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Abstract: Exploration of chemical space around hit, experimental, and known active compounds
is an important step in the early stages of drug discovery. In academia, where access to chemical
synthesis efforts is restricted in comparison to the pharma-industry, hits from primary screens are
typically followed up through purchase and testing of similar compounds, before further funding is
sought to begin medicinal chemistry efforts. Rapid exploration of druglike similars and structure–
activity relationship profiles can be achieved through our new webservice SimilarityLab. In addition
to searching for commercially available molecules similar to a query compound, SimilarityLab
also enables the search of compounds with recorded activities, generating consensus counts of
activities, which enables target and off-target prediction. In contrast to other online offerings utilizing
the USRCAT similarity measure, SimilarityLab’s set of commercially available small molecules is
consistently updated, currently containing over 12.7 million unique small molecules, and not relying
on published databases which may be many years out of date. This ensures researchers have access
to up-to-date chemistries and synthetic processes enabling greater diversity and access to a wider
area of commercial chemical space. All source code is available in the SimilarityLab source repository.

Keywords: molecular similarity; SAR exploration; target prediction

1. Introduction

Academic groups running primary screens rely heavily on strong preliminary results
to build a case for further funding to progress their drug and medicines discovery efforts.
Whilst initial hits provide good starting points, some knowledge of the activity landscape
can greatly help with medicinal chemistry feasibility and requirements. Activity cliffs [1–4]
or areas of flat SAR (structure–activity relationships) [5–7] with little synthetic potential and
no options for scaffold hopping [8,9] can quickly discount hits and induce failing fast and
early, thereby saving time, money and effort. Such good practice contributes to avoiding
the currently disastrously high attrition rates in drug discovery [10,11]. In this short com-
munication, we wish to highlight our most recently developed web-service, SimilarityLab
(https://similaritylab.bio.ed.ac.uk accessed on 5 June 2021) [12], giving all researchers in
the field a quick way to source and purchase similar compounds which are mostly used
to explore SAR around their own hit compounds, as well as those from the literature (see
Figure 1). SimilarityLab makes extensive use of the USRCAT [13] 3D molecular similarity
measure to query a local, processed version of the eMolecules database [14], currently
containing over 12.7 million commercially available, unique druglike small molecules. Of
crucial importance is the up-to-date nature of this commercial chemical space explorable
with SimilarityLab, achieved through consistent updates of new compounds and removal
of those no longer available. This is in contrast with existing online offerings such as USR-
VS [15], which allows querying of a database last updated with molecules from the 2013
ZINC database [16] and an estimated commercial availability of around 50%. A similar
story regards comparable tools and websites, with many utilizing out-of-date compound
archives [17,18]. Integration of new molecules into SimilarityLab requires low-energy 3D
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conformations to be generated. This step, along with the efficient rebuilding of new updates
into the commercial chemical space, is handled in a compute and data-efficient manner,
greatly reducing the burden of updating the commercially available chemical space.
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Figure 1. Schematic workflow of SimilarityLab functionality, enabling the sourcing of hit compounds
or small molecules reported in the literature, their molecular similars for SAR exploration and
target prediction.

Alongside the main use of SimilarityLab for finding 3D similar molecules to users’
input queries, a secondary database can also be queried in a mode which enables prediction
of protein targets for small molecules. We believe that the implemented approach which re-
trieves known active 3D similars from the ChEMBL [19] database will have an impact when
integrated with phenotypic screening campaigns and used to guide target deconvolution.

2. Materials and Methods

All code generated for the SimilarityLab website and supporting codes for dataset
preparation, including 3D conformer and descriptor generation, are available within the
SimilarityLab source repository under an open-source license on GitHub [20].

Backend technologies used to serve SimilarityLab which currently runs on the Uni-
versity of Edinburgh’s Eleanor cloud service include the Python Flask web framework
(version 1.1.2, Pocoo, distributed opensource project), gunicorn (version 20.1.0, distributed
opensource project) and Nginx (version 1.18.0, 5F, Seattle, Washington, United States), and
a backend job queue controlled by Cellery (version 5.0.5, distributed opensource project)
utilizing a Redis (version 5.0.3, Redis Labs, Mountain View, California, USA) database. The
RDKit [21] package (version 2020.09.1.0, distributed opensource project) is used extensively
by the backend to process molecules, generate conformers and perform molecular similar-
ity calculations. Web pages served by the backend make use of Bootstrap (version 5.0.0,
distributed opensource project) for styling, Kekule.js [22] (version 0.9.3, distributed open-
source project) for user entry of 2D chemical structures, SmilesDrawer [23] (version 1.2.0,
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distributed opensource project) for drawing molecules to HTML canvas elements. When
commercially available, compound databases are updated, and the QED [24] measure
of druglikeness is applied with a cut-off of less than 0.67 to remove non-druglike small
molecules. These molecules then have a single low-energy conformer generated, using the
protocol outlined by Ebjner [25], which is then used to generate USRCAT descriptors which
are stored by the backend (see repository for code listing). The same protocol is followed
when a user draws a query molecule (without the druglike filter), with a single conformer
being generated as an intermediary step before descriptor generation and comparison
against commercially available small molecules, whereby the top similars are returned.
The number of returned similars is user-definable, allowing concise SAR exploration with
100–200 molecules or larger datasets of up to 2000 molecules to be generated for further
use in docking, virtual screening and cheminformatics studies.

Target prediction is achieved using a similar approach to commercial chemical space
exploration, whereby the USRCAT molecular similarity technique is applied to "active"
molecules within ChEMBL [19] (version 29). Active in this sense is defined as having a
recorded IC50 or KD of minimally 10 µM against protein targets. The top 100 similar active
molecules then have their activities against all protein targets counted. The protein targets
are then sorted by the number of times they are hit by this 100-compound similar list, and
this list of targets is returned to the user as a ranked list of likely targets, along with the IDs
of known active compounds for each target, which may be further explored and evaluated
as to their similarity to the user’s supplied query compound.

3. Results

SimilarityLab presents a fast, user-friendly interface for fast molecular similarity calcu-
lations (See Figure 2). With an emphasis on speed and near instant results, it is envisioned
that SimilarityLab will play a major role on not only research but also teaching, allowing
large groups the ability to progress cheminformatics experiments, retrieving compounds
which are then used as input to a variety of different tools, models and simulations.
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The educational applications of SimilarityLab are strengthened through an intuitive
interface, allowing input of molecules using the 2D drawing capabilities of the Kekule.js
editor interface, with live automatic updating of the query in the SMILES molecular format
shown below (See Figure 3).
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drug diclofenac being queried.

Querying for similar molecules is achieved through the “Find similars” link displayed
on the landing page in Figure 2. Following this link leads to the “Find similars” page
displayed in Figure 3, which allows drawing of query molecules such as diclofenac shown
above using the Kekule.js drawing applet. Standard chemical file formats such as SDF are
supported by the applet which translates uploaded files into 2D, before submission to the
SimilarityLab backend as SMILES for 3D conformer generation using the method outlined
by Ebejer [25] and molecular similarity calculations. The database of small molecules
assessed against the supplied query is user-selectable, along with the number of requested
top similars which are to be returned up to a limit of 2000. A similar process is used to
assess the targets of diclofenac and suggest possible modes of action. From the landing
page in Figure 2, the “Predict targets” link can be followed to arrive at an interface similar
to that shown in Figure 3, without the ability to choose a small-molecule database. Drawing
in diclofenac again to this interface and clicking predict targets takes the user to a page
containing top-noted targets for close similars for diclofenac, with the two top targets being
Cyclooxygenase-2 and Alpha-1a adrenergic receptor, hit by nine and eight close similars to
diclofenac, respectively. This is in agreement with the literature, which documents the role
of cyclooxygenase-2 in acute pain and pain relief achieved through its inhibition [26] and
the role of adrenergic receptors in pain [27].
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4. Discussion

SimilarityLab being publicly available represents a major resource and fills a need
present for mainly academic groups in the early stages of drug discovery. Now more
than ever, funding for drug discovery efforts is scarce and difficult to consistently achieve
without commercial funding, carrying IP restrictions and other constraints. It is hoped
that SimilarityLab will be used to capitalize on results from primary screens in academia,
allowing SAR exploration by non-specialists without access to computational chemists
or cheminformaticians. With SAR landscapes understood or looking promising, this
strengthens further funding cases. The high rates of attrition in drug discovery point
to the need for more novel and agile techniques, moving away from industry standard
approaches; the ultimate solution may lay in hits identified by smaller, more specialist
groups which are then independently progressed to lead status. It should also be stated
here that SimilarityLab holds the potential to become a standard resource of information in
basic research, particularly in the field of chemical biology and for the generation of tool
compounds. Chemical molecules used as tools to study biological function are employed
as standard repertoire these days to progress the fundamental understanding of biology.
Researchers might ask the questions what other molecules are available to investigate their
biological systems. With a quick query on the SimilarityLab website, they will obtain these
required answers.
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