it
is possible that the technical solutions will vary.

3.1. Voice Storage Privacy

All voice-enabled devices capture and store speech data, and in
some cases also transmit it from the device to a larger database
on a remote computing server. Speech capture and storage will
sometimes involve private conversations as a result of inten-
tional or unintentional recordings. While some storage mech-
anisms have security measures by design, such as secure en-
claves on mobile devices or data encryption, content-based pri-
vacy offers an additional layer of protection [16]. Numerous
functionalities for voice-enabled devices require the ability to
access stored voice content. Speech recognition on mobile de-
vices is one example that requires storing speech data, though it
is possible to fully encrypt all speech content while performing
speech recognition [17]. In addition, it would be beneficial to
create “edge” privacy solutions that can mask sensitive content
on a device when the speech is first captured by the microphone,
preferably also within a secure enclave. Successful content pri-
vacy could enable researchers to utilize speech databases for
research and development that would otherwise be prohibited,
due to legal issues with the European Union GDPR [18].

’https://clarin.phonetik.uni-muenchen.de/
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3.2. Speech Compression, Transmission, and Broadcast

In order to transmit or broadcast speech, it must undergo com-
pression which creates a more compact representation of the
data. This is true for mobile phones, internet voice calling,
and television broadcast, among others. It is possible for an in-
truder to intercept, eavesdrop and even maliciously manipulate
speech content during transmission. Watermarking has been
proposed as a countermeasure solution [19]. However, water-
marking only helps to ensure the message remains unchanged
and it does not conceal sensitive content. Other countermea-
sures such as voice scramblers would require highly specialized
hardware and software solutions, and some intelligibility may
be lost during the scrambling and unscrambling process [20].
Related broadcast scenarios include law court testimony, emer-
gency calls, and policing: it is important to protect the witness
identity, which implies hiding or masking different levels of in-
formation, from voice identity to linguistic content. At the same
time, it is important to retain other non-sensitive information as
much as possible in order to provide valid testimony. Sensitive
testimony may also require redaction before being released to
the public or while it is being televised [21].

3.3. Speech and Speaker Recognition

As mentioned earlier, there is a trade-off between protecting
sensitive content while also using the speech for downstream
tasks such as ASR and speaker recognition. Certain speech
technologies may require speaker information to remain unal-
tered by the content masking. Authentication by voice, also
known as automatic speaker verification (ASV) [22], is a com-
mon application where the speaker information needs to be pre-
served when using content masking at the same time. ASV typi-
cally compares two utterances (a reference with a test utterance)
to produce a score, subject to binary decision. The score is high
if the two utterances likely come from the same speaker (target
proposition) or the score is low if the utterances come from dif-
ferent speakers (impostor proposition). A related application is
speaker diarization [23] which aims to detect who spoke when?
in a multi-speaker conversation. Content masking can be used
in this scenario if it does not alter speaker information or cause
confusion between speakers.

3.4. Voice-Enabled Assistive Technology

‘When a user interacts with their voice assistant, such as Siri or
Google, the responses spoken aloud from the device may con-
tain sensitive information that the user does not want people
nearby to overhear [7, 24, 25]. Blind users of speech technol-
ogy face unique challenges for privacy when using the internet
and they are some of the heaviest users of text-to-speech (TTS)
synthesis since it is the core technology of screen-readers [26].
While sighted people can enjoy a particular amount of content
privacy from quietly reading text on a screen, this type of pri-
vacy is not extended to blind users who must have screens read
aloud using screen-reading software [27]. Focus groups show
that in public spaces blind users may hold a device very close to
their ear or use earbuds, even though this practice is potentially
hazardous because it blocks out other environmental noises that
blind users must attend to [28]. There are many nuances to de-
veloping speech technologies that are optimized for blind users.
Content privacy is under-explored and could have a big impact
for accessibility [29]. It may be possible to embed privacy capa-
bilities within the TTS screen-reader, but that would prevent the
user from receiving important information. Another possibility
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Figure 1: Simultaneous speech compression and content mask-
ing using a deep learning technique called VQ-VAE.

is to develop a special earbud customized for blind users, while
allowing for other important sounds in the environment.

