

Edinburgh Research Explorer

Efficient ancestry and mutation simulation with msprime 1.0
Citation for published version:
Baumdicker, F, Bisschop, G, Goldstein, D, Gower, G, Ragsdale, AP, Tsambos, G, Zhu, S, Eldon, B,
Ellerman, CE, Galloway, JG, Gladstein, AL, Gorjanc, G, Guo, B, Jeffery, B, Kretzschmar, WW, Lohse, K,
Matschiner, M, Nelson, D, Pope, NS, Quinto-Cortés, CD, Rodrigues, MF, Saunack, K, Sellinger, T,
Thornton, K, van Kemenade, H, Wohns, AW, Wong, HY, Gravel, S, Kern, AD, Koskela, J, Ralph, PL &
Kelleher, J 2021 'Efficient ancestry and mutation simulation with msprime 1.0' bioRxiv, bioRxiv, at Cold
Spring Harbor Laboratory. https://doi.org/10.1101/2021.08.31.457499

Digital Object Identifier (DOI):
10.1101/2021.08.31.457499

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Feb. 2022

https://doi.org/10.1101/2021.08.31.457499
https://doi.org/10.1101/2021.08.31.457499
https://www.research.ed.ac.uk/en/publications/86501e3a-b35c-478f-bbdf-ca90bba30bfd

Efficient ancestry and mutation simulation with msprime 1.0 1

Franz Baumdicker1,?, Gertjan Bisschop2,?, Daniel Goldstein3,?, Graham Gower4,?, 2

Aaron P. Ragsdale5,?, Georgia Tsambos6,?, Sha Zhu7,?, Bjarki Eldon8, Castedo E. 3

Ellerman9, Jared G. Galloway10,11, Ariella L. Gladstein12,13, Gregor Gorjanc14, Bing 4

Guo15, Ben Jeffery7, Warren W. Kretzschmar16, Konrad Lohse2, Michael 5

Matschiner17, Dominic Nelson18, Nathaniel S. Pope19, Consuelo D. Quinto-Cortés20, 6

Murillo F. Rodrigues10, Kumar Saunack21, Thibaut Sellinger22, Kevin Thornton23, 7

Hugo van Kemenade9, Anthony W. Wohns7,24, H. Yan Wong7, Simon Gravel18,†, 8

Andrew D. Kern10,†, Jere Koskela25,†, Peter L. Ralph10,26,†, and Jerome Kelleher7,‡
9

1Cluster of Excellence “Controlling Microbes to Fight Infections”, Mathematical 10

and Computational Population Genetics, University of Tübingen 11

2Institute of Evolutionary Biology, The University of Edinburgh 12

3Khoury College of Computer Sciences, Northeastern University 13

4Lundbeck GeoGenetics Centre, Globe Institute, University of Copenhagen 14

5Department of Integrative Biology, University of Wisconsin–Madison 15

6Melbourne Integrative Genomics, School of Mathematics and Statistics, University 16

of Melbourne 17

7Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, 18

University of Oxford 19

8Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde 20

Berlin 21

9No affiliation 22

10Institute of Ecology and Evolution, Department of Biology, University of Oregon 23

11Computational Biology Program, Fred Hutchinson Cancer Research Center, 24

Seattle, WA 98102, USA 25

12Department of Genetics, University of North Carolina at Chapel Hill 26

13Embark Veterinary, Inc., Boston 27

14The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of 28

Edinburgh 29

15Institute for Genome Sciences, University of Maryland School of Medicine, 30

Baltimore, MD 31

16Center for Hematology and Regenerative Medicine, Karolinska Institute 32

17Natural History Museum, University of Oslo 33

18Department of Human Genetics, McGill University 34

19Department of Entomology, Pennsylvania State University 35

1

20National Laboratory of Genomics for Biodiversity (LANGEBIO), Unit of 36

Advanced Genomics, CINVESTAV, Irapuato, Mexico 37

21IIT Bombay, India 38

22Professorship for Population Genetics, Department of Life Science Systems, 39

Technical University of Munich 40

23Ecology and Evolutionary Biology, University of California Irvine 41

24Broad Institute of MIT and Harvard 42

25Department of Statistics, University of Warwick 43

26Department of Mathematics, University of Oregon 44

?Denotes shared first authorship, listed alphabetically 45

†Denotes shared senior authorship, listed alphabetically 46

‡Denotes corresponding author 47

August 31, 2021 48

Abstract 49

Stochastic simulation is a key tool in population genetics, since the models involved are 50

often analytically intractable and simulation is usually the only way of obtaining ground-truth 51

data to evaluate inferences. Because of this necessity, a large number of specialised simulation 52

programs have been developed, each filling a particular niche, but with largely overlapping 53

functionality and a substantial duplication of effort. Here, we introduce msprime version 1.0, 54

which efficiently implements ancestry and mutation simulations based on the succinct tree 55

sequence data structure and tskit library. We summarise msprime’s many features, and show 56

that its performance is excellent, often many times faster and more memory efficient than 57

specialised alternatives. These high-performance features have been thoroughly tested and 58

validated, and built using a collaborative, open source development model, which reduces 59

duplication of effort and promotes software quality via community engagement. 60

Keywords: Simulation, Coalescent, Mutations, Ancestral Recombination Graphs 61

Introduction 62

The coalescent process (Kingman, 1982a,b; Hudson, 1983b; Tajima, 1983) models the ancestry of a 63

set of sampled genomes, providing a mathematical description of the genealogical tree that relates 64

the samples to one another. It has proved to be a powerful model, and is now central to population 65

genetics (Hudson, 1990; Hein et al., 2004; Wakeley, 2008). The coalescent is an efficient framework 66

for population genetic simulation, because it allows us to simulate the genetic ancestry for a sample 67

from an idealised population model, without explicitly representing the population in memory or 68

stepping through the generations. Indeed, Hudson (1983b) independently derived the coalescent 69

in order to efficiently simulate data, and used these simulations to characterise an analytically 70

intractable distribution. This inherent efficiency, and the great utility of simulations for a wide 71

range of purposes, has led to dozens of different tools being developed over the decades (Carvajal- 72

Rodríguez, 2008; Liu et al., 2008; Arenas, 2012; Yuan et al., 2012; Hoban et al., 2012; Yang et al., 73

2014; Peng et al., 2015). 74

2

Two technological developments of recent years, however, pose major challenges to most ex- 75

isting simulation methods. Firstly, fourth-generation sequencing technologies have made complete 76

chromosome-level assemblies possible (Miga et al., 2020), and high quality assemblies are now 77

available for many species. Thus, modelling genetic variation data as a series of unlinked non- 78

recombining loci is no longer a reasonable approximation, and we must fully account for recombi- 79

nation. However, while a genealogical tree relating n samples in the single-locus coalescent can be 80

simulated in O(n) time (Hudson, 1990), the coalescent with recombination is far more complex, and 81

programs such as Hudson’s classical ms (Hudson, 2002) can only simulate short segments under the 82

influence of recombination. The second challenge facing simulation methods is that sample sizes in 83

genetic studies have grown very quickly in recent years, enabled by the precipitous fall in genome 84

sequencing costs. Human datasets like the UK Biobank (Bycroft et al., 2018) and gnomAD (Kar- 85

czewski et al., 2020) now consist of hundreds of thousands of genomes and many other datasets on 86

a similar scale are becoming available (Tanjo et al., 2021). Classical simulators such as ms and even 87

fast approximate methods such as scrm (Staab et al., 2015) simply cannot cope with such a large 88

number of samples. 89

The msprime simulator (Kelleher et al., 2016; Kelleher and Lohse, 2020) has greatly increased 90

the scope of coalescent simulations, and it is now straightforward to simulate millions of whole 91

chromosomes for a wide range of organisms. The “succinct tree sequence” data structure (Kelleher 92

et al., 2016, 2018, 2019; Wohns et al., 2021), originally introduced as part of msprime, makes it 93

possible to store such large simulations in a few gigabytes, several orders of magnitude smaller than 94

commonly used formats. The succinct tree sequence has also led to major advances in forwards- 95

time simulation (Kelleher et al., 2018; Haller et al., 2018), ancestry inference (Kelleher et al., 2019; 96

Wohns et al., 2021) and calculation of population genetic statistics (Kelleher et al., 2016; Ralph 97

et al., 2020). Through a rigorous open-source community development process, msprime has gained 98

a large number of features since its introduction, making it a highly efficient and flexible platform 99

for population genetic simulation. This paper marks the release of msprime 1.0. We provide an 100

overview of its extensive features, demonstrate its performance advantages over alternative software, 101

and discuss opportunities for ongoing open-source community-based development. 102

Results 103

In the following sections we describe the main features of msprime 1.0, focusing on the aspects that 104

are either new for this version, or in which our approach differs significantly from classical methods. 105

Where appropriate, we benchmark msprime against other simulators, but the comparisons are 106

illustrative and not intended to be systematic or exhaustive. Please see Kelleher et al. (2016) for a 107

performance comparison of msprime against simulators such as ms, msms, and scrm. 108

User interface 109

The majority of simulation packages are controlled either through a command line interface (e.g. 110

Hudson, 2002; Kern and Schrider, 2016), a text-based input file format (e.g. Guillaume and Rouge- 111

mont, 2006; Excoffier and Foll, 2011; Shlyakhter et al., 2014), or a mixture of both. Command 112

line interfaces make it easy to run simple simulations, but as model complexity and the number 113

of parameters increase, they become difficult to understand and error-prone (Ragsdale et al., 2020; 114

Gower et al., 2021). Specifying parameters through a text file alleviates this problem to a degree, 115

3

(A)
ts = sim_ancestry(3, ...)

Genome position
0 686 1000

(B)
mts = sim_mutations(ts, ...)

Genome position
0 686 1000

G

A
T

G

T
C

A

G

Figure 1: Visualisation of the separation between ancestry and mutation simulation. (A) The
result of an invocation of sim_ancestry is two trees along a 1kb chunk of genome relating three
diploid samples. Each diploid individual consists of two genomes (or nodes), indicated by colour.
(B) This ancestry is provided as the input to sim_mutations, which adds mutations. Graphics
produced using tskit’s draw_svg method.

but lacks flexibility, for example, when running simulations with parameters drawn from a distri- 116

bution. In practice, for any reproducible simulation project users will write a script to generate 117

the required command lines or input parameter files, invoke the simulation engine, and process the 118

results in some way. This process is cumbersome and labour intensive, and a number of packages 119

have been developed to allow simulations to be run directly in a high-level scripting language (Staab 120

and Metzler, 2016; Parobek et al., 2017; Gladstein et al., 2018). 121

The more recent trend has been to move away from this file and command-line driven approach 122

and to instead provide direct interfaces to the simulation engines via an Application Programming 123

Interface (API) (e.g. Thornton, 2014; Kelleher et al., 2016; Becheler et al., 2019; Haller and Messer, 124

2019). The primary interface for msprime is through a thoroughly documented and stable Python 125

API, which has encouraged the development of an ecosystem of downstream tools (Terhorst et al., 126

2017; Chan et al., 2018; Spence and Song, 2019; Adrion et al., 2020a,b; Kamm et al., 2020; McKenzie 127

and Eaton, 2020; Montinaro et al., 2020; Terasaki Hart et al., 2021; Rivera-Colón et al., 2021). As 128

well as providing a stable and efficient platform for building downstream applications, msprime’s 129

Python API makes it much easier to build reproducible simulation pipelines, as the entire workflow 130

can be encapsulated in a single script, and package and version dependencies explicitly stated using 131

the pip or conda package managers. For example, the errors made in the influential simulation 132

analysis of Martin et al. (2017) were only detected because the pipeline could be easily run and 133

reanalysed (Ragsdale et al., 2020; Martin et al., 2020). 134

A major change for the msprime 1.0 release is the introduction of a new set of APIs, designed in 135

part to avoid sources of error (see the Demography section) but also to provide more appropriate 136

defaults while keeping compatibility with existing code. In the new APIs, ancestry and mutation 137

simulation are fully separated (see Fig. 1), with the sim_ancestry and sim_mutations functions 138

4

T
im

e
 a

g
o 2

1

0

3

Nodes:
ID time
0
1
2

4
5
6

0.0
0.0

2.0
3.0
1.0

0.0

Edges:

left right
0

0

20

10

parent child
0

2

6

6

4

4

4

4

0 45
0 35

Sites:
positionID

ancestral
state

ID site node

Mutations: derived
state

0
1

1
2

3
2

T
G

3
4

6
8

6
2

G
T

sa
m

p
le

s

sites

2 C
4 A
5 C
7 G
8 C
9 T
12 T
15 C
18 G
19 C

0
1
2
3
4
5
6
7
8
9

3 0.0

0 20 14

36
26

10
10

20
20
20

10
10
10
10 20

2 4 4 T

Tree topologies and mutations

5

4

03 1

4

023

6

Genotype matrix:

Positions: 0 - 10 10-20

2 1

0

3

4

0
1

2

1

C
C
C

A
A
A

C
C
G

G
G
G

C
C
C

T
T
T

T
T
G

C
C
C

G
G
T

C
C
C

0 1 2 3 4 5 6 7 8 9

3 C T G G T G C G CC

2

Figure 2: An example tree sequence describing genealogies and sequence variation for four samples
at ten sites on a chromosome of twenty bases long. Information is stored in a set of tables (the tables
shown here include only essential columns, and much more information can be associated with the
various entities). The node table stores information about sampled and ancestral genomes. The
edge table describes how these genomes are related along a chromosome, and defines the genealogical
tree at each position. The site and mutation tables together describe sequence variation among the
samples.

replacing the legacy simulate function. Among other changes, the new APIs default to discrete 139

genome coordinates and finite sites mutations, making the default settings more realistic and resolv- 140

ing a major source of confusion and error. The previous APIs are fully supported and tested, and 141

will be maintained for the foreseeable future. The msp program has been extended to include new 142

commands for simulating ancestry and mutations separately. A particularly useful feature is the 143

ability to specify demographic models in Demes format (Gower et al., 2021) from the command line, 144

making simulation of complex demographies straightforward. We also provide an ms compatible 145

command line interface to support existing workflows. 146

Tree sequences 147

One of the key reasons for msprime’s substantial performance advantage over other simulators (Kelle- 148

her et al., 2016) is its use of the “succinct tree sequence” data structure to represent simulation 149

results. The succinct tree sequence (usually abbreviated to “tree sequence”) was introduced by 150

