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Abstract
The use of semi-supervised training (SST) has become an in-
creasingly popular way of increasing the performance of ASR
acoustic models without the need for further transcribed speech
data. However, the performance of the technique can be very
sensitive to the quality of the initial ASR system. This paper
undertakes a comprehensive study of the improvements gained
with respect to variation in the initial systems, the quantity of
untranscribed data used, and the learning schedules. We postu-
late that the reason SST can be effective even when the initial
model is poor is because it enables utterance-level information
to be propagated to the frame level, and hence hypothesise that
the quality of the language model plays a much larger role than
the quality of the acoustic model. In experiments on Tagalog
data from the IARPA MATERIAL programme, we find that in-
deed this is the case, and show that with an appropriately chosen
recipe it is possible to achieve over 50% relative WER reduc-
tions from SST, even when the WER of the initial system is
more than 80%.

Index Terms: speech recognition, semi-supervised training

1. Introduction
Traditional approaches to acoustic model (AM) training for au-
tomatic speech recognition (ASR) rely on large quantities of
hand-transcribed acoustic training data. However, this presents
a significant barrier to the development of systems for the vast
majority of the world’s languages, where such resources are
minimal or non-existent due to the high cost of transcription.
Even in well-resourced languages, many situations require new
models tailored to a particular domain; transcribing such new
data too is often infeasible.

In semi-supervised training (SST) an initial ‘seed’ ASR
system – typically trained on small amounts of transcribed data,
possibly mismatched to the domain of interest – is used to pro-
vide ‘pseudo-labels’ for an untranscribed data-set (henceforth
termed ‘semi-supervised’ data). In the classic formulation [1],
a new AM is then trained (in the traditional manner) using these
pseudo-labels as transcription.

Whilst useful for low-resource settings, a noted difficulty
with SST is finding ways to avoid performance degradation
due to training on erroneous pseudo-labels. To this end, most
approaches have performed some form of confidence filtering
of the semi-supervised data [2, 3, 4]. However, in so doing,
we note that there is a risk of selecting only the easiest utter-
ances from the new data, which may simply reinforce the seed
model’s initial predictions and decision boundaries. The prob-
lem is particularly acute in the case when the seed model’s qual-
ity is poorer; here, very few utterances may be selected.

The work of [5] solves this conundrum by using lattices to
encode uncertainty in the SST labels. Differently to earlier work
[6] on lattice-based SST, the use of the LF-MMI criterion in [5]
enabled for the first time a correct calibration of confidence lev-

els between word-based lattices from decoding with the seed
model, and state-based confidences from the AM alone. Impor-
tantly, this approach allows utilization of a much larger pool of
training utterances, including those more challenging utterances
constituting the most useful training examples.

Turning to our work, we believe that the success of [5] il-
luminates the following hypothesis: that the key to SST’s ef-
fectiveness for ASR is allowing the AM to utilize information
contained at the sequence level – typically utterance level – to
reduce the frame level labelling uncertainty naturally obtained
by the initial model. This utilizing of external sequence-level
information differentiates SST for ASR from examples in other
fields such as [7], and also calls for more explicit consideration
of what such sequence/frame-level distinction means for SST
learning dynamics. Note that SST has recently been applied
to end-to-end ASR models [8, 9, 10] but, in accordance with
our hypothesis, these works obtained improvements only when
starting from relatively good initial models: pseudo-labels were
filtered one-best transcripts from first-pass decoding.

It is therefore important to consider how sequence level in-
formation is introduced into the SST method: via the language
model (LM), implicitly incorporated by decoding or rescoring.
The LM’s role and importance has to our knowledge not been
explicitly considered in the SST literature, nor has a system-
atic study of precise AM-LM relationship dynamics (as inde-
pendent components) been conducted. Yet, whilst it is intu-
itive – and has been explored in e.g. [11, 12] – that initial sys-
tem quality directly affects subsequent SST success, we here
hypothesize that optimally-performed SST may specifically be
much more sensitive to the quality of the LM than the AM or
system as a whole: for a sufficient LM may be able to coun-
teract the weaknesses of a poor AM (hence poor frame-level
predictions), allowing for SST to make gains in situations oth-
erwise lost to error-propagation (c.f. [13]). By establishing
our own semi-supervised pipeline and comparing how varying-
quality seed AMs, varying-quality LMs, and, importantly, com-
binations of such AMs and LMs, affect final Word Error Rate
(WER) achieved, we explore how seed acoustic model (AM)
quality and, independently, language model (LM) quality im-
pact upon SST success.