4. Privacy Approaches

Ideally, the solutions to content privacy would be optimized for
the specific needs and requirements of each particular scenario.
For example, a customized earbud for blind users of screen-
readers can be very different from privacy solutions for speech
databases. Even still, as far as speech is concerned there are
some general approaches that are worth discussing as a starting
point. Speech signal disentanglement stands out as a promis-
ing overall approach. Disentanglement is a form of distributed
representation learning that separates different types of speech
information into separate representations, such as speaker iden-
tity and speech content. One of the main benefits of disen-
tanglement is that it allows content to be modified separately
from other informational factors. In addition, some disentan-
glement techniques such as VQ-VAE also compress the speech
signal, which is beneficial for transmission scenarios [14, 15].
The VQ-VAE approach is shown in Figure 1. Original, un-
masked speech is disentangled into separate representations of
speaker identity and content using two vector-quantized (VQ)
codebooks. These codebooks are highly compressed The con-
tent VQ codebook is used for content masking. The masked
speech is synthesized, and made available to human listeners or
downstream speech technologies.

Speech content can be masked through various mechanisms
and one of the most obvious would be to replace sensitive con-
tent with silence or noise. However, there have not yet been
any studies to determine how different types of masks impact
performance on downstream speech tasks such as ASR, ASV,
or human listening effort and intelligibility. Another issue is
whether or not a content mask would be reversible in the sense
that the speech content could be concealed and later recov-
ered. A reversible privacy mask might not be ideal for speech
databases described in Section 3.1 if the speech data will be
shared with third-parties. On the other hand, a reversible mask
would be useful for speech transmission described in Section
3.2 where the goal may be to protect content from being inter-
cepted only during transmission.

5. Content Privacy Evaluation

Currently there are no established protocols for evaluating
speech content privacy. While it is not the goal of this paper
to definitively specify an evaluation protocol, we present three
assessment viewpoints that can help inform future efforts: task-
based, high-level, and low-level.

wi w2 w3 w4

Natural
Key Objective
un-masked
masked P FP
FP EN Error
Cases
FN

Figure 2: Sample word-level masking errors and decisions
which can be compared to natural (un-masked) and objective
(with masking), where w1, wa..wy, is a sequence of words.

5.1. Task-Based Assessment

When applying ASV on content-masked speech it is important
to ensure that speaker information is not altered. The speech
output of a content masking system may not be perfect due to
compression or the quality of speech vocoder. The result may
be a speaker identity shift in the synthetic voice space, even for
portions of speech without content masking such as surrounding
words. Consequently, a natural and a content-masked utterance
coming from the same speaker could be marked as two different
speakers. One way to assess if content-masking has affected the
speaker identity is to compare un-masked enrolment utterances
with masked test utterances. Whereas to check speaker separa-
bility in the protected space, the enrolment and test utterances
would both be masked. As explained in Section 3.3, an ASV
system compares an enrolment and test utterance, and produces
a similarity score. Then a threshold, also known as the operat-
ing point, is set in order to decide between the target and im-
postor propositions. There are two kinds of possible errors for
the ASV system: false alarms (FA) and false rejections (FR).
Several metrics are used to interpret these errors. The equal er-
ror rate (EER) describes the operating point at which the FA
and the FR rates are equal. The log-likelihood-ratio cost [30] is
also commonly used to evaluate ASV systems. It measures the
ability of the scores to resemble calibrated log-likelihood-ratios
(LLRs) and is thus independent of the operating point.

Content-masking can also be evaluated in terms of an ASR-
style task, especially for privacy scenarios that require high in-
telligibility for the un-masked and non-sensitive surrounding
words. A word error rate (WER) or phone error rate (PER)
measures how many words or phones are correctly recognised
by an ASR system. The WER/PER should decline proportion-
ally with the quantity of words that have been masked. Human
judgements of intelligibility have similar requirements. One
way to assess the impacts on ASR and intelligibility is to present
human listeners with masked speech audio alongside ASR out-
put and measure how often listeners agree with the ASR tran-
script based on what they hear [13]. This hybrid style of align-
ing human judgements with task-based performance holds for
ASR as well as ASV and speaker separation.

