
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The CSTR System for Multilingual and Code-Switching ASR
Challenges for Low Resource Indian Languages

Citation for published version:
Klejch, O, Wallington, E & Bell, P 2021, The CSTR System for Multilingual and Code-Switching ASR
Challenges for Low Resource Indian Languages. in Proceedings of Interspeech 2021. International Speech
Communication Association, pp. 2881-2885, Interspeech 2021, Brno, Czech Republic, 30/08/21.
https://doi.org/10.21437/Interspeech.2021-1035

Digital Object Identifier (DOI):
10.21437/Interspeech.2021-1035

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of Interspeech 2021

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Feb. 2022

https://doi.org/10.21437/Interspeech.2021-1035
https://doi.org/10.21437/Interspeech.2021-1035
https://www.research.ed.ac.uk/en/publications/91ca42db-abc5-4f4e-a371-9958c7a2f406


The CSTR System for Multilingual and Code-Switching ASR Challenges
for Low Resource Indian Languages

Ondřej Klejch, Electra Wallington, Peter Bell

Centre for Speech Technology Research, University of Edinburgh, United Kingdom
{o.klejch, electra.wallington, peter.bell}@ed.ac.uk

Abstract
This paper describes the CSTR submission to the Multilin-

gual and Code-Switching ASR Challenges at Interspeech 2021.
For the multilingual track of the challenge, we trained a
multilingual CNN-TDNN acoustic model for Gujarati, Hindi,
Marathi, Odia, Tamil and Telugu and subsequently fine-tuned
the model on monolingual training data. A language model built
on a mixture of training and CommonCrawl data was used for
decoding. We also demonstrate that crawled data from YouTube
can be successfully used to improve the performance of the
acoustic model with semi-supervised training. These models
together with confidence based language identification achieve
the average WER of 18.1%, a 41% relative improvement com-
pared to the provided multilingual baseline model. For the
code-switching track of the challenge we again train a multilin-
gual model on Bengali and Hindi technical lectures and we em-
ploy a language model trained on CommonCrawl Bengali and
Hindi data mixed with in-domain English data, using a novel
transliteration method to generate pronunciations for the En-
glish terms. The final model improves by 18% and 34% relative
compared to our multilingual baseline. Both our systems were
among the top-ranked entries to the challenge.
Index Terms: low-resource speech recognition, multilingual
speech recognition, code switching

1. Introduction
Increasing the amount of transcribed training data can lead to
large improvements in the accuracy of automatic speech recog-
nition (ASR) systems for mainstream languages. However,
these large amounts of transcribed training data are not avail-
able for the vast majority of world languages given the high cost
of transcription. Therefore, there has been a growing interest
in developing methods that would allow training of ASR mod-
els for low-resource languages with limited transcribed training
data.

Multilingual training or cross-lingual transfer have been
shown to improve the performance of ASR systems in low-
resource languages. For example, transcribed data from well-
resource languages can be used to train a multilingual bottle-
neck feature extractor which can be subsequently used for low-
resource languages [1, 2, 3]. Alternatively, a model trained on
a well-resourced language can be used in a low-resource set-
ting by replacing its output layer with a new output layer for
the target low-resource language [4, 5, 6]. Recently, it has been
shown that it is also possible to leverage untranscribed data in
the target low-resource language with semi-supervised and self-
supervised training [7, 8, 9]. Apart from the scarcity of tran-
scribed data, training ASR systems for low-resource languages
is also challenging because speakers of those languages might
use words from multiple languages within a single utterance –
a phenomenon called code-switching. As an example, speakers

of minority languages may use English terms when speaking
in their native language. Therefore, there has been a lot of re-
search trying to address this issue by focusing on acoustic mod-
elling [10, 11], language modelling [12, 13], decoding [14] and
data augmentation [15].

Over the past few years we have worked on the IARPA Ma-
terial program, during which we have developed a pipeline for
training ASR systems for low-resource languages with limited
amounts of transcribed training data. In order to improve the
model which is typically trained on 50–100 hours of transcribed
training data, we crawl text and audio data from the internet
and we employ semi-supervised training to train on this crawled
data, which leads to large improvement gains [8]. As a result we
are able to train an ASR system for a new language without any
knowledge of the target language using only a small amount of
transcribed data, thus lowering the barrier for training of ASR
systems in new languages. Moreover, given enough computa-
tion capacity, we are able to train a reasonable baseline system
using the crawled data in a matter of days. In this paper we
describe how we used this pipeline to train ASR systems for
seven Indian languages in the Multilingual and Code-Switching
(MUCS) ASR Challenges at Interspeech 2021 [16].

