
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Genetic architecture and major genes for backfat thickness in pig
lines of diverse genetic backgrounds

Citation for published version:
Gozalo-Marcilla, M, Buntjer, J, Johnsson, M, Batista, L, Diez, F, Werner, CR, Chen, C-Y, Gorjanc, G,
Mellanby, RJ, Hickey, JM & Ros-Freixedes, R 2021, 'Genetic architecture and major genes for backfat
thickness in pig lines of diverse genetic backgrounds', Genetics Selection Evolution, vol. 53, no. 1.
https://doi.org/10.1186/s12711-021-00671-w

Digital Object Identifier (DOI):
10.1186/s12711-021-00671-w

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Genetics Selection Evolution

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Feb. 2022

https://doi.org/10.1186/s12711-021-00671-w
https://doi.org/10.1186/s12711-021-00671-w
https://www.research.ed.ac.uk/en/publications/2b845869-4a3a-457e-b106-0b62be49a3ff


Gozalo‑Marcilla et al. Genet Sel Evol           (2021) 53:76  
https://doi.org/10.1186/s12711‑021‑00671‑w

RESEARCH ARTICLE

Genetic architecture and major genes 
for backfat thickness in pig lines of diverse 
genetic backgrounds
Miguel Gozalo‑Marcilla1,2, Jaap Buntjer1, Martin Johnsson1,3, Lorena Batista1, Federico Diez1,2, 
Christian R. Werner1, Ching‑Yi Chen4, Gregor Gorjanc1, Richard J. Mellanby2, John M. Hickey1 and 
Roger Ros‑Freixedes1,5*  

Abstract 

Background: Backfat thickness is an important carcass composition trait for pork production and is commonly 
included in swine breeding programmes. In this paper, we report the results of a large genome‑wide association 
study for backfat thickness using data from eight lines of diverse genetic backgrounds.

Methods: Data comprised 275,590 pigs from eight lines with diverse genetic backgrounds (breeds included Large 
White, Landrace, Pietrain, Hampshire, Duroc, and synthetic lines) genotyped and imputed for 71,324 single‑nucleotide 
polymorphisms (SNPs). For each line, we estimated SNP associations using a univariate linear mixed model that 
accounted for genomic relationships. SNPs with significant associations were identified using a threshold of p <  10–6 
and used to define genomic regions of interest. The proportion of genetic variance explained by a genomic region 
was estimated using a ridge regression model.

Results: We found significant associations with backfat thickness for 264 SNPs across 27 genomic regions. Six 
genomic regions were detected in three or more lines. The average estimate of the SNP‑based heritability was 0.48, 
with estimates by line ranging from 0.30 to 0.58. The genomic regions jointly explained from 3.2 to 19.5% of the addi‑
tive genetic variance of backfat thickness within a line. Individual genomic regions explained up to 8.0% of the addi‑
tive genetic variance of backfat thickness within a line. Some of these 27 genomic regions also explained up to 1.6% 
of the additive genetic variance in lines for which the genomic region was not statistically significant. We identified 64 
candidate genes with annotated functions that can be related to fat metabolism, including well‑studied genes such 
as MC4R, IGF2, and LEPR, and more novel candidate genes such as DHCR7, FGF23, MEDAG, DGKI, and PTN.

Conclusions: Our results confirm the polygenic architecture of backfat thickness and the role of genes involved in 
energy homeostasis, adipogenesis, fatty acid metabolism, and insulin signalling pathways for fat deposition in pigs. 
The results also suggest that several less well‑understood metabolic pathways contribute to backfat development, 
such as those of phosphate, calcium, and vitamin D homeostasis.

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Pork accounts for 35% of meat consumption worldwide, 
representing an important component of many human 
diets [1]. To align production with consumer demands, 
one of the key objectives in pig breeding programmes is 
the reduction of carcass fatness, resulting in increased 
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growth efficiency and lean meat content [2]. This is 
typically achieved by including backfat thickness in the 
economic index for selection within pig lines. Backfat 
thickness is a good indirect predictor of overall body fat 
content, can be measured on the live animal by ultra-
sound, and has a high heritability [3–6].

Over the last two decades, there has been great interest 
in identifying candidate genes that regulate backfat thick-
ness. Prominent genes that were discovered by linkage 
analysis include IGF2 [7–9], MC4R [10, 11], and LEPR 
[12]. Since then, more than 1400 quantitative trait loci 
(QTL) related to backfat thickness have been reported 
(https:// www. anima lgeno me. org/ QTLdb). Results from 
these studies showed that backfat thickness is a polygenic 
trait that is regulated by a large number of small-effect 
variants. With the advent of single-nucleotide polymor-
phism (SNP) genotyping arrays, gene expression analy-
ses, and other high-throughput genotyping technologies, 
many more candidate genes for backfat thickness have 
been reported that are involved in very diverse biologi-
cal functions and metabolic pathways, such as: adipogen-
esis [13, 14]; lipid metabolism (biosynthesis, absorption, 
transport, catabolism and homeostasis) pathways, 
including those related to fatty acids and triglycerides 
[13, 15, 16]; regulation of feed intake and energy homeo-
stasis, through hormone-mediated responses [17–20] or 
even taste perception [21]; the adipocytokine signalling 
pathway [17, 19]; the vitamin D metabolic pathway [13]; 
and nervous system development and regulation [22].

The accumulation of evidence for the association of 
genomic regions with backfat thickness across diverse 
genetic backgrounds could disentangle which of the 
reported QTL represent the most prevalent genes and 
pathways that underlie backfat deposition. In turn, it 
could also be hypothesized that less prevalent and popu-
lation-specific associations may derive from variants with 
larger effects that have been (nearly) fixed in intensely 
selected populations. In this study, we performed a large 
genome-wide association study (GWAS) for backfat 
thickness in eight pig breeding lines of diverse genetic 
backgrounds, with ~ 15,000 to  ~ 55,000 pigs each, for a 
total of 275,590 pigs. Our main objectives were to deter-
mine the genetic architecture of backfat thickness and to 
identify the main genes and pathways that underlie its 
genetic variance.

