
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A Tractable Multi-Leader Multi-Follower Peak-Load-Pricing Model
with Strategic Interaction

Citation for published version:
Grimm, V, Nowak, D, Schewe, L, Schmidt, M, Schwartz, A & Zöttl, G 2021, 'A Tractable Multi-Leader Multi-
Follower Peak-Load-Pricing Model with Strategic Interaction', Mathematical programming.
https://doi.org/10.1007/s10107-021-01708-0

Digital Object Identifier (DOI):
10.1007/s10107-021-01708-0

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Mathematical programming

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Feb. 2022

https://doi.org/10.1007/s10107-021-01708-0
https://doi.org/10.1007/s10107-021-01708-0
https://www.research.ed.ac.uk/en/publications/b717f3e1-a3c2-44eb-8a60-11590836b77d


A TRACTABLE MULTI-LEADER MULTI-FOLLOWER
PEAK-LOAD-PRICING MODEL WITH STRATEGIC INTERACTION

VERONIKA GRIMM, DANIEL NOWAK, LARS SCHEWE, MARTIN SCHMIDT,
ALEXANDRA SCHWARTZ, AND GREGOR ZÖTTL

Abstract. While single-level Nash equilibrium problems are quite well understood
nowadays, less is known about multi-leader multi-follower games. However, these
have important applications, e.g., in the analysis of electricity and gas markets, where
often a limited number of firms interacts on various subsequent markets. In this
paper, we consider a special class of two-level multi-leader multi-follower games that
can be applied, e.g., to model strategic booking decisions in the European entry-exit
gas market. For this nontrivial class of games, we develop a solution algorithm that
is able to compute the complete set of Nash equilibria instead of just individual
solutions or a bigger set of stationary points. Additionally, we prove that for this class
of games, the solution set is finite and provide examples for instances without any
Nash equilibria in pure strategies. We apply the algorithm to a case study in which
we compute strategic booking and nomination decisions in a model of the European
entry-exit gas market system. Finally, we use our algorithm to provide a publicly
available test library for the considered class of multi-leader multi-follower games.
This library contains problem instances with different economic and mathematical
properties so that other researchers in the field can test and benchmark newly
developed methods for this challenging class of problems.

1. Introduction

In this contribution we consider a class of two-level multi-leader multi-follower games
(MLFG). In these games, the same players (in the following, the firms) first compete on
an upper level deciding on capacity expansions and afterward on a lower level in one
or more capacity-constrained Cournot games. We allow for N ≥ 2 firms and do not
require symmetry. In particular, we allow for possibly different costs across firms at both
levels, and also consider endogenous cost of capacity expansion that may depend on the
expansion decisions of all firms. For this class of MLFGs, we develop an algorithm that
provably computes the exact set of Nash equilibria. The algorithm computes all pure
strategy Nash equilibria and, in particular, it does not return any additional non-optimal
stationary points. We show that the solution set is finite and also provide examples for
instances without pure strategy Nash equilibria. In a case study, we illustrate that the
algorithm can be used to compute optimal strategic booking and nomination decisions in a
model of the European entry-exit gas market. Moreover, we use our algorithm to provide
a publicly available test library for the considered class of multi-leader multi-follower
games. This library contains problem instances with different economic and mathematical
properties (together with information on their solutions) so that other researchers in
the field can test and benchmark newly developed methods for this challenging class of
problems. Our work contributes to several strands of literature, most prominently the
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mathematical analysis of MLFGs, the peak-load-pricing literature, and the analysis of
gas markets. We highlight the most closely related papers in the following.

From a mathematical point of view, we consider an MLFG or an equilibrium problem
with equilibrium constraints (EPEC). Existing literature in this area can roughly be
divided into two parts: For very general MLFGs, suitable optimality conditions have
been developed, e.g., in [47, 48, 53], existence results based on potential functions have
been contributed, e.g., in [42, 43] and some ideas for solution algorithms can be found
in [45, 54]. However, the study of general MLFGs without any assumptions on their
structure has certain drawbacks. Either very strong assumptions are needed, e.g., the
existence of a potential function, which might not be satisfied in relevant applications,
or, alternatively, one only aims at the identification of stationary points instead of Nash
equilibria. This usually results in algorithms that cannot compute all Nash equilibria of
the MLFG and cannot guarantee that the computed solutions are Nash equilibria.

For those reasons, a different thread of MLFG literature focuses on the analysis of
special classes of MLFGs, for which the structure is motivated by some application.
The most prominent papers in this respect analyze electricity markets, which can be
modeled as a multi-leader game with one common follower; see, e.g., [4, 14, 23, 28, 32,
60, 67, 70]. To maintain tractability, the focus of the analysis is still often not on Nash
equilibria of the MLFG but on weaker solution concepts such as local Nash equilibria
or some kind of Nash stationary points based on, e.g., S- or M-stationarity conditions
for mathematical programs with equilibrium constraints. There are of course exceptions
such as [3], who fully characterize Nash equilibria of a pay-as-bid electricity market. Our
paper contributes to this strand of MLFG literature by considering a class of MLFGs
motivated by an application. For multi-leader multi-follower models in the electricity
context, see, e.g., the series of papers [37, 38] in which the authors focus on modeling
and do not consider to find all possible equilibria of the resulting EPEC. In [15] the
authors investigate a bilevel problem, in which leaders know the distribution of the
demand whereas followers have information on the exact realization. Firms are only
optimizing production quantities but not capacities in their model. In this setting, which
is a difference to our setup, the existence of a stochastic version of the Nash equilibrium
is shown.

We consider situations of capacity choice prior to fluctuating demand. The traditional
investment literature focused on the case of optimal (instead of strategic) investment
decisions. This so-called “peak-load-pricing” literature was initiated by [6, 66]; for a review
see [13]. Later, [36] applied those results to analyze the case of perfectly competitive
markets. More recent contributions have considered the case of strategic capacity choice
prior to competition at spot markets. One strand of literature analyzes strategic capacity
choices prior to price competition at several spot markets; see, e.g., [19, 22, 61], and,
more recently, [52].

We analyze the case of strategic capacity choices prior to quantity competition (à la
Cournot) at several subsequent spot markets, which results in a classical MLFG setup.
In this context, [24, 27, 57, 71, 72] consider the case of strategic capacity choice prior
to uncertain or fluctuating demand. However, all these contributions consider the case
of symmetric firms. As shown in these studies, this results in a unique and symmetric
equilibrium since a firm’s profit function, if others choose the equilibrium candidate, is
quasi-concave; see, e.g., [27].

Other contributions consider the asymmetric case as well. An asymmetric duopoly
setting is considered in [50], where firms strategically choose capacity prior to Cournot
competition (closed loop), as opposed to the case, where firms simultaneously choose
capacities and output (open loop). Whereas existence and uniqueness for the latter
case already have been shown previously, the authors establish that there can exist at
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most one pure strategy equilibrium of the duopoly setup of capacity choice prior to
Cournot competition at many spot markets. Several subsequent contributions provide
characterizations and algorithms allowing to determine pure strategy Nash equilibria in
asymmetric setups of strategic capacity choice prior to Cournot competition; see [69]
and, even more recently, [49]. By parameterizing the degree of competitiveness of firms
(conjectural variation formulation), these contributions provide important insights on
the effect of competitive conduct on the market outcome for a range of parameters that
includes perfectly competitive firms. However, these characterizations and algorithms
focus on specific local equilibrium candidates by identifying stationary points exploiting
the local concavity of the firms’ profit functions. The analysis presented in this paper
significantly extends these contributions. By explicitly considering inevitably arising
concave kinks and non-concavities of profit functions in the case of multiple asymmetric
firms, our analysis is able to identify all pure strategy Nash equilibria of the MLFG.

Beyond the applications in the context of electricity markets, our approach can be
applied to situations, where the capacity of a service has to be determined upfront
and cannot be easily adjusted thereafter. Examples include investments in airplanes,
hotels, or hospital capacity. An additional important application of our setup is the
analysis of entry-exit gas markets, which is the predominant European mechanism for
gas trading; see [17, 18]. This trading scheme basically decouples trade and transport
of gas. In order to be eligible to trade gas at the daily spot markets, traders have to
acquire—i.e., book—capacities, which allow them to inject or withdraw gas at a given
node. Existing papers that focus on strategic behavior in gas markets do not account
for the necessity to acquire network capacity before trade; see, e.g., [5, 10, 12, 34, 64].
Other papers assume efficient congestion management as, e.g., [46]. Contributions, that
consider potential inefficiencies in the context of entry-exit gas markets, e.g., [11, 25, 29,
65, 68], provide vast and interesting political arguments regarding the up- and downsides
of the entry-exit system. However, they are typically based on small illustrative examples
to enhance and illustrate their arguments. In [26], the authors provide a framework to
analyze the interaction of gas producers and traders with the network operator in the
context of the entry-exit system in a multilevel setup. First computational techniques and
numerical results have been presented in [7, 30, 63]. Our framework is complementary to
this approach in the sense that it is capable to analyze the important case of strategic
interaction of firms, when making their booking and nomination decisions. To this end,
see, e.g., [1, 35], which find considerable strategic behavior (market power) in European
gas markets. To the best of our knowledge, the present paper is the first contribution to
provide a formal framework, which allows to computationally analyze strategic booking
and nomination decisions in the context of liberalized gas markets in an entry-exit regime.

The remainder of the paper is organized as follows. In Section 2, we introduce the
MLFG model analyzed in this paper and briefly describe the solution idea. Section 3
is devoted to the capacity-constrained Cournot games on the lower level and provides
detailed properties of their unique Nash equilibria. For better readability of the paper,
some of the proofs for this section have been relegated to the appendix. The results are
used in Section 4 to reformulate the two-level MLFG as a single-level Nash equilibrium
problem, for which tailored optimality conditions are developed. The algorithm developed
in Section 5 then uses these optimality conditions to select Nash equilibria among all
possible candidates. In Section 6, we present a short numerical study, in which our
algorithm is used to compute optimal strategic booking and nomination decisions for the
entry-exit model of the European gas market, and describe the test library. We close the
paper in Section 7 with some final remarks.



4 V. GRIMM, D. NOWAK, L. SCHEWE, M. SCHMIDT, A. SCHWARTZ, AND G. ZÖTTL

2. Model Description and Main Solution Idea

In this section, we present the details of our model. Let us start with some frequently
used notation. The vectors en ∈ RN , n = 1, . . . , N , denote the canonical unit vectors
of the vector space RN . For a sufficiently smooth function f : RN → R, the partial
derivative w.r.t. the variable xn is denoted by ∂f

∂xn
and the directional derivative at a

point x ∈ RN in direction d ∈ RN is denoted by f ′(x; d). For reference, we summarize
all variables, parameters, and additional notation in Table 6 of Appendix C.

Next we specify the considered game. We analyze the competition between firms in
the following two-level MLFG Γ: In the upper level, firms n = 1, . . . , N simultaneously
choose capacities xn ≥ 0. These capacities are long-term investment decisions of the
firms that are taken at the beginning of a given time horizon. We assume that the
cost for capacity expansion, which firm n has to pay, can be described by a function
Sn : RN → (0,∞). This cost function may be different for different firms n and can also
depend on the others’ decisions xm, m 6= n. We assume for all n = 1, . . . , N that Sn is
continuously differentiable and monotonically increasing in all variables xm, i.e.,

Sn(x+ εem) ≥ Sn(x) for all m = 1, . . . , N and ε > 0,

where x = (x1, . . . , xN )> ∈ RN . Furthermore, we assume that xn 7→ Sn(x)xn is convex,
i.e., xn 7→ Sn(x) + xn

∂Sn
∂xn

(x) is monotonically increasing.
Given these capacities x, in the lower level, we consider several subsequent scenarios

t = 1, . . . , T , in which the same firms n = 1, . . . , N compete in a capacity-constrained
Cournot game Gt(x), i.e., they solve

max
qn,t

φn,t(qn,t) := Pt

(
N∑
m=1

qm,t

)
qn,t − cnqn,t s.t. 0 ≤ qn,t ≤ xn. (1)

Here, xn ≥ 0 is the previously chosen capacity from the upper level, cn > 0 denotes the
production cost of firm n, Qt :=

∑N
m=1 qm,t is an abbreviation for the overall produced

quantity in scenario t, and
Pt(Qt) = θt − bQt (2)

with θt > 0 and b > 0 denotes the inverse market demand function. In the Cournot
setting considered here, this leads to similar results as classic marginal pricing under
mild assumptions; see, e.g., [31, 40], where similar settings are considered. For differ-
ent scenarios t, the capacity-constrained Cournot games thus only differ in the price
intercept θt and we assume, without loss of generality,

θ1 < θ2 < · · · < θT .