Kelleher et al. (2016) to concisely encode genetic ancestry and sequence variation and was originally 151

implemented as part of msprime. We subsequently extracted the core tree sequence functionality 152

from msprime to create the tskit library, which provides a large suite of tools for processing genetic 153

ancestry and variation data via APIs in the Python and C languages (Tskit developers, 2021). The 154

availability of tskit as a liberally licensed (MIT) open source toolkit has enabled several other 155

5

projects (e.g. Kelleher et al., 2019; Haller and Messer, 2019; Wohns et al., 2021; Terasaki Hart 156

et al., 2021) to take advantage of the same efficient data structures used in msprime, and we hope 157

that many more will follow. While a full discussion of tree sequences and the capabilities of tskit 158

is beyond the scope of this article, we summarise some aspects that are important for simulation. 159

Let us define a genome as the complete set of genetic material that a child inherits from one 160

parent. Thus, a diploid individual has two (monoploid) genomes, one inherited from each par- 161

ent. Since each diploid individual lies at the end of two distinct lineages of descent, they will be 162

represented by two places (nodes) in any genealogical tree. In the tree sequence encoding a node 163

therefore corresponds to a single genome, which is associated with its creation time (and other op- 164

tional information), and recorded in a simple tabular format (Fig. 2). Genetic inheritance between 165

genomes (nodes) is defined by edges. An edge consists of a parent node, a child node and the left 166

and right coordinates of the contiguous chromosomal segment over which the child genome inher- 167

ited genetic material from the parent genome. Parent and child nodes may correspond to ancestor 168

and descendant genomes separated by many generations. Critically, edges can span multiple trees 169

along the genome (usually referred to as “marginal” trees), and identical node IDs across different 170

trees corresponds to the same ancestral genome. For example, in Fig. 2 the branch from node 171

0 to 4 is present in both marginal trees, and represented by a single edge (the first row in the 172

edge table). This simple device, of explicitly associating tree nodes with specific ancestral genomes 173

and recording the contiguous segments over which parent-child relationships exist, generalises the 174

original “coalescence records” concept (Kelleher et al., 2016), and is the key to the efficiency of tree 175

sequences (Kelleher et al., 2018, 2019; Ralph et al., 2020). See the Ancestral Recombination Graphs 176

section below for a discussion of this closely related concept. 177

The final output of most population genetic simulations is some representation of sequence 178

variation among the specified samples. For coalescent simulations, we usually have three steps: 179

(1) simulate the genetic ancestry, and optionally output the resulting marginal trees; (2) simu- 180

late sequence evolution conditioned on this ancestry by generating mutations (see the Simulating 181

mutations section); and (3) output the resulting nucleotide sequences by percolating the effects of 182

the mutations through the trees. Information about the mutations themselves—e.g., where they 183

have occurred on the trees—is usually not retained or made available for subsequent analysis. In 184

msprime, however, we skip step (3), instead using tskit’s combined data model of ancestry and 185

mutations to represent the simulated sequences. As illustrated in Fig. 2, mutations are a fully 186

integrated part of tskit’s tree sequence data model, and genetic variation is encoded by recording 187

sites at which mutations have occurred, and where each mutation at those sites has occurred on the 188

marginal tree. Crucially, the genome sequences themselves are never stored, or indeed directly rep- 189

resented in memory (although tskit can output the variant matrix in various formats, if required). 190

It may at first seem inconvenient to have only this indirect representation of the genome sequences, 191

but it is extremely powerful. Firstly, the storage space required for simulations is dramatically 192

reduced. For a simulation of n samples with m variant sites, we would require O(nm) space to 193

store the sequence data as a variant matrix. However, if this simulation was of a recombining 194

genome with t trees, then the tskit tree sequence encoding requires O(n+ t+m) space, assuming 195

we have O(1) mutations at each site (Kelleher et al., 2016). For large sample sizes, this difference 196

is profound, making it conceivable, for example, to store the genetic ancestry and variation data 197

for the entire human population on a laptop (Kelleher et al., 2019). As well as the huge difference 198

in storage efficiency, it is often far more efficient to compute statistics of the sequence data from 199

the trees and mutations than it is to work with the sequences themselves. For example, computing 200

Tajima’s D from simulated data stored in the tskit format is several orders of magnitude faster 201

6

than efficient variant matrix libraries for large sample sizes (Ralph et al., 2020). 202

The vast genomic datasets produced during the SARS-CoV-2 pandemic have highlighted the ad- 203

vantages of storing genetic variation data using the underlying trees. Turakhia et al. (2021) propose 204

the Mutation Annotated Tree (MAT) format (consisting of a Newick tree and associated mutations 205

in a binary format) and the matUtils program as an efficient way to store and process large viral 206

datasets (McBroome et al., 2021), achieving excellent compression and processing performance. 207

Similarly, phastsim (De Maio et al., 2021) was developed to simulate sequence evolution on such 208

large SARS-CoV-2 phylogenies, and also outputs a Newick tree annotated with mutations (not in 209

MAT format) to avoid the bottleneck of generating and storing the simulated sequences. While 210

these methods illustrate the advantages of the general approach of storing ancestry and mutations 211

rather than sequences, they do not generalise beyond their immediate settings, and no software 212

library support is available. 213

The software ecosystem built around tskit is stable, mature and rapidly growing. Simulators 214

such as fwdpy11 (Thornton, 2014), SLiM (Haller and Messer, 2019), stdpopsim (Adrion et al., 215

2020a), Geonomics (Terasaki Hart et al., 2021) and GSpace (Virgoulay et al., 2021), and inference 216

methods such as tsinfer (Kelleher et al., 2019), tsdate (Wohns et al., 2021) and Relate (Speidel 217

et al., 2019) use either the Python or C APIs to support outputting results in tree sequence format. 218

Tree sequences are stored in an efficient binary file format, and are fully portable across operating 219

systems and processor architectures. The tskit library ensures interoperability between programs 220

by having strict definitions of how the information in each of the tables is interpreted, and stringent 221

checks for the internal consistency of the data model. 222

Data analysis 223

The standard way of representing simulation data is to render the results in a text format, which 224

must subsequently be parsed and processed as part of some analysis pipeline. For example, ms 225

outputs a set of sequences and can also optionally output the marginal trees along the genome in 226

Newick format, and variants of this approach are used by many simulators. Text files have many 227

advantages, but are slow to process at scale. The ability to efficiently process simulation results 228

is particularly important in simulation-based inference methods such as Approximate Bayesian 229

Computation (ABC) (Beaumont et al., 2002; Csilléry et al., 2010; Wegmann et al., 2010) and 230

machine learning based approaches (Sheehan and Song, 2016; Chan et al., 2018; Schrider and Kern, 231

2018; Flagel et al., 2019; Sanchez et al., 2020). Clearly, simulation efficiency is crucial since the 232

size and number of simulations that can be performed determines the depth to which one can 233

sample from the model and parameter space. Equally important, however, is the efficiency with 234

which the simulation results can be transformed into the specific input required by the inference 235

method. In the case of ABC, this is usually a set of summary statistics of the sequence data, and 236

methods avoid the bottleneck of parsing text-based file formats to compute these statistics by either 237

developing their own simulators (e.g. Cornuet et al., 2008; Lopes et al., 2009) or creating forked 238

versions (i.e., modified copies) of existing simulators (e.g. Thornton and Andolfatto, 2006; Hickerson 239

et al., 2007; Pavlidis et al., 2010; Huang et al., 2011; Quinto-Cortés et al., 2018), tightly integrated 240

with the inference method. Modern approaches to ABC such as ABC-RF (Raynal et al., 2019; 241

Pudlo et al., 2016) and ABC-NN (Csilléry et al., 2012; Blum and François, 2010) use large numbers 242

of weakly informative statistics, making the need to efficiently compute statistics from simulation 243

results all the more acute. By using the stable APIs and efficient data interchange mechanisms 244

provided by tskit, the results of an msprime simulation can be immediately processed, without 245

7

format conversion overhead. The tskit library has a rich suite of population genetic statistics 246

and other utilities, and is in many cases orders of magnitude faster than matrix-based methods for 247

large sample sizes (Ralph et al., 2020). Thus, the combination of msprime and tskit substantially 248

increases the overall efficiency of many simulation analysis pipelines. 249

Classical text based output formats like ms are inefficient to process, but also lack a great deal of 250

important information about the simulated process. The tree-by-tree topology information output 251

by simulators in Newick format lacks any concept of node identity, and means that we cannot 252

reliably infer information about ancestors from the output. Because Newick stores branch lengths 253

rather than node times, numerical precision issues also arise for large trees (McGill et al., 2013). 254

Numerous forks of simulators have been created to access information not provided in the output. 255

For example, ms has been forked to output information about migrating segments (Rosenzweig et al., 256

2016), ancestral lineages (Chen and Chen, 2013), and ms’s fork msHOT (Hellenthal and Stephens, 257

2007) has in turn been forked to output information on local ancestry (Racimo et al., 2017). All 258

of this information is either directly available by default in msprime, or can be optionally stored 259

via options such as record_migrations or record_full_arg (see the Ancestral Recombination 260

Graphs section) and can be efficiently and conveniently processed via tskit APIs. 261

Simulating mutations 262

Because coalescent simulations are usually concerned with neutral evolution (see the Selective 263

sweeps section, however) the problem of generating synthetic genetic variation can be decomposed 264

into two independent steps: firstly, simulating genetic ancestry (the trees), then subsequently sim- 265

ulating variation by superimposing mutation processes on those trees (see Fig. 1). A number of 266

programs exist to place mutations on trees: for instance, the classical Seq-Gen program (Rambaut 267

and Grassly, 1997) supports a range of different models of sequence evolution, and various exten- 268

sions to the basic models have been proposed (e.g. Cartwright, 2005; Fletcher and Yang, 2009). 269

Partly for efficiency and partly in the interest of simplicity for users (i.e., to avoid intermediate text 270

format conversions), population genetic simulators have tended to include their own implementa- 271

tions of mutation simulation, with most supporting the infinite sites model (e.g. Hudson, 2002) but 272

with several supporting a wide range of different models of sequence evolution (e.g. Mailund et al., 273

2005; Excoffier and Foll, 2011; Virgoulay et al., 2021). Thus, despite the logical separation between 274

the tasks of simulating ancestry and neutral sequence evolution, the two have been conflated in 275

practice. 276

Part of the reason for this poor record of software reuse and modularity is the lack of standardised 277

file formats, and in particular, the absence of common library infrastructure to abstract the details 278

of interchanging simulation data. Although msprime also supports simulating both ancestry and 279

mutations, the two aspects are functionally independent within the software; both ancestry and 280

mutation simulators are present in msprime for reasons of convenience and history, and could be split 281

into separate packages. The efficient C and Python interfaces for tskit make it straightforward to 282

add further information to an existing file, and because of its efficient data interchange mechanisms, 283

there is no performance penalty for additional operations in a different software package. Thanks 284

to this interoperability, msprime’s mutation generator can work with any tskit tree sequence, be 285

it simulated using SLiM (Haller and Messer, 2019) or fwdpy11 (Thornton, 2014), or estimated from 286

real data (Kelleher et al., 2019; Speidel et al., 2019; Wohns et al., 2021). It is a modular component 287

intended to fit into a larger software ecosystem, and is in no way dependent on msprime’s ancestry 288

simulator. 289

8

0 20000 40000 60000 80000 100000
Sample size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ti
m

e
(s

ec
on

ds
)

(A)
Mutation rate=1e-09
Mutation rate=1e-08
Mutation rate=1e-07

0 20 40 60 80 100
Sequence length (Megabases)

(B)

Figure 3: Time required to run sim_mutations on tree sequences generated by sim_ancestry
(with a population size of 104 and recombination rate of 10−8) for varying (haploid) sample size
and sequence length. We ran 10 replicate mutation simulations each for three different mutation
rates, and report the average CPU time required (Intel Core i7-9700). (A) Holding sequence length
fixed at 10 megabases and varying the number of samples (tree tips) from 10 to 100,000. (B) Holding
number of samples fixed at 1000, and varying the sequence length from 1 to 100 megabases.