5.2. High-Level Assessment

This paper has been discussing content privacy based on the
notion that content refers to spoken words. For speech privacy
and security, different types of word mask errors imply different
consequences. For example, failing to mask a target sensitive
phrase might invoke a penalty whereas accidentally masking a
non-sensitive phrase would not. As discussed earlier, some pri-
vacy scenarios require that non-sensitive words remain highly
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Figure 3: Waveform and spectrogram to compare ideal binary mask from two different content-masking approaches: additive noise
(top) and replacement with noise (bottom). In each case, target content to be masked is highlighted by the green box.
“When sunlight strikes raindrops in the [air they act as a] prism and form a rainbow.”

intelligible for human listeners or for other speech technolo-
gies like ASR. We introduce a metric called mask error rate
(MER) which can be used specifically to assess errors about
which words have been masked correctly. Consider four types
of errors/decisions (Figure 2) at the word-level: True negative
(TN) word is correctly unmasked; True positive (TP) word is
correctly masked; False negative (FN) word is incorrectly un-
masked; False positive (FP) word is incorrectly masked.

The MER metric can be described by Equation 1. For a
given utterance, the weighted combination of masking errors
with respect to the length of the utterance:

aFN + BFP
TN +TP+FN + FP

where o and 3 are penalties that can be used to balance the
two types of word masking errors. For speech privacy, an FN
error may need to be weighted more heavily because it could
lead to revealing sensitive information. This metric could be
adapted for any size of chunk, larger or smaller than the word
level. One potential limitation is that MER requires high-quality
time alignments in order to perform the calculations. To be use-
ful in practice, MER should also account for slight variation
of word boundaries, such as inadvertently causing surrounding
words to become unintelligible. For reversible masking, MER
can be adapted to measure how much content is recoverable
when the mask is reversed.

MERuu =

ey

5.3. Low-Level Assessment

It may also be possible to develop an evaluation metric bor-
rowing from a technique in speech enhancement, called ideal
binary masks. An idea binary mask is used to remove various
types of noise from the speech signal (babble, static, reverbera-
tion, etc). There are many different versions of this technique.
Overall it can be summarized as comparing the original clean
signal with a noisy corrupted signal, and computing signal-to-
noise ratio (SNR) to identify which areas of the speech signal
could be attenuated. This effectively removes the noise portions
of the signal, while leaving the speech portions of the signal in-
tact. An ideal binary mask describes the perfect (idealized) so-
lution of removing noise in the speech signal so that the noise
(and only the noise) is completely removed, while also preserv-

ing speech intelligibility [31].

Consider two versions of speech processed with an
ideal binary mask shown as waveforms and spectrograms
in Figure 3 [32]. The top was created by adding a
temporally-modulated speech-shaped noise masker (ICRA
noise 9 from [33]) to the signal, to mask a target phrase, and
then an ideal binary mask was calculated and applied to attempt
to recover the speech. The bottom was created by replacing
a target phrase with the same type of noise. Recovery of the
target phrase can be measured by a short term objective intelli-
gibility measure (STOI)*. The STOI value for the additive noise
is higher than the replacement noise, indicating that the target
phrase is more recoverable when masked with additive noise.

6. Discussion and Future Work

We have discussed some of the current issues surrounding
speech content privacy. While some of the scenarios for this
capability will require slightly different solutions to be imple-
mented, speech disentanglement is a promising overarching ap-
proach because it isolates speech content from other informa-
tion in the speech signal. New progress in speech content pri-
vacy will be timely due to very recent advances in machine
learning. It will have a large impact on society since privacy
concerns influence how people adopt new voice technologies.
One of the most important technical challenges will be pro-
cessing privacy in real-time, and in a way that balances pri-
vacy needs with freedoms of expression. Allowing users a
mechanism to adjust and control their content privacy settings
will help create this necessary balance. Privacy controllability
would allow users to have different privacy features in different
settings, such as at home versus in public, or depending on who
is nearby, or the type of voice device being used.
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