Methods
Data
Data comprised 278,112 purebred pigs from eight lines (A 
to H) of diverse genetic backgrounds (Table 1) from the 
Pig Improvement Company (PIC; Hendersonville, TN). 
Breeds of origin of the eight lines included Large White, 
Landrace, Pietrain, Hampshire, Duroc and synthetic 

lines. Most pigs were born during the 2008–2017 decade. 
Backfat thickness was measured by ultrasound in the live 
pigs at about 145 days of age at the tenth rib. Phenotype 
values were preadjusted for non-genetic effects (contem-
porary group, litter, and weight) by line. In total, 2522 
outlier preadjusted phenotype values, defined as those 
outside ± 3 standard deviations of the mean within line, 
were excluded, and 275,590 records remained for further 
analyses. Pigs were genotyped with either the GGP-Por-
cine LD BeadChip with 15  k SNPs or the GGP-Porcine 
HD BeadChip with 50–80  k SNPs (GeneSeek, Lincoln, 
NE). We used SNPs that mapped to autosomes based on 
the reference genome version Sscrofa11.1 and excluded 
SNPs with a call rate lower than 0.95 and a minor allele 
frequency lower than 0.01. We also excluded individuals 
with more than 10% missing genotypes. The remaining 
SNP genotypes were imputed using multi-locus iterative 
peeling with the AlphaPeel software [23]. Table  1 sum-
marises the number of individuals and SNPs per line that 
remained after filtering.

Genome‑wide association study
For each line, we estimated SNP associations by fitting 
a univariate linear mixed model that accounted for the 
genomic relationship matrix as:

where y is the vector of preadjusted phenotypes, xi is the 
vector of genotypes for the i th SNP coded as 0 and 2 if 
homozygous for either allele or 1 if heterozygous, βi is the 
additive effect of the i th SNP on the trait, u ∼ N (0, σ2uK) 
is the vector of polygenic effects with the covariance 
matrix equal to the product of the polygenic additive 
variance σ2u and the genomic relationship matrix K , and 
e is a vector of uncorrelated residuals. The genomic rela-
tionship matrix K was calculated using centred non-
standardized SNP genotypes. We used the GEMMA 

y = xiβi + u + e,

Table 1 Number of individuals and SNPs for the eight evaluated 
lines

Line Number of individuals Number of SNPs

A 55,069 69,286

B 53,387 68,499

C 48,752 68,072

D 30,718 60,903

E 28,982 61,135

F 28,499 61,856

G 15,597 64,754

H 14,586 66,437

Total 275,590 71,324

https://www.animalgenome.org/QTLdb
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0.96 software [24] to fit the model. To assess that the 
GWAS did not have an increased rate of false positives, 
we inspected the distribution of the p-values in quantile–
quantile (Q-Q) plots using the qqman R package [25]. 
We applied a Bonferroni correction for multiple tests 
and considered SNP associations with a p-value less than 
 10–6, as significant.

For each line, we defined genomic regions of inter-
est that harboured significant SNPs by applying 0.5-Mb 
flanking regions downstream and upstream of the signifi-
cant SNP. The genomic regions that overlapped because 
they arose from nearby significant SNPs within the same 
line were merged into a single genomic region and those 
that overlapped across lines were also merged into a sin-
gle larger genomic region to facilitate comparison across 
lines.

SNP‑based heritability and genetic variance partitioning 
by genomic region
To estimate the SNP-based heritability and the genetic 
variance explained by each genomic region, we fitted a 
ridge regression model, as implemented in AlphaBayes 
[26], which uses a Bayesian approach with a Gaussian 
prior for the SNP effects, a flat prior for the intercept, 
and a scaled-inverse chi-squared prior for the residual 
variance. Posterior samples of the SNP effects within 
each genomic region were obtained from 60,000 Markov-
chain Monte Carlo iterations after a burn-in period of 
20,000 iterations. In each iteration, the total additive 
genetic variance was calculated as the variance of breed-
ing values across all individuals. The breeding value of 
the j th individual was calculated as BVj = xjβ , where xj is 
the vector of genotypes of all SNPs of the j th individual, 
and β is the vector of corresponding SNP effects. For each 
genomic region, regional breeding values were calcu-
lated for all individuals using only the subset of SNPs in 
each genomic region. The variance of the breeding val-
ues obtained for each genomic region was calculated and 
divided by the total additive genetic variance to estimate 
the proportion of the additive genetic variance explained 
by the genomic region. The SNP-based heritability was 
calculated as the total additive genetic variance divided 
by the phenotypic variance. All breeding values, vari-
ances, and variance ratios were calculated in each itera-
tion to obtain posterior distributions for the proportion 
of the SNP-based heritability and the genetic variance 
explained by each genomic region. We summarised these 
posterior distributions by reporting the median value.

Functional candidate genes and previously reported QTL
The genes located within each genomic region were 
extracted using the BioMart tool of the Ensembl Genome 
Browser (Ensembl Genes 100). In order to detect 

potential functional candidate genes, gene annotation 
was retrieved from databases of the Gene Ontology pro-
ject and the KEGG Pathway Database integrated in the 
Enrichr gene analysis [27].