The main contribution of this paper is our demonstration
that it is possible to train a solid ASR system for low-resource
languages using small amounts of transcribed training data and
data crawled from the internet without any knowledge of the
target language: in this case any knowledge of the Indian lan-
guages.

2. Multilingual ASR
In Track 1 of the challenge participants were required to build
a multilingual model for Gujarati, Hindi, Marathi, Odia, Tamil
and Telugu. Furthermore, the participants had to build a lan-
guage identification system because the blind evaluation data
did not contain language information. Here we describe how we
approached the problem by training a multilingual model (see
Figure 1) with subsequent monolingual fine-tuning and ASR
confidence based language identification.

2.1. Acoustic Model Training

Our acoustic model training starts with standard GMM training
which produces speaker adaptive GMM models. These are used
for alignment of the training data, which is then used for train-
ing of a neural network based acoustic model with lattice-free
maximum mutual information [17]. We pre-train the acoustic
model in a multilingual fashion by pooling training data for all
languages and having language specific output layers (see Fig-
ure 1). After the multilingual pre-training we split the model
into six language-dependent acoustic models and we fine-tune
them on corresponding training data. As we discussed earlier,

Copyright © 2021 ISCA

INTERSPEECH 2021

30 August – 3 September, 2021, Brno, Czechia

http://dx.doi.org/10.21437/Interspeech.2021-10352881



Hindi
Classifier

Gujarati
Classifier

Marathi
Classifier

Language-independent
Feature Extractor

Input Feature

Figure 1: Example of multilingual acoustic model for Gu-
jarati, Hindi and Marathi with language-independent feature-
extractor and language-dependent classifiers. In our experi-
ments we train a multilingual model for all six languages.

our pipeline uses data crawled from YouTube to improve the
performance of ASR systems in low-resource languages with
semi-supervised training [18, 8]. Therefore in this challenge we
used data crawled from YouTube for semi-supervised multilin-
gual pre-training and the provided transcribed data for subse-
quent monolingual fine-tuning.

We used a CNN-TDNN architecture which consists of 6
convolutional layers and 12 factored time delayed neural net-
work layers [19] followed by language dependent output layers.
The model is trained with lattice-free maximum mutual infor-
mation (LF-MMI) [17]. The model uses 40-dimensional MFCC
features together with i-vectors for speaker-adaptation [20,
21]. The MFCC features are extracted from recordings down-
sampled to 8kHz and the i-vector extractor is trained on data
pooled from all languages. The model is trained with natural
gradient [22] and uses SpecAugment [23] and Dropout [24] for
regularization.

2.2. Language Model Training

We train a separate language model for each language. Since
the provided training data is very limited – especially for Hindi,
Marathi and Odia, which contain only 4506, 2543 and 820
unique sentences respectively – we use CommonCrawl data1

for each language. We preprocess the CommonCrawl data by
removing all non-alphanumeric tokens and mapping tokens that
contain any character not present in the provided language-
specific lexicon to the <unk> token. Subsequently we train
trigram languages models with Kneser-Ney smoothing [25] on
training and CommonCrawl data with the SRILM toolkit [26],
we interpolate them with interpolation weights optimized on the
provided test data, we select the top 300 thousand words, and
we prune the language model using the relative entropy crite-
rion [27] with threshold 10−9. We used Sequitur [28] to pro-
duce pronunciations for words that were not present in the pro-
vided lexicon.

We also trained recurrent neural network language models
(RNN LM) for rescoring of the lattices obtained with the first
pass decoding [29]. The RNN LMs were trained with Kaldi on
the same data as the n-gram language models. The weights of
different data sources were set to the values used for the n-gram
language model interpolation as they should reflect how well a
given resource matches test conditions.