We also consider incremental semi-supervised training
(‘iSST’). Previous works [11, 4, 12] have shown iSST to ben-
efit scenarios where supervised AM data is lacking: more iter-
ations of training/decoding lessens reliance on seed model pre-
dictions and can result in final WERs lower than those achieved
by ‘one-shot’ approaches. Not explicitly considered in the liter-
ature however is how iSST interacts with LM quality. For whilst
iSST benefits poor seed AM scenarios, we believe iSST may, in
contrast, be particularly harmful for poor LM scenarios: more
increments means more decoding iterations, and hence, if using
a poor LM, the more times low quality LM information enters
the system and impacts upon semi-supervised predictions.

In sum, our paper’s contribution is as follows. We develop
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a systematic understanding of the limits of, and optimal condi-
tions for, SST. Under a Hybrid HMM-DNN framework, with a
suite of experiments run on Tagalog speech, we contribute such
a systematic examination through a novel lens, assessing how
SST is sensitive to, and impacted by, quality of seed AM and,
independently, LM. A second series of experiments extends this
to iSST, asking: can iSST recover from a low-quality LM as it
can from a low-quality AM?

2. Data and Methods
We carry out SST experiments on a Tagalog task from the
IARPA MATERIAL programme [14]. The ASR task comprises
of diverse acoustic data drawn from news and topical broad-
cast genres (including vlog-style content). Comparatively, the
seed model acoustic training data consists purely of telephone
conversations and is therefore significantly mismatched to the
target domain. Note that the MATERIAL programme mirrors
this setup across many languages: though we focus purely on
Tagalog here due the intensive nature of our experiments, we
have also found our approach successful on languages includ-
ing Somali [15], Pashto, Kazakh and more.

Our experiments aim to assess the extent to which the WER
improvements from SST depend on the quality of the initial sys-
tem and, specifically, how this behaviour is affected by the qual-
ity of the AM and LM components. To do this, we artificially
degrade both models by training them on progressively reduced
subsets of the original data. Following initial analysis, we use
these same varying-quality models to investigate iSST.

2.1. Language Models

The LM training data consists of the Tagalog CommonCrawl
data-set1 and four smaller Tagalog sets provided by our project
partners from Columbia University. We train a full 3-gram LM
with Kneser-Ney smoothing using the SRILM toolkit [16] on all
five data-sets. We then train seven LMs on randomly selected
subsets of the CommonCrawl data, each subset being four times
smaller than the previous one. Since the CommonCrawl data-
set contains information about URL sources for each sentence,
we perform random subsampling at the URL level, as we be-
lieve this method better emulates how LM-quality would de-
grade in a low-resource scenario. All LMs use a maximum vo-
cabulary size of 300k words and a pruning threshold of 1e-9.
We report perplexity of these LMs and WER when decoding
with the full AM in Table 1.

2.2. Seed Acoustic Models

The seed AM training data consists of 85 hours of tran-
scribed narrow-band (8kHz) telephone conversation data from
966 speakers from the Babel Tagalog build pack [17]. Mir-
roring the LM setup, we first train a full seed model on
this complete supervised data-set and then, to train 6 further
increasingly-degraded AMs, successively reduce training data
by half by random sampling at the speaker level. The seed
models are trained following a standard LF-MMI recipe [18]
using a CNN-TDNNF neural network architecture, with 40-
dimensional MFCC features as input together with i-vectors for
speaker adaptation [19, 20]. The models are trained with natural
gradient [21] for 6 epochs and use Dropout [22] and SpecAug-
ment [23] for regularization. Table 2 reports these seed models’
WERs when decoding with the full LM.

1http://data.statmt.org/ngrams/raw/

Table 1: LMs trained on decreasing amounts of training data
and evaluated with full AM.

% data # Tokens # OOV PPL % WER
full 388.1M 0.5k 578.9 35.3

4−1 97.1M 8.8k 664.1 38.4

4−2 24.2M 8.9k 674.0 39.7

4−3 6.1M 9.5k 700.3 42.3

4−4 1.5M 10.2k 717.8 45.3

4−5 378.1k 11.7k 731.4 51.1

4−6 95.1k 13.6k 751.8 54.3

4−7 23.5k 17.2k 770.6 61.3

Table 2: Seed AMs trained on decreasing amounts of training
data and evaluated with full LM.

% data # Hours # Speakers % WER
full 85.1 966 35.3

2−1 42.5 480 38.5

2−2 21.3 244 43.1

2−3 10.6 118 51.1

2−4 5.3 62 60.7

2−5 2.6 32 73.6

2−6 1.3 16 83.4

2.3. Semi-supervised data collection and pre-processing

To obtain further acoustic Tagalog data for SST, we scrape
YouTube videos by querying the most common Tagalog tri-
grams in the full LM. Because this data is likely to be noisy
- containing audio other than speech, and languages other than
Tagalog - we employ filtering at the video level. To do this
we decode the data using the full seed AM and LM and dis-
card videos with resulting mean confidence falling below 0.7.
We also discard videos where average speaking rate (of speech
identified by VAD) falls below 1.25 words per second: we find
this helps to filter out non-speech data such as music videos
where confidence levels can be erroneously high. The thresh-
olds were set by comparing the distributions of these parame-
ters’ values for our raw scraped data against those for our de-
velopment set, which we know to be of good quality, and with
an out-of-language data-set. See Figure 1.

After pre-processing, we are left with a wide-band (16kHz)
semi-supervised data-set of 400 hours. For initial lattice genera-
tion (when applying initial seed models), this data is downsam-
pled to 8kHz: as mentioned, the seed AMs are trained purely
on 8kHz data. However, we train all subsequent models on the
original wide-band features. Whilst this choice does mean –
unlike much other work – we are unable to incorporate any su-
pervised data into the final models, in [15] we found that when
the lattice-based SST recipe is tuned correctly, this is a bene-
ficial trade-off to make to allow the wide-band features to be
used.

2.4. Incremental semi-supervised training

In the standard SST recipe using LF-MMI [5], all unlabelled
data is decoded at once with the seed model; the subsequent
SST model is then trained on all newly-transcribed data. In
our incremental training (iSST) setup comparatively we split
the data into n equally-sized chunks. When processing the i-th
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Figure 1: Plotting speaking rate against mean lattice confidence
for each utterance in: our raw Youtube data (‘semisup’); our
analysis data-set; and out-of-language data (‘ool’).

chunk we use the model produced by training on the previous
chunk to decode the current chunk and then continue training
that model with just that chunk. In contrast to approaches such
as [11], we never train twice on the same chunk as we find this
can quickly lead to over-fitting. As discussed above, the seed
model cannot be used so we commence SST with a randomly-
initialized model. We use the exponential decay training sched-
ule [4] for the continued training. The initial learning rate when
processing the i-th chunk, lri, is computed from the global ini-
tial learning rate lr0 and the global final learning rate lrn as:

lri = lr0 ∗ exp
(

i

n
log

lrn
lr0

)
. (1)

The final learning rate for the i-th chunk is equal to lri+1. In the
experiments we set lr0 = 1.5 × 10−4 and lrn = 1.5 × 10−5.
This ensures that the iSST learning rate schedule is identical to
our standard SST setup’s learning rate schedule.

3. Results
We evaluate all models (seed and post-SST) on a fixed 9.5 hour,
wide-band test set provided by MATERIAL (downsampled for
seed evaluation). All figures in this section plot the WER per-
formance of a final system following SST against WER of the
corresponding initial seed system, a format which we find best
illustrates the gains to be made from the technique. All plots
include the y = x line, to mark the case where there is no gain
from SST; points below the line indicate a gain. Importantly,
because SST is applied to the AM only, we always use a con-
sistent LM for decoding with the initial and final model, so as
to be able to directly assess the benefits of SST.

3.1. SST sensitivity to AM vs. LM quality

We first run our semi-supervised pipeline with each of Table 2’s
seed AMs, keeping LM and amount of semi-supervised data
constant (full LM; 200 hours of data). Thus we ask: how sensi-
tive is SST to quality of seed AM? Importantly, can we rely on
a good-quality LM to compensate for even poor AMs? Or are
AMs below some threshold so poor that their erroneous predic-
tions cannot be mitigated even with external LM information?
Figure 2a shows that SST, when decoding with full LM, en-
abled ‘recovery’ from all qualities of seed AM tested. Hence,
this figure supports our hypothesis that a reliable LM can very
often compensate for a poor seed model, lessening overall SST

sensitivity to AM quality. Even when employing our poorest
seed AM, SST still led to WER gains of up to 50% relative,
though note the graph does suggest that SST will eventually
fail at exceptionally high WERs (even with a high-quality LM).
Interestingly an extrapolation of the curve in the lower WER
range implies that attempting SST under our recipe with too
high-quality a seed AM may actually also be detrimental. Pos-
sibly this is because such a high-quality seed would have had
to have been trained on significant quantities of well-matched
transcribed data and hence retraining such model from scratch
with SST would downgrade the model’s diversity/robustness.
Overall, these experiments demonstrate SST can be very bene-
ficial even when starting with a particularly poor AM, provided
the LM is of sufficient quality.

Next we ask: how sensitive is SST to LM quality? In a
set of experiments mirroring those above, we run our semi-
supervised pipeline with each of Table 1’s LMs, keeping the
full seed AM and amount of semi-supervised data constant (200
hours). Figure 2a shows the resulting ‘varying LM’ curve’s
shape is radically different to that when the AM is varied. Im-
portantly, this suggests high LM-quality sensitivity. First, a lack
of plateau in the lower WER range indicates improving LM
quality leads to increasingly greater pay-off in terms of SST
leverage (apparently suggested is that WER could continue to
be reduced even to zero with improving LM quality, though
bear in mind that in practice this movement along the curve for
a fixed AM would require exponential increases in LM train-
ing data quantity). Second, this curve’s crossing of y = x at
a comparatively low initial WER indicates that a poor LM is
detrimental for SST.

We run two further sets of experiments, again systemati-
cally varying AM and/or LM, but this time holding the worst
AM/LM constant. Results in Figure 2b show that moving from
consistently decoding with our full LM to our worst LM is di-
rectly paralleled by a decrease in SST’s ability to leverage the
semi-supervised data to make gains. That this is true across
all qualities of seed AM employed, plus the 2b curve’s faster
plateauing, further emphasizes how reliant SST is on a good
LM. Comparatively, Figure 2b’s ‘Varying LM’ curve is similar
in trajectory to its Figure 2a counterpart despite switching full
for worst AM, further evidence that a poor AM does not place
the same ceiling on SST-gains as a poor LM.

Practically, these findings suggest SST to be most valuable
to low-resource settings where sufficient LMs can be built. Im-
proving a LM is likely to be the greatest factor for SST success
in such scenarios. Without access to adequate text data however,
what can be achieved with SST may be fundamentally limited.

3.2. iSST sensitivity to AM vs. LM quality

To assess iSST’s sensitivity to AM versus LM, we partition our
400 hour semi-supervised data-set into series of finer-grained
data-sets (to evaluate effect of increment size): 1x400 hours;
2x200 hours; 4x100 hours; 8x50 hours and 16x25 hours. We
then compare these increment sizes with systems employing
varying seed AMs (whilst utilizing the full LM). In parallel, we
assess how these increment sizes vary in utility when differing
LMs are employed (with seed AM constant).

Note we first validated our use of the iSST learning rate
(LR) schedule detailed in Section 2.4 for these experiments
by comparing to a schedule which resets LR after each incre-
ment. Indeed when evaluated with 2x200 increments, the latter
achieves 29.0 WER; the former 27.4.

We report results in Figures 3a and 3b. In line with
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Figure 2: How varying the seed AM (blue) and LM (orange) affects WER gains made during SST.
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Figure 3: How varying the iSST regime affects WER gains made during SST, for systems with different seed AMs (a) and LMs (b).

[4, 11, 12], Figure 3a indicates that iSST with increasingly
finer-grained increments benefits limited supervised acoustic
data settings (though note as seed AM quality increases this ad-
vantage lessens): finer increments entail more iterations of in-
creasing lattice accuracy. Importantly, when varying LM qual-
ity (Figure 3b), the opposite is true. When employing our worst
LM for decoding, iSST with increments smaller than 200 hours
actually degrades system performance. This makes sense: the
more times a poor LM is incorporated into the pipeline, the
more opportunities for incorrect information to be integrated
into labelling predictions/decisions. Overall then, in investigat-
ing iSST utility explicitly in relation to AM and LM quality,
we emphasize again how integral it is to consider LM and AM
separately when deciding whether to conduct SST or when es-
tablishing a SST pipeline. For though recent studies have shown
iSST to lead to gains, it is evident that iSST should not be in-
corporated into SST pipelines alongside a poor LM.

4. Future Work and Conclusions
To conclude, our experiments provide multiple sources of ev-
idence for the notion that LM quality can be instrumental or
detrimental to SST. This has important practical implications:
for settings in which a good LM can be utilized, initial seed
AM quality becomes far less important (an intuition less eas-
ily reached without explicit consideration of the LM’s role in-
dependently of the seed), thus providing a fruitful avenue for
building ASR systems in low-resource scenarios. Although our
experiments have focused solely on traditional hybrid-HMM
systems, we believe our results have important implications for
understanding how to achieve good improvements from SST on
end-to-end systems. Here, external LM data is notably harder

to incorporate directly into the model: this could explain why,
to date, SST gains on these systems have been found only when
initial system is relatively good.

In the future, we wish to conduct further systematic chart-
ing of AM-LM interactions: this would facilitate increasingly
reliable predictions of how SST would react in real-world, low-
resource settings. The LM’s role in relation to lattice rescoring
could also be considered. Also worth exploring is precisely how
WER changes as a function of the amount of semi-supervised
data supplied. Is there a monotonically positive relationship be-
tween amount of unlabelled data and final performance? Or
do SST gains lessen or converge as data is added? Finally, we
consider it worth exploring how self-supervised representation
learning interacts with SST, particularly whether utilizing such
learning to provide more robust speech representations could be
a method of compensating for poor-LM-quality scenarios.
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