Data belonging to previously reported QTL that 
mapped to the reference genome version Sscrofa11.1 
were downloaded from the Animal QTLdb [28] (Febru-
ary 2021). QTL entries for traits related to backfat thick-
ness (e.g., average backfat thickness, backfat thickness at 
last rib, or backfat thickness at last lumbar vertebrae), fat 
metabolism and deposition (e.g., obesity index, intramus-
cular fat or triglycerides level), and feed efficiency (e.g., 
daily feed intake or feed conversion ratio) were selected. 
Only entries for QTL that were shorter than 5  Mb and 
that overlapped with the genomic regions found in 
our GWAS were retained. Enrichment of the genomic 
regions for QTL terms was tested using the hyper-
geometric test approach implemented in the GALLO 
package [29], where the number of QTL entries in the 
genomic regions identified by the GWAS was compared 
with the total number of QTL entries for the same term 
along the whole genome.

Results
We found significant genome-wide associations with 
backfat thickness for 264 SNPs in 27 genomic regions, of 
which six were detected in three or more lines. Genome-
wide associations by line are shown in Fig.  1. The sig-
nificant SNPs (p <  10–6) and their location in the genome 
are in Table 2. In general, estimates of SNP effects were 
low to moderate, but a small fraction of SNPs had larger 
effects of up to 0.55  mm (0.30 additive genetic stand-
ard deviation units) [see Additional file  1: Figure S1]. 
The estimates of SNP effects were largely consistent 
across lines. The correlations of estimates of SNP effects 
between lines were positive (0.05 to 0.18 when all SNPs 
were considered, Fig.  2), and especially high for SNPs 
that were significant in at least one line (0.22 to 0.70, 
Fig. 3). The Q-Q plots for each line are in Figure S2 [see 
Additional file 1: Figure S2].

A region on Sus scrofa chromosome (SSC) 1 at ~ 160 Mb 
(158.31–162.35 Mb) was detected in five lines (lines A, B, 
C, D and H). Three other regions were detected in four 
lines: on SSC5 at ~ 66 Mb (65.30–67.16 Mb; lines A, B, D 
and H), on SSC11 at ~ 8 Mb (7.03–9.57 Mb; lines A, C, E, 
and H), and on SSC18 at ~ 10 Mb (8.32–11.78 Mb; lines 
A, B, D and H). Two regions were detected in three lines: 
on SSC1 at ~ 52 Mb (51.17–54.13 Mb; lines C, E and H) 
and on SSC7 at ~ 30 Mb (30.10–30.89 Mb; lines B, C and 
F).

Table 3 shows estimates of SNP-based heritability and 
of genetic variance by line and the proportion of genetic 
variance accounted for by each genomic region that 
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Fig. 1 Manhattan plots for the genome‑wide association study of backfat thickness for the eight lines. The red line represents the p‑value threshold 
of  10–6 used to consider a SNP significant. Reported gene symbols represent the most relevant candidate genes
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Table 2 Summary of genomic regions significantly associated with backfat thickness and the most significant SNPs for each region