2.3. Crawling YouTube Data

One of the challenges when working with low-resource lan-
guages is the scarcity of transcribed data. In the Material pro-

1http://data.statmt.org/ngrams/raw/

0.0 0.2 0.4 0.6 0.8 1.0
Marathi (7.3% utts misclassified)

0.0

0.2

0.4

0.6

0.8

1.0

Hi
nd

i

Confidence

0.0 0.2 0.4 0.6 0.8 1.0
Marathi (1.9% utts misclassified)

Hi
nd

i

Calibrated Conf. + Speech Ratio

Figure 2: Language identification of Marathi utterances with
Hindi ASR and Marathi ASR with confidence and calibrated
confidence + speech ration used for scoring.

gram we usually crawl YouTube videos to obtain data that can
be used for semi-supervised training. This process can be di-
vided into two steps: video crawling and filtering. In the first
step we search for videos using the most frequent trigrams in
the language model as search queries. Once we crawl suffi-
cient amounts of videos (we typically crawl 1000 hours of raw
Youtube videos) we need to filter the data. This is because the
crawled data may contain recordings from a different language,
or else they can be music videos which could negatively affect
the performance of the semi-supervised training. We filter the
videos in two steps: first we use text-based language identifier
CLD 22 to remove videos whose description is not written in
the correct language. Then we segment the videos with We-
bRTC VAD3 and use a seed ASR model to decode the filtered
videos. We then compute the mean confidence and speaking
rate for each recording and we keep videos with a mean confi-
dence higher than 0.7 and speaking rate above 1.25. Note that in
our previous experiments we found that speaking rate is partic-
ularly helpful for removing music videos from the crawled data.
After the filtering we randomly selected 200 hours of training
data for each language for multilingual pre-training.

2.4. Language Identification

The recordings in the blind test data for the multilingual chal-
lenge are supplied without a language label. Therefore, in or-
der to use our language-specific ASR models, it was necessary
to perform language identification. We used a simple method
based on ASR confidence scores: we decoded all recordings
with all six language-specific models and then, for each record-
ing, we picked the output with the highest mean word con-
fidence. To improve the language identification performance
we calibrated model confidence scores on the provided test set.
Furthermore, during data analysis we noticed that speech ratio,
computed as the duration of decoded words divided by the total
recording duration, helped with language identification. There-
fore we computed the final language identification score as a
mean of calibrated confidence and speech ratio. The impact of
including speech ratio for language identification is illustrated
in Figure 2 and the impact on the final WER is shown in Table 2.

We note that this method for language identification is very
inefficient because it requires every recording to be decoded
with every model, and therefore would not scale to more lan-
guages. In the future we aim to replace it with an x-vector based
language identification classifier [30] trained on the VoxLin-
gua107 corpus [31].

2https://github.com/CLD2Owners/cld2
3https://github.com/wiseman/py-webrtcvad

2882



Gujarati Hindi Marathi Odia Tamil Telugu Average
seed multilingual model 16.3 26.7 16.5 33.0 30.1 27.3 24.9
+ monolingual fine-tuning 15.8 25.0 16.6 32.9 29.3 26.1 24.2
+ CommonCrawl LM 15.9 17.2 11.0 28.1 22.6 21.3 19.3
+ RNN LM rescoring 15.4 17.4 9.9 26.3 21.7 20.1 18.4
semi-supervised multilingual model 21.4 34.3 19.9 33.2 30.8 31.5 28.4
+ monolingual fine-tuning 15.7 24.7 16.8 32.1 29.3 26.3 24.1
+ CommonCrawl LM 14.7 15.1 10.9 26.6 22.7 21.1 18.4
+ RNN LM rescoring 14.2 15.0 10.1 25.6 22.0 20.0 17.7
train + semi-supervised multilingual model 16.8 26.1 16.6 32.1 29.8 26.8 24.6
+ monolingual fine-tuning 15.6 24.4 16.6 32.3 29.2 26.0 23.9
+ CommonCrawl LM 15.2 16.0 10.7 26.9 22.5 20.7 18.6
+ RNN LM rescoring 14.7 16.2 10.0 25.4 21.9 19.7 17.9

Table 1: WER of the multilingual-models evaluated on the test data with oracle language identification.