Some possibilities to incorporate more scenario-dependent parameters into the model are
discussed in Remark 3.2.

Since for all firms n the feasible set [0, xn] is nonempty, compact, polyhedral (and
thus convex), and since the objective functions

qn,t 7→ φn,t(qn,t) = Pt

(
N∑
m=1

qm,t

)
qn,t − cnqn,t = −bq2n,t +

θt − b∑
m 6=n

qm,t − cn

 qn,t

are strictly concave in qn,t, by Proposition 2 in [44], the game Gt(x) has a unique
equilibrium q̂t(x) ∈ RN for all scenarios t and all capacities x = (x1, . . . , xN )>. If we
denote the corresponding equilibrium price by P̂t(x), then the equilibrium payoff for each
firm n in scenario t is given by

φ̂n,t(x) :=
(
P̂t(x)− cn

)
q̂n,t(x).
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Firm 1 · · · Firm N

Firm 1 · · · Firm N · · · Firm 1 · · · Firm N

x NE q̂

t = 1 t = T

Figure 1. Illustration of the multi-leader multi-follower game Γ

On the upper level, every firm n thus chooses its capacity xn ≥ 0 such that its overall
gain is maximized, i.e., firm n solves the problem

max
xn

πn(x) :=

T∑
t=1

wtφ̂n,t(x)− Sn(x)xn s.t. xn ≥ 0. (3)

Here, wt > 0 are weights that can be used to reflect the probability or importance of the
individual scenarios t.

The game Γ is defined as the two-level MLFG described by (3) and (1). The structure
of this game is illustrated in Figure 1.

Every scenario t is a subgame of the entire game. This can be seen (even though
the game is not in extensive form) by its hierarchical structure. For each capacity
choice x in the upper level, which represents the information set for the lower level, the
capacity-constrained Cournot games Gt(x) for scenarios t = 1, . . . , T take place after
the capacities are fixed. Since each scenario t is only connected to the upper level and
independent of other scenarios t̃ 6= t, each scenario t is a subgame of the MLFG.

The structure of Γ also implies that all Nash equilibria (x̂>, q̂>)> ∈ RN ×RTN of the
game Γ have the property that for all t = 1, . . . , T , the vector q̂t = q̂t(x̂) is the unique
Nash equilibrium of the subgame Gt(x).

Theorem 2.1. Let (x̂, q̂) ∈ RN × RTN be a Nash equilibrium of the game Γ. Then, this
Nash equilibrium is subgame perfect.

Our goal is to construct an algorithm that computes all Nash equilibria x̂ ∈ [0,∞)N of
the two-level game Γ. The main idea of this algorithm is as follows: For every given vector
x ≥ 0, the capacity-constrained Cournot games Gt(x) have unique Nash equilibria q̂t(x)
for all t = 1, . . . , T . We can provide explicit formulae for these Nash equilibria and
the resulting equilibrium payoff φ̂n,t(x) and can thus reduce the two-level game to the
single-level game (3). However, the objective functions πn(x) of the resulting single-level
game are only piecewise defined and can have both concave and nonconcave kinks, see
Figure 2 for an illustration.

To be able to compute all Nash equilibria of Γ despite these complications, we thus

• derive tailored first-order necessary optimality conditions for Nash equilibria
consisting of stationarity conditions and local optimality conditions; and then

• develop an algorithm, that first computes all candidates for Nash equilibria based
on the stationarity conditions, then checks the stationary candidates w.r.t. the
local optimality conditions, and finally checks the locally optimal candidates
w.r.t. global optimality by verifying that unilateral deviations are not beneficial.
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3. Analysis of the Lower Level

For a fixed price intercept θ > 0 and capacities xn ≥ 0, we now consider the capacity-
constrained Cournot game G(x), where every firm n = 1, . . . , N solves

max
qn

φn(q) := P

(
N∑
m=1

qm

)
qn − cnqn s.t. 0 ≤ qn ≤ xn,

with cn > 0, b > 0, and P (Q) = θ − bQ. Note that we allow an arbitrary number N
of firms and do not impose any symmetry assumptions. Many aspects of this type of
game have already been broadly discussed in the literature; see, e.g., [41, 51]. It is shown
in Proposition 2 of [44] that the capacity-constrained Cournot game G(x) has a unique
Nash equilibrium q̂(x). For our analysis, we need very specific information about this
unique Nash equilibrium q̂(x) and the corresponding equilibrium payoffs φ̂n(x). To be
precise, we need to know the effect of varying the price intercept θ and the capacities x
on the above mentioned quantities.

Our first step is thus to provide an explicit formula for the unique Nash equilibrium q̂(x)
and—at the same time—introduce the notation needed later. To this end, note that all
firms n can only choose a strategy qn ∈ [0, xn] and we can thus split them in the sets

Z(x) := {n = 1, . . . , N : xn = 0},
I(x) := {n /∈ Z(x) : q̂n(x) = 0},
C(x) := {n /∈ Z(x) : q̂n(x) = xn},
U(x) := {1, . . . , N} \ (Z(x) ∪ I(x) ∪ C(x))

of firms with zero capacity and firms that are inactive, constrained, or unconstrained in the
equilibrium. Using this notation, one can verify that in the unique Nash equilibrium q̂(x)
the equilibrium price is given by

P̂ (x) =
θ +

∑
m∈U(x) cm − b

∑
m∈C(x) xm

|U(x)|+ 1
, (4)

the equilibrium strategies are

q̂n(x) =


0, if n ∈ I(x) ∪ Z(x),
P̂ (x)−cn

b , if n ∈ U(x),

xn, if n ∈ C(x),

(5)

and the equilibrium payoff reads

φ̂n(x) =


0, if n ∈ I(x) ∪ Z(x),
1
b (P̂ (x)− cn)2, if n ∈ U(x),

(P̂ (x)− cn)xn, if n ∈ C(x).

Using the equilibrium price P̂ (x), we can also characterize the sets I(x), U(x), C(x) by

I(x) = {n /∈ Z(x) : P̂ (x) ≤ cn},

U(x) = {n /∈ Z(x) : cn < P̂ (x) < cn + bxn},

C(x) = {n /∈ Z(x) : P̂ (x) ≥ cn + bxn}.

(6)

For a more detailed analysis, it is helpful to split both sets I(x) and C(x) further into
those firms that are on the boundary to being unconstrained and those that are strictly
inactive/constrained:

I<(x) = {n ∈ I(x) : P̂ (x) < cn},

I=(x) = {n ∈ I(x) : P̂ (x) = cn},
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x̄2

x̃2

0

x2

x1 x1

φ1

x2 = x̄2

x2 = x̃2

Figure 2. Schematic illustration of the x-space for N = 2 firms. High-
lighted from firm 1’s perspective are the cases 1 ∈ C>(x), 1 ∈ U(x) and,
regarding the map x1 7→ φ1(x), 1 ∈ C=(x) without kink, 1 ∈ C=(x)
with concave kink, 1 ∈ C>(x) with nonconcave kink due to 2 ∈ C=(x).

C=(x) = {n ∈ C(x) : P̂ (x) = cn + bxn},

C>(x) = {n ∈ C(x) : P̂ (x) > cn + bxn}.

Recall that in the two-level game Γ, the equilibrium payoff φ̂n,t(x) for all scenarios t is
a part of the objective function πn(x) of firm n. For this reason, we need to understand
the effect of component-wise changes x+ εen, ε ∈ R, on the equilibrium payoff φ̂n(x) of
the same firm n. As long as a deviation x+εen does not change the sets Z(x), I(x), U(x),
and C(x), the equilibrium payoff φ̂n(x) is constant w.r.t. xn, if n ∈ Z(x) ∪ I(x) ∪ U(x),
and strictly concave in xn, if n ∈ C(x).

To analyze the situation in which the sets Z(x), I(x), U(x), and C(x) change due
to a deviation, we consider a fixed firm n ∈ {1, . . . , N} and a small deviation x + εen
and compute its effect on the equilibrium payoff φ̂n(x). The precise formulas can be
found in Lemma B.1 in the appendix and imply the following local properties of the map
xn 7→ φ̂n(x), see Figure 2 for a schematic illustration:

• In case n ∈ Z(x), only positive deviations are possible and the map is locally
concave.

• In case n ∈ I(x) ∪ U(x), the map is locally constant.
• In case n ∈ C=(x), the map is locally concave but may have a kink in xn.
• In case n ∈ C>(x), the behavior depends on the sets I=(x) and C=(x). If
|I=(x)| = |C=(x)|, the map is locally strictly concave and differentiable. If
|I=(x)| > |C=(x)|, the map is locally concave but has a kink at xn. However, if
|I=(x)| < |C=(x)|, the map xn 7→ φ̂n(x) has a nonconcave kink at xn.

Since the equilibrium payoffs φ̂n,t(x) are a part of the upper-level objective func-
tion πn(x), this implies that we have to handle two difficulties when computing Nash
equilibria of Γ:

(1) Equilibrium strategies may be points at which xn 7→ πn(x) is not differentiable.
(2) Local optimality is not sufficient to guarantee global optimality.

Both of these difficulties, i.e., kinks and nonconcavity, already arise in the case I(x) = ∅.
Moreover, as our analysis later on reveals, only those scenarios have an impact on a
firm’s equilibrium capacity choice in which their capacity is binding. A scenario excluded
by the assumption I(x) = ∅ would thus only be relevant if in this scenario, for some firm,
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it is optimal to operate at the capacity bound, but at the same time, for other firms, it
is not profitable to produce at all. This is highly unlikely to occur in a practical context.
In order to keep the notation more compact, we thus assume that the set of inactive
firms is empty from now on. A sufficient condition for this to be true in all scenarios t is
given at the beginning of the Section 4.

Finally, recall that in the game Γ we have not just one lower-level game G(x) but
instead one such game Gt(x) for each scenario t = 1, . . . , T . These games differ only
in the price intercept θt. The following result states that the outcome of G(x) is, in a
certain sense, monotone w.r.t. the price intercept θ. Its proof can be can be found in
Appendix B.

Lemma 3.1. Consider two capacity-constrained Cournot games G1(x), G2(x), which
differ only in the price intercept θ1 < θ2, and let q̂1(x), q̂2(x) be the corresponding Nash
equilibria. Then, P̂1(x) < P̂2(x), i.e., the equilibrium price increases for higher intercepts.
Furthermore, I1(x) ⊇ I2(x) and C1(x) ⊆ C2(x), i.e., the set of inactive firms shrinks
and the set of constrained firms grows with larger intercepts θt.

Since we assumed that the price intercepts satisfy

θ1 < θ2 < · · · < θT ,

the previous result ensures that for all fixed capacities x ≥ 0, the sets Ct(x) of constrained
firms in scenarios t = 1, . . . , T satisfy the inclusions

C1(x) ⊆ C2(x) ⊆ · · · ⊆ CT (x).

Furthermore, since the equilibrium prices P̂t(x) are strictly increasing, every firm n can
be in C=

t (x) in at most one scenario t and is in C>s (x) for all subsequent scenarios s > t.
These two properties form the basis of our subsequent analysis of the upper level and
allow us to compute all Nash equilibria effectively.

Remark 3.2. In our model, the different scenarios t = 1, . . . , T on the lower level differ
only in the price intercepts θt of the inverse demand function. It is also be possible to
consider scenario-dependent production costs cn,t > 0 and scenario dependent slopes
bt > 0 of the inverse demand function, as long as it is still possible to sort the scenarios
t = 1, . . . , T such that the inclusions

C1(x) ⊆ C2(x) ⊆ · · · ⊆ CT (x)

hold for all capacities x ≥ 0 and that n ∈ C=
t (x) is the case in at most one scenario for

every firm n.
A sufficient condition to ensure this property is to demand that for all fixed capacities

x ≥ 0, the value of

P̂t(x)− cn,t
bt

=
θt +

∑
m∈Ut(x) cm,t − bt

∑
m∈Ct(x) xm −

(
|Ut(x)|+ 1

)
cn,t(

|Ut(x)|+ 1
)
bt

is strictly increasing in t for all firms n = 1, . . . , N—or at least for all firms n ∈ Ct(x).
Lemma 3.1 shows that this is the case for strictly increasing intercepts θ1 < · · · < θT ,

if the costs cn and the slope b are constant. Analogous arguments can be used in case of
strictly decreasing slopes b1 > · · · > bT or uniformly decreasing production costs cn,t = cn+
∆t with ∆1 > · · · > ∆T . Combinations of all three deviations satisfying these individual
assumptions are also covered by the same arguments by inserting artificial intermediary
scenarios such that two subsequent scenarios always only differ in one parameter, i.e., in
the intercept, the slope, or the costs. Additionally, for some combinations of deviations,
it is further possible to derive weaker conditions. For example, in case of constant



MULTI-LEADER-MULTI-FOLLOWER PEAK LOAD PRICING 9

slopes b, time-dependent intercepts θt, and costs cn,t = cn + ∆t it suffices to demand
θ1 −∆1 < · · · < θT −∆T .

4. Analysis of the Upper Level

Instead of considering only one capacity-constrained Cournot game G(x), we now go
back to considering the lower-level games Gt(x) for scenarios t = 1, . . . , T , which differ
in the price intercepts θ1 < θ2 < · · · < θT . For every scenario t, we then know that the
corresponding game Gt(x) has a unique equilibrium q̂t(x) and that in the equilibrium,
the firms can be partitioned into the sets Z(x), It(x), Ut(x), and Ct(x).

Throughout the whole section, we assume that there are no inactive firms, i.e., It(x) = ∅
for all t. More precisely, we assume the following.

Assumption 4.1. For all x ≥ 0 and all t = 1, . . . , T , the equilibrium price satisfies
P̂t(x) > cn for all n = 1, . . . , N .

By Lemma C.1 in the appendix, this is ensured, e.g., if

θ1 > (|N |+ 1) max
m=1,...,N

{cm} −
N∑
m=1

cm.

In addition to the capacity-constrained Cournot games Gt(x), we now also consider
the Nash equilibrium problem Γ on the upper level, in which the capacities xn ≥ 0 are
chosen. Recall that here all firms n = 1, . . . , N solve the problem

max
xn

πn(xn, x−n) :=

T∑
t=1

wtφ̂n,t(xn, x−n)− Sn(xn, x−n)xn s.t. xn ≥ 0, (7)

where we use the shorthand x−n ∈ RN−1 to indicate the strategies (xm)m 6=n. In case
the capacity expansion costs Sn are affine linear, (7) is a single-level Nash equilibrium
problem with piecewise quadratic objective functions, a structure similar to the problems
considered in [55]. However, we also allow for nonlinear capacity expansion costs Sn.

Based on the previous analysis of the lower level, we can now derive some useful
characteristics of feasible capacity vectors x ≥ 0. Consider an arbitrary x ≥ 0 with
the corresponding set Z(x). Then, for all t = 1, . . . , T the games Gt(x) have unique
Nash equilibria q̂t(x) with associated sets Ut(x) and Ct(x). Due to θ1 < · · · < θT and
Lemma 3.1, we immediately know

P̂1(x) < P̂2(x) < · · · < P̂T (x) and C1(x) ⊆ C2(x) ⊆ · · · ⊆ CT (x).

Thus, if a firm n is constrained in a scenario t, i.e., n ∈ Ct(x), then it remains constrained
for all subsequent scenarios t+ 1, . . . , T . Furthermore, n ∈ C=

t (x) is only possible in the
first scenario, in which firm n is constrained. At the moment, it is theoretically possible
that a firm remains unconstrained for all scenarios t = 1, . . . , T . However, one can prove
that in a Nash equilibrium x̂ of (7) we always have UT (x̂) = ∅, see Lemma C.2 in the
appendix.

For a Nash equilibrium x̂ of (7) we thus introduce the following notation:

τn(x̂) :=

{
1, if n ∈ Z(x̂),

min{t ∈ {1, . . . , T} : n ∈ Ct(x̂)}, else,

τ(x̂) := (τ1(x), . . . , τN (x)) ∈ NN ,
E(x̂) := {n /∈ Z(x̂) : n ∈ C=

τn(x̂)
(x̂)},

F (x̂) := {1, . . . , N} \ (Z(x̂) ∪ E(x̂)),
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x̄

x̃

0

x2

x1γ

γ

Figure 3. Schematic illustration of the x-space for N = 2 firms and
T = 3 scenarios. Highlighted are x̄ with τ(x̄) = (1, 3), E(x̄) = ∅, F (x̄) =
{1, 2}, δ(x̄) = 0 and x̃ with τ(x̃) = (3, 2), E(x̃) = {2}, F (x̃) = {1},
δ(x̃) = 2.

δ(x̂) :=

{
0, if E(x̂) = ∅,
max{τn(x̂) : n ∈ E(x̂)}, else.

Then, τn(x̂) is the first scenario, in which firm n is constrained, E(x̂) is the set of all
firms, which are “equality-constrained” in their first constrained scenario, F (x̂) is the set
of all firms, which are strictly unconstrained/constrained in all scenarios, and δ(x̂) is the
last scenario, in which one of the firms is “equality-constrained”. An illustration of these
objects in case N = 2 and T = 3 can be found in Figure 3.

These definitions allow us to describe certain sets and quantities more easily, e.g.,

Ut(x̂) = {n /∈ Z(x̂) : t < τn(x̂)} and Ct(x̂) = {n /∈ Z(x̂) : t ≥ τn(x̂)},

πn(x̂) =
∑

t<τn(x̂)

wt
1
b

(
P̂t(x̂)− cn

)2
+

∑
t≥τn(x̂)

wt

(
P̂t(x̂)− cn

)
x̂n − Sn(x̂)x̂n.

For the remainder of this section, let x̂ ≥ 0 be an arbitrary Nash equilibrium of (7).
To keep the notation more compact, we use the abbreviations Z := Z(x̂), τ := τ(x̂), etc.
and denote the equilibrium price in scenario t by

P̂t(x̂) =
θt +

∑
m∈Ut cm − b

∑
m∈Ct x̂m

|Ut|+ 1
=
θt +

∑
m∈Ut∪C=

t
cm − b

∑
m∈C>t

x̂m

|Ut ∪ C=
t |+ 1

.

Using this terminology, we can derive necessary first-order optimality conditions for a
Nash equilibrium x̂; see Appendix C for a proof.

Theorem 4.2. Let Assumption 4.1 hold and x̂ be an arbitrary Nash equilibrium of (7).
Then, the following holds for x̂ = (x̂Z , x̂E , x̂F ):

(a) For all n ∈ Z we have x̂n = 0 and the directional derivative satisfies

π′n(x̂; en) =
∑
t≥τn

wt

[
P̂t(x̂)− cn −

bx̂n
|Ut ∪ C=

t |+ 1

]
− Sn(x̂)− x̂n ∂Sn∂xn

(x̂) ≤ 0.
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(b) For all n ∈ E we have x̂n = 1
b (P̂τn(x̂)− cn) > 0 and the directional derivatives

satisfy

π′n(x̂; en) =
∑

t≥τn+1

wt

[
P̂t(x̂)− cn −

bx̂n
|Ut ∪ C=

t |+ 1

]
− Sn(x̂)− x̂n ∂Sn∂xn

(x̂) ≤ 0,

π′n(x̂;−en) = −
∑
t≥τn

wt

[
P̂t(x̂)− cn −

bx̂n
|Ut|+ 1

]
+ Sn(x̂) + x̂n

∂Sn
∂xn

(x̂) ≤ 0.

(c) For all n ∈ F we have C=
t = ∅ for all t ≥ τn and xn 7→ πn(xn, x̂−n) is

differentiable at x̂n with

∂πn
∂xn

(x̂) =
∑
t≥τn

wt

[
P̂t(x̂)− cn −

bx̂n
|Ut|+ 1

]
− Sn(x̂)− x̂n ∂Sn∂xn

(x̂) = 0.

(d) The sets E and F are given by

E = {n /∈ Z : τn ≤ δ} and F = {n /∈ Z : τn > δ}.

This result makes several important observations possible. For a Nash equilibrium x̂,
we only need to know τ(x̂), Z(x̂), δ(x̂) and can recover all other sets via

E(x̂) = {n /∈ Z(x̂) : τn(x̂) ≤ δ(x̂)},
F (x̂) = {n /∈ Z(x̂) : τn(x̂) > δ(x̂)},
Ut(x̂) = {n /∈ Z(x̂) : t < τn(x̂)},
Ct(x̂) = {n /∈ Z(x̂) : t ≥ τn(x̂)},

C=
t (x̂) =

{
{n /∈ Z(x̂) : τn(x̂) = t}, if t ≤ δ(x̂),

∅, if t > δ(x̂).

We thus focus on τ(x̂), Z(x̂), and δ(x̂) and the other sets are then given as above.
Every Nash equilibrium x̂ needs to satisfy the stationarity conditions

x̂n = 0 for all n ∈ Z(x̂),

P̂τn(x̂) = cn + bx̂n for all n ∈ E(x̂),

∂πn
∂xn

(x̂) = 0 for all n ∈ F (x̂).

(8)

Additionally, every Nash equilibrium x̂ needs to satisfy the local optimality conditions

π′n(x̂; en) ≤ 0 for all n ∈ Z(x̂),

π′n(x̂; en) ≤ 0 for all n ∈ E(x̂),

π′n(x̂;−en) ≤ 0 for all n ∈ E(x̂).

In the next section, we use these conditions to develop a solution algorithm for Γ. But
before we do so, we want to close this section by stating that, under suitable assumptions
on the functions Sn, the nonlinear system of equations (8) has exactly one solution for
τ = τ(x̂), Z = Z(x̂), and δ = δ(x̂), which is the Nash equilibrium x̂; see Appendix C for
the proof. Since there are only finitely many possibilities for τ, Z, δ, this immediately
implies that Γ has at most finitely many Nash equilibria.

Theorem 4.3. Suppose that Assumption 4.1 holds and assume that the functions Sn
are chosen such that the map

x 7→
(
Sn(x) + xn

∂Sn
∂xn

(x)
)N
n=1

is monotone on [0,∞)N .
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(a) Let x̂ ≥ 0 be a Nash equilibrium of Γ and τ = τ(x̂), Z = Z(x̂), and δ = δ(x̂).
Then, the system of equations

xn = 0 for all n ∈ Z,

P̂τn(x) = cn + bxn for all n /∈ Z, τn ≤ δ,
∂πn
∂xn

(x) = 0 for all n /∈ Z, τn > δ,

has exactly one solution x∗ ≥ 0, which is x∗ = x̂.
(b) The Nash equilibrium problem Γ has at most (N + 1)(T + 1)N Nash equilibria

and thus all Nash equilibria are isolated.

5. Derivation of the Algorithm and Proof of Correctness

Based on Theorem 4.2, we can now state Algorithm 1 to compute all Nash equilibria
of the game Γ. The idea of this algorithm is as follows:

1. For all values of τ , Z, and δ that can occur in a Nash equilibrium, compute
candidates x̂ by solving the stationarity conditions (8).

2. Check the local optimality conditions in x̂, i.e., whether all feasible directional
derivatives are nonpositive for all n ∈ Z ∪ E.

3. Verify if x̂n is globally optimal for all firms n.
Note that the stationarity conditions used in the first step ensure ∂πn

∂xn
(x̂) = 0 for

n ∈ F , but do not take the objective function πn into account for n ∈ Z ∪ E. For this
reason, in the second step, we check the signs of the feasible directional derivatives for
all n ∈ Z ∪ E. Recall that we have to work with directional derivatives here, because
for n ∈ Z, the function πn is not defined for xn < 0 and for n ∈ E, the function πn may
have a kink at x̂n.

Since each function xn 7→ πn(xn, x̂−n) is piecewise concave, all candidates satisfying
the local optimality conditions in the second step are at least local Nash equilibria in the
sense that every firm n is at a local maximum of its payoff function. However, we still
have to verify global optimality explicitly, because the objective functions πn can have
nonconcave kinks and local optimality is thus not sufficient. To this end, for all concave
pieces of the map xn 7→ πn(xn, x̂−n) we compute its maximum on the subset of [0,∞),
where this piece is correct, and compare it with πn(x̂n).

Algorithm 1 solveMLMFG()

1: for all τ ∈ {1, . . . , T}N , Z ⊆ {n = 1, . . . , N : τn = 1}, δ ∈ {0, τ1, . . . , τN} do
2: Use computeStationary(τ, Z, δ) to compute a stationary point x̂ and the corre-

sponding equilibrium prices P̂ .
3: if a stationary point x̂ exists then
4: Use checkLocalOptimality(x̂, τ, Z, δ, P̂) to verify local optimality of x̂.
5: if x̂ is a local Nash equilibrium then
6: Use checkGlobalOptimality(x̂, τ, Z, P̂) to verify global optimality of x̂.
7: if x̂ is a Nash equilibrium of (7) then
8: Add x̂ to the list of Nash equilibria of Γ.
9: end if

10: end if
11: end if
12: end for
13: return the set of all Nash equilibria of Γ

Since we check for global optimality in the third step, we could skip the local optimality
test in the second step. However, the global optimality test is computationally expensive
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and we thus prefer to use it as rarely as possible. The detailed algorithms executing
these three steps in Algorithm 1 can be found in Appendix D.

We claim that Algorithm 1 correctly computes the set of all Nash equilibria of the
game Γ. To this end, we have to prove that all Nash equilibria x̂ are identified as candidates
in the first step and pass the second and third step successfully. We also have to prove
that all non-optimal candidates generated in the first step are eliminated at the latest in
the third step. That Nash equilibria pass the second step successfully follows immediately
from the correctness of the first step and the optimality conditions in Theorem 4.2. The
respective results for the first and third step are similarly straightforward, but a bit more
technical and thus have been relegated to Appendix D.

All in all, it follows that Algorithm 1 computes all Nash equilibria of Γ under suitable
assumptions on the functions Sn.

Theorem 5.1. Suppose that Assumption 4.1 holds.
(a) Then, Algorithm 1 only returns Nash equilibria of the game Γ.
(b) If, additionally, the functions Sn are chosen such that the map

x 7→
(
Sn(x) + xn

∂Sn
∂xn

(x)
)N
n=1

(9)

is monotone on [0,∞)N , then Algorithm 1 computes all Nash equilibria of the
game Γ.

We need the additional assumption on the maps Sn to be able to guarantee that the
algorithm finds all Nash equilibria of Γ: Let x̂ be a Nash equilibrium with corresponding
parameters τ, Z, δ. Then under Assumption (9), Theorem 4.3 guarantees that for these
parameters the stationarity conditions (8) have exactly one solution, namely the Nash
equilibrium x̂. Thus, for these parameters the Nash equilibrium x̂ is the candidate
computed in the first step of the algorithm.

If, in contrast, for parameters τ, Z, δ corresponding to a Nash equilibrium x̂ the
stationarity conditions can have more than one solution, there are two effects to consider:
It could happen that there are other Nash equilibria with the same parameters τ, Z, δ.
Since the algorithm computes only one solution of the stationarity conditions, it returns
at most one of these Nash equilibria. However, it could also happen that—besides x̂—the
stationarity conditions have other solutions, which are not Nash equilibria. If one of
these other solutions is computed in the first step, the algorithm does not notice that
there exists a Nash equilibrium corresponding to the parameters τ, Z, δ.

Fortunately, although Assumption (9) is a nontrivial assumption, it is satisfied in
certain standard cases, which are also widely used in the literature; see, e.g., [24, 27, 42,
49, 50, 57, 71, 72]:

• If the costs Sn of firm n only depend on xn, i.e., Sn(x) = Sn(xn), then by our
convexity assumption on xnSn(x) = xnSn(xn) for all x, y ≥ 0 we have

N∑
n=1

(Sn(x) + xn
∂Sn
∂xn

(x)− Sn(y)− yn ∂Sn∂xn
(y))(xn − yn)

=

N∑
n=1

(Sn(xn) + xn
∂Sn
∂xn

(xn)− Sn(yn)− yn ∂Sn∂xn
(yn))(xn − yn) ≥ 0.

• If the costs Sn are jointly given by

Sn(x) = s

(
N∑
n=1

xn

)
for all n = 1, . . . , N
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with s : [0,∞) → (0,∞) being affine linear and non-decreasing, i.e., s′ ≥ 0 is
constant, then xnSn(x) is convex. Additionally, for all x, y ≥ 0 and by using the
abbreviations X :=

∑N
n=1 xn, Y :=

∑N
n=1 yn, we obtain

N∑
n=1

(
Sn(x) + xn

∂Sn
∂xn

(x)− Sn(y)− yn ∂Sn∂xn
(y)
)

(xn − yn)

=

N∑
n=1

(
s(X) + xns

′(X)− s(Y )− yns′(Y )
)
(xn − yn)

= (s(X)− s(Y ))(X − Y ) + s′(X)‖x− y‖22 ≥ 0

• In combinations of the previous two cases, i.e., when the firms n = 1, . . . , N can
be divided into disjoint groups Nv ⊆ {1, . . . , N} such that for all n ∈ Nv the costs
Sn(x) = Sv(

∑
m∈Nv xm) are given by the same affine linear and non-decreasing

function, which depends only on members of the group Nv.
We close this section with two academic examples illustrating (a) that the game Γ

does not always have a Nash equilibrium and (b) the importance of the global optimality
check in Algorithm 4.

(a) For N = T = 2, θ = (10, 20), b = 1, c = (2.5, 5), w = (1, 1), and linear capacity
costs Sn(x) = 2(x1 + x2) for n = 1, 2, the game Γ has neither a Nash equilibrium
nor points satisfying the local optimality conditions; see Figure 4.

(b) For N = 2, T = 3, θ = (10, 12, 15), b = 1, c = (4, 5), w = (1, 1, 1), and linear
capacity costs Sn(x) = x1 + x2 + 2.2 for n = 1, 2, the game Γ again has no
Nash equilibrium. However, there exists a point fulfilling the local optimality
conditions; see Figure 5.

6. Numerical Examples

In this section, we numerically test Algorithm 1. A case study based on the entry-exit
system of the German gas market is presented in Section 6.1. And in Section 6.2, we
provide a small library of examples, which can be used to highlight different characteristics
of the hierarchical Cournot game and to test solution algorithms.

6.1. Case Study: Strategic Bookings and Nominations in Gas Markets. The
European gas market as of today is organized according to the so-called entry-exit system;
see, e.g., [26] and the references therein. Our goal is to analyze the implications of
strategic behavior of gas suppliers in this context.

Each of these suppliers n = 1, . . . , N can supply gas to the entry-exit system at a
designated entry node vn. Several gas suppliers can be located at the same entry node.
For this reason let

Nv = {n = 1, . . . , N : vn = v}
be the set of all firms located at an entry node v. Firms n ∈ Nv are able to book
capacities xn ≥ 0 at the entry node vn. Bookings are usually long-term decisions and the
booked capacity xn grants the right of firm n to supply gas to the system at the node vn.
To stay within the physical restrictions of the system, the transmission system operators
(TSOs) establish technical capacities XTC

v for every node v, which reflect the maximum
amount of supplied gas that the system can handle.

For the specific market rules and results see, e.g., [39, 59]. In our case, we model
inverse supply of capacities as a function Sn(x) = Svn(Xvn), where the booking price
depends on the cumulative booking choices Xv :=

∑
m∈Nv xm of all firms located at the

same entry node v. The technical capacity influences the functions Sv such that if the
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x̄1 x̂1
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x̄2x̂2

Figure 4. For τ = (1, 1) and τ = (1, 2), there exist Nash equilibria
x̄ = (5/2, 5/4) and x̂ = (30/11, 25/22) w.r.t. the local payoff functions πτn.
However, these are not Nash equilibria of Γ due to a nonconcave kink
in π1. Algorithm 2 eliminates those points in the consistency check,
because they are exactly on the border between both areas.

x̂1 x̄1

x2

x1 x1

π1

18

19

x̂1 x̄1

Figure 5. Algorithms 2 and 3 only return the candidate x̂ = (2.15, 1.4)
satisfying the local optimality conditions. However, x̂ is not a Nash
equilibrium of Γ since x̂1 is dominated by x̄1 = 2.3 for firm 1.
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cumulative bookings Xv at node v surpass the technical capacity XTC
v at this node, the

price increases rapidly.
Trading of gas takes place daily at virtual trading points at which firms that have

booked entry or exit capacities can sell or buy gas. Traded quantities are then nominated
for transport on a daily basis and are free of charge. Here, the booked capacities xn
of each firm n act as upper bounds on the amount of gas qn,t that can be traded at
the day-ahead market. This day-ahead market is represented in the lower level of our
model, where t = 1, . . . , T are possible scenarios and wt is the probability or frequency
of scenario t. For a more detailed overview of the gas market regulation see, e.g., [62].

This two-level model is connected to a four-level model of the European gas market,
which is introduced in [26]. There, bookings and nominations are modeled in level two
and three under the assumption of perfect competition. As pointed out by the authors,
the introduction of strategic behavior introduces several challenges. In particular, these
two levels cannot be reformulated anymore as a concave single-level problem due to the
possibility of nonconcave kinks in the objective functions; see the discussion at the end
of Section 3. The first level of the above mentioned four-level model, which regards the
TSO, is considered by the choice of technical capacities in our model, whereas the fourth
level, regarding the actual transport of gas through the network, is not incorporated here.
The game Γ is constructed to give insights into the behavior of firms in the entry-exit
model in a non-cooperative setting.

Our standing assumptions on Sv, i.e., Sv > 0, and that for all firms n ∈ Nv, the map
xn 7→ xnSvn(

∑
m∈Nvn

xm) is convex and increasing (w.r.t. all variables,) are not very
restrictive and allow us to consider different types of cost functions.

Depending on an initial price kv > 0, a multiplicative factor sv > 0, and the technical
capacities XTC

v > 0, several examples for booking costs are given below:
• Constant booking costs:

Sv (Xv) = kv.

• Linearly increasing booking costs:

Sv (Xv) = svXv + kv. (10)

• Piecewise defined bookings costs with constant costs up to the technical capacity
and linearly increasing costs beyond this capacity, smoothed by a parabola in a
small ε-neighborhood of XTC

v :

Sv (Xv) =


kv, if Xv < XTC

v − ε,
sv
4ε

(
Xv −XTC

v + ε
)2

+ ku, if XTC
v − ε ≤ Xv < XTC

v + ε,

sv
(
Xv −XTC

v

)
+ kv, if XTC

v + ε ≤ Xv.

(11)

Before we state the data for our case study, let us again briefly comment on the
implications of Assumption 4.1 in the context of this gas market example. Mainly for
notational reasons we have excluded scenarios t with It(x) 6= ∅ from our analysis. As we
have shown, only those scenarios have an impact on a firm’s equilibrium capacity choice in
which their capacity is binding. A scenario excluded by the Assumption It(x) = ∅ would
thus only be relevant if at the same time, for one firm n, it is optimal to nominate as
much gas as the booked capacity xn allows, whereas for other firms m it is not profitable
to nominate any gas at all. This is highly unlikely to occur in a practical context.

In the following test case, we use our algorithm to compute the optimal strategic
booking and nomination decisions for an exemplary instance of the entry-exit system as
described above. To interpret the subsequently presented quantities and results, note
that all quantities are given in TW h, whereas prices, cost of nomination, and cost of
booking are given in AC/TWh.
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Table 1. Reference values for infinite technical capacities

x̂1 x̂2 x̂3 x̂4 X̂

1.264 1.256 1.249 1.279 5.048
1.576 1.568 – 1.591 4.736
2.099 – – 2.114 4.213

We assume that firms can book (purchase) capacities at two different entry nodes
A,B, allowing them to nominate (sell) gas to cover demand on T = 5 different days.
Demand in our test case is calibrated to meet the daily demand in Germany at five days
in 2018.1 We calibrated the linear demand functions based on observed spot-market
prices (see [58]) and assumed a price elasticity of −0.1; see, e.g., [9, 21, 33]. This results
in the following parameters for inverse demands Pt(Qt), see (2),

θ1 = 109, θ2 = 126, θ3 = 184, θ4 = 306, θ5 = 442, and b = 66.2295.

Finally, we choose the weights of all days t = 1, . . . , 5 as wt = 1.
In our example, we investigate N = 4 different gas suppliers and consider seven

different settings regarding the participation of the firms in the gas market, their location
at the two nodes A and B, and the technical capacity XTC

A available at node A. Firm 1
is located at node A, firm 4 is located at node B, firm 2 either does not participate in
the market or is located at node A and firm 3 either does not participate in the market
or is located in one of the two nodes A,B.

The unit cost for procuring (or producing) gas for all firms is given by the parameters

c1 = 14, c2 = 14.5, c3 = 15, c4 = 13.

The booking costs Sv at both entry nodes v = A,B are assumed to be constant
up to the technical capacity XTC

v and linearly increasing afterward, with a smoothed
intermediate part as given in (11). We choose the same parameters for both nodes
v = A,B:

kv = 10, sv = 10b, ε = 0.5 · 10−5.

To obtain a reference value for the technical capacities, we first consider a situation
in which the technical capacity is not a limiting factor, i.e., XTC

v = ∞ for both entry
nodes v = A,B and, thus, both booking cost functions Sv(Xv) = kv are the same and
constant. In this case, the game Γ has a unique Nash equilibrium, which only depends
on the participation of the firms in the market, see Table 1 (“–” indicates that a firm is
not participating in the market), but not on their location. We observe that the total
amount of booked capacities X̂ decreases for a larger number of participating firms, but
is always larger than 4.

Based on these preliminary results we now consider the seven settings given in Table 2,
which differ in the participation of firms 2 and 3, the location of the firm 3 at node A
or B and the technical capacity XTC

A available at node A. The total technical capacity
XTC
A +XTC

B is always smaller than the total capacity booked in the case with infinite
technical capacities described above. This ensures that the technical capacities have an
influence on the Nash equilibrium of the game. We use the color red to indicate that a
firm is located at node A and blue to indicate that a firm is located at node B.

For each of the seven settings, our algorithm returned a single Nash equilibrium of the
game Γ. The resulting Nash equilibria for all settings are given in Table 3. Here X̂A, X̂B

denote the total capacity booked at nodes A,B.

1Those are February 15, May 15, August 1, October 1, and December 15, for which daily consumption
is approximated by breaking down monthly data from [8] based on daily temperature values from [16].
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Table 2. Setup of the different considered settings

Setting v1 v2 v3 v4 XTC
A XTC

B XTC
A +XTC

B

1 A A A B 3.000 1.000 4.000
2 A A – B 3.000 1.000 4.000
3 A – – B 3.000 1.000 4.000

4 A A A B 1.000 1.000 2.000
5 A A – B 1.000 1.000 2.000
6 A – – B 1.000 1.000 2.000

7 A A B B 1.000 1.000 2.000

Table 3. Nash equilibria of the different considered settings

Setting x̂1 x̂2 x̂3 x̂4 X̂A X̂B τ1(x̂) τ2(x̂) τ3(x̂) τ4(x̂) δ(x̂)

1 1.003 1.000 0.997 1.000 3.000 1.000 5 5 5 5 0
2 1.503 1.498 – 1.000 3.000 1.000 5 5 – 4 0
3 2.656 – – 1.000 2.656 1.000 5 – – 4 0

4 0.401 0.399 0.398 1.000 1.198 1.000 3 3 3 4 0
5 0.534 0.532 – 1.000 1.066 1.000 3 3 – 4 0
6 1.000 – – 1.000 1.000 1.000 4 – – 4 0

7 0.518 0.517 0.511 0.530 1.035 1.041 4 4 4 3 3

Table 4. Comparison of Nash equilibrium and welfare solution in all
seven settings

Setting π1(x̂) π2(x̂) π3(x̂) π4(x̂) WNE(x̂) SA(x̂) SB(x̂) WOpt SW
A SW

B

1 236.0 233.0 230.0 240.6 1787.1 10.0 10.0 2202.3 138.0 143.0
2 363.2 359.1 – 280.7 1743.2 10.0 10.0 2202.3 138.0 143.0
3 742.9 – – 378.0 1585.7 10.0 10.0 2202.3 138.0 143.0

4 146.5 144.6 142.8 466.9 1419.1 141.4 10.0 1757.1 327.3 331.3
5 256.1 253.7 – 498.2 1427.8 53.6 10.0 1757.1 327.3 331.3
6 528.5 – – 534.3 1386.7 10.0 10.0 1757.1 327.3 331.3

7 244.1 241.9 235.9 250.3 1445.9 33.2 37.0 1757.1 327.3 331.3

Table 4 compares the profits of the firms for the different settings to each other and
furthermore compares the welfare and booking costs of the Nash equilibrium—denoted
by WNE(x̂) and Sv(x̂) for v = A,B—to the solution of the welfare maximization problem

max
x,q

T∑
t=1

wt

[∫ Qt

0

Pt(y) dy −
N∑
n=1

cnqn,t

]
−

∑
v∈{A,B}

∫ Xv

0

Sv(y) dy

s.t. 0 ≤ qn,t ≤ xn for all n = 1, . . . , N, t = 1, . . . , T.

(12)

We denote the objective value of the welfare problem by WOpt and the respective
booking costs at node v by SW

v . The welfare value in the Nash equilibrium, i.e., WNE(x̂),
is calculated by evaluating the objective function value of (12) for the given Nash
equilibrium x̂ and the resulting nominations q̂ according to (5) and τ(x̂).

We discuss the Settings 1–3 first, in which the only difference is the number of
participating firms. As one can see, in all three settings the firms respect the technical
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capacities, i.e., Xv ≤ XTC
v for v = A,B. Compared to Table 1 one can say that the

technical capacity severely impacts firm 4 at node B in all Settings 1–3, but the firms at
node A mostly in Setting 1, where three firms are active at node A. In Setting 2, where
only two firms are active at node A, the effect of the technical capacity on those firms
is much smaller. In Setting 3, where only firm 1 is active at node A, the effect of the
technical capacity XTC

B = 1 on firm 4 causes firm 1 to book more than in the reference
case with unlimited technical capacities. However, firm 1 still stays below XTC

A = 3. In
all three settings these discrepancies in bookings are not large enough for any of the
firms to be willing to exceed the technical capacity and pay higher booking costs.

Firm 4 has the same booking x̂4 = 1 in all Settings 1–3. In Setting 1, firm 4 is
only nominating the full capacity in the last scenario t = 5, i.e. τ4(x̂) = 5, whereas in
Settings 2 and 3 it is already nominating its full capacity in scenario t = 4, i.e., τ4(x̂) = 4.
This indicates that the number of active firms at node A influences the behavior of firm 4
located at node B.

As one can see in Table 4, fewer active firms at node A have a positive impact on the
profit of all remaining firms—even the accumulated profit

∑
πn(x̂) is increasing when

the number of active firms is decreasing. In contrast, the generated welfare in the Nash
equilibrium x̂ is decreasing for a smaller number of active firms. Especially in Setting 3
in which the technical capacity at node A is not fully utilized, there is a considerable
decrease in welfare compared to Setting 2.

In all of the Settings 4–6, the technical capacity is the main limiting factor of the
model. Consequently, in Settings 4 and 5, the firms located at node A are willing to pay
larger booking costs to book beyond the technical capacity XTC

A = 1. This results in a
much lower profit of firms located at node A, whereas firm 4 located at node B has a
significantly higher profit than in Settings 1–3. One can see that the booked amount at
node A, which exceeds the technical capacity, decreases with the number of active firms.

Comparing the welfare generated in the Nash equilibria in Settings 4–6, the welfare
increases from Setting 4 to 5 and is smallest in Setting 6. The increase between Settings 4
and 5 differs from the previous observation in Setting 1–3 that the welfare decreases for
smaller numbers of active firms. The low welfare in Setting 4 might be caused by the
extremely high booking costs SA(x̂) at node A.

If we now compare Settings 4 and 7, which only differ in the location of firm 3, we can
see that a more even distribution of firms at the nodes has a positive impact on welfare.
Although the firms at both nodes book beyond the technical capacity in Setting 7, the
accumulated booking costs SA(x̂) + SB(x̂) are much lower in Setting 7 than in Setting 4.

In general one can say that more competition decreases the profit of the firms.
Additionally, more competition also increases the welfare, as long as it does not exceed
the capacities of the system; see Setting 4.

6.2. Instance Library. Since Algorithm 1 computes all Nash equilibria under certain
assumptions (see Theorem 5.1) we are able to provide a library of MLFG problems
together with all corresponding solutions. The purpose of this library is to provide small
to medium sized test cases that can be used by other researchers to test their algorithms.
For this reason, we have compiled several types of problem instances with differences in
the economic setup and different properties of the resulting Nash equilibria. The instances
collected in this library are split into eight categories, (A–H; see Table 5). Category H
contains the problems solved in the case study in Section 6.1, whereas categories A–G are
constructed such that they fit the model described in Section 2 and satisfy Assumption 4.1
as well as Condition (9). In total there are 25 instances in the library. The instance data
and results are publicly available at https://doi.org/10.7488/ds/3055.

For each problem instance, the provided data consists of the number of firms N ,
the number of scenarios T , the vector θ = (θ1, . . . , θT ) of price intercepts of the linear

https://doi.org/10.7488/ds/3055
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Table 5. Overview of the eight different categories

Category Instances Description

A 2 Unique Nash eq. with δ = 0, asymmetrical firms, N = 2
B 2 Unique Nash eq. with δ = 0, symmetrical firms, N = 2
C 2 Unique Nash eq. with δ = 0, asymmetrical firms, N = 4
D 2 Unique Nash eq. with δ = 0, symmetrical firms, N = 4
E 2 Unique Nash eq. with δ > 0
F 2 No Nash equilibria at all, not even local ones
G 3 Combinations of local and/or global Nash equilibria
H 10 Test cases analyzed in Section 6.1

inverse demand function, the slope b of the linear inverse demand function, the vector
c = (c1, . . . , cN ) of production costs of the firms, and the vector w = (w1, . . . , wT ) of
scenario weights. The capacity expansion costs Sn for Category H are described in
Section 6.1. In Categories A–G the capacity expansion costs Sn are modeled as linear
functions with slope sn and offset kn, see (10). Here, either each firm n has their own
capacity expansion cost function Sn depending only on xn, or several (or all) firms share
a capacity expansion cost function, which then depends on their cumulative capacity. In
the data for the test examples, this is indicated by firms being located at a node and all
firms located in the same node share one capacity expansion cost function.

For each test instance the results contain a list of local Nash equilibria, the runtime2 of
Algorithm 1 and the number of function calls for Algorithms 2, 3, and 4. Each local Nash
equilibrium consists of the vector of capacities x, the resulting payoff vector π and welfare
(see (12)), the pattern τ , the set of firms with zero capacity Z, the information about
exactly constrained firms δ, and the information whether the local Nash equilibrium is a
(global) Nash equilibrium or not. If a local Nash equilibrium is not a Nash equilibrium,
for one player n an alternative strategy xn with a better objective function value is given
together with the generated revenue at that dominant point. Since Algorithm 4 stops
after finding a better strategy for one player, we do not provide a complete list of players
with dominating strategies. The results for all test instances can be downloaded from
the above mentioned repository.

7. Conclusion

We have analyzed a classic peak-load-pricing setup, in which firms choose to build
capacities to serve fluctuating demand. In our asymmetric setup, nonconvexities arise,
which can induce the existence of multiple equilibria or even the failure of existence
of a pure strategy equilibrium. For our approach to be applicable, it is crucial that
the lower-level equilibrium is unique and that it is possible to analytically state the
resulting lower-level outcome for different levels of capacity choices x and all scenarios t.
Furthermore, our setup is chosen such that a systematic and clear partition of the x-space
is possible, which allows us to efficiently search for all possible Nash equilibria. This
results in certain requirements for the scenario-dependence of our model parameters.
Possible extensions are discussed in detail in Remark 3.2.

Based on our theoretical insights, we developed a solution algorithm for the considered
class of two-level MLFGs. To do so, we provided a detailed analysis of the solution of
the lower-level capacity-constrained Cournot game, which enabled us to reformulate the
two-level game as a single-level game. Although the profit functions of the resulting

2Computations have been done in Matlab on an Intel(R) Core(TM) i5-7200U with 8GB of RAM.
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single-level Nash equilibrium problem are nonconcave and only piecewise differentiable,
we could develop tailored optimality conditions, which all Nash equilibria have to satisfy.
These conditions form the basis of the solution algorithm, which provably computes all
Nash equilibria, but does not return any non-optimal stationary points. We showed that
the number of pure strategy equilibria in the considered class of MLFGs is finite and
that a pure strategy Nash equilibrium does not always exist.

We illustrated the importance of the considered class of MLFGs and the effectiveness
of our solution algorithm in a case study, in which we were able to compute optimal
strategic booking and nomination decisions in the entry-exit system, which is is the
predominant mechanism in the European gas market. Our study deepens the mathe-
matical understanding of MLFGs, as we are now able to completely solve a nontrivial
class of MLFGs with important applications. Additionally, this special class of MLFGs
and the corresponding problem instances provided in the test library can be used as a
benchmark to asses the quality of solutions generated by other, possibly more general
solution methods for MLFGs.

Let us finally sketch some possible avenues for future research. Our approach allows
for an interpretation of the different scenarios t both as fluctuating demand over a
certain period of time as well as discrete realizations of uncertainty. For the case of
risk-neutral upper-level decisions, the weights wt have to be calibrated to encompass both
the frequency and the probability of the possible scenarios. In the context of uncertainties
our approach could also be applied to handle risk-averse decisions of strategic firms,
which would result in transformed upper-level objectives of firms (e.g., by applying risk
functions, see, e.g., [2] or [56]), but would leave the solution of the lower-level problems
untouched.

Our approach currently considers the case of many potentially asymmetric firms,
in which each firm decides on investment and production for a single technology. An
interesting and realistic extension of our approach would also be the case of firms deciding
on several technologies—or in the context of our setting—groups of single technology
firms jointly maximizing their profit. For the lower-level equilibria, this would induce
a situation in which a firm first entirely uses the technology with cheapest production
cost and then the more expensive technologies are subsequently put to work. In this
case, lower-level equilibria can still be determined analytically and are unique. Thus,
applying our conceptual approach would still be possible in general but would require
additional notation taking into account the modified objectives of firms and to keep track
of when technologies switch from zero to positive production. A full consideration of this
multi-technology case would considerably inflate the notational burden and therefore is
beyond the scope of our current analysis.

Last but not least, one can try to transfer the ideas used here to wider classes of
MLFGs and to couple the approach with a network model to assess the impact of the
interplay of strategic behavior and network restrictions on the efficiency of entry-exit gas
markets.
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Appendix A. Notation

Table 6. Symbols used throughout the paper. For fixed scenarios
and/or capacities reduced symbols are used as stated in the relevant
section.

Symbol Description

Problem variables and parameters

Γ the two-level game
Gt(x) lower-level game in scenario t for fixed capacity x
xn capacity choice of firm n
qn,t production of firm n in scenario t
Qt aggregate production in scenario t
πn(x) objective function of firm n in Γ
φn,t(qt) objective function of firm n in Gt(x)
Sn(x) cost function for capacity expansion of firm n
Pt(Qt) inverse demand function in scenario t
θt intercept of Pt
b slope of all Pt
cn variable production cost of firm n

Decorators

·̂ variable/set · at equilibrium
Sets of firms

Z(x) firms with zero capacity
It(x) firms not in Z(x) with zero production in scenario t
Ct(x) firms not in Z(x) at full capacity in scenario t
Ut(x) firms neither in Z(x), It(x), or Ct(x) in scenario t
C=
t (x) firms at full capacity with Pt(x) = cn + bxn in scenario t

C>t (x) firms at full capacity with Pt(x) > cn + bxn in scenario t
E(x) firms that are in C=

t (x) in their 1st constrained scenario t
F (x) firms that are in C>t (x) in their 1st constrained scenario t

Scenarios

τn(x) first scenario, in which firm n is constrained
τ(x) vector of all τn(x)
δ(x) last scenario, in which some firm is in C=

t (x)

Appendix B. Auxiliary Results for Section 3

The effect of small unilateral deviations x+ εen on the equilibrium payoff φn(x) of
the same firm n is studied in the subsequent result.

Lemma B.1. For every firm n = 1, . . . , N , all x ∈ [0,∞)N and all sufficiently small
deviations ε ∈ R the sets Z(x + εen), I(x + εen), U(x + εen), C(x + εen), and the
equilibrium payoff φ̂n(x+ εen) are given by
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n ε
Z(x+ εen) I(x+ εen) U(x+ εen) C(x+ εen)

φ̂n(x+ εen)

n ∈ Z(x)
ε > 0

Z(x) \ {n} I(x) ∪ {n} U(x) C(x)

with P̂ (x) ≤ cn φ̂n(x)

n ∈ Z(x)
ε > 0

Z(x) \ {n} I(x) U(x) ∪ C=(x) (C(x) \ C=(x)) ∪ {n}
with P̂ (x) > cn φ̂n(x) +

[
P̂ (x)− cn − bxn

|U(x)∪C=(x)|+1

]
ε− b

|U(x)∪C=(x)|+1ε
2

n ∈ I(x) ε ∈ R Z(x) I(x) U(x) C(x)

φ̂n(x)

n ∈ U(x) ε ∈ R Z(x) I(x) U(x) C(x)

φ̂n(x)

n ∈ C=(x)
ε < 0

Z(x) I<(x) U(x) ∪ I=(x) C(x)

φ̂n(x) +
[
P̂ (x)− cn − bxn

|U(x)∪I=(x)|+1

]
ε− b

|U(x)∪I=(x)|+1ε
2

ε > 0
Z(x) I(x) U(x) ∪ {n} C(x) \ {n}

φ̂n(x)

n ∈ C>(x)
ε < 0

Z(x) I<(x) U(x) ∪ I=(x) C(x)

φ̂n(x) +
[
P̂ (x)− cn − bxn

|U(x)∪I=(x)|+1

]
ε− b

|U(x)∪I=(x)|+1ε
2

ε > 0
Z(x) I(x) U(x) ∪ C=(x) C>(x)

φ̂n(x) +
[
P̂ (x)− cn − bxn

|U(x)∪C=(x)|+1

]
ε− b

|U(x)∪C=(x)|+1ε
2

Proof. Note that the equilibrium price P̂ (x) does not change if we treat firms from I=(x)
or C=(x), i.e., firms that are on the boundary to being unconstrained, the same way as
unconstrained firms:

P̂ (x) =
θ +

∑
m∈U(x) cm − b

∑
m∈C(x) xm

|U(x)|+ 1

=
θ +

∑
m∈U(x)∪I=(x)∪C=(x) cm − b

∑
m∈C>(x) xm

|U(x) ∪ I=(x) ∪ C=(x)|+ 1
.

We focus on discussing the resulting changes in the equilibrium price P̂ (x) and the sets
Z(x), I(x), U(x), C(x). The change in the equilibrium payoff then follows by comparing
the formula for φ̂n(x) in x and x+ εen.

(a) For a firm n ∈ Z(x) only positive deviations ε > 0 are possible. In case P̂ (x) ≤ cn,
firm n moves from Z(x) to I(x+ εen) and nothing else changes.

In case P̂ (x) > cn, firm n moves from Z(x) to C(x+εen). Since this decreases
the equilibrium price, firms from C=(x) are now in U(x+ εen). This results in
the new equilibrium price

P̂ (x+ εen) = P̂ (x)− bε

|U(x) ∪ C=(x)|+ 1
.

(b) For a firm n ∈ I(x) a deviation ε ∈ R in the capacity xn has no effect at all.
(c) For a firm n ∈ U(x) small deviations ε ∈ R do not change the equilibrium

price P̂ (x) and, since U(x) is defined via strict inequalities, all sets stay the same,
too.

(d) For a firm n ∈ C=(x) a small negative deviation ε < 0 increases the equilibrium
price. Thus, firms from I=(x) are now in U(x+ εen), which results in the new
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equilibrium price

P̂ (x+ εen) = P̂ (x)− bε

|U(x) ∪ I=(x)|+ 1
.

In contrast, a small positive deviation ε > 0 does not change the equilibrium
price, because firm n moves from C=(x) to U(x+ εen).

(e) For a firm n ∈ C>(x) a small negative deviation ε < 0 increases the equilibrium
price. Thus, firms from I=(x) are now in U(x+ εen), which results in the new
equilibrium price

P̂ (x+ εen) = P̂ (x)− bε

|U(x) ∪ I=(x)|+ 1
.

In contrast, a small positive deviation ε > 0 decreases the equilibrium price—
because firm n stays in C(x + εen)—and thus firms from C=(x) are now in
U(x+ εen). This results in the new equilibrium price

P̂ (x+ εen) = P̂ (x)− bε

|U(x) ∪ C=(x)|+ 1
. �

We now give a proof of Lemma 3.1.

Proof. Consider a given price intercept θ and a positive deviation ε > 0. Since the
capacities x are fixed in this proof but the intercept θ varies, we denote the dependence
of the important quantities on θ and not on x within this proof.

As long as this deviation is small enough, the corresponding sets in the Nash equilibrium
change to

Z(θ + ε) = Z(θ), I(θ + ε) = I<(θ), U(θ + ε) = U(θ) ∪ I=(θ), C(θ + ε) = C(θ)

with the corresponding new equilibrium price given by

P̂ (θ + ε) = P̂ (θ) +
ε

|U(θ) ∪ I=(θ)|+ 1
> P̂ (θ).

This formula is correct up to the point where the deviation is large enough to cause firms
from I<(θ) to move to I=(θ + ε) or firms from U(θ) to move to C=(θ + ε). In these
points, the map ε 7→ P̂ (θ + ε) is still continuous and strictly increasing but its slope
changes.

For θ1 < θ2, this implies P̂ (θ1) < P̂ (θ2) and thus I(θ1) ⊇ I(θ2) and C(θ1) ⊆ C(θ2). �

Appendix C. Auxiliary Results for Section 4

A sufficient condition for the set It(x) of inactive firms being empty is given below.

Lemma C.1. Assume that in a scenario t, the price intercept θt satisfies

θt > (N + 1) max
m=1,...,N

cm −
N∑
m=1

cm.

Then, in the unique Nash equilibrium the equilibrium price P̂t(x) satisfies

P̂t(x) > cn for all n = 1, . . . , N

and, thus, the set of inactive firms It(x) is empty.

Proof. Since we only consider one scenario t in this proof, we omit the index t. We know
that all firms n ∈ C(x) satisfy P̂ (x) ≥ cn + bxn. Exploiting this in the definition of the
equilibrium price P̂ (x), we can infer that

(|U(x)|+ 1)P̂ (x) = θ +
∑

m∈U(x)

cm − b
∑

m∈C(x)

xm ≥ θ +
∑

m∈U(x)∪C(x)

cm − |C(x)|P̂ (x)
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implies

P̂ (x) ≥
θ +

∑
m∈U(x)∪C(x) cm

|U(x)|+ |C(x)|+ 1
.

Using the assumption on θ, this implies

P̂ (x)

≥
θ +

∑
m∈U(x)∪C(x) cm

|U(x)|+ |C(x)|+ 1

>

(N + 1) max
m=1,...,N

cm −
∑N
m=1 cm +

∑
m∈U(x)∪C(x) cm

|U(x)|+ |C(x)|+ 1

=

(N + 1− |Z(x) ∪ I(x)|) max
m=1,...,N

cm + |Z(x) ∪ I(x)| max
m=1,...,N

cm −
∑
m∈Z(x)∪I(x) cm

N + 1− |Z(x) ∪ I(x)|
≥ max

m=1,...,N
cm ≥ cn

for all firms n. An inactive firm n ∈ I(x) has to satisfy P̂ (x) ≤ cn. Consequently, under
the given assumption, I(x) = ∅ follows. �

The next result shows that in a Nash equilibrium x̂ of the game Γ, all firms are
constrained at least in scenario T .

Lemma C.2. Suppose that Assumption 4.1 holds. Then, in a Nash equilibrium x̂ of (7)
we have

UT (x̂) = ∅ and x̂n ≤
1

b

(
θT +

N∑
m=1

cm

)
=: γ.

for all firms n = 1, . . . , N .

Proof. Assume that there is a firm n with n ∈ Ut(x̂) for all t = 1, . . . , T . Then, n /∈ Z(x̂)
and by Lemma B.1, its payoff for a small deviation ε ∈ R is given by

πn(x̂+ εen) =

T∑
t=1

wt
1

b

(
P̂t(x̂)− cn

)2
− Sn(x̂+ εen)(x̂n + ε).

Since Sn(x) is positive and increasing, firm n can thus increase its payoff by reducing xn,
a contradiction to x̂ being a Nash equilibrium. Consequently, every firm n is constrained
at least in t = T .

As we have just shown for a Nash equilibrium x̂ of (7), every firm n /∈ Z(x̂) is
constrained at least in scenario t = T and thus

cn + bx̂n ≤ P̂T (x̂) =
θT +

∑
m∈UT (x̂) cm − b

∑
m∈CT (x̂) x̂m

|UT (x̂)|+ 1
≤ θT +

N∑
m=1

cm

holds. Consequently, for all firms n /∈ Z(x̂) we have

x̂n ≤
1

b

(
θT +

N∑
m=1

cm

)
=: γ.

For firms n ∈ Z(x̂) the inequality holds due to γ > 0. �

Below we give the proof of Theorem 4.2, which provides necessary optimality conditions
for Nash equilibria x̂ of Γ.
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Proof. (a) For all firms n ∈ Z we know that x̂n = 0 is the global maximum of xn 7→
πn(xn, x̂−n) and, thus, the directional derivative has to satisfy π′n(x̂, en) ≤ 0.
Here, we can use τn = 1 and Lemma B.1 to compute the directional derivative

π′n(x̂; en) =
∑
t≥τn

wt

[
P̂t(x̂)− cn −

bx̂n
|Ut ∪ C=

t |+ 1

]
− Sn(x̂)− x̂n ∂Sn∂xn

(x̂).

(b) For all firms n ∈ E we know by definition of E = {n /∈ Z : n ∈ C=
τn} that

P̂τn(x̂) = cn + bx̂n =⇒ x̂n =
1

b
(P̂τn(x̂)− cn) > 0.

Since x̂n > 0 is the global maximum of xn 7→ πn(xn, x̂−n), both directional
derivatives have to satisfy π′n(x̂, en) ≤ 0 and π′n(x̂,−en) ≤ 0. Using Lemma B.1
again yields

π′n(x̂; en) =
∑

t≥τn+1

wt

[
P̂t(x̂)− cn −

bx̂n
|Ut ∪ C=

t |+ 1

]
− Sn(x̂)− x̂n ∂Sn∂xn

(x̂),

π′n(x̂;−en) = −
∑
t≥τn

wt

[
P̂t(x̂)− cn −

bx̂n
|Ut|+ 1

]
+ Sn(x̂) + x̂n

∂Sn
∂xn

(x̂).

(c) For all firms n ∈ F we know that x̂n > 0 is the global maximum of xn 7→
πn(xn, x̂−n) and, thus, both directional derivatives have to satisfy π′n(x̂, en) ≤ 0
and π′n(x̂,−en) ≤ 0. Using Lemma B.1, we can compute these directional
derivatives and obtain

π′n(x̂; en) =
∑
t≥τn

wt

[
P̂t(x̂)− cn −

bx̂n
|Ut ∪ C=

t |+ 1

]
− Sn(x̂)− x̂n ∂Sn∂xn

(x̂),

π′n(x̂;−en) = −
∑
t≥τn

wt

[
P̂t(x̂)− cn −

bx̂n
|Ut|+ 1

]
+ Sn(x̂) + x̂n

∂Sn
∂xn

(x̂).

Adding both directional derivatives yields

x̂n
∑

t≥τn,C=
t 6=∅

wtb

[
1

|Ut|+ 1
− 1

|Ut ∪ C=
t |+ 1

]
≤ 0.

Since x̂n, b, wt > 0, this implies C=
t = ∅ for all t ≥ τn. Consequently, π′n(x̂;−en) =

−π′n(x̂; en), i.e., the map xn 7→ πn(xn, x̂−n) is differentiable at x̂n with

∂πn
∂xn

(x̂) =
∑
t≥τn

wt

[
P̂t(x̂)− cn −

bx̂n
|Ut|+ 1

]
− Sn(x̂)− x̂n ∂Sn∂xn

(x̂) = 0.

(d) By definition F ∪E = {n /∈ Z} and E ⊆ {n /∈ Z : τn ≤ δ} holds. Part (c) implies
F ⊆ {n /∈ Z : τn > δ}, which completes the proof. �

Below, Theorem 4.3 is proven, which states how many solutions the stationarity
conditions (8) can have.

Proof. (a) We know by Theorem 4.2 that x̂ is one solution of the system of equations.
It thus suffices to prove that the system has at most one solution to ensure
uniqueness.

We can compute solutions x∗ = (x∗Z , x
∗
E , x

∗
F ) of the system one after the other.

The unique solution of the first equation is x∗Z = 0. To see that the second
equation has a unique solution x∗E , note that for all t ≤ δ we have C>t = Ct−1
and thus

P̂t(x) =
θt +

∑
m∈Ut∪C=

t
cm − b

∑
m∈Ct−1

xm

|Ut ∪ C=
t |+ 1

.
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The equilibrium price P̂t(x) thus only depends on the value of xm of firms m
with τm < t. Consequently, the second equation has a unique solution x∗E , which
is computed in order of ascending values of τn.

In case F 6= ∅, it remains to show that for given x∗Z and x∗E , the third equation
has a unique solution x∗F . To this end, recall that for all n ∈ F , we have

∂πn
∂xn

(x∗Z , x
∗
E , xF ) =

∑
t≥τn

wt

[
P̂t(x

∗
Z , x

∗
E , xF )− cn −

bxn
|Ut|+ 1

]
− Sn(x∗Z , x

∗
E , xF )− xn ∂Sn∂xn

(x∗Z , x
∗
E , xF ).

We now prove that the map

xF 7→ H(xF ) :=
(
−∂πn∂xn

(x∗Z , x
∗
E , xF )

)
n∈F

is strongly monotone on XF := [0,∞)|F |. By Theorem 2.3.3(b) in [20], this
implies that the complementarity system

xF ≥ 0, H(xF ) ≥ 0, x>FH(xF ) = 0

has exactly one solution and the equation H(xF ) = 0 thus has at most one
solution xF > 0.

Due to the assumptions on Sn we know that for all xF , yF ≥ 0, we have∑
n∈F

(
Sn(x∗Z , x

∗
E , xF ) + xn

∂Sn
∂xn

(x∗Z , x
∗
E , xF )

− Sn(x∗Z , x
∗
E , yF )− yn ∂Sn∂xn

(x∗Z , x
∗
E , yF )

)
(xn − yn)

=
∑
n∈F

(
Sn(x∗Z , x

∗
E , xF ) + xn

∂Sn
∂xn

(x∗Z , x
∗
E , xF )

− Sn(x∗Z , x
∗
E , yF )− yn ∂Sn∂xn

(x∗Z , x
∗
E , yF )

)
(xn − yn)

+
∑

n∈E∪Z

(
Sn(x∗Z , x

∗
E , xF ) + x∗n

∂Sn
∂xn

(x∗Z , x
∗
E , xF )

− Sn(x∗Z , x
∗
E , yF )− x∗n ∂Sn∂xn

(x∗Z , x
∗
E , yF )

)
(x∗n − x∗n)

≥ 0.

Consequently, we obtain that for all xF , yF ≥ 0 it holds

(H(xF )−H(yF ))
>

(xF − yF )

≥
∑
n∈F

−∑
t≥τn

wt
b

|Ut|+ 1

[( ∑
m∈Ct∩F

ym − xm

)
+ (yn − xn)

] (xn − yn)

=
∑
t>δ

wtb

|Ut|+ 1

∑
n∈Ct∩F

[( ∑
m∈Ct∩F

xm − ym

)
+ (xn − yn)

]
(xn − yn)

=
∑
t>δ

wtb

|Ut|+ 1

( ∑
m∈Ct∩F

xm − ym

)2

+
∑

m∈Ct∩F
(xn − yn)2

 .
Since F 6= ∅, we know δ < T and CT = E ∪ F , UT = ∅ and thus[

H(xF )−H(yF )
]T

(xF − yF )

≥ wT b

(∑
m∈F

xm − ym

)2

+
∑
m∈F

(xn − yn)2


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≥ wT b‖xF − yF ‖22
holds. This proves the strong monotonicity of H on XF and that the third
equation has at most one solution x∗F ≥ 0.

(b) Part (a) ensures that different Nash equilibria x̂ must have different parameters
τ = τ(x̂), Z = Z(x̂), and δ = δ(x̂). For combinations of τ and Z, there are at
most (T + 1)N possibilities and for δ, there are at most N + 1 possibilities. In
total, this yields at most (N + 1)(T + 1)N Nash equilibria. �

Appendix D. Auxiliary Results for Section 5

In this section, we describe how the different parts of Algorithm 1 work in detail.
Checking the criteria for local optimality is straight-forward, so the majority of the
section deals with the identification stationary points and the check for global optimality.

Algorithm 2 computeStationary(τ, Z, δ)

Input: Set τ ∈ {1, . . . , T}N , Z ⊆ {n = 1, . . . , N : τn = 1}, δ ∈ {0, τ1, . . . , τN}.
1: x̂Z := 0.
2: Compute P̂t for all t = 1, . . . , δ; see Lemma D.1 (a).
3: Compute x̂E ; see Lemma D.2 (b).
4: if x̂E 6> 0 then
5: return “No candidate exists for (τ, Z, δ).”
6: end if
7: if F 6= ∅ then
8: Try to compute a solution x̂F of H(xF ) = 0; see Lemma D.2 (c).
9: if x̂F does not exist or x̂F 6> 0 then

10: return “No candidate exists for (τ, Z, δ).”
11: end if
12: Define P̂t for all t > δ; see Lemma D.1 (b).
13: end if
14: for all n ∈ E ∪ F do
15: for all t < τn do
16: if P̂t ≥ cn + bx̂n then
17: return “No candidate exists for (τ, Z, δ).”
18: end if
19: end for
20: for all t > τn do
21: if P̂t ≤ cn + bx̂n then
22: return “No candidate exists for (τ, Z, δ).”
23: end if
24: end for
25: end for
26: for all n ∈ F do
27: if P̂τn ≤ cn + bx̂n then
28: return “No candidate exists for (τ, Z, δ).”
29: end if
30: end for
31: return x̂ = (x̂Z , x̂E , x̂F ) and P̂ := (P̂1, . . . , P̂T ).

Lemma D.1. Suppose that Assumption 4.1 holds. Then, given a Nash equilibrium x̂
of (7) we can compute the equilibrium prices as follows:
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Algorithm 3 checkLocalOptimality(x̂, τ(x̂), Z(x̂), δ(x̂), P̂ (x̂))

Input: A feasible point x̂ ≥ 0 with the corresponding data τ := τ(x̂), Z := Z(x̂),
δ := δ(x̂), and equilibrium prices P̂ := P̂ (x̂) = (P̂1(x̂), . . . , P̂T (x̂)).

1: for all n ∈ Z do
2: Compute π′n(x̂; en); see Theorem 4.2 (a).
3: if π′n(x̂; en) > 0 then
4: return “x̂ is not a local Nash equilibrium.”
5: end if
6: end for
7: for all n ∈ E := {n /∈ Z : τn ≤ δ} do
8: Compute π′n(x̂; en) and π′n(x̂;−en); see Theorem 4.2 (b).
9: if π′n(x̂; en) > 0 or π′n(x̂;−en) > 0 then

10: return “x̂ is not a local Nash equilibrium.”
11: end if
12: end for
13: return “x̂ is a local Nash equilibrium.”

Algorithm 4 checkGlobalOptimality(x̂, τ(x̂), Z(x̂), P̂ (x̂))

Input: A feasible point x̂ ≥ 0 with the corresponding data τ(x̂), Z(x̂), and equilibrium
prices P̂ (x̂) = (P̂1(x̂), . . . , P̂T (x̂)).

Initialization: For all n = 1, . . . , N compute

πn(x̂n, x̂−n) =
∑

t<τn(x̂)

wt
b

(P̂t(x̂)− cn)2 +
∑

t≥τn(x̂)

wt(P̂t(x̂)− cn)x̂n − x̂nSn(x̂n, x̂−n).

1: for all n = 1, . . . , N do
2: Define Z−n := Z(x̂) \ {n}.
3: for all τ ∈ {1, . . . , T, T + 1}N with τm = 1 for all m ∈ Z−n do
4: Compute P̂t,−n for all t = 1, . . . , N ; see Equation (14a).
5: for all t < τn do
6: if P̂t,−n does not satisfy condition (13) then
7: Continue with the next τ .
8: end if
9: end for

10: Compute the lower and upper bound L, U on xn ≥ 0; see Equations (15).
11: if L ≥ U then
12: Continue with the next τ .
13: end if
14: Compute the unique solution x̃n of Equation (16).
15: Compute x∗n = min{max{L, 0, x̃n}, U}.
16: if πn(x∗n, x̂−n) > πn(x̂n, x̂−n) then
17: return “x̂ is not a Nash equilibrium of (7).”
18: end if
19: end for
20: end for
21: return “x̂ is a Nash equilibrium of (7).”
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(a) For all t with 1 ≤ t ≤ δ,

P̂t(x̂) =
θt +

∑
m/∈Z cm −

∑
s<t |C=

s |P̂s
|Ut ∪ C=

t |+ 1
.

(b) For all t with δ < t ≤ T ,

P̂t(x̂) =
θt +

∑
m∈Ut cm − b

∑
m∈Ct∩E x̂m − b

∑
m∈Ct∩F x̂m

|Ut|+ 1
.

Proof. In case E 6= ∅, we have δ ≥ 1 and for all t ≤ δ,

P̂t(x̂) =
θt +

∑
m∈Ut cm − b

∑
m∈Ct x̂m

|Ut|+ 1

=
θt +

∑
m∈Ut∪C=

t
cm − b

∑
m∈C>t

x̂m

|Ut ∪ C=
t |+ 1

=
θt +

∑
m∈Ut∪C=

t
cm − b

∑
s<t

∑
m∈C=

s
x̂m

|Ut ∪ C=
t |+ 1

=
θt +

∑
m∈Ut∪C=

t
cm −

∑
s<t

∑
m∈C=

s
P̂s +

∑
m∈C>t

cm

|Ut ∪ C=
t |+ 1

=
θt +

∑
m/∈Z cm −

∑
s<t |C=

s |P̂s
|Ut ∪ C=

t |+ 1

holds. This shows Part (a). Moreover, for all δ < t ≤ T we have

P̂t(x̂) =
θt +

∑
m∈Ut cm − b

∑
m∈Ct x̂m

|Ut|+ 1

=
θt +

∑
m∈Ut cm − b

∑
m∈Ct∩E x̂m − b

∑
m∈Ct∩F x̂m

|Ut|+ 1
.

This shows Part (b). �

Lemma D.2. Suppose that Assumption 4.1 holds. Then, for a Nash equilibrium x̂ =
(x̂Z , x̂E , x̂F ) of (7) it holds that

(a) x̂Z = 0.
(b) x̂E is given by

x̂n =
1

b
(P̂τn − cn) for all n ∈ E.

(c) x̂F is a solution of the system of equations HF (xF ) = 0, where HF (xF ) is defined
as follows:

H(xF ) :=
(
−
∑
t≥τn

wt

[
P̂t(xF )− cn −

bxn
|Ut|+ 1

]
+ Sn(x̂Z , x̂E , xF ) + xn

∂Sn
∂xn

(x̂Z , x̂E , xF )
)
n∈F

.

In the definition of HF , P̂t(xF ) is given by

P̂t(xF ) :=
θt +

∑
m∈Ut cm − b

∑
m∈Ct∩E x̂m − b

∑
m∈Ct∩F xm

|Ut|+ 1
.

for all t > δ.

Proof. Condition (a) holds by definition. Condition (b) follows from the stationarity
conditions (8) and the definition of E. Condition (c) follows from the stationarity
conditions (8). �
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Combining these two observations with Theorem 4.3 yields the following result.

Lemma D.3. Suppose that Assumption 4.1 holds and let τ ∈ {1, . . . , T}N , Z ⊆ {n =
1, . . . , N : τn = 1}, and δ ∈ {0, τ1, . . . , τN} be given.

(a) If Algorithm 2 returns x̂, then x̂ ≥ 0 as well as τ(x̂) = τ , Z(x̂) = Z, δ(x̂) = δ,
and P̂t(x̂) = P̂t for all t = 1, . . . , T . Furthermore, x̂ satisfies the stationarity
conditions (8).

(b) If x̂ is a Nash equilibrium of Γ with τ(x̂) = τ , Z(x̂) = Z, as well as δ(x̂) = δ
and if the functions Sn are chosen such that the map

x 7→
(
Sn(x) + xn

∂Sn
∂xn

(x)
)N
n=1

is monotone on [0,∞)N , then x̂ is the unique return value of Algorithm 2.

Proof. (a) Follows directly from the construction of Algorithm 2 together with
Lemma D.1 and Lemma D.2.

(b) If x̂ is a Nash equilibrium and τ(x̂) = τ , Z(x̂) = Z, δ(x̂) = δ holds, we know from
Theorem 4.3 (a) that the stationarity conditions (8) only have the solution x̂
and thus, using (a), Algorithm 2 can only return x̂. Since x̂ also satisfies all
additional conditions (x̂E > 0, x̂F > 0, . . .) Algorithm 2 returns x̂. �

This theorem shows us that Algorithm D.3 is correct. The conditions for local
optimality have already been discussed in Theorem 4.2. Hence, it remains to discuss
global optimality conditions and the correctness of Algorithm 4. We check for global
optimality by checking that no firm n has an incentive to deviate from the solution. For
every firm n, we generate all patterns τ , that are compatible with x̂−n, and compute
bounds L < xn ≤ U for possible strategies xn of firm n with τ(xn, x̂−n) = τ . For
each pattern τ , we then compute the optimal strategy x∗n for firm n on the interval
[max{0, L}, U ]. If this strategy leads to a strictly better payoff for firm n, then, by
continuity, we have shown that x̂ is not a Nash equilibrium as there exists a better
strategy on the interval (L,U ]. But if no pattern τ leads to a better strategy for firm n,
we are sure that we have found a Nash equilibrium. The following lemma goes into more
detail.

Lemma D.4. Let x̂ ≥ 0, a firm n, and τ ∈ {1, . . . , T, T + 1}N be given.

(a) If there exists xn ≥ 0 with τ(xn, x̂−n) = τ , the following conditions hold:
(1) τm = 1 for all m ∈ Z−n := Z(x̂) \ {n}.
(2) The price P̂t,−n satisfies

max
m/∈Z,τm≤t

cm + bx̂m ≤ P̂t,−n < min
m 6=n,τm>t

cm + bx̂m for all t < τn, (13)

where P̂t,−n is defined as

P̂t,−n :=
θt +

∑
m∈Ut cm − b

∑
m∈Ct\{n} x̂m

|Ut|+ 1
(14a)

with Ut := {m /∈ Z−n : t < τm}, (14b)
Ct := {m /∈ Z−n : t ≥ τm}. (14c)
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(b) Let xn ≥ 0 be given with τ(xn, x̂−n) = τ . Then, L < xn ≤ U holds, where
L := max{L1, L2} with

L1 := max
{

1
b (P̂t,−n − cn) : t < τn

}
,

L2 := max
{

1
b (|Ut|+ 1)(P̂t,−n − cm − bx̂m) : t ≥ τn, τm > t

}
and

U := min{U1, U2} with

U1 := min
{

1
b (|Ut|+ 1)(|Ut|+ 2)−1(P̂t,−n − cn) : t ≥ τn

}
,

U2 := min
{

1
b (|Ut|+ 1)(P̂t,−n − cm − bx̂m) : t ≥ τn, τm ≤ t,m /∈ Z ∪ {n}

}
.

(15)

(c) Let xn ≥ 0 be given with τ = τ(xn, x̂−n). Then, the function

xn 7→ πτ (xn, x̂−n)

has its unconstrained maximum at the unique solution x̃n of the equation∑
t≥τn

wt

[
P̂t,−n − cn −

2bx̃n
|Ut|+ 1

]
− Sn(x̃n, x̂−n)− x̃n∇xnSn(x̃n, x̂−n) = 0, (16)

where P̂t,−n and Ut are defined as in (14a) and (14b). The maximum x∗ on
the interval [max{0, L}, U ], with L and U as in Equation (15), is given by
x∗ = min{max{L, 0, x̃n}, U}.

Proof. (a) Condition (1) follows directly from the definition of Z(x̂). To compute
the bounds on the prices P̂t,−n, we use the definition of P̂t(x), Ut, and Ct to
obtain

P̂t(x) =
θt +

∑
m∈Ut cm − b

∑
m∈Ct xm

|Ut|+ 1

=


θt+

∑
m∈Ut

cm−b
∑
m∈Ct\{n}

x̂m

|Ut|+1 = P̂t,−n, if t < τn,
θt+

∑
m∈Ut

cm−b
∑
m∈Ct\{n}

x̂m

|Ut|+1 − bxn
|Ut|+1 = P̂t,−n − bxn

|Ut|+1 , if t ≥ τn.

Rearrangement yields the bounds on Pt,−n.
(b) From the prices Pt,−n and τ , we can derive bounds on the value of xn. The

specific bounds follow from the definition of Ut and Ct.
(c) For all xn ≥ 0 with τ(xn, x̂−n) = τ , the payoff of firm n has the form

πn(xn, x̂−n) = πτn(xn, x̂−n)

=
∑
t<τn

wt
1
b (P̂t,−n − cn)2 +

∑
t≥τn

wt

[
P̂t,−n −

bxn
|Ut|+ 1

− cn
]
xn − xnSn(xn, x̂n).

Due to b > 0 and the assumptions on Sn, this function is uniformly concave
in xn and thus has exactly one unconstrained maximum x̃n, which is the unique
solution of ∂π

τ
n

∂xn
(xn, x̂−n) = 0. The constrained maximum on [max{0, L}, U ] then

is x∗n = min{max{L, 0, x̃n}, U}.
�

With these results proven, we have shown that Algorithm 4 is correct. We summarize
this in the following lemma.

Lemma D.5. Consider an arbitrary x̂ ≥ 0. Then, Algorithm 4 terminates successfully
if and only if x̂ is a Nash equilibrium of Γ.
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