a Italic type indicates overlapping genomic regions across lines

SSC Position (Mb) Line Number of 
significant SNPs

Most significant SNP

Position (bp) Estimate (SE), mm P‑value Minor allele 
frequency

1 51.17–53.51a E 19 52,652,849 0.28 (0.04) 5.69 ×  10–11 0.07

1 52.74 H 1 52,740,803 0.25 (0.05) 6.86 ×  10–7 0.41

1 52.98–54.13 C 20 53,262,786 0.27 (0.04) 3.87 ×  10–13 0.38

1 152.10–152.20 H 2 152,100,725 0.29 (0.05) 2.78 ×  10–8 0.46

1 158.31–162.35 H 18 160,773,437 0.41 (0.05) 6.06 ×  10–17 0.45

1 158.36–161.82 B 15 159,869,511 0.26 (0.04) 6.20 ×  10–11 0.29

1 159.54–162.19 C 21 160,773,437 0.39 (0.03) 3.22 ×  10–31 0.28

1 159.70–161.33 A 5 160,773,437 0.17 (0.03) 1.18 ×  10–9 0.38

1 161.07–162.35 D 3 161,610,871 0.17 (0.03) 3.76 ×  10–7 0.29

1 163.31–164.83 C 3 163,311,604 0.24 (0.03) 4.24 ×  10–13 0.34

1 269.18–271.24 A 26 270,408,730 0.25 (0.02) 1.96 ×  10–29 0.25

2 0.03–4.32 C 32 3,689,100 0.55 (0.04) 1.93 ×  10–47 0.07

2 60.64–62.25 E 3 60,697,443 0.16 (0.03) 3.07 ×  10–7 0.27

2 66.01 E 1 66,008,692 0.23 (0.05) 5.82 ×  10–7 0.09

2 69.12–69.26 A 3 69,257,674 0.31 (0.06) 2.08 ×  10–8 0.03

2 71.33–71.61 A 2 71,325,641 0.28 (0.06) 2.68 ×  10–7 0.03

2 73.84–73.92 A 2 73,837,976 0.27 (0.05) 4.69 ×  10–7 0.03

2 75.75–75.84 A 2 75,750,519 0.27 (0.05) 4.15 ×  10–7 0.03

2 76.91 A 1 76,905,754 0.27 (0.05) 1.75 ×  10–7 0.31

5 18.68–19.82 E 9 18,826,228 0.14 (0.02) 3.75 ×  10–9 0.27

5 65.30–67.16 D 20 66,103,958 0.21 (0.02) 1.06 ×  10–17 0.25

5 65.89–66.22 B 3 66,103,958 0.18 (0.02) 7.97 ×  10–17 0.45

5 66.00–66.10 H 2 66,103,958 0.27 (0.04) 5.70 ×  10–12 0.22

5 66.10–66.95 A 5 66,103,958 0.13 (0.02) 2.73 ×  10–16 0.42

5 69.40 D 1 69,400,164 0.15 (0.03) 8.70 ×  10–9 0.41

6 47.61 B 1 47,605,459 0.17 (0.04) 9.00 ×  10–7 0.47

6 147.49 C 1 147,491,028 0.18 (0.03) 1.80 ×  10–8 0.26

7 30.10–30.89 F 10 30,144,081 0.25 (0.04) 1.73 ×  10–8 0.14

7 30.32 C 1 30,317,219 0.22 (0.04) 6.67 ×  10–9 0.25

7 30.32–30.33 B 2 30,317,219 0.17 (0.03) 2.04 ×  10–8 0.29

7 31.99 D 1 31,986,215 0.20 (0.04) 2.37 ×  10–7 0.09

11 7.03–9.57 H 33 7,946,341 0.33 (0.05) 1.83 ×  10–10 0.46

11 7.84 C 1 7,841,215 0.22 (0.04) 8.68 ×  10–8 0.17

11 7.84–8.35 A 16 7,867,966 0.29 (0.04) 1.64 ×  10–14 0.06

11 8.04 E 1 8,041,891 0.16 (0.03) 4.72 ×  10–7 0.32

12 25.35–25.37 F 2 25,371,905 0.13 (0.03) 7.33 ×  10–8 0.18

15 104.07–104.90 G 5 104,902,093 0.14 (0.02) 4.07 ×  10–8 0.36

15 119.13 F 1 119,128,056 0.15 (0.03) 8.92 ×  10–7 0.14

16 33.49 C 1 33,493,718 0.14 (0.03) 1.92 ×  10–7 0.41

18 8.32–10.66 H 7 9,460,208 0.35 (0.05) 3.73 ×  10–11 0.18

18 9.51–11.78 D 14 10,578,193 0.37 (0.04) 1.87 ×  10–17 0.03

18 10.11–11.78 A 16 10,578,193 0.33 (0.03) 2.77 ×  10–27 0.03

18 10.28–10.58 B 3 10,578,193 0.15 (0.02) 3.97 ×  10–11 0.33

18 13.10 D 1 13,102,224 0.32 (0.06) 1.60 ×  10–8 0.02
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harboured significant SNPs. We estimated an average 
SNP-based heritability of 0.48 across the lines, with esti-
mates by line ranging from 0.30 to 0.58. The significant 
genomic regions jointly explained from 3.2 to 19.5% of 
the additive genetic variance of backfat thickness in indi-
vidual lines. The individual significant genomic regions 
explained up to 8.0% of the additive genetic variance of 
backfat thickness. The significant genomic regions also 
explained up to 1.6% of the additive genetic variance in 
the lines for which they did not have a statistically signifi-
cant association with backfat thickness.

Within the 27 genomic regions, we identified 1219 
positional candidate genes, of which 64 are anno-
tated to functions that can be related to fat metabo-
lism (Table  4). The functional annotation of these 64 

candidate genes supports a role for energy homeostasis 
genes in regulating backfat thickness development in 
pigs, such as MC4R on SSC1 at ~ 160.8 Mb (significant 
association in five lines). Other candidate genes with 
fat-related functions were identified, such as MEDAG 
on SSC11 at ~ 7.5  Mb, which is involved in adipocyte 
differentiation and showed a significant association in 
four lines. While this region did not show significant 
associations in the other lines, it explained 1.6% of 
the additive genetic variance in one other of the lines 
for which the genomic region was not statistically sig-
nificant. Another example is the genomic region that 
contains the IGF2 gene on SSC2 at ~ 1.5  Mb, which is 
involved in regulation of fat deposition. This region 
was significantly associated with backfat thickness in 

Fig. 2 Distribution of estimates of the effects of all SNPs on backfat thickness between each pair of lines. Correlations under the diagonal (asterisk 
indicates significant correlations, p < 0.05)
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only one line but explained 1.1% of the additive genetic 
variance in at least one other line. The results also sug-
gest that genes involved in phosphate, calcium, and 
vitamin D homeostasis pathways, such as FGF23 on 
SSC5 at ~ 66.0  Mb, contribute to backfat thickness 
development.

Table  4 also shows 207 previously published QTL 
entries for 21 fatness and feed efficiency traits that 
overlapped 20 of the regions with significant SNPs. 
The detected genomic regions were enriched for previ-
ous QTL entries for average backfat thickness, backfat 
thickness at last rib, daily feed intake, and lean meat 
percentage (p <  10–4). For seven of the regions we found 
no previously reported QTL, and for 12 of the regions 
we found previously reported QTL for fat metabolism 

and deposition or for feed efficiency traits but not for 
backfat thickness traits. These 12 regions showed a sig-
nificant association in only one of the lines and, in gen-
eral, explained a low proportion of the genetic variance.

Discussion
To our knowledge, this is the largest-to-date GWAS for 
backfat thickness in pigs. We report results from eight 
large populations, which ranged from ~ 15,000 to ~ 55,000 
genotyped pigs and differed in breed of origin and selec-
tion history. Large sample sizes are required for high 
power of GWAS and, thus, this dataset provides valu-
able insight into the genetic architecture of backfat thick-
ness and the main genes and pathways that underlie its 
genetic variance.

Fig. 3 Distribution of estimates of the effects of the 264 significant SNPs on backfat thickness between each pair of lines. Correlations under the 
diagonal (asterisk indicates significant correlations, p < 0.05)
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We found significant associations for 27 genomic 
regions, of which one region was detected in five out of 
the eight lines, three regions in four lines and two regions 
in three lines. Moreover, some of these genomic regions 
explained a relatively large proportion of the additive 
genetic variance of backfat thickness in lines for which 
the GWAS detected no significant association. The 
genomic regions that were detected in five or four of the 
lines contained candidate genes MC4R, MEDAG, FGF23, 
DGKI, and PTN. Together with the candidate genes that 
were found in the other genomic regions, the results 
support the involvement of energy homeostasis, adi-
pogenesis, fatty acid metabolism, and insulin signalling 
pathways, and suggest the contribution of other meta-
bolic pathways, which are less well understood, to genetic 
variation for backfat thickness in pigs, such as the phos-
phate, calcium, and vitamin D homeostasis pathways.