Gujarati Hindi Marathi Odia Tamil Telugu Average
baseline 19.3 40.4 22.4 39.1 33.4 30.6 30.7
oracle 14.2 15.0 10.1 25.6 22.0 20.0 17.7
confidence 15.9 17.4 16.1 29.6 23.1 21.6 20.5
confidence + speech ratio 16.7 15.7 12.1 26.8 22.9 22.3 19.3
calibrated confidence 14.6 15.2 11.6 27.2 22.4 20.2 18.5
calibrated confidence + speech ratio 14.7 15.0 10.6 25.9 22.4 20.3 18.1

Table 2: WER of the semi-supervised model with monolingual fine-tuning, CommonCrawl LM and RNN LM rescoring with different
language identification methods.

2.5. Results

As described in Section 2.1 we start by training a seed multilin-
gual model which is then monolingually fine-tuned. This seed
model is subsequently used to decode the crawled YouTube
data, which is then used for semi-supervised multilingual train-
ing. As we can see in Table 1, monolingual fine-tuning of
the multilingual models improves the performance in almost
all cases. Furthermore, using the CommonCrawl LM together
with RNN LM rescoring yields additional gains. Most inter-
estingly we can see that using the YouTube data improves the
average performance by 0.7% compared to using only the pro-
vided training data. Based on our past experience, we hoped
that incorporating the YouTube data would result in bigger im-
provements but it is possible that the crawled data is too mis-
matched from the test data. This is apparent from the results of
the semi-supervised model with and without monolingual fine-
tuning.

Having found the best performing model we decided to
evaluate it without language information. In Table 2 we sum-
marize the results. We see that the baseline system provided
by the organizers achieves the WER of 30.7% on average while
our best system with the oracle language information achieves
17.7% on average. When using uncalibrated confidence, the
language identity of 5.8% of utterances is misclassified and the
average WER degrades to 20.5%. By calibrating the confidence
on the test data and incorporating the speech ratio information,
the language identity of only 0.9% of utterances is misclassi-
fied and the model achieves the average WER of 18.1% which
is only 0.4% absolute worse than the oracle system and 12.6%
absolute better than the provided baseline.

3. Code-Switching ASR
In Track 2 participants had to build an ASR system for tran-
scription of lectures in Bengali and Hindi with a lot of code-
switching, especially technical and programming terms. Here
we describe how we trained our models for this track.

3.1. Acoustic Model

We trained the acoustic model in the same way as in Track 1
by following the Kaldi Babel recipe for GMM training and then
training a multilingual CNN-TDNN model with 40 dimensional
MFCC features and i-vectors as inputs. The main difference is
that we found this Track’s training data to be noisy. Therefore
we cleaned the training data with a Kaldi cleanup script [32] that
re-segments the training data and removes noisy parts which
can have a detrimental effect on the AM training (as we will
see in Table 3). We experimented with monolingual fine-tuning
as in Track 1 but we did not observe any improvements. Fur-
thermore, we also tried single stage transfer learning [33] using
the semi-supervised multilingual model trained in Track 1 but
we did not see any improvements compared to the multilingual
model trained from scratch on the clean training data.

3.2. Lexicon

The provided lexicon for the code-switching track used the
CMU pronunciation dictionary [34] for English terms and a
grapheme lexicon for Bengali/Hindi terms. We hypothesized
that this might be sub-optimal for discriminative training with
LF-MMI because one sound could be represented by an English
phoneme and Bengali/Hindi grapheme. Therefore we decided
to map all words into a shared phoneme dictionary. We used the
Hindi dictionary provided in Track 1 and the Bengali phonemic
dictionary from the IARPA Babel program [35]. After that we
had to map English phonemes to their Bengali and Hindi coun-
terparts. Even though Flite [36] can produce pronunciations of
English terms using an Indic phoneme set [37], we decided not
to use it and instead implemented a tool that would automati-
cally map phonemes between two languages with only mono-
lingual lexicons.