As well as providing a new API that emphasises the logical split between ancestry and mutation 290

simulation, we have greatly extended the sophistication of msprime’s mutation generation engine 291

for version 1.0, achieving near feature-parity with Seq-Gen. We support a large number of muta- 292

tion models, including the JC69 (Jukes et al., 1969), F84 (Felsenstein and Churchill, 1996), and 293

GTR (Tavaré et al., 1986) nucleotide models and the BLOSUM62 (Henikoff and Henikoff, 1992) and 294

PAM (Dayhoff et al., 1978) amino acid models. Other models, such as the Kimura two and three 295

parameter models (Kimura, 1980, 1981), can be defined easily and efficiently in user code by spec- 296

ifying a transition matrix between any number of alleles (which can be arbitrary unicode strings). 297

Mutation rates can vary along the genome, and multiple mutation models can be imposed on a 298

tree sequence by overlaying mutations in multiple passes. We have extensively validated the results 299

of mutation simulations against both theoretical expectations and output from Seq-Gen (Rambaut 300

and Grassly, 1997) and Pyvolve (Spielman and Wilke, 2015). 301

Simulating mutations in msprime is efficient. Fig. 3 shows the time required to generate muta- 302

tions (using the default JC69 model) on simulated tree sequences for a variety of mutation rates 303

as we vary the number of samples (Fig. 3A) and the sequence length (Fig. 3B). For example, the 304

longest running simulation in Fig. 3B required less than 2 seconds to generate an average of 1.5 305

million mutations over 137,081 trees in a tree sequence with 508,125 edges. This efficiency for large 306

numbers of trees is possible because the tree sequence encoding allows us to generate mutations on 307

an edge-by-edge basis (see Fig. 2 and the Mutation generation appendix), rather than tree-by-tree 308

9

and branch-by-branch as would otherwise be required. In the above example from Fig. 3B, if we 309

generated mutations tree-by-tree, we would have to iterate over 273,887,838 branches (since there 310

are 137,081 trees and 1,998 branches in each tree) rather than 508,125 edges, resulting in ∼500 times 311

more work. Even if we have a tree sequence consisting of a single tree (negating the advantage of 312

working edge-by-edge), msprime’s mutation generator is still very efficient. For example, we simu- 313

lated mutations under the BLOSUM62 amino acid model for a tree with 106 leaves over 104 sites 314

(resulting in ∼260,000 mutations) in about 0.8 seconds, including the time required for file input 315

and output. We do not attempt a systematic benchmarking of msprime’s mutation generation code 316

against other methods, because at this scale it is difficult to disentangle the effects of inefficient 317

input and output formats from the mutation generation algorithms. Given these timings, it seems 318

unlikely that generating mutations with msprime would be a bottleneck in any realistic analysis. 319

There are many ways in which the mutation generation code in msprime could be extended. For 320

example, we intend to add support for microsatellites (Mailund et al., 2005), codon models (Arenas 321

and Posada, 2007) and indels (Cartwright, 2005; Fletcher and Yang, 2009), although changes may 322

be required to tskit’s data model which is currently based on the assumption of independent sites. 323

Recombination 324

Crossover recombination is implemented in msprime using Hudson’s algorithm, which works back- 325

wards in time, generating common ancestor and recombination events and tracking their effects 326

on segments of ancestral material inherited from the sample (Hudson, 1983a, 1990; Kelleher et al., 327

2016). Common ancestor events merge the ancestral material of two lineages, and result in coa- 328

lescences in the marginal trees when ancestral segments overlap. Recombination events split the 329

ancestral material for some lineage at a breakpoint, creating two independent lineages. Using the 330

appropriate data structures (Kelleher et al., 2016), this process is much more efficient to simulate 331

than the equivalent left-to-right approach (Wiuf and Hein, 1999b,a). In msprime 1.0, recombi- 332

nation rates can vary along a chromosome, allowing us to simulate recombination hotspots and 333

patterns of recombination from empirical maps. The implementation of recombination in msprime 334

is extensively validated against analytical results (Hudson, 1983a; Kaplan and Hudson, 1985) and 335

simulations by ms, msHOT and SLiM. 336

The Sequentially Markovian Coalescent (SMC) is an approximation of the coalescent with re- 337

combination (McVean and Cardin, 2005; Marjoram and Wall, 2006), and was primarily motivated 338

by the need to simulate longer genomes than was possible using tools like ms. The SMC is a 339

good approximation to the coalescent with recombination when we have fewer than five sampled 340

genomes (Hobolth and Jensen, 2014; Wilton et al., 2015), but the effects of the approximation are 341

less well understood for larger sample sizes, and several approaches have been proposed that al- 342

low simulations to more closely approximate the coalescent with recombination (Chen et al., 2009; 343

Wang et al., 2014; Staab et al., 2015). The SMC and SMC’ models are supported in msprime 1.0. 344

However, they are currently implemented using a naive rejection sampling approach, and are some- 345

what slower to simulate than the exact coalescent with recombination. These models are therefore 346

currently only appropriate for studying the SMC approximations themselves, although we intend 347

to implement them more efficiently in future versions. 348

In human-like parameter regimes and for large sample sizes, msprime’s implementation of the 349

exact coalescent with recombination comprehensively outperforms all other simulators, including 350

those based on SMC approximations (Kelleher et al., 2016). However, it is important to note 351

that although the implementation of Hudson’s algorithm is very efficient, it is still quadratic in 352

10

0 1000 2000 3000
NeL (= scaled recombination rate /4)

0

1

2

3

4

5

Ti
m

e
(s

ec
on

ds
)

Arabidopsis
thaliana

(A)

quadratic
n=1000
n=100000

0 10000 20000 30000
NeL (= scaled recombination rate /4)

0

200

400

600

800

1000

Ti
m

e
(s

ec
on

ds
)

Homo sapiens
Canis familiaris

(B)
quadratic
Ne = 1000
Ne = 5000
Ne = 10000
Ne = 50000
Ne = 100000
Ne = 200000
Ne = 300000

Figure 4: Running time for msprime for (A) small and (B) larger simulations on an Intel i7-6600U
CPU. Each point is the run time of one simulation, for various values of effective population size
(Ne), chromosome length in Morgans (L), and number of samples (n). Run time scales quadratically
with the product of Ne and L, shown on the horizontal axis. For example, (A) shows that 1,000
samples of 1 Morgan-length chromosomes from a population of Ne = 2, 000 diploids would take
about 2 seconds, and (equivalently) that the same number of 0.01 Morgan segments with Ne =
200, 000 would take the same time. Since recombination rate in these simulations was 10−8, L is
the number of base pairs divided by 108. The black lines are quadratic fits separately in each panel
and sample size. Vertical grey lines show the approximate values of NeL for chromosome 1 in three
species, using values from the stdpopsim catalogue (Adrion et al., 2020a).

11

the population scaled recombination rate ρ = 4NeL, where L is the length of the genome in units 353

of recombination distance. This is because Hudson’s algorithm tracks recombinations not only 354

in segments ancestral to the sample, but also between ancestral segments. As mentioned above, 355

common ancestor events in which the ancestral material of two lineages is merged only result in 356

coalescences in the marginal trees if their ancestral segments overlap. If there is no overlap, the 357

merged segments represent an ancestral chromosome that is a genetic ancestor of the two lineages, 358

but not the most recent common genetic ancestor at any location along the genome. When this 359

happens, the merged lineage carries “trapped” genetic material that is not ancestral to any samples, 360

but where recombinations can still occur (Wiuf and Hein, 1999b). The SMC approximations work 361

by disallowing common ancestor events that generate trapped material, greatly simplifying the 362

process. However, this also removes subtle long-range correlations in the trees since there are many 363

ways in which ancestry segments can merge without overlapping. 364

For large ρ, recombination events in trapped ancestral material will dominate, and so we can use 365

this as a proxy for the overall number of events in Hudson’s algorithm. Hein et al. (2004, Eq. 5.10) 366

gave 367

ρ(ρ+ 1)

(
n−1∑
i=1

1

i

)2

(1)

as an upper bound on the number of recombination events within trapped ancestral material in 368

Hudson’s algorithm for n samples. Fig. 4 shows the observed run time for simulations with a variety 369

of population size, chromosome length and sample sizes, and demonstrates that Eq. (1) correctly 370

predicts the quadratic dependence on ρ, as previously conjectured (Kelleher et al., 2016, Fig. 2). 371

We also see that the dependence on n is quite weak, since increasing sample size 100-fold only 372

increases run time by a factor of 2 or so. However, the log2 n factor implied by Eq. (1) (the sum 373

is a harmonic number and can be approximated by log n) is not well supported by observed run 374

times (or numbers of events) except possibly at very large values of ρ. It therefore appears that a 375

different dependence on n is required to accurately predict simulation time for a given ρ and n. 376

Fig. 4 is a useful yardstick, allowing us to predict how long simulations should take for a wide 377

range of species. Taking a typical chromosome to be 1 Morgan in length, these plots show, roughly, 378

that simulating chromosome-length samples from a population of thousands of individuals takes 379

seconds, while samples from a population of tens of thousands take minutes. Simulating whole 380

chromosomes for many species is very fast, with 1000 samples of chromosome 1 for Arabidopsis 381

thaliana taking less than a second, and a few minutes for dogs and humans. However, the depen- 382

dence on ρ is quadratic, and if ρ is sufficiently large simulations may not be feasible. For example, 383

the Drosophila melanogaster chromosome 2L is about 23.5Mb long with an average recombination 384

rate of around 2.4×10−8, so L ≈ 0.57, and with Ne = 1.7×106 (Li and Stephan, 2006), NeL ≈ 106, 385

so extrapolating the curve in Fig. 4B predicts that simulation would require around 177 hours for 386

1000 samples. For such large values of ρ we recommend users consider approximate simulations. 387

Since msprime does not currently have efficient implementations of approximate coalescent with 388

recombination models, in these cases we recommend using SMC based methods such as scrm, par- 389

ticularly if sample sizes are small. In practice, to predict the running time of a given simulation in 390

msprime, we recommend that users measure run time in a series of simulations with short genome 391

lengths and the desired sample size, and then predict run time by fitting a quadratic curve to 392

genome length as in Fig. 4. It is important to note that the quadratic curves in the two panels 393

of Fig. 4 are different, and predicting the run times of days-long simulations using the timing of 394

seconds-long runs is unlikely to be very accurate. 395

12

What about simulations with changing population size? To understand how run time depends 396

on demography it helps to consider why run time is quadratic in ρ. At any point in time, msprime 397

must keep track of some number of lineages, each of which contains some number of chunks of 398

genetic material. Common ancestor events reduce the number of lineages, and recombination events 399

increase their number. However, with long genomes, only a small fraction of the common ancestor 400

events will involve overlapping segments of ancestry and lead to coalescence in the marginal trees. 401

Such disjoint segments are often far apart (on average, about distance L/2), and so recombine apart 402

again immediately; it is these large numbers of rapid and inconsequential events that lead to the 403

quadratic run time. The maximum number of lineages occurs when the increase and decrease in 404

numbers of lineages due to common ancestor and recombination events balance out. To get an 405

idea of run time we can estimate when this balance occurs. Suppose that the maximum number 406

of lineages is M ; at this time the rate of common ancestor events is M(M − 1)/(4Ne) and the 407

total rate of recombination is M`, where ` is the mean length of genome carried by each lineage 408

(including “trapped” non-ancestral material). At the maximum, coalescence and recombination 409

rates are equal, so a typical segment of ancestry will spend roughly half its time in a lineage with 410

at least one other such segment—and, since such lineages carry at least two segments, at most 411

one-third of the lineages carry long trapped segments of ancestry. Since the maximum number of 412

lineages is reached very quickly (Nelson et al., 2020), this implies that ` ≈ L/6. Setting the rates 413

of recombination and common ancestor events to be equal and solving for M , we find that M is 414

roughly equal to LNe. The number of lineages then decreases gradually from this maximum on the 415

coalescent time scale, and therefore over roughly 2Ne generations. Since the total rate of events 416

when the maximum number of lineages is present is roughly L2Ne/6, then the total number of 417

events is proportional to (LNe)
2—i.e., proportional to ρ2. 418

What does this tell us about run time for simulating time-varying population sizes? The ar- 419

gument above implies that the work is spread out relatively evenly on the coalescent time scale. 420

Suppose that population size today is N1, while T generations ago it was N2. Does the run time 421

depend more on 4N1L or 4N2L? The answer depends on how T compares to N1: if T/N1 is large, 422

then run time will be similar to a population of size N1; while if T/N1 is small, it will be similar to 423

a population of size N2. For instance, in many agricultural species N1 ∝ 100, while N2 ∝ 105, and 424

the run time will depend critically on T—in other words, simulation will be quick in a species with 425

a strong domestication bottleneck, and slow otherwise. 426

Gene conversion 427

Gene conversion is a form of recombination that results in the transfer of a short segment of 428

genetic material, for example between homologous chromosomes (Chen et al., 2007). Since gene 429

conversion impacts much shorter segments than crossover recombination (typically below 1kb) it 430

affects patterns of linkage disequilibrium differently (Korunes and Noor, 2017). Wiuf and Hein 431

(2000) modelled gene conversion in the coalescent via a rate at which gene conversion events are 432

initiated along the genome and a geometrically distributed tract length. In terms of the ancestral 433

process, gene conversion differs from crossover recombination (as described in the previous section) 434

in that it extracts a short tract of ancestry into an independent lineage, rather than splitting 435

ancestry to the left and right of a given breakpoint. We have implemented this model of gene 436

conversion in msprime 1.0, and validated the output against ms and analytical results (Wiuf and 437

Hein, 2000). 438

Gene conversion is particularly useful to model homologous recombination in bacterial evolution, 439

13

0 100 200 300 400 500
Sample size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
(h

ou
rs

)

10 mins

(A)
msprime
SimBac
fastSimBac

0 100 200 300 400 500
Sample size

0.0

0.2

0.4

0.6

0.8

1.0

M
em

or
y

(G
iB

)

(B)

Figure 5: Comparison of simulation performance using msprime, SimBac, and fastSimBac for vary-
ing sample sizes, with parameters roughly equivalent to the current estimate for E. coli (Lapierre
et al., 2016): a 4.5Mb genome with scaled gene conversion rate of 0.015 and a mean tract length of
500. We report (A) the total CPU time and (B) maximum memory usage averaged over 5 replicates
(Intel Xeon E5-2680 CPU). We did not run SimBac beyond first two data points because of the
very long running times.

14

and so we compare the performance of msprime with gene conversion to two specialised bacterial 440

simulators, SimBac (Brown et al., 2016) and fastSimBac (De Maio and Wilson, 2017). Figure 5A 441

shows that msprime is far more efficient than both SimBac and the SMC-based approximation 442

fastSimBac. Figure 5B shows that msprime requires somewhat more memory than fastSimBac, (as 443

expected since fastSimBac uses a left-to-right SMC approximation) but is still reasonably modest 444

at around 1GiB for a simulation of 500 whole E. coli genomes. However, msprime is currently 445

lacking many of the specialised features required to model bacteria, and so an important avenue 446

for future work is to add features such as circular genomes and bacterial gene transfer (Baumdicker 447

and Pfaffelhuber, 2014). 448

In terms of predicting the run time for a simulation including gene conversion, we recommend 449

following the same approach as discussed in the previous section: run a number of simulations 450

for short genome lengths, fit a quadratic to the observed CPU times, and use this to predict 451

run time for larger simulations. Depending on the relative contributions of gene conversion and 452

crossover recombination, this may be an over-estimate since gene conversion events tend to generate 453

less trapped ancestral material than crossovers. Thus, simulations using mammalian-like gene 454

conversion parameters may run faster than simulations in which an equivalent amount of crossover 455

recombination is imposed. Since each gene conversion creates two breakpoints and a crossover 456

creates only one, we expect the output tree sequence for a given rate of gene conversion to be 457

roughly twice the size of the output from a simulation with the same rate of crossovers. 458

Demography 459

One of the key applications of population genetic simulations is to generate data for complex de- 460

mographies. Beyond idealised cases such as stepping-stone or island models, or specialised cases such 461

as isolation-with-migration models, analytical results are rarely possible. Simulation is therefore 462

integral to the development and evaluation of methods for demographic inference. The demogra- 463

phy model in msprime is directly derived from the approach used in ms, and supports an arbitrary 464

number of randomly mating populations exchanging migrants at specified rates. A range of demo- 465

graphic events are supported, which allow for varying population sizes and growth rates, changing 466

migration rates over time, as well as population splits, admixtures and pulse migrations. The loca- 467

tion of sampled lineages can be tracked through time in as much detail as required: each tree node 468

is automatically associated with the population in which it arose, the location of lineages can be 469

recorded at any given time via census events, or every lineage migration can be recorded. Large 470

demographic models can be simulated efficiently in version msprime 1.0, since we only consider pop- 471

ulations that contain lineages and have non-zero migration rates when generating migration event 472

waiting times. This is a considerable improvement over version 0.x, which scaled quadratically with 473

the number of populations. 474

A major change for msprime 1.0 is the introduction of the new Demography API, designed to 475

address a design flaw in the msprime 0.x interface which led to a number of avoidable errors in 476

downstream simulations (Ragsdale et al., 2020). Briefly, the 0.x API required three separate pa- 477

rameters be provided to the simulate function to describe a demographic model, making it easy to 478

accidentally omit information. The 1.0 API resolves this issue by creating a new Demography class, 479

which encapsulates all information about the demographic model, and fully decouples the definition 480

from other simulation details. An instance of this class is then provided as a parameter to the new 481

sim_ancestry function, substantially reducing the potential for error. Another improvement over 482

the 0.x APIs is the introduction of explicit population split and admixture events, and a popula- 483

15

tion state machine that ensures that lineages cannot migrate into (or be sampled from) inactive 484

populations. This demography model is compatible with the Demes standard (Gower et al., 2021), 485

and the Demography class supports importing and exporting Demes models. Models previously 486

constructed using the 0.x API can be seamlessly imported into the Demography class, and we also 487

support importing demographic models from Newick species trees and the output of programs like 488

*BEAST (Heled and Drummond, 2009). 489

The DemographyDebugger provides detailed information about demographic models as well as 490

numerical methods to make predictions about these models. For example, we can compute the 491

coalescence rates for two or more lineages drawn from populations at specified times in the past, 492

which can be inverted to obtain the “inverse instantaneous coalescence rate” of Chikhi et al. (2018). 493

Many popular approaches in population genetics use the distribution of coalescence rates between 494

pairs of lineages in one or more populations to infer effective population sizes over time (Li and 495

Durbin, 2011; Sheehan et al., 2013; Schiffels and Durbin, 2014) or split times and subsequent 496

migration rates between populations (Wang et al., 2020). These numerical methods provide a 497

valuable ground-truth when evaluating such inference methods, as illustrated by Adrion et al. 498

(2020a). 499

Instantaneous bottlenecks 500

A common approach to modelling the effect of demographic history on genealogies is to assume 501

that effective population size (Ne) changes in discrete steps which define a series of epochs (Griffiths 502

et al., 1994; Marth et al., 2004; Keightley and Eyre-Walker, 2007; Li and Durbin, 2011). In this 503

setting of piecewise constant Ne, capturing a population bottleneck requires three epochs: Ne is 504

reduced by some fraction b at the start of the bottleneck, Tstart, and recovers to its initial value at 505

time Tend (Marth et al., 2004). If bottlenecks are short both on the timescale of coalescence and 506

mutations, there may be little information about the duration of a bottleneck (Tend − Tstart) in 507

sequence data. Thus a simpler, alternative model is to assume that bottlenecks are instantaneous 508

(Tend − Tstart → 0) and generate a sudden burst of coalescence events (a multiple merger event) in 509

the genealogy. The strength of the bottleneck B can be thought of as an (imaginary) time period 510

during which coalescence events are collapsed, i.e. there is no growth in genealogical branches 511

during B and the probability that a single pair of lineages entering the bottleneck coalesce during 512

the bottleneck is 1 − e−B . Although this simple two parameter model of bottlenecks is attractive 513

and both analytic results and empirical inference (Griffiths et al., 1994; Birkner et al., 2009; Galtier 514

et al., 2000; Bunnefeld et al., 2015) have been developed under this model, there has been no 515

software available to simulate data under instantaneous bottleneck histories. 516

We have implemented instantaneous bottlenecks in msprime 1.0 using a variant of Hudson’s 517

linear time single-locus coalescent algorithm (Hudson, 1990). Instantaneous bottlenecks are spec- 518

ified by adding events to the Demography class (see the Demography section) and can be used 519

in combination with any other demographic modelling features. We have validated the results of 520

these simulations by comparing against analytical expectations for coalescence times and the site 521

frequency spectrum (Bunnefeld et al., 2015). 522

Multiple merger coalescents 523

Kingman’s coalescent assumes that only two ancestral lineages can merge at each merger event. 524

Although this is generally a reasonable approximation, there are certain situations in which the 525

16

underlying mathematical assumptions are violated. For example in certain highly fecund organ- 526

isms (Hedgecock, 1994; Beckenbach, 1994; Hedgecock and Pudovkin, 2011; Árnason, 2004; Irwin 527

et al., 2016), where individuals have the ability to produce numbers of offspring on the order of 528

the population size and therefore a few individuals may produce the bulk of the offspring in any 529

given generation (Hedgecock, 1994). These population dynamics violate basic assumptions of the 530

Kingman coalescent, and are better modelled by ‘multiple-merger’ coalescents (Donnelly and Kurtz, 531

1999; Pitman, 1999; Sagitov, 1999; Schweinsberg, 2000; Möhle and Sagitov, 2001), in which more 532

than two lineages can merge in a given event. Multiple-merger coalescent processes have also been 533

shown to be relevant for modelling the effects of selection on gene genealogies (Gillespie, 2000; 534

Durrett and Schweinsberg, 2004; Desai et al., 2013; Neher and Hallatschek, 2013; Schweinsberg, 535

2017). 536

Although multiple merger coalescents have been of significant theoretical interest for around two 537

decades, there has been little practical software available to simulate these models. Kelleher et al. 538

(2013, 2014) developed packages to simulate a related spatial continuum model (Barton et al., 2010), 539

Zhu et al. (2015) simulate genealogies within a species tree based on a multiple-merger model, and 540

Becheler and Knowles (2020) provide a general method for simulating multiple merger processes as 541

part of the Quetzal framework (Becheler et al., 2019). The Beta-Xi-Sim simulator (Koskela, 2018; 542

Koskela and Wilke Berenguer, 2019) also includes a number of extensions to the Beta-coalescent. 543

None of these methods work with large genomes, and very little work has been performed on 544

simulating multiple merger processes with recombination. 545

We have added two multiple merger coalescent models in msprime 1.0, the Beta-coalescent (Schweins-546

berg, 2003) and “Dirac”-coalescent (Birkner et al., 2013a), allowing us to efficiently simulate such 547

models with recombination for the first time. These simulation models have been extensively val- 548

idated against analytical results from the site frequency spectrum (Birkner et al., 2013b; Blath 549

et al., 2016; Hobolth et al., 2019) as well as more general properties of coalescent processes. See 550

the Appendix for more details and model derivations. 551

Ancestral Recombination Graphs 552

The Ancestral Recombination Graph (ARG) was introduced by Griffiths (Griffiths, 1991; Griffiths 553

and Marjoram, 1997) to represent the stochastic process of the coalescent with recombination as 554

a graph. This formulation is complementary to Hudson’s earlier work (Hudson, 1983a), and sub- 555

stantially increased our theoretical understanding of recombination. In Griffiths’ ARG formulation, 556

a realisation of the coalescent with recombination is a graph in which vertices represent common 557

ancestor or recombination events, and edges represent lineages. There is the “big” ARG, in which 558

we track lineages arising out of recombinations regardless of whether they carry ancestral mate- 559

rial (Ethier and Griffiths, 1990), and the “little” ARG in which we only track genetic ancestors. 560

Over time, usage of the term has shifted away from its original definition as a stochastic process, 561

to being interpreted as a representation of a particular genetic ancestry as a graph, without neces- 562

sarily following the specific details of the Griffiths formulation (e.g. Minichiello and Durbin, 2006; 563

Mathieson and Scally, 2020). Under the latter interpretation, the tree sequence encoding of genetic 564

ancestry (described above) clearly is an ARG: the nodes and edges define a graph in which edges 565

are annotated with the set of disjoint genomic intervals through which ancestry flows. 566

For our purposes, an ARG is a realisation of the coalescent with recombination, in the Griffiths 567

(little ARG) sense. As described in detail by Kelleher et al. (2016), Hudson’s algorithm works 568

by dynamically traversing a little ARG. The graph is not explicitly represented in memory, but is 569

17

(A)

0 1 2

3

x = 0.3

4

5

6

(B)

0 1 2 0 1 2

3 3

4 4

5 5

6 6

0.0 0.3 1.0
Genome position

(C)

0 1 2 0 1 2

3

4

5 5

0.0 0.3 1.0
Genome position

Figure 6: (A) A simple ARG in which a recombination occurs at position 0.3; (B) the equivalent
topology depicted as a tree sequence, including the recombination node; (C) the same tree sequence
topology “simplified” down to its minimal tree sequence representation. Note that the internal nodes
have been renumbered in the simplified representation, so that, e.g., node 5 in (C) corresponds to
node 6 in (A) and (B).

partially present through the extant lineages and the ancestral material they carry over time. We do 570

not output the graph directly, but rather store the information required to recover the genealogical 571

history as nodes and edges in a tree sequence. This is far more efficient than outputting the 572

simulated ARG in its entirety. For a given scaled recombination rate ρ (setting aside the dependency 573

on the sample size n) we know from Eq. (1) that the number of nodes in an ARG is O(ρ2), whereas 574

the size of the tree sequence encoding is O(ρ) (Kelleher et al., 2016). This difference between a 575

quadratic and a linear dependency on ρ is profound, and shows why large simulations cannot output 576

an ARG in practice. 577

Although by default msprime outputs tree sequences that contain full information about the 578

genealogical trees, their correlation structure along the chromosome, and the ancestral genomes on 579

which coalescences occurred, some information is lost in this mapping down from ARG space to 580

the minimal tree sequence form. In particular, we lose information about ancestral genomes that 581

were common ancestors but in which no coalescences occurred, and also information about the 582

precise time and chromosomal location of recombination events. In most cases, such information is 583

of little relevance as it is in principle unknowable, but there are occasions such as visualisation or 584

computing likelihoods (see below) in which it is useful. We therefore provide the record_full_arg 585

option in msprime to store a representation of the complete ARG traversed during simulation. This 586

is done by storing extra nodes (marked with specific flags, so they can be easily identified later) and 587

edges in the tree sequence (Fig. 6). One situation in which a record of the full ARG is necessary 588

is when we wish to compute likelihoods during inference. The likelihood is a central quantity in 589

evaluating the plausibility of a putative ancestry as an explanation of DNA sequence data, both 590

directly through e.g. approaches based on maximum likelihood, and as an ingredient of methods 591

such as Metropolis-Hastings (Kuhner et al., 2000; Nielsen, 2000; Wang and Rannala, 2008). We 592

provide functions to compute the likelihood of ARG realisations and mutational patterns under 593

the standard coalescent and infinite sites mutation model. See the Appendix for details on these 594

likelihood calculations. 595

18

0 50 100 150 200
Sequence length (Kilobases)

0

2

4

6

8

10

12

Ti
m

e
(m

in
ut

es
)

4 seconds

(A)
msprime
discoal

0 50 100 150 200
Sequence length (Kilobases)

0

1

2

3

4

M
em

or
y

(G
iB

)

120 MiB

(B)

Figure 7: Comparison of selective sweep simulation performance in msprime and discoal (Intel
Xeon E5-2680 CPU). We report the total CPU time and maximum memory usage when simulating
100 replicates for 10 samples in a model with a single selective sweep in its history where the
beneficial allele had a scaled selection coefficient of 2Ns = 1000, a per-base recombination rate of
10−9 and sequence length varying from 1kb–200kb.

Selective sweeps 596

Another elaboration of the standard neutral coalescent with recombination is the addition of se- 597

lective sweeps (Kaplan et al., 1989; Braverman et al., 1995; Kim and Stephan, 2002). Sweeps 598

are modelled by creating a structured population during the sojourn of the beneficial mutation 599

through the population (i.e., the sweep phase) in which lineages may transit between favoured and 600

unfavoured backgrounds through recombination. This approach allows for many selective sweep 601

scenarios to be simulated efficiently, including recurrent, partial, and soft selective sweeps. How- 602

ever this efficiency comes at the cost of flexibility in comparison to forwards in time simulation. 603

Several specialised simulators have been developed to simulate sweeps in the coalescent, including 604

SelSim (Spencer and Coop, 2004), mbs (Teshima and Innan, 2009), msms (Ewing and Hermisson, 605

2010), cosi2 (Shlyakhter et al., 2014) and discoal (Kern and Schrider, 2016). 606

Selective sweeps are implemented in the coalescent as a two step-process: first generating an
allele frequency trajectory, and then simulating a structured coalescent process conditioned on that
trajectory. Following discoal, we generate sweep trajectories in msprime using a jump process
approximation to the conditional diffusion of an allele bound for fixation (Coop and Griffiths,
2004). The jump process moves back in time following the beneficial allele frequency, p, from some
initial frequency (e.g., p = 1) back to the origination of the allele at p = 1/(2N), tracking time in
small increments δt. Then, given the frequency p at time t, the frequency p′ at time t+ δt is given

19

by

p′ =

{
p+ µ(p)δt+

√
p(1− p)δt with probability 1/2

p+ µ(p)δt−
√
p(1− p)δt with probability 1/2

where 607

µ(p) =
αp(1− p)

tanh(α(1− p))
.

Here, α = 2Ns and s is the fitness advantage in homozygotes. This model assumes genic selection 608

(i.e., that the dominance coefficient h = 0.5), but can be generalised straightforwardly to include 609

arbitrary dominance. We can also define trajectories to model neutral alleles and soft selective 610

sweeps, which we plan as future additions to msprime. 611

Then, given a randomly generated allele frequency trajectory under the above model, the simu- 612

lation of a sweep works by assigning lineages to two different structured coalescent “labels”, based 613

on whether they carry the beneficial allele. The allele frequency trajectory determines the relative 614

sizes of the “populations” in these labels over time, and therefore the rates at which various events 615

occur. Common ancestor events can then only merge lineages from within a label, but lineages can 616

transfer from one label to the other (i.e., from the advantageous to disadvantageous backgrounds, 617

and vice versa) as a result of recombination events. Once we have reached the end of the simulated 618

trajectory the sweep is complete, and we remove the structured coalescent labels. Simulation may 619

then resume under any other ancestry model. 620

Fig. 7 compares the performance of msprime and discoal under a simple sweep model, and 621

shows that msprime has far better CPU time and memory performance. Since our implementation 622

uses the abstract label system mentioned above, adding support for similar situations, such as 623

inversions (Peischl et al., 2013), should be straightforward. 624

Discrete time Wright-Fisher 625

The coalescent is an idealised model and makes many simplifying assumptions, but it is often 626

surprisingly robust to violations of these assumptions (Wakeley et al., 2012). One situation in 627

which the model does break down is the combination of large sample size and long recombining 628

genomes, where the large number of recombination events in the recent past results in more than the 629

biologically possible 2t ancestors in t diploid generations (Nelson et al., 2020). This pathological 630

behaviour results in identity-by-descent, long-range linkage disequilibrium and ancestry patterns 631

deviating from Wright-Fisher expectations, and the bias grows with larger sample sizes (Wakeley 632

et al., 2012; Bhaskar et al., 2014; Nelson et al., 2020). Precisely this problem occurs when simulating 633

modern human datasets, and we have implemented a Discrete Time Wright-Fisher (DTWF) model 634

in msprime to address the issue. The DTWF simulates backwards in time generation-by-generation 635

so that each gamete has a unique diploid parent, and multiple recombinations within a generation 636

results in crossover events between the same two parental haploid copies. The method is described 637

in more detail by Nelson et al. (2020). 638

Fig. 8 shows that msprime simulates the DTWF more quickly and requires substantially less 639

memory than ARGON (Palamara, 2016), a specialised DTWF simulator. However, the generation-by- 640

generation approach of the DTWF is less efficient than the coalescent with recombination when the 641

number of lineages is significantly less than the population size (the regime where the coalescent 642

is an accurate approximation), which usually happens in the quite recent past (Bhaskar et al., 643

20

0 20 40 60 80 100
Sequence length (Megabases)

0

50

100

150

200

Ti
m

e
(s

ec
on

ds
)

(A)
DTWF
DTWF + Hudson
ARGON

0 20 40 60 80 100
Sequence length (Megabases)

0

2

4

6

8

M
em

or
y

(G
iB

)

185 MiB

(B)

Figure 8: Comparison of Discrete Time Wright-Fisher (DTWF) simulation performance in msprime
and ARGON (Intel Xeon E5-2680 CPU). We simulated ancestry for a sample of 1000 haploids from
a population of 10000, and report the (A) total CPU time and (B) maximum memory usage for
varying sequence lengths, and a per-base recombination rate of 10−8. Each point is the average
over 5 replicate simulations. We show observations for ARGON, msprime’s DTWF implementation
(“DWTF”) and a hybrid simulation of 100 generations of the DTWF followed by the standard
coalescent with recombination model (“DTWF + Hudson”). Memory usage for msprime’s DTWF
and hybrid simulations are very similar. We ran ARGON with a mutation rate of 0 and with minimum
output options, to ensure we are measuring only ancestry simulation time.

21

2014). We therefore support changing the simulation model during a simulation so that we can 644

run hybrid simulations, as proposed by Bhaskar et al. (2014). Any number of different simulation 645

models can be combined, allowing for the flexible choice of simulation scenarios. As the discrete 646

time Wright-Fisher model improves accuracy of genealogical patterns in the recent past, we can 647

simulate the recent history using this model and then switch to the standard coalescent to more 648

efficiently simulate the more ancient history. 649

Integration with forward simulators 650

A unique feature of msprime is its ability to simulate genetic ancestries by extending an existing 651

partial genetic ancestry. Given a tree sequence that is complete up until time t ago as input 652

(where marginal trees may or may not have fully coalesced), msprime can efficiently obtain the 653

segments of ancestral material present at this time, and then run the simulation backwards in time 654

from there. This allows a simulated ancestry to be produced by any number of different processes 655

across disjoint time slices. In practice this feature is used to “complete” forwards-time ancestry 656

simulations (Kelleher et al., 2018) that may have not fully coalesced. This process (“recapitation”) 657

can be orders of magnitude faster than the standard approach of neutral burn-in; see Haller et al. 658

(2018) for more details and examples. This interoperability between simulators, where a partial 659

ancestry simulation produced by SLiM (Haller and Messer, 2019) or fwdpy11 (Thornton, 2014) can 660

be picked up and completed by another simulator, with complete information retained—at scale—is 661

unprecedented. There may be an opportunity for other forward genetic simulators (e.g. Gaynor 662

et al., 2021) to leverage the tree sequence data format and associated tools. 663

Development model 664

Msprime has a large number of features, encompassing the functionality of several more specialised 665

simulators while maintaining excellent performance. It is developed by a geographically distributed 666

team of volunteers under an open source community development model, with a strong emphasis 667

on code quality, correctness, good documentation, and inclusive development. As in any large code 668

base, unit tests play a key role in ensuring that new additions behave as expected and msprime 669

has an extensive suite. As of the 1.0.0 release msprime consists of around 13K lines of C and 11K 670

lines of Python, with suites of 122 C tests (7K lines of code) and 1350 Python tests (22K lines of 671

code). These tests are run automatically on different operating systems on each pull request (where 672

a contributor proposes a code change), using standard Continuous Integration (CI) methodology. 673

Other CI services check for common errors, code formatting issues, and produce reports on the level 674

of test coverage for the proposed change. 675

Unit tests are vital for ensuring software quality and correctness, but they are usually of little 676

value in assessing the statistical properties of simulations. To validate the correctness of simulation 677

output we maintain a suite of statistical tests (as of 1.0.0, 217 validation tests, in 6K lines of 678

code). These consist of running many replicate simulations to check the properties of the output 679

against other simulators, and where possible against analytical results. For example, simulations 680

of complex demography are validated against ms, selective sweeps against discoal, and Wright- 681

Fisher simulations against forwards in time simulations in SLiM. This suite of tests is run before 682

every release, to ensure that statistical errors have not been introduced. 683

More visibly to the end user, we also have a high standard for documentation, with precise, 684

comprehensive, and cross-linked documentation that is automatically built from the code base and 685

22

served through the website https://tskit.dev. With the goal of lowering the entry barrier to 686

new users, we have invested significant effort in writing examples and introductions, and making 687

common tasks discoverable. We also view contributions to documentation as equally important to 688

the project as writing code or designing methods: what use would it be to write reliable, stable 689

software if no-one used it? 690

Discussion 691

The 1.0 release of msprime marks a major increase in the breadth of available features and the 692

potential biological realism of simulations. These abilities will allow researchers to perform more 693

robust power analyses, more reliably test new methods, carry out more reliable inferences, and more 694

thoroughly explore the properties of theoretical models. Despite this complexity and generality, 695

msprime’s performance is state-of-the-art and all features are extensively tested and statistically 696

validated. These advances have only been possible thanks to a distributed, collaborative model of 697

software development, and the work of many people. 698

Even though simulation has long been a vital tool in population genetics, such collaborative 699

software development has historically been uncommon. A huge proliferation of tools have been 700

published (the references here are not exhaustive) and only a small minority of these are actively 701

developed and maintained today. The ecosystem is highly fragmented, with numerous different 702

ways of specifying parameters and representing results, and there are significant software quality 703

issues at all stages. This is unsurprising, since the majority of simulation software development is 704

performed by students, often without formal training in software development. The result resembles 705

Haldane’s sieve for new mutations: many new pieces of software stay permanently on a dusty shelf 706

of supplementary materials, while some of those that prove particularly useful when new (like 707

dominant alleles) are quickly adopted. Although this has produced many good tools and enabled 708

decades of research, it also represents a missed opportunity to invest as a community in shared 709

infrastructure and mentorship in good software development practice. 710

Scientific software is vital apparatus, and must be engineered to a high quality if we are to 711

trust its results. There is a growing realisation across the sciences (e.g. Siepel, 2019; Harris et al., 712

2020; Gardner et al., 2021) that investing in shared community infrastructure produces better 713

results than a proliferation of individually maintained tools, allowing scientists to focus on their 714

specific questions rather than software engineering. Msprime 1.0 is the result of such a community 715

process, with features added by motivated users, taking advantage of the established development 716

practices and infrastructure. Software development in a welcoming community, with mentorship 717

by experienced developers, is a useful experience for many users. The skills that contributors learn 718

can lead to greatly increased productivity in subsequent work (e.g., through more reliable code and 719

better debugging skills). We hope that users who find that features they require are missing will 720

continue to contribute to msprime, leading to a community project that is both high quality and 721

sustainable in the long term. 722

The succinct tree sequence data structure developed for msprime provides a view of not only 723

genetic variation, but also the genetic ancestry that produced that variation. Recent breakthroughs 724

in methods to infer genetic ancestry in recombining organisms (Rasmussen et al., 2014; Kelleher 725

et al., 2019; Speidel et al., 2019; Wohns et al., 2021; Schaefer et al., 2021; Speidel et al., 2021) 726

have made it possible to estimate such ancestry from real data at scale for the first time (Harris, 727

2019; Tang, 2019). Given such inferred ancestry, many exciting applications become possible. 728

For example, Osmond and Coop (2021) developed a method to estimate the location of genetic 729

23

ancestors based on inferred trees, and other uses are sure to follow. Since the inferred genetic 730

ancestry becomes the input for other downstream inferences, it is vitally important that these 731

primary inferences are thoroughly validated, with the detailed properties of the inferred ancestries 732

catalogued and understood. Msprime will continue to be an important tool for these inferences 733

and validations, and in this context the ability to interoperate with other methods—particularly 734

forwards simulators—through the succinct tree sequence data structure and tskit library will be 735

essential. 736

Acknowledgements 737

We would like to thank Iain Mathieson and Alywyn Scally for helpful comments on the manuscript. 738

ADK was supported by NIH awards R01GM117241 and R01HG010774. BE was supported by DFG 739

grant 273887127 through Priority Programme SPP 1819: Rapid Evolutionary Adaptation (grant 740

STE 325/17-2) to Wolfgang Stephan; BE would also like to acknowledge funding through The 741

Icelandic Research Centre (Rannís) through an Icelandic Research Fund Grant of Excellence nr. 742

185151-051 to Einar Árnason, Katrín Halldórsdóttir, Alison Etheridge, Wolfgang Stephan, and BE. 743

FB is funded by the Deutsche Forschungsgemeinschaft EXC 2064/1 – Project number 390727645, 744

and EXC 2124 – Project number 390838134. Graham Gower was supported by a Villum Fonden 745

Young Investigator award to Fernando Racimo (project no. 00025300). Gregor Gorjanc is supported 746

by the Chancellor’s Fellowship of the University of Edinburgh and the BBSRC grant to The Roslin 747

Institute BBS/E/D/30002275. Jere Koskela is supported in part by EPSRC grant EP/R044732/1. 748

Jerome Kelleher is supported by the Robertson Foundation. SG acknowledges funding from the 749

Canada Research Chairs Program, from the Canadian Institutes of Health Research PJT 173300, 750

and from the Canadian Foundation for Innovation. 751

References 752

Jeffrey R Adrion, Christopher B Cole, Noah Dukler, Jared G Galloway, Ariella L Gladstein, Graham 753

Gower, Christopher C Kyriazis, Aaron P Ragsdale, Georgia Tsambos, Franz Baumdicker, et al. 754

A community-maintained standard library of population genetic models. Elife, 9:e54967, 2020a. 755

Jeffrey R Adrion, Jared G Galloway, and Andrew D Kern. Predicting the landscape of recombination 756

using deep learning. Molecular biology and evolution, 37(6):1790–1808, 2020b. 757

Miguel Arenas. Simulation of molecular data under diverse evolutionary scenarios. PLoS Compu- 758

tational Biology, 8(5):e1002495, 2012. 759

Miguel Arenas and David Posada. Recodon: coalescent simulation of coding DNA sequences with 760

recombination, migration and demography. BMC bioinformatics, 8(1):1–4, 2007. 761

Einar Árnason. Mitochondrial cytochrome b DNA variation in the high-fecundity Atlantic cod: 762

trans-Atlantic clines and shallow gene genealogy. Genetics, 166(4):1871–1885, 2004. 763

Nicholas H Barton, Jerome Kelleher, and Alison M Etheridge. A new model for extinction and 764

recolonization in two dimensions: quantifying phylogeography. Evolution: International journal 765

of organic evolution, 64(9):2701–2715, 2010. 766

24

Franz Baumdicker and Peter Pfaffelhuber. The infinitely many genes model with horizontal gene 767

transfer. Electronic Journal of Probability, 19:1–27, 2014. doi: 10.1214/EJP.v19-2642. 768

Mark A Beaumont, Wenyang Zhang, and David J Balding. Approximate Bayesian computation in 769

population genetics. Genetics, 162(4):2025–2035, 2002. 770

Arnaud Becheler and L Lacey Knowles. Occupancy spectrum distribution: application for coales- 771

cence simulation with generic mergers. Bioinformatics, 02 2020. ISSN 1367-4803. btaa090. 772

Arnaud Becheler, Camille Coron, and Stéphane Dupas. The quetzal coalescence template library: 773

A C++ programmers resource for integrating distributional, demographic and coalescent models. 774

Molecular ecology resources, 19(3):788–793, 2019. 775

Andrew T Beckenbach. Mitochondrial haplotype frequencies in oysters: neutral alternatives to 776

selection models. In Non-neutral evolution, pages 188–198. Springer, 1994. 777

Anand Bhaskar, Andrew G Clark, and Yun S Song. Distortion of genealogical properties when the 778

sample is very large. Proceedings of the National Academy of Sciences, 111(6):2385–2390, 2014. 779

Matthias Birkner, Jochen Blath, Martin Möhle, Matthias Steinrücken, and Johanna Tams. A 780

modified lookdown construction for the xi-fleming-viot process with mutation and populations 781

with recurrent bottlenecks. Alea, 6:25–61, 2009. 782

Matthias Birkner, Jochen Blath, and Bjarki Eldon. An ancestral recombination graph for diploid 783

populations with skewed offspring distribution. Genetics, 193(1):255–290, 2013a. 784

Matthias Birkner, Jochen Blath, and Bjarki Eldon. Statistical properties of the site-frequency 785

spectrum associated with Λ-coalescents. Genetics, 195(3):1037–1053, 2013b. 786

Matthias Birkner, Huili Liu, and Anja Sturm. Coalescent results for diploid exchangeable population 787

models. Electronic Journal of Probability, 23:1–44, 2018. 788

Jochen Blath, Mathias Christensen Cronjäger, Bjarki Eldon, and Matthias Hammer. The site- 789

frequency spectrum associated with Ξ-coalescents. Theoretical Population Biology, 110:36–50, 790

2016. 791

Michael G.B. Blum and Olivier François. Non-linear regression models for Approximate Bayesian 792

Computation. Statistics and Computing, 20(1):63–73, 2010. 793

John M Braverman, Richard R Hudson, Norman L Kaplan, Charles H Langley, and Wolfgang 794

Stephan. The hitchhiking effect on the site frequency spectrum of DNA polymorphisms. Genetics, 795

140(2):783–796, 1995. 796

Thomas Brown, Xavier Didelot, Daniel J. Wilson, and Nicola De Maio. SimBac: simulation of 797

whole bacterial genomes with homologous recombination. Microbial Genomics, 2(1):1–6, 2016. 798

Lynsey Bunnefeld, Laurent A. F. Frantz, and Konrad Lohse. Inferring bottlenecks from genome- 799

wide samples of short sequence blocks. Genetics, 201(3):1157–1169, 2015. doi: 10.1534/genet- 800

ics.115.179861. 801

25

Clare Bycroft, Colin Freeman, Desislava Petkova, Gavin Band, Lloyd T Elliott, Kevin Sharp, Allan 802

Motyer, Damjan Vukcevic, Olivier Delaneau, Jared O’Connell, et al. The UK Biobank resource 803

with deep phenotyping and genomic data. Nature, 562:203–209, 2018. 804

Reed A Cartwright. DNA assembly with gaps (Dawg): simulating sequence evolution. Bioinfor- 805

matics, 21(Suppl_3):iii31–iii38, 2005. 806

Antonio Carvajal-Rodríguez. Simulation of genomes: a review. Curr Genomics, 9(3):155, 2008. 807

Jeffrey Chan, Valerio Perrone, Jeffrey P Spence, Paul A Jenkins, Sara Mathieson, and Yun S 808

Song. A likelihood-free inference framework for population genetic data using exchangeable 809

neural networks. Advances in neural information processing systems, 31:8594, 2018. 810

Gary K Chen, Paul Marjoram, and Jeffrey D Wall. Fast and flexible simulation of DNA sequence 811

data. Genome research, 19(1):136–142, 2009. 812

Hua Chen and Kun Chen. Asymptotic distributions of coalescence times and ancestral lineage 813

numbers for populations with temporally varying size. Genetics, 194(3):721–736, 2013. 814

Jian-Min Chen, David N Cooper, Nadia Chuzhanova, Claude Férec, and George P Patrinos. Gene 815

conversion: mechanisms, evolution and human disease. Nature Reviews Genetics, 8(10):762–775, 816

2007. 817

Jonathan A Chetwynd-Diggle, Bjarki Eldon, and Alison M Etheridge. Multiple-merger coalescents, 818

bounded juvenile numbers, and large sample sizes. in preparation, 2021. 819

Lounès Chikhi, Willy Rodríguez, Simona Grusea, Patricia Santos, Simon Boitard, and Olivier 820

Mazet. The IICR (inverse instantaneous coalescence rate) as a summary of genomic diversity: 821

insights into demographic inference and model choice. Heredity, 120(1):13–24, 2018. 822

Graham Coop and Robert C Griffiths. Ancestral inference on gene trees under selection. Theoretical 823

population biology, 66(3):219–232, 2004. 824

Jean-Marie Cornuet, Filipe Santos, Mark A Beaumont, Christian P Robert, Jean-Michel Marin, 825

David J Balding, Thomas Guillemaud, and Arnaud Estoup. Inferring population history with 826

DIY ABC: a user-friendly approach to approximate Bayesian computation. Bioinformatics, 24 827

(23):2713–2719, 2008. 828

Katalin Csilléry, Michael GB Blum, Oscar E Gaggiotti, and Olivier François. Approximate Bayesian 829

computation (ABC) in practice. Trends in ecology & evolution, 25(7):410–418, 2010. 830

Katalin Csilléry, Olivier François, and Michael G B Blum. abc: An R package for approximate 831

Bayesian computation (ABC). Methods in Ecology and Evolution, 3(3):475–479, 2012. 832

M Dayhoff, R Schwartz, and B Orcutt. A model of evolutionary change in proteins. Atlas of protein 833

sequence and structure, 5:345–352, 1978. 834

Nicola De Maio and Daniel J. Wilson. The bacterial sequential markov coalescent. Genetics, 206 835

(1):333–343, 2017. 836

26

Nicola De Maio, Lukas Weilguny, Conor R Walker, Yatish Turakhia, Russell Corbett-Detig, and 837

Nick Goldman. phastsim: efficient simulation of sequence evolution for pandemic-scale datasets. 838

bioRxiv, 2021. 839

Ricky Der, Charles Epstein, and Joshua B Plotkin. Dynamics of neutral and selected alleles when 840

the offspring distribution is skewed. Genetics, 191(4):1331–1344, 2012. 841

Michael M Desai, Aleksandra M Walczak, and Daniel S Fisher. Genetic diversity and the structure 842

of genealogies in rapidly adapting populations. Genetics, 193(2):565–585, 2013. 843

Peter Donnelly and Thomas G Kurtz. Particle representations for measure-valued population mod- 844

els. The Annals of Probability, 27(1):166–205, 1999. 845

Richard Durrett and Jason Schweinsberg. Approximating selective sweeps. Theoretical population 846

biology, 66(2):129–138, 2004. 847

Bjarki Eldon and Fabian Freund. Genealogical properties of subsamples in highly fecund popula- 848

tions. Journal of Statistical Physics, 172(1):175–207, 2018. 849

Bjarki Eldon and Wolfgang Stephan. Evolution of highly fecund haploid populations. Theoretical 850

population biology, 119:48–56, 2018. 851

Bjarki Eldon and John Wakeley. Coalescent processes when the distribution of offspring number 852

among individuals is highly skewed. Genetics, 172(4):2621–2633, 2006. 853

SN Ethier and RC Griffiths. On the two-locus sampling distribution. Journal of Mathematical 854

Biology, 29(2):131–159, 1990. 855

Gregory Ewing and Joachim Hermisson. MSMS: a coalescent simulation program including re- 856

combination, demographic structure, and selection at a single locus. Bioinformatics, 26(16): 857

2064–2065, 2010. 858

Laurent Excoffier and Matthieu Foll. Fastsimcoal: a continuous-time coalescent simulator of ge- 859

nomic diversity under arbitrarily complex evolutionary scenarios. Bioinformatics, 27(9):1332– 860

1334, 2011. 861

Joseph Felsenstein and Gary A Churchill. A hidden markov model approach to variation among 862

sites in rate of evolution. Molecular biology and evolution, 13(1):93–104, 1996. 863

Lex Flagel, Yaniv Brandvain, and Daniel R Schrider. The unreasonable effectiveness of convolutional 864

neural networks in population genetic inference. Molecular biology and evolution, 36(2):220–238, 865

2019. 866

William Fletcher and Ziheng Yang. INDELible: a flexible simulator of biological sequence evolution. 867

Molecular biology and evolution, 26(8):1879–1888, 2009. 868

Fabian Freund. Cannings models, population size changes and multiple-merger coalescents. Journal 869

of mathematical biology, 80(5):1497–1521, 2020. 870

Nicolas Galtier, Frantz Depaulis, and N. H. Barton. Detecting bottlenecks and selective sweeps 871

from DNA sequence polymorphism. Genetics, 155(2):981–987, 2000. 872

27

Paul P Gardner, James M Paterson, Stephanie R McGimpsey, Fatemeh Ashari Ghomi, Sinan U 873

Umu, Aleksandra Pawlik, Alex Gavryushkin, and Michael A Black. Sustained software develop- 874

ment, not number of citations or journal choice, is indicative of accurate bioinformatic software. 875

bioRxiv, page 092205, 2021. 876

R. Chris Gaynor, Gregor Gorjanc, and John M. Hickey. AlphaSimR: An R-package for breeding 877

program simulations. G3: Genes, Genomes, Genetics, 11, 2021. doi: 10.1093/g3journal/jkaa017. 878

John H Gillespie. Genetic drift in an infinite population: the pseudohitchhiking model. Genetics, 879

155(2):909–919, 2000. 880

Ariella L. Gladstein, Consuelo D Quinto-Cortés, Julian L. Pistorius, David Christy, Logan Gant- 881

ner, and Blake L. Joyce. Simprily: A Python framework to simplify high-throughput genomic 882

simulations. SoftwareX, 7:335–340, 2018. 883

Graham Gower, Aaron P Ragsdale, et al. Demes: a standard format for demographic models. In 884

preparation, 2021. 885

Robert C Griffiths. The two-locus ancestral graph. Lecture Notes-Monograph Series, 18:100–117, 886

1991. 887

Robert C Griffiths and Paul Marjoram. An ancestral recombination graph. In P. Donnelly and 888

S. Tavaré, editors, Progress in Population Genetics and Human Evolution, IMA Volumes in 889

Mathematics and its Applications, volume 87, pages 257–270. Springer-Verlag, Berlin, 1997. 890

Robert C. Griffiths, Simon Tavare, Walter Fred Bodmer, and Peter James Donnelly. Sampling 891

theory for neutral alleles in a varying environment. Philosophical Transactions of the Royal 892

Society of London. Series B: Biological Sciences, 344(1310):403–410, 1994. 893

Frédéric Guillaume and Jacques Rougemont. Nemo: an evolutionary and population genetics 894

programming framework. Bioinformatics, 22(20):2556–2557, 2006. 895

Benjamin C Haller and Philipp W Messer. SLiM 3: forward genetic simulations beyond the Wright– 896

Fisher model. Molecular biology and evolution, 36(3):632–637, 2019. 897

Benjamin C Haller, Jared Galloway, Jerome Kelleher, Philipp W Messer, and Peter L Ralph. Tree- 898

sequence recording in SLiM opens new horizons for forward-time simulation of whole genomes. 899

Molecular ecology resources, 2018. 900

Charles R Harris, K Jarrod Millman, Stéfan J van der Walt, Ralf Gommers, Pauli Virtanen, 901

David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. Array 902

programming with numpy. Nature, 585(7825):357–362, 2020. 903

Kelley Harris. From a database of genomes to a forest of evolutionary trees. Nature genetics, 51 904

(9):1306–1307, 2019. 905

Dennis Hedgecock. Does variance in reproductive success limit effective population sizes of marine 906

organisms? Genetics and evolution of aquatic organisms, pages 122–134, 1994. 907

Dennis Hedgecock and Alexander I Pudovkin. Sweepstakes reproductive success in highly fecund 908

marine fish and shellfish: a review and commentary. Bulletin of Marine Science, 87(4):971–1002, 909

2011. 910

28

Jotun Hein, Mikkel Schierup, and Carsten Wiuf. Gene genealogies, variation and evolution: a 911

primer in coalescent theory. Oxford University Press, USA, 2004. 912

Joseph Heled and Alexei J Drummond. Bayesian inference of species trees from multilocus data. 913

Molecular biology and evolution, 27(3):570–580, 2009. 914

Garrett Hellenthal and Matthew Stephens. mshot: modifying Hudson’s ms simulator to incorporate 915

crossover and gene conversion hotspots. Bioinformatics, 23(4):520–521, 2007. 916

Steven Henikoff and Jorja G Henikoff. Amino acid substitution matrices from protein blocks. 917

Proceedings of the National Academy of Sciences, 89(22):10915–10919, 1992. 918

Michael J Hickerson, Eli Stahl, and Naoki Takebayashi. msBayes: pipeline for testing comparative 919

phylogeographic histories using hierarchical approximate bayesian computation. BMC bioinfor- 920

matics, 8(1):1–7, 2007. 921

Sean Hoban, Giorgio Bertorelle, and Oscar E Gaggiotti. Computer simulations: tools for population 922

and evolutionary genetics. Nature Reviews Genetics, 13(2):110–122, 2012. 923

Asger Hobolth and Jens Ledet Jensen. Markovian approximation to the finite loci coalescent with 924

recombination along multiple sequences. Theoretical population biology, 98:48–58, 2014. 925

Asger Hobolth, Arno Siri-Jegousse, and Mogens Bladt. Phase-type distributions in population 926

genetics. Theoretical population biology, 127:16–32, 2019. 927

Wen Huang, Naoki Takebayashi, Yan Qi, and Michael J Hickerson. MTML-msBayes: approximate 928

Bayesian comparative phylogeographic inference from multiple taxa and multiple loci with rate 929

heterogeneity. BMC bioinformatics, 12(1):1–14, 2011. 930

Richard R. Hudson. Properties of a neutral allele model with intragenic recombination. Theoretical 931

Population Biology, 23:183–201, 1983a. 932

Richard R. Hudson. Testing the constant-rate neutral allele model with protein sequence data. 933

Evolution, 37(1):203–217, 1983b. 934

Richard R. Hudson. Gene genealogies and the coalescent process. Oxford Surveys in Evolutionary 935

Biology, 7:1–44, 1990. 936

Richard R. Hudson. Generating samples under a Wright-Fisher neutral model of genetic variation. 937

Bioinformatics, 18(2):337–338, 2002. 938

Kristen K Irwin, Stefan Laurent, Sebastian Matuszewski, Severine Vuilleumier, Louise Ormond, 939

Hyunjin Shim, Claudia Bank, and Jeffrey D Jensen. On the importance of skewed offspring 940

distributions and background selection in virus population genetics. Heredity, 117(6):393–399, 941

2016. 942

Thomas H Jukes, Charles R Cantor, et al. Evolution of protein molecules. Mammalian protein 943

metabolism, 3:21–132, 1969. 944

Jack Kamm, Jonathan Terhorst, Richard Durbin, and Yun S Song. Efficiently inferring the demo- 945

graphic history of many populations with allele count data. Journal of the American Statistical 946

Association, 115(531):1472–1487, 2020. 947

29

Norman Kaplan and Richard R. Hudson. The use of sample genealogies for studying a selectively 948

neutral m-loci model with recombination. Theoretical Population Biology, 28:382–396, 1985. 949

Norman L Kaplan, Richard R Hudson, and Charles H Langley. The “hitchhiking effect” revisited. 950

Genetics, 123(4):887–899, 1989. 951

Konrad J Karczewski, Laurent C Francioli, Grace Tiao, Beryl B Cummings, Jessica Alföldi, Qingbo 952

Wang, Ryan L Collins, Kristen M Laricchia, Andrea Ganna, Daniel P Birnbaum, et al. The 953

mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 581(7809): 954

434–443, 2020. 955

Peter D. Keightley and Adam Eyre-Walker. Joint inference of the distribution of fitness effects of 956

deleterious mutations and population demography based on nucleotide polymorphism frequencies. 957

Genetics, 177(4):2251–2261, 2007. 958

Jerome Kelleher and Konrad Lohse. Coalescent simulation with msprime. In Julien Y. Dutheil, 959

editor, Statistical Population Genomics, pages 191–230. Springer US, New York, NY, 2020. 960

Jerome Kelleher, Nicholas H Barton, and Alison M Etheridge. Coalescent simulation in continuous 961

space. Bioinformatics, 29(7):955–956, 2013. 962

Jerome Kelleher, Alison M Etheridge, and Nicholas H Barton. Coalescent simulation in continuous 963

space: Algorithms for large neighbourhood size. Theoretical population biology, 95:13–23, 2014. 964

Jerome Kelleher, Alison M Etheridge, and Gilean McVean. Efficient coalescent simulation and 965

genealogical analysis for large sample sizes. PLoS computational biology, 12(5):e1004842, 2016. 966

Jerome Kelleher, Kevin R. Thornton, Jaime Ashander, and Peter L. Ralph. Efficient pedigree 967

recording for fast population genetics simulation. PLoS Computational Biology, 14(11):1–21, 11 968

2018. 969

Jerome Kelleher, Yan Wong, Anthony W. Wohns, Chaimaa Fadil, Patrick K. Albers, and Gil 970

McVean. Inferring whole-genome histories in large population datasets. Nature Genetics, 51(9): 971

1330–1338, 2019. 972

Andrew D Kern and Daniel R Schrider. Discoal: flexible coalescent simulations with selection. 973

Bioinformatics, 32(24):3839–3841, 2016. 974

Yuseob Kim and Wolfgang Stephan. Detecting a local signature of genetic hitchhiking along a 975

recombining chromosome. Genetics, 160(2):765–777, 2002. 976

Motoo Kimura. A simple method for estimating evolutionary rates of base substitutions through 977

comparative studies of nucleotide sequences. Journal of molecular evolution, 16(2):111–120, 1980. 978

Motoo Kimura. Estimation of evolutionary distances between homologous nucleotide sequences. 979

Proceedings of the National Academy of Sciences, 78(1):454–458, 1981. 980

John F. C. Kingman. The coalescent. Stochastic processes and their applications, 13(3):235–248, 981

1982a. 982

John FC Kingman. On the genealogy of large populations. Journal of applied probability, 19(A): 983

27–43, 1982b. 984

30

Katharine L Korunes and Mohamed A F Noor. Gene conversion and linkage: effects on genome 985

evolution and speciation. Molecular Ecology, 26(1):351–364, 2017. 986

Jere Koskela. Multi-locus data distinguishes between population growth and multiple merger coa- 987

lescents. Statistical applications in genetics and molecular biology, 17(3), 2018. 988

Jere Koskela and Maite Wilke Berenguer. Robust model selection between population growth and 989

multiple merger coalescents. Mathematical biosciences, 311:1–12, 2019. 990

Mary K Kuhner, Jon Yamato, and Joseph Felsenstein. Maximum likelihood estimation of recom- 991

bination rates from population data. Genetics, 156(3):1393–1401, 2000. 992

Marguerite Lapierre, Camille Blin, Amaury Lambert, Guillaume Achaz, and Eduardo P. C. Rocha. 993

The impact of selection, gene conversion, and biased sampling on the assessment of microbial 994

demography. Molecular Biology and Evolution, 33(7):1711–1725, 2016. 995

Haipeng Li and Wolfgang Stephan. Inferring the demographic history and rate of adaptive substi- 996

tution in Drosophila. PLOS Genetics, 2(10):1–10, 10 2006. 997

Heng Li and Richard Durbin. Inference of human population history from individual whole-genome 998

sequences. Nature, 475:493–496, 2011. 999

Youfang Liu, Georgios Athanasiadis, and Michael E Weale. A survey of genetic simulation software 1000

for population and epidemiological studies. Human genomics, 3(1):79, 2008. 1001

Joao S Lopes, David Balding, and Mark A Beaumont. Popabc: a program to infer historical 1002

demographic parameters. Bioinformatics, 25(20):2747–2749, 2009. 1003

Thomas Mailund, Mikkel H Schierup, Christian NS Pedersen, Peter JM Mechlenborg, Jesper N 1004

Madsen, and Leif Schauser. CoaSim: a flexible environment for simulating genetic data under 1005

coalescent models. BMC bioinformatics, 6(1):1–6, 2005. 1006

Paul Marjoram and Jeff D Wall. Fast “coalescent” simulation. BMC Genet, 7:16, 2006. 1007

Gabor T. Marth, Eva Czabarka, Janos Murvai, and Stephen T. Sherry. The allele frequency 1008

spectrum in genome-wide human variation data reveals signals of differential demographic history 1009

in three large world populations. Genetics, 166(1):351–372, 2004. 1010

Alicia R Martin, Christopher R Gignoux, Raymond K Walters, Genevieve L Wojcik, Benjamin M 1011

Neale, Simon Gravel, Mark J Daly, Carlos D Bustamante, and Eimear E Kenny. Human demo- 1012

graphic history impacts genetic risk prediction across diverse populations. The American Journal 1013

of Human Genetics, 100(4):635–649, 2017. 1014

Alicia R Martin, Christopher R Gignoux, Raymond K Walters, Genevieve L Wojcik, Benjamin M 1015

Neale, Simon Gravel, Mark J Daly, Carlos D Bustamante, and Eimear E Kenny. Erratum: Hu- 1016

man demographic history impacts genetic risk prediction across diverse populations (the amer- 1017

ican journal of human genetics (2020) 107 (4)(583–588),(s000292972030286x),(10.1016/j. ajhg. 1018

2020.08. 017)). American journal of human genetics, 107(4):788–789, 2020. 1019

Iain Mathieson and Aylwyn Scally. What is ancestry? PLoS Genetics, 16(3):e1008624, 2020. 1020

31

Sebastian Matuszewski, Marcel E Hildebrandt, Guillaume Achaz, and Jeffrey D Jensen. Coalescent 1021

processes with skewed offspring distributions and nonequilibrium demography. Genetics, 208(1): 1022

323–338, 2018. 1023

Jakob McBroome, Bryan Thornlow, Angie S Hinrichs, Nicola De Maio, Nick Goldman, David 1024

Haussler, Russell Corbett-Detig, and Yatish Turakhia. A daily-updated database and tools for 1025

comprehensive SARS-CoV-2 mutation-annotated trees. bioRxiv, 2021. 1026

James R McGill, Elizabeth A Walkup, and Mary K Kuhner. GraphML specializations to codify 1027

ancestral recombinant graphs. Fron Genet, 4:146, 2013. 1028

Patrick F McKenzie and Deren AR Eaton. ipcoal: An interactive Python package for simulating 1029

and analyzing genealogies and sequences on a species tree or network. Bioinformatics, 36(14): 1030

4193–4196, 2020. 1031

Gilean A. T. McVean and Niall J. Cardin. Approximating the coalescent with recombination. Philos 1032

Trans R Soc Lond B Biol Sci, 360:1387–1393, 2005. 1033

Karen H Miga, Sergey Koren, Arang Rhie, Mitchell R Vollger, Ariel Gershman, Andrey Bzikadze, 1034

Shelise Brooks, Edmund Howe, David Porubsky, Glennis A Logsdon, et al. Telomere-to-telomere 1035

assembly of a complete human X chromosome. Nature, 585(7823):79–84, 2020. 1036

Mark J Minichiello and Richard Durbin. Mapping trait loci by use of inferred ancestral recombi- 1037

nation graphs. The American Journal of Human Genetics, 79(5):910–922, 2006. 1038

Martin Möhle and Serik Sagitov. A classification of coalescent processes for haploid exchangeable 1039

population models. Annals of Probability, pages 1547–1562, 2001. 1040

Francesco Montinaro, Vasili Pankratov, Burak Yelmen, Luca Pagani, and Mayukh Mondal. Revis- 1041

iting the Out of Africa event with a novel deep learning approach. bioRxiv, 2020. 1042

Richard A Neher and Oskar Hallatschek. Genealogies of rapidly adapting populations. Proceedings 1043

of the National Academy of Sciences, 110(2):437–442, 2013. 1044

Dominic Nelson, Jerome Kelleher, Aaron P Ragsdale, Claudia Moreau, Gil McVean, and Simon 1045

Gravel. Accounting for long-range correlations in genome-wide simulations of large cohorts. 1046

PLoS genetics, 16(5):e1008619, 2020. 1047

Rasmus Nielsen. Estimation of population parameters and recombination rates from single nu- 1048

cleotide polymorphism. Genetics, 154(2):931–942, 2000. 1049

Matthew Osmond and Graham Coop. Estimating dispersal rates and locating genetic ancestors 1050

with genome-wide genealogies. bioRxiv, 2021. 1051

Pier Francesco Palamara. ARGON: fast, whole-genome simulation of the discrete time Wright- 1052

Fisher process. Bioinformatics, 32(19):3032–3034, 2016. 1053

Christian M Parobek, Frederick I Archer, Michelle E DePrenger-Levin, Sean M Hoban, Libby 1054

Liggins, and Allan E Strand. skelesim: an extensible, general framework for population genetic 1055

simulation in r. Molecular ecology resources, 17(1):101–109, 2017. 1056

32

Pavlos Pavlidis, Stefan Laurent, and Wolfgang Stephan. msABC: a modification of Hudson’s ms to 1057

facilitate multi-locus ABC analysis. Molecular Ecology Resources, 10(4):723–727, 2010. 1058

Stephan Peischl, E Koch, RF Guerrero, and Mark Kirkpatrick. A sequential coalescent algorithm 1059

for chromosomal inversions. Heredity, 111(3):200–209, 2013. 1060

Bo Peng, Huann-Sheng Chen, Leah EMechanic, Ben Racine, John Clarke, Elizabeth Gillanders, and 1061

Eric J Feuer. Genetic data simulators and their applications: an overview. Genetic epidemiology, 1062

39(1):2–10, 2015. 1063

Jim Pitman. Coalescents with multiple collisions. Annals of Probability, pages 1870–1902, 1999. 1064

Pierre Pudlo, Jean Michel Marin, Arnaud Estoup, Jean Marie Cornuet, Mathieu Gautier, and 1065

Christian P. Robert. Reliable ABC model choice via random forests. Bioinformatics, 32(6): 1066

859–866, 2016. 1067

Consuelo D Quinto-Cortés, August E Woerner, Joseph C Watkins, and Michael F Hammer. Mod- 1068

eling SNP array ascertainment with Approximate Bayesian Computation for demographic infer- 1069

ence. Scientific reports, 8(1):1–10, 2018. 1070

Fernando Racimo, David Gokhman, Matteo Fumagalli, Amy Ko, Torben Hansen, Ida Moltke, An- 1071

ders Albrechtsen, Liran Carmel, Emilia Huerta-Sánchez, and Rasmus Nielsen. Archaic adaptive 1072

introgression in TBX15/WARS2. Molecular Biology and Evolution, 34(3):509–524, 2017. 1073

Aaron P Ragsdale, Dominic Nelson, Simon Gravel, and Jerome Kelleher. Lessons learned from bugs 1074

in models of human history. American Journal of Human Genetics, 107(4):583–588, 2020. 1075

Peter Ralph, Kevin Thornton, and Jerome Kelleher. Efficiently summarizing relationships in large 1076

samples: a general duality between statistics of genealogies and genomes. Genetics, 215(3): 1077

779–797, 2020. 1078

Andrew Rambaut and Nicholas C Grassly. Seq-Gen: an application for the Monte Carlo simulation 1079

of DNA sequence evolution along phylogenetic trees. Bioinformatics, 13(3):235–238, 1997. 1080

Matthew D Rasmussen, Melissa J Hubisz, Ilan Gronau, and Adam Siepel. Genome-wide inference 1081

of ancestral recombination graphs. PLoS genetics, 10(5):e1004342, 2014. 1082

Louis Raynal, Jean Michel Marin, Pierre Pudlo, Mathieu Ribatet, Christian P. Robert, and Arnaud 1083

Estoup. ABC random forests for Bayesian parameter inference. Bioinformatics, 35(10):1720–1728, 1084

2019. 1085

Angel G Rivera-Colón, Nicolas C Rochette, and Julian M Catchen. Simulation with RADinitio 1086

improves RADseq experimental design and sheds light on sources of missing data. Molecular 1087

ecology resources, 21(2):363–378, 2021. 1088

Benjamin K Rosenzweig, James B Pease, Nora J Besansky, and Matthew W Hahn. Powerful 1089

methods for detecting introgressed regions from population genomic data. Molecular ecology, 25 1090

(11):2387–2397, 2016. 1091

Serik Sagitov. The general coalescent with asynchronous mergers of ancestral lines. Journal of 1092

Applied Probability, 36(4):1116–1125, 1999. 1093

33

Théophile Sanchez, Jean Cury, Guillaume Charpiat, and Flora Jay. Deep learning for population size 1094

history inference: Design, comparison and combination with approximate bayesian computation. 1095

Molecular Ecology Resources, 2020. 1096

Nathan K Schaefer, Beth Shapiro, and Richard E Green. An ancestral recombination graph of 1097

human, Neanderthal, and Denisovan genomes. Science Advances, 7(29):eabc0776, 2021. 1098

Stephan Schiffels and Richard Durbin. Inferring human population size and separation history from 1099

multiple genome sequences. Nat Genet, 46:919–925, 2014. 1100

Daniel R Schrider and Andrew D Kern. Supervised machine learning for population genetics: a 1101

new paradigm. Trends in Genetics, 34(4):301–312, 2018. 1102

Jason Schweinsberg. Coalescents with simultaneous multiple collisions. Electron Journal of Proba- 1103

bility, 5:1–50, 2000. 1104

Jason Schweinsberg. Coalescent processes obtained from supercritical Galton–Watson processes. 1105

Stochastic processes and their Applications, 106(1):107–139, 2003. 1106

Jason Schweinsberg. Rigorous results for a population model with selection II: genealogy of the 1107

population. Electronic Journal of Probability, 22:1–54, 2017. 1108

Sara Sheehan and Yun S Song. Deep learning for population genetic inference. PLoS computational 1109

biology, 12(3):e1004845, 2016. 1110

Sara Sheehan, Kelley Harris, and Yun S Song. Estimating variable effective population sizes from 1111

multiple genomes: a sequentially markov conditional sampling distribution approach. Genetics, 1112

194(3):647–662, 2013. 1113

Ilya Shlyakhter, Pardis C. Sabeti, and Stephen F. Schaffner. Cosi2: an efficient simulator of exact 1114

and approximate coalescent with selection. Bioinformatics, 30(23):3427–3429, 2014. 1115

Adam Siepel. Challenges in funding and developing genomic software: roots and remedies. Genome 1116

Biology, 20, 2019. 1117

Leo Speidel, Marie Forest, Sinan Shi, and Simon R. Myers. A method for genome-wide genealogy 1118

estimation for thousands of samples. Nature Genetics, 51(9):1321–1329, 2019. 1119

Leo Speidel, Lara Cassidy, Robert W Davies, Garrett Hellenthal, Pontus Skoglund, and Simon R 1120

Myers. Inferring population histories for ancient genomes using genome-wide genealogies. Molec- 1121

ular Biology and Evolution, 2021. 1122

Jeffrey P Spence and Yun S Song. Inference and analysis of population-specific fine-scale recombi- 1123

nation maps across 26 diverse human populations. Science Advances, 5(10):eaaw9206, 2019. 1124

Chris CA Spencer and Graham Coop. SelSim: a program to simulate population genetic data with 1125

natural selection and recombination. Bioinformatics, 20(18):3673–3675, 2004. 1126

Stephanie J Spielman and Claus O Wilke. Pyvolve: a flexible Python module for simulating 1127

sequences along phylogenies. PloS one, 10(9), 2015. 1128

34

Paul R Staab and Dirk Metzler. Coala: an R framework for coalescent simulation. Bioinformatics, 1129

32(12):1903–1904, 2016. 1130

Paul R Staab, Sha Zhu, Dirk Metzler, and Gerton Lunter. scrm: Efficiently simulating long se- 1131

quences using the approximated coalescent with recombination. Bioinformatics, 31(10):1680– 1132

1682, 2015. 1133

Fumio Tajima. Evolutionary relationship of DNA sequences in finite populations. Genetics, 105 1134

(2):437–460, 1983. ISSN 0016-6731. 1135

Lin Tang. Genealogy at the genome scale. Nature methods, 16(11):1077–1077, 2019. 1136

Tomoya Tanjo, Yosuke Kawai, Katsushi Tokunaga, Osamu Ogasawara, and Masao Nagasaki. Prac- 1137

tical guide for managing large-scale human genome data in research. Journal of Human Genetics, 1138

66(1):39–52, 2021. 1139

Simon Tavaré et al. Some probabilistic and statistical problems in the analysis of DNA sequences. 1140

Lectures on mathematics in the life sciences, 17(2):57–86, 1986. 1141

Drew E Terasaki Hart, Anusha P Bishop, and Ian J Wang. Geonomics: forward-time, spatially 1142

explicit, and arbitrarily complex landscape genomic simulations. Molecular Biology and Evolution, 1143

2021. 1144

Jonathan Terhorst, John A Kamm, and Yun S Song. Robust and scalable inference of population 1145

history from hundreds of unphased whole genomes. Nature genetics, 49(2):303–309, 2017. 1146

Kosuke M Teshima and Hideki Innan. mbs: modifying Hudson’s ms software to generate samples 1147

of DNA sequences with a biallelic site under selection. BMC Bioinformatics, 10(1):166, 2009. 1148

Kevin Thornton and Peter Andolfatto. Approximate Bayesian inference reveals evidence for a 1149

recent, severe bottleneck in a Netherlands population of Drosophila melanogaster. Genetics, 172 1150

(3):1607–1619, 2006. 1151

Kevin R Thornton. A C++ template library for efficient forward-time population genetic simulation 1152

of large populations. Genetics, 198(1):157–166, 2014. 1153

Tskit developers. Tskit: a portable library for population scale genealogical analysis. In preparation, 1154

2021. 1155

Yatish Turakhia, Bryan Thornlow, Angie S Hinrichs, Nicola De Maio, Landen Gozashti, Robert 1156

Lanfear, David Haussler, and Russell Corbett-Detig. Ultrafast sample placement on existing trees 1157

(UShER) enables real-time phylogenetics for the SARS-CoV-2 pandemic. Nature Genetics, pages 1158

1–8, 2021. 1159

Thimothée Virgoulay, François Rousset, Camille Noûs, and Raphaël Leblois. Gspace: an exact 1160

coalescence simulator of recombining genomes under isolation by distance. Bioinformatics, 2021. 1161

John Wakeley. Coalescent theory: an introduction. Roberts and Company, Englewood, Colorado, 1162

2008. 1163

John Wakeley, Léandra King, Bobbi S Low, and Sohini Ramachandran. Gene genealogies within a 1164

fixed pedigree, and the robustness of Kingman’s coalescent. Genetics, 190(4):1433–1445, 2012. 1165

35

Ke Wang, Iain Mathieson, Jared O’Connell, and Stephan Schiffels. Tracking human population 1166

structure through time from whole genome sequences. PLoS Genetics, 16(3):e1008552, 2020. 1167

Ying Wang and Bruce Rannala. Bayesian inference of fine-scale recombination rates using popula- 1168

tion genomic data. Philosophical Transactions of the Royal Society of London. Series B: Biological 1169

Sciences, 363(1512):3921–3930, 2008. 1170

Ying Wang, Ying Zhou, Linfeng Li, Xian Chen, Yuting Liu, Zhi-Ming Ma, and Shuhua Xu. A new 1171

method for modeling coalescent processes with recombination. BMC Bioinformatics, 15(1):273, 1172

2014. 1173

Daniel Wegmann, Christoph Leuenberger, Samuel Neuenschwander, and Laurent Excoffier. ABC- 1174

toolbox: a versatile toolkit for approximate Bayesian computations. BMC bioinformatics, 11(1): 1175

1–7, 2010. 1176

Peter R Wilton, Shai Carmi, and Asger Hobolth. The SMC’ is a highly accurate approximation to 1177

the ancestral recombination graph. Genetics, 200(1):343–355, 2015. 1178

Carsten Wiuf and Jotun Hein. The ancestry of a sample of sequences subject to recombination. 1179

Genetics, 151(3):1217–1228, 1999a. 1180

Carsten Wiuf and Jotun Hein. Recombination as a point process along sequences. Theoretical 1181

Population Biology, 55(3):248–259, 1999b. 1182

Carsten Wiuf and Jotun Hein. The coalescent with gene conversion. Genetics, 155(1):451–462, 1183

2000. 1184

Anthony Wilder Wohns, Yan Wong, Ben Jeffery, Ali Akbari, Swapan Mallick, Ron Pinhasi, Nick 1185

Patterson, David Reich, Jerome Kelleher, and Gil McVean. A unified genealogy of modern and 1186

ancient genomes. bioRxiv, 2021. 1187

Tao Yang, Hong-Wen Deng, and Tianhua Niu. Critical assessment of coalescent simulators in 1188

modeling recombination hotspots in genomic sequences. BMC Bioinformatics, 15:3, 2014. 1189

Xiguo Yuan, David J Miller, Junying Zhang, David Herrington, and Yue Wang. An overview of 1190

population genetic data simulation. Journal of Computational Biology, 19(1):42–54, 2012. 1191

Sha Zhu, James H Degnan, Sharyn J Goldstien, and Bjarki Eldon. Hybrid-Lambda: simulation 1192

of multiple merger and Kingman gene genealogies in species networks and species trees. BMC 1193

Bioinformatics, 16(292), 2015. 1194

Appendix 1195

Mutation generation 1196

The algorithm that msprime uses to simulate mutations on a tree sequence proceeds in two steps: 1197

first, mutations are “placed” on the tree sequence (i.e., sampling their locations in time, along the 1198

genome, and on the marginal tree), and then the ancestral and derived alleles of each mutation are 1199

36

generated. All mutation models share the code to place mutations, but choose alleles in different 1200

ways. 1201

First, mutations are placed on the tree sequence under an inhomogeneous Poisson model by 1202

applying them independently to each edge. If an edge spans a region [a, b) of the genome and 1203

connected parent and child nodes with times s < t, and the mutation rate locally is µ, then the 1204

number of mutations on the edge is Poisson with mean µ(t− s)(b− a), and each mutation is placed 1205

independently at a position chosen uniformly in [a, b) and a time uniformly in [s, t). In a discrete 1206

genome, all positions are integers and so more than one mutation may occur at the same position 1207

on the same edge. Otherwise (i.e., for an infinite-sites model), positions are rejection sampled to 1208

obtain a unique floating-point number. If an edge spans a region of the genome with more than one 1209

mutation rate, this is done separately for each sub-region on which the mutation rate is constant. 1210

Since each edge is processed independently, the algorithm scales linearly with the number of edges 1211

in the tree sequence. 1212

Next, alleles are chosen for each mutation. If the site was not previously mutated, then a 1213

new ancestral allele is chosen for the site, according to an input distribution of ancestral state 1214

allele probabilities. Then, each mutation on the tree is considered in turn, and a derived allele 1215

is randomly chosen based on the parental allele (which may be the ancestral allele or the derived 1216

allele of a previous mutation). Finally, information about the mutations are recorded in the site 1217

and mutation tables of the tree sequence. 1218

A mutation model must, therefore, provide two things: a way of choosing an ancestral allele 1219

for each new variant site, and a way of choosing a derived allele given the parental allele at each 1220

mutation. Perhaps the simplest mutation model implemented in msprime is the InfiniteAlleles 1221

mutation model, which keeps an internal counter so that the requested alleles are assigned subse- 1222

quent (and therefore unique) integers. 1223

The distribution of ancestral alleles is used to choose the allele present at the root of the tree 1224

at each mutated site, i.e., the root_distribution. Mutation models with a finite possible set 1225

of alleles have a natural choice for this distribution—the stationary distribution of the mutation 1226

process. (All mutation models are Markovian, so this may be found as the top left eigenvector of 1227

the mutation matrix.) This is the default in most models, except, e.g., the BinaryMutationModel, 1228

whose alleles are 0 and 1 and always labels the ancestral allele “0”. However, mutational processes 1229

are not in general stationary, so we often allow different root distribution to be specified. 1230

Since the general algorithm above applies mutations at a single rate independent of ancestral 1231

state, a model in which different alleles mutate at different rates must necessarily produce some 1232

silent mutations, i.e., mutations in which the derived allele is equal to the parental allele. To 1233

illustrate this, consider a mutation model in which A or T mutates to a randomly chosen different 1234

nucleotide at rate α and C or G mutates at rate β, with β < α. To implement this, first place 1235

mutations at the largest total rate, which is α. Then, at each site, choose an ancestral allele from 1236

the root distribution, and for each mutation, choose a derived allele as follows: if the parental allele 1237

is A or T , then choose a random derived allele different to the parental allele; if the parental allele 1238

is C or G, then choose the derived allele to be equal to the parent allele with probability β/(α+β), 1239

and randomly choose a different nucleotide otherwise. This produces the correct distribution by 1240

Poisson thinning: a Poisson process with rate α in which each point is discarded independently 1241

with probability β/(α + β) is equivalent to a Poisson process with rate β. All finite-state models 1242

(implemented under the generic MatrixMutationModel class) work in this way: mutations are 1243

placed at the maximum mutation rate, and then some silent mutations will result. 1244

In previous versions of msprime, silent mutations were disallowed, and we could have removed 1245

37

them from the output entirely. However, we have chosen to leave them in, so that for instance simu- 1246

lating with the HKY mutation model will result in silent mutations if not all equilibrium frequencies 1247

are the same. The presence of silent mutations may at first