In the light of these findings, we will focus our discus-
sion on: (1) the genetic architecture of backfat thickness, 

(2) the role of energy homeostasis genes on backfat thick-
ness, (3) the role of adipogenesis, fatty acid metabolism, 
and insulin signalling genes on backfat thickness, and (4) 
the role of phosphate, calcium, and vitamin D homeosta-
sis genes on backfat thickness.

Genetic architecture of backfat thickness
The results of the detected SNP associations and genetic 
variance partitioning confirm the polygenic architecture 
of backfat thickness, with many loci with small individ-
ual effects and only a small fraction of SNPs with larger 
effects. The effect of the significant SNPs was largely 
maintained across the eight studied lines. Our moder-
ate-to-high estimates for SNP-based heritability are in 
the range of previous SNP-based estimates in purebred 
Duroc lines (0.31 [30] or 0.37 [19]), Landrace (0.47) [31], 
Large White (0.35) [31], and Pietrain (0.39) [31], and even 
in Pietrain crosses with Large White x Landrace (0.45), 
Meishan (0.73) and wild boar (0.42) [32].

Table 3 Estimates of SNP‑based genetic parameters and percentage of additive genetic variance of backfat thickness explained by 
the significant genomic regions in each line

a Italic type indicates a significant association of the genomic region found in the GWAS with data from that line

SNP‑based genetic parameters A B C D E F G H

Heritability 0.52 0.51 0.58 0.30 0.53 0.50 0.36 0.54

Additive genetic variance,  mm2 1.65 2.20 3.41 0.94 1.35 1.47 0.43 2.50

Additive genetic variance by genomic region, %

SSC Position, Mb

 1 50.67–54.63 1.10 0.52 3.17a 0.22 0.97 0.10 0.77 0.98

 1 151.60–157.80 0.11 1.23 0.12 0.08 0.14 0.09 0.15 0.41

 1 157.81–162.85 1.85 3.34 5.33 0.54 0.07 0.05 0.18 1.24

 1 162.86–165.33 0.09 0.12 0.24 0.08 0.06 0.05 0.06 0.06

 1 268.68–271.74 8.02 0.15 0.27 0.33 0.49 0.26 0.21 0.27

 2 0.00–4.82 0.27 0.39 6.71 1.07 0.35 0.31 0.21 0.22

 2 60.14–67.56 0.04 0.12 0.04 0.13 0.48 0.11 0.11 0.13

 2 67.57–77.41 0.29 0.17 0.12 0.13 0.62 0.10 0.20 0.20

 5 18.18–20.32 0.12 0.13 0.17 0.14 0.95 0.13 0.10 0.16

 5 64.80–67.66 0.93 2.10 0.10 1.56 0.25 0.27 0.32 0.30

 5 67.67–69.90 0.07 0.21 0.06 0.34 0.06 0.05 0.07 0.11

 6 47.11–48.11 0.05 0.13 0.03 0.05 0.08 0.06 0.03 0.05

 6 146.99–147.99 0.07 0.45 0.49 0.07 0.10 0.02 0.07 0.08

 7 29.60–31.39 0.31 0.36 1.08 0.04 0.46 0.57 0.13 0.93

 7 31.40–32.49 0.04 0.21 0.09 0.02 0.12 0.04 0.07 0.05

 11 6.53–10.07 0.37 1.60 0.84 0.23 2.04 0.32 0.13 4.25

 12 24.85–25.87 0.19 0.05 0.06 0.07 0.05 0.05 0.07 0.05

 15 103.57–105.40 0.40 0.04 0.03 0.30 0.05 0.01 0.37 0.01

 15 118.63–119.63 0.07 0.25 0.13 0.07 0.05 0.26 0.02 0.05

 16 32.99–33.99 0.09 0.06 0.14 0.07 0.05 0.07 0.06 0.06

 18 7.82–12.28 0.28 0.86 0.24 0.28 0.19 0.29 0.08 1.23

 18 12.29–13.60 0.11 0.07 0.05 0.12 0.05 0.03 0.00 0.08

Remainder 85.13 87.46 80.48 94.05 92.33 96.77 96.58 89.08
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We detected several genomic regions that significantly 
affected backfat thickness and individually explained up 
to 8.0% of the genetic variance for the trait. Genomic 
regions that were detected in more than one line or that 
explained a large proportion of genetic variance gener-
ally overlapped with entries for backfat-related QTL with 
evidence of enrichment and with candidate genes with 
plausible annotated functions. The fact that a genomic 
region was detected in a single line or in multiple lines 

was not always related to the proportion of genetic vari-
ance explained by the region in those lines. Moreover, 
some genomic regions explained a relevant proportion of 
genetic variance in lines for which that genomic region 
was not significant. Previous reports in a Duroc popula-
tion estimated that a single genomic region, in particu-
lar the region on SSC6 where the LEPR gene is located, 
could explain up to 19.8% of the additive genetic variance 
of backfat thickness [17]. We observed no instances of 

Table 4 Functional candidate genes and previously reported QTL for backfat‑related traits in the significant genomic regions

BFT average backfat thickness, ADAR adipocyte area, AFW abdominal fat weight, BF10R backfat thickness at tenth rib, BF34R backfat thickness between the third and 
fourth rib, BF67R backfat thickness between the sixth and seventh rib, BFFR backfat thickness at first rib, BFLL backfat thickness at last lumbar, BFLR backfat thickness at 
last rib, BFMB backfat thickness at mid‑back, BFMD backfat thickness above muscle dorsi, BFR backfat thickness at rump, BFW backfat weight, DFI daily feed intake, FCR 
feed conversion ratio; IMF intramuscular fat content, LMP lean meat percentage, OI obesity index, RFI residual feed intake, SSFT shoulder subcutaneous fat thickness, 
TGL triglyceride level. Within parentheses: number of entries if there were more than one. *Enriched QTL traits (p <  10–4)

Superscript numbers: 1Adipogenesis pathways; 2Lipid metabolism pathways; 3Fatty acid metabolism pathways; 4Energy homeostasis pathways; 5Insulin signalling 
pathways; 6Adipocytokines signalling pathways; 7Steroid hormone and vitamin D metabolism pathways; 8Bile acid metabolism

SSC Position, Mb Lines Number 
of QTL

QTL traits Number of 
positional 
candidate genes

Genes with related annotated 
 functionsb

1 50.67–54.63 C, E, H 11 BFT*, DFI* (7), IMF, OI, RFI 43 CYB5R44,5

1 151.60–152.70 H 2 BFT*, DFI* 5 –

1 157.81–162.85 A, B, C, D, H 45 BFT* (3), BF10R (4), BFLR* (5), BFR, DFI* 
(13), FCR (2), IMF, LMP* (10), OI (6)

53 KDSR2, MC4R4

1 162.86–165.33 C 1 LMP* 45 ATP8B12,8, SLC51B2,8, CILP5, HACD32,3

1 268.68–271.74 A 6 AFW, BF10R (2), BFMB, BFW, FCR 83 SLC27A42,3,5, DOLK2, DOLPP12, CRAT 3

2 0.00–4.82 C 64 BFT* (19), AFW, BF10R (3), BF34R (3), 
BFFR, BFLL (4), BFLR* (7), BFR (7), BFW, 
FCR (6), LMP* (12)

138 PTDSS22, HRAS5,6, PNPLA22,3, BRSK25, 
IGF24, INS1,2,4,5, DHCR77, FGF194, 
CPT1A2,3,5,6, GAL5, LRP51,5, CHKA2

2 60.14–62.75 E – – 87 SLC27A13,5, SIN3B2

2 65.51–66.51 E – – 42 GCDH3

2 68.62–69.76 A – – 53 RDH87, CARM11,2

2 70.83–72.11 A 1 IMF 52 ANGPTL42,3, CERS42, INSR2,4,5

2 73.34–74.42 A – – 25 PLIN51,2,3

2 75.25–76.34 A 3 BFT* (2), LMP* 35 S1PR42, GNA152, GNA115

2 76.41–77.41 A – – 47 MKNK25, ATP8B32, STK114,6, ABCA72

5 18.18–20.32 E – – 83 SOAT22,7, CALCOCO17

5 64.80–67.66 A, B, D, H 6 BFT*, BF34R (2), IMF(2), TGL 49 FGF237

5 68.90–69.90 D 2 BFT*, BFLR* 16 HDHD52

6 47.11–48.11 B 2 BFMD, IMF 59 SIRT21, ZFP361

6 146.99–147.99 C 14 BFT* (2), BF10R (5), BF34R, BFLL, BFLR* 
(3), IMF(2)

11 JAK16, LEPR4,6 (at 146.80–146.90 Mb)

7 29.60–31.39 B, C, F 23 BFT* (7), ADAR, AFW, BF34R, BF67R, 
BFFR, BFLR* (3), BFMB, BFR (2), FCR, 
LMP*, SSFT (3)

46 DAXX7, ITPR35, PPARD1,2,3

7 31.49–32.39 D 1 FCR 23 PNPLA12, CDKN1A6

11 6.53–10.07 A, C, E, H 2 BFT*, RFI 62 ALOX5AP3, MEDAG1

12 24.85–25.87 F 2 IMF (2) 35 GIP5, PHB7, NGFR4

15 103.57–105.40 G – – 32 –

15 118.63–119.63 F 3 BFT*, DFI*, LMP* 9 IGFBP25, IGFBP55

16 32.99–33.99 C 10 FCR (10) 6 –

18 7.82–12.28 A, B, D, H 8 BFT* (2), BFLR*, IMF (5) 71 AGK2, ATP6V0A45, AKR1D17,8, DGKI2, PTN1,7

18 12.60–13.60 D 1 BFR 9 –
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any single genomic region that explained such a high per-
centage of the genetic variance. In that same population, 
the genomic region on SSC1, which includes the MC4R 
gene, explained 1.1% of the additive genetic variance [17]. 
These two regions explained up to 0.5% (LEPR region) 
and 5.3% (MC4R region) of the additive genetic variance 
in the lines studied here.

After accounting for significant genomic regions from 
the GWAS, the majority of the additive genetic variance 
remained distributed across non-significantly associ-
ated genomic regions; in the genetic variance partition-
ing analysis, the residual polygenic term due to these 
non-significant SNPs explained from 80.5 to 96.8% of 
the additive genetic variance in each line. Thus, most of 
the genetic variance is explained by minor loci that were 
not detected in the GWAS. Taken together, these results 
confirm that backfat thickness has a polygenic architec-
ture, although some major genes that agree with previous 
studies [13, 17, 22] contribute large proportions of the 
genetic variance of the trait in some lines. In that regard, 
shifting towards an omnigenic model [33] may provide a 
more suitable conceptualisation of the genetic architec-
ture of backfat thickness.

Previous studies have estimated that dominance effects 
account for 4 to 15% of the phenotypic variance, and 
imprinting effects for 1 to 3% [30, 31]. Indeed, major 
genes such as LEPR and IGF2 have been reported to have 
dominance [19, 34] and imprinting [8] effects, respec-
tively, on backfat thickness. While non-additive effects 
may be of interest for understanding genetic or physi-
ological mechanisms, they have limited applications 
in breeding practices [35]. Statistical additive variance 
captures a fraction of the non-additive effects. Thus, our 
study focused on the additive variance, because it is the 
fraction of genetic variance that is most commonly tar-
geted in GWAS and most useful for directional selection.

Energy homeostasis genes
The GWAS results support the role of energy homeo-
stasis genes for genetic variation in backfat thickness in 
pigs. Significant SNPs in the genomic region on SSC1 
at ~ 160  Mb were found in five lines. The functional 
candidate gene MC4R is located in this region. Energy 
homeostasis in mammals is a feedback system that bal-
ances energy intake and expenditure. The melanocortin-4 
receptor that is encoded by MC4R has been described as 
a critical coordinator of mammalian energy homeosta-
sis and body weight [36]. Mutations in MC4R are well 
known in pigs and are involved in regulating appetite [11, 
37]. The role of mutations in MC4R in human monogenic 
obesity was described in the late 1990s [38, 39] and has 
also been described to affect variation in fatness, growth, 
and feed intake in different pig breeds [10, 20, 37, 40–42].

Another key regulator of feed intake and energy 
homeostasis is the LEPR gene. A mutation in this gene 
was described in an Iberian × Landrace cross [43] that 
reduced leptin signalling and resulted in greater feed 
intake and therefore greater carcass fat content [44]. 
Similar findings were found in Duroc pigs [19] and in a 
Duroc × Landrace/Large White cross [37]. In fact, stud-
ies in pigs confirmed that serum leptin concentration is 
an effective predictor of fat accumulation [4]. We only 
found one significant SNP near this gene in one of the 
eight lines, on SSC6 at 147.5  Mb, which is only 0.6  Mb 
from the LEPR gene at 146.8–146.9 Mb. Non-significance 
of this region in the other lines could be the result of 
intense selection for feed efficiency in the studied lines 
[34]. A study on signatures of selection in a Duroc line 
that was selected for increased intramuscular fat content, 
with a correlated response for backfat thickness, revealed 
greater extended haplotype homozygosity in this region 
compared to a control line [45]. The candidate genes 
JAK1 and LEPROT also map to this region. In fact, the 
significant SNP at 147.5 Mb is located in an intron of the 
JAK1 gene. The annotated functions of JAK1 and its effect 
on backfat thickness are difficult to disentangle from the 
effects of other genes, such as LEPR or LEPROT.

Adipogenesis, fatty acid metabolism, and insulin signalling 
genes
The results of the GWAS also support that other path-
ways are involved in the development of backfat in pigs, 
such as adipogenesis, fatty acid metabolism, and insulin 
signalling. Adipogenesis involves differentiation from 
pre-adipocytes to adipocytes. The region on SSC11 
at ~ 8 Mb, which was identified in four lines, contains the 
adipogenic gene MEDAG, which promotes adipocyte dif-
ferentiation and lipid accumulation in mature adipocytes 
[46] and was shown to be upregulated in fat compared 
to lean pigs [14]. The same region also contains the gene 
ALOX5AP, which is involved in subcutaneous fat deposi-
tion in pigs [14].

The gene PTN, which is in the region on SSC18 
at ~ 10 Mb that was identified in four lines, has a role in a 
signalling pathway that negatively regulates adipogenesis 
[47]. Recent in  vitro studies in mice demonstrated that 
PTN plays an essential role in the dynamics of adipose 
lipid turnover and plasticity, as it preserves insulin sensi-
tivity and regulates energy metabolism and thermogene-
sis [48]. The gene DGKI, which maps to this same region, 
has been reported to be under positive selection in polar 
bears and could be related to the development of corpo-
ral fat to provide thermal isolation [49].

Other genes with annotated functions related to adi-
pogenesis that were implicated in this GWAS include 
genes that have been previously associated with body fat 
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content in other species, such as LRP5 (body fat distribu-
tion in humans) [50], BRSK2 (abdominal fat in chicken) 
[51], and DOLK (subcutaneous fat in lambs) [52]. Of 
these, LRP5 and BRSK2 are in the 0.00–4.82 Mb genomic 
region on SSC2. Although we detected a significant asso-
ciation for this region in only one line, several GWAS 
on backfat thickness in pigs have revealed a significant 
association of this genomic region with backfat thick-
ness, average daily gain, and meat-to-fat ratio in diverse 
genetic backgrounds, from  F2 populations derived from 
breeds such as Pietrain, Large White and Landrace [32] 
to crosses of Iberian pigs with Landrace, Pietrain, and 
Duroc [13], and many QTL reports support these find-
ings. This region is gene-rich and includes many candi-
date genes, such as the INS gene, which encodes insulin 
that regulates blood glucose levels, promotes cell fat 
storage, and regulates the activity of enzymes that inter-
vene in lipid metabolism [53], and the IGF2 gene, which 
encodes the insulin-like growth factor 2, and is widely 
considered as a major candidate gene for muscle mass 
and fat deposition in pigs [7–9, 22, 32, 54, 55]. However, 
it has been suggested that other genes in the same region 
could have an effect on backfat thickness independ-
ent of IGF2, such as CTSD, which encodes a protease 
[55], and genes related to fatty acid metabolism, such as 
CPT1A, which is involved in the oxidation of long-chain 
fatty acids, which are the main storage lipids that form 
backfat. The FADS1, FADS2, and FADS3 genes, which 
encode fatty acid desaturases, are located near this region 
(at ~ 9.6–9.7  Mb). Genes related to fatty acid oxidation, 
such as PLAAT3 (at ~ 8.4 Mb), and fibroblast growth fac-
tor genes, such as FGF19 [13, 32], have also been con-
sidered as potential candidate genes for growth and fat 
deposition traits in this region.

The PLIN5 gene, which is located in the significant 
SSC2 region at ~ 74.3  Mb, is involved in the control of 
intracellular lipid deposition and some results indicate 
that it may be involved in regulation of the expression of 
hormone-sensitive lipase [56]. Other genes of the per-
ilipin family have also been associated to differences in 
backfat thickness [57].

Across the genomic regions we identified candidate 
genes with functions in bile acid metabolism. Bile, which 
is predominantly formed by steroid bile acids synthe-
sized from cholesterol, breaks down fat into monoglyc-
eride and fatty acids that can be absorbed by the digestive 
tract. The SOAT2 gene [58] is involved in biliary choles-
terol metabolism and the SLC51B [59], ATP8B1 [60], and 
AKR1D1 [61] genes are involved in bile formation. This 
is not the first study that pointed to bile acid metabolism 
genes as candidates for backfat thickness in pigs through 
the mechanism of lipid absorption in the intestine [15], 
although the BAAT  gene that was proposed in that 

previous study was not in any of the significant genomic 
regions identified in our study.

Phosphate, calcium and vitamin D homeostasis genes
Due to the biological complexity of polygenic traits, some 
metabolic pathways that have been less explored could 
nonetheless also have an impact on backfat thickness. For 
instance, calcium [62, 63] and phosphate [64, 65] have 
been linked to adipocyte differentiation and lipid metab-
olism in human and rats. We found significant SNPs in 
the genomic region on SSC5 at ~ 66  Mb in four lines. 
The candidate gene FGF23 is located in this region. This 
gene is responsible for phosphate homeostasis through a 
pathway that involves feedback regulation by phosphate, 
calcium, and vitamin D [66–68]. To our knowledge, this 
is the first GWAS that detects a significant association 
of the FGF23 genomic region with backfat thickness in 
pigs, although this gene was previously linked to mineral 
utilization and homeostasis in Landrace pigs (not signifi-
cant after correction for multiple testing) in relation with 
bone development [69]. However, there is some evidence 
for a potential mechanistic link between FGF23 and adi-
posity. Lean adipose tissue secretes adiponectin, which 
causes a significant reduction in the expression of FGF23 
in osteocytes [70], while expanded adipose tissue secretes 
leptin, which increases FGF23 expression in osteocytes 
[71]. In humans, clinical studies support a potential role 
of FGF23 signalling in the metabolic status of individuals, 
including insulin resistance, dyslipidemia, and obesity 
[72, 73]. For instance, it has been reported that the level 
of FGF23 in blood was higher in obese compared to nor-
mal-weight adolescents [74] and that this level was posi-
tively correlated with fat mass and triglyceride levels [75].

The genomic region on SSC18 at ~ 10 Mb that includes 
the PTN gene was detected in the same four lines as the 
SSC5 genomic region that contains FGF23. As well as 
having a role in regulation of adipogenesis (as discussed 
above) [47], the PTN gene is also involved in vitamin 
D-dependent regulation of calcium and phosphate home-
ostasis [76]. To our knowledge, there is, however, no evi-
dence for any interaction between PTN and FGF23 [77].

The DHCR7 gene, which is located in the genomic 
region on SSC2 at ~ 2.4 Mb close to the IGF2 and other 
genes, has also been associated with backfat thickness in 
different pig populations [13, 32]. The enzyme encoded 
by DHCR7 catalyses the conversion of 7-dehydrocholes-
terol to cholesterol, the final step in the production of 
cholesterol. 7-dehydrocholesterol is also a precursor for 
vitamin D and, therefore, DHCR7 plays an important role 
in vitamin D metabolism in humans [78, 79]. However, 
the role of vitamin D in adiposity is unclear. Meta-analy-
ses in humans have shown that, although low vitamin D 
levels are commonly observed in obese people, which is 
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likely due to sequestration of the fat-soluble vitamin in 
adipose tissue, vitamin D supplementation did not con-
sistently reduce body weight in clinical trials [80, 81]. 
Although this gene is in a genomic region that contains 
other candidate genes with more plausible annotated 
functions, the characterization and validation of DHCR7 
and other genes such as FGF23 and PTN with functions 
related to phosphate, calcium and vitamin D homeosta-
sis could shed new light on genetic variation for backfat 
thickness.

Conclusions
Our GWAS results obtained on 275,590 pigs from lines 
with diverse genetic backgrounds confirmed the poly-
genic architecture of backfat thickness and the impor-
tance of genes associated with energy homeostasis, 
adipogenesis, fatty acid metabolism, and insulin signal-
ling pathways for fat deposition in pigs. The results also 
suggested that genes involved in phosphate, calcium, 
and vitamin D homeostasis contribute to backfat devel-
opment. While the association with backfat thickness of 
genes such as MC4R, IGF2, and LEPR has been studied 
during the last decades, the genomic regions detected 
here also contained more novel candidate genes, such as 
DHCR7, FGF23, MEDAG, DGKI, and PTN. We quanti-
fied that these and other genomic regions could indi-
vidually contribute up to 8.0% of the genetic variance 
in the studied lines. The characterization of genes with 
annotated functions that are not well understood is 
challenging but can shed new light on the genetic and 
physiological mechanisms that control adiposity. Further 
research on these candidate genes is encouraged in order 
to identify putative causal genomic variants that contrib-
ute to the genetic variance in backfat thickness in pigs 
and to assess their potential application in swine breed-
ing programmes.
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