We took inspiration from work on machine translitera-
tion [38, 39] and we crawled Wikipedia for data that would al-
low us to learn the phoneme mapping. Specifically, we crawled
pages about famous people listed on the Bengali and Hindi ver-

2883



Hindi Transliteration

Hindi
Lexicon

Phoneme
Mapping

English
Lexicon

English Word

Figure 3: Mapping English Phonemes into Hindi/Bengali coun-
terparts

sions of Wikipedia and then looked for the English version of
the equivalent page. We took the title of these pages and, if the
number of words in both titles matched, we took them as train-
ing examples. We hypothesised that if the number of words
in both titles matches, the Hindi/Bengali titles are translitera-
tions of English titles. Subsequently, we converted these words
into their English and Indic phonetic representations and we
trained a simple alignment model with the Baum-Welch algo-
rithm [40]. The alignment model, implemented as an Open-
FST transducer [41], allows substitutions between any pair of
phonemes, insertions, and deletions, with the exception that in-
sertion cannot be followed by deletion and vice versa. We then
used the trained alignment model to extract one-best alignments
between the training pairs, we removed pairs with low scores
(as the Hindi/Bengali titles probably were not transliterations of
the English titles), and we trained a pair language model with
OpenGRM [42] which we used for phoneme mapping. This ap-
proach for phoneme-to-phoneme mapping is similar to the pair
language model approach used for grapheme-to-phoneme con-
version [43, 44].

3.3. Language Model Training

The main challenge of building language models for code-
switched data is the lack of representative text data. As in
Track 1 we used CommonCrawl data to enhance the language
model training data. However, the CommonCrawl data is pre-
processed with CLD 2 and thus sentences with a lot of foreign
terms might be removed. In order to introduce relevant English
terms into our training data we downloaded subtitles of English
videos from SpokenTutorial.org. Since the data in this
challenge track is from the Hindi and Bengali language muta-
tions of this channel, this method ensured that we had relevant
English terms in our language model. As in Track 1 we trained
trigram LMs for first pass decoding and RNN LMs for lattice
rescoring.

3.4. Results

The results of the models trained for the code-switching track
of the challenge are summarized in Table 3. In the table we
compare two sets of models, the first those those using the
provided lexicon, which contains grapheme pronunciations for
Bengali/Hindi words and phoneme pronunciations for English
words, and the second those using the phoneme lexicon ob-
tained by mapping English phonemes into their Bengali/Hindi
counterparts. For both sets of models we first trained a multilin-
gual model using both Bengali and Hindi training data. In the

Bengali Hindi
grapheme multilingual model 29.6 27.7
+ training data cleanup 26.5 21.4
+ test data resegmentation 25.6 19.9
+ Web LM 23.4 18.9
+ RNN LM rescoring 24.6 18.4
phoneme multilingual model 28.5 27.2
+ training data cleanup 26.4 21.3
+ test data resegmentation 25.6 19.5
+ Web LM 23.3 18.8
+ RNN LM rescoring 24.7 18.1

Table 3: WER of the code-switching models evaluated on the
test data with document level scoring.

next step we trained models on cleaned training data, which led
to substantial improvements for both languages (more than 3%
and 6% absolute for Bengali and Hindi respectively). Next we
resegmented the test data with WebRTC VAD which reduced
the WER by another 0.8% and 1.8% respectively. Subsequently,
we decoded the test data with the Web LM and rescored the lat-
tices with the RNN LM. For Bengali, the best model did not use
RNN LM rescoring as it degraded the final performance. By
performing all these steps we managed to reduce the WER of
the phoneme based model from 28.5% down to 23.3% for Ben-
gali and from 27.2% down to 18.1% for Hindi. We also tried
to perform single stage transfer learning [33] from the multilin-
gual model trained in Track 1, but we did not get any gains on
top of the results already reported.

4. Conclusions
In this paper we described our submission to the MUCS 2021
challenge. Our submitted models were trained with our train-
ing pipeline developed for low-resource languages during the
IARPA Material program. First the models were multilingually
pre-trained on automatically crawled data from Youtube and
then they were monolingually fine-tuned on the provided train-
ing data. Our results in this challenge suggest that it is pos-
sible to train good ASR system for low-resource languages
with limited amounts of data and no knowledge of the target
language. Furthermore, we demonstrated that it is possible
to leverage data which is available on-line, for enhancing the
acoustic model with semi-supervised training and extending the
vocabulary of the language model. In the future, we will focus
on improving semi-supervised training and transfer learning so
that we can build ASR models for languages with very little or
no transcribed data.

5. Acknowledgements
This research is based upon work supported in part by the Of-
fice of the Director of National Intelligence (ODNI), Intelli-
gence Advanced Research Projects Activity (IARPA), via Air
Force Research Laboratory (AFRL) contract #FA8650-17-C-
9117. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily rep-
resenting the official policies, either expressed or implied, of
ODNI, IARPA, AFRL or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright annota-
tion therein. This work was also partially supported by EPSRC
Project EP/T024976/1 (Unmute).

2884



6. References
[1] S. Thomas, S. Ganapathy, and H. Hermansky, “Cross-lingual and

multi-stream posterior features for low resource lvcsr systems,” in
Interspeech, 2010.

[2] F. Grézl, M. Karafiat, and M. Janda, “Study of probabilistic and
bottle-neck features in multilingual environment,” in ASRU, 2011.

[3] K. Veselý, M. Karafiát, F. Grézl, M. Janda, and E. Egorova, “The
language-independent bottleneck features,” in SLT, 2012.

[4] A. Ghoshal, P. Swietojanski, and S. Renals, “Multilingual training
of deep neural networks,” in ICASSP, 2013.

[5] J.-T. Huang, J. Li, D. Yu, L. Deng, and Y. Gong, “Cross-language
knowledge transfer using multilingual deep neural network with
shared hidden layers,” in ICASSP, 2013.

[6] G. Heigold, V. Vanhoucke, A. Senior, P. Nguyen, M. Ranzato,
M. Devin, and J. Dean, “Multilingual acoustic models using dis-
tributed deep neural networks,” in ICASSP, 2013.

[7] A. Ragni and M. Gales, “Automatic speech recognition system
development in the” wild”,” in Interspeech, 2018.

[8] A. Carmantini, P. Bell, and S. Renals, “Untranscribed web audio
for low resource speech recognition.” in Interspeech, 2019.

[9] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0:
A framework for self-supervised learning of speech representa-
tions,” NeurIPS, 2020.

[10] E. Yılmaz, H. van den Heuvel, and D. Van Leeuwen, “Investi-
gating bilingual deep neural networks for automatic recognition
of code-switching frisian speech,” Procedia Computer Science,
vol. 81, pp. 159–166, 2016.

[11] S. Dalmia, Y. Liu, S. Ronanki, and K. Kirchhoff, “Transformer-
transducers for code-switched speech recognition,” in ICASSP,
2021.

[12] Y. Li and P. Fung, “Code-switch language model with inversion
constraints for mixed language speech recognition,” in COLING,
2012.

[13] H. Adel, N. T. Vu, F. Kraus, T. Schlippe, H. Li, and T. Schultz,
“Recurrent neural network language modeling for code switching
conversational speech,” in ICASSP, 2013.

[14] E. Yilmaz, S. Cohen, X. Yue, H. Li, and D. van Leeuwen, “Multi-
graph decoding for code-switching asr,” in Interspeech, 2019.

[15] Y. Sharma, B. Abraham, K. Taneja, and P. Jyothi, “Improving low
resource code-switched asr using augmented code-switched tts,”
in Interspeech, 2020.

[16] A. Diwan, R. Vaideeswaran, S. Shah, A. Singh, S. Raghavan,
S. Khare, V. Unni, S. Vyas, A. Rajpuria, C. Yarra, A. Mittal, P. K.
Ghosh, P. Jyothi, K. Bali, V. Seshadri, S. Sitaram, S. Bharadwaj,
J. Nanavati, R. Nanavati, K. Sankaranarayanan, T. Seeram, and
B. Abraham, “Multilingual and code-switching asr challenges for
low resource indian languages,” in Interspeech, 2021.

[17] D. Povey, V. Peddinti, D. Galvez, P. Ghahremani, V. Manohar,
X. Na, Y. Wang, and S. Khudanpur, “Purely sequence-trained neu-
ral networks for asr based on lattice-free MMI,” in Interspeech,
2016.

[18] V. Manohar, H. Hadian, D. Povey, and S. Khudanpur, “Semi-
supervised training of acoustic models using lattice-free MMI,”
in ICASSP, 2018.

[19] D. Povey, G. Cheng, Y. Wang, K. Li, H. Xu, M. Yarmohammadi,
and S. Khudanpur, “Semi-orthogonal low-rank matrix factoriza-
tion for deep neural networks.” in Interspeech, 2018.

[20] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet,
“Front-end factor analysis for speaker verification,” IEEE TASLP,
vol. 19, no. 4, pp. 788–798, 2010.

[21] G. Saon, H. Soltau, D. Nahamoo, and M. Picheny, “Speaker
adaptation of neural network acoustic models using i-vectors,” in
ASRU, 2013.

[22] D. Povey, X. Zhang, and S. Khudanpur, “Parallel training of
DNNs with natural gradient and parameter averaging,” arXiv
preprint arXiv:1410.7455, 2014.

[23] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D.
Cubuk, and Q. V. Le, “SpecAugment: A simple data augmenta-
tion method for automatic speech recognition,” Interspeech, 2019.

[24] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural net-
works from overfitting,” JMLR, vol. 15, no. 1, pp. 1929–1958,
2014.

[25] R. Kneser and H. Ney, “Improved backing-off for m-gram lan-
guage modeling,” in ICASSP, 1995.

[26] A. Stolcke, “SRILM-an extensible language modeling toolkit,” in
ICSLP, 2002.

[27] ——, “Entropy-based pruning of backoff language models,” in
Proc. of DARPA Broadcast News Transcription and Understand-
ing Workshop, 1998, 1998.

[28] M. Bisani and H. Ney, “Joint-sequence models for grapheme-to-
phoneme conversion,” Speech communication, vol. 50, no. 5, pp.
434–451, 2008.

[29] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudan-
pur, “Recurrent neural network based language model,” in Inter-
speech, 2010.

[30] D. Snyder, D. Garcia-Romero, A. McCree, G. Sell, D. Povey, and
S. Khudanpur, “Spoken language recognition using x-vectors.” in
Odyssey, 2018.

[31] J. Valk and T. Alumäe, “VoxLingua107: A dataset for spoken lan-
guage recognition,” in SLT, 2021.

[32] V. Manohar, D. Povey, and S. Khudanpur, “JHU kaldi system for
Arabic MGB-3 ASR challenge using diarization, audio-transcript
alignment and transfer learning,” in ASRU, 2017.

[33] P. Ghahremani, V. Manohar, H. Hadian, D. Povey, and S. Khudan-
pur, “Investigation of transfer learning for ASR using LF-MMI
trained neural networks,” in ASRU, 2017.

[34] “The CMU pronunciation dictionary,” http://www.speech.cs.cmu.
edu, 1995.

[35] M. Harper, “IARPA babel program,” http://www.iarpa.gov/
Programs/ ia/Babel/babel.html.

[36] A. W. Black and K. A. Lenzo, “Flite: a small fast run-time synthe-
sis engine,” in 4th ISCA Tutorial and Research Workshop (ITRW)
on Speech Synthesis, 2001.

[37] A. Parlikar, S. Sitaram, A. Wilkinson, and A. W. Black, “The
festvox indic frontend for grapheme to phoneme conversion,” in
WILDRE: Workshop on Indian Language Data-Resources and
Evaluation, 2016.

[38] K. Knight and J. Graehl, “Machine transliteration,” in EACL,
1997.

[39] S. Ravi and K. Knight, “Learning phoneme mappings for translit-
eration without parallel data,” in NAACL-HLT, 2009.

[40] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximiza-
tion technique occurring in the statistical analysis of probabilistic
functions of Markov chains,” The annals of mathematical statis-
tics, vol. 41, no. 1, pp. 164–171, 1970.

[41] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri,
“OpenFst: A general and efficient weighted finite-state transducer
library,” in International Conference on Implementation and Ap-
plication of Automata, 2007.

[42] B. Roark, R. Sproat, C. Allauzen, M. Riley, J. Sorensen, and
T. Tai, “The OpenGrm open-source finite-state grammar software
libraries,” in ACL System Demonstrations, 2012.

[43] J. R. Novak, N. Minematsu, and K. Hirose, “WFST-based
grapheme-to-phoneme conversion: Open source tools for align-
ment, model-building and decoding,” in Proceedings of the 10th
International Workshop on Finite State Methods and Natural Lan-
guage Processing, 2012.

[44] J. L. Lee, L. F. Ashby, M. E. Garza, Y. Lee-Sikka, S. Miller,
A. Wong, A. D. McCarthy, and K. Gorman, “Massively multi-
lingual pronunciation modeling with WikiPron,” in LREC, 2020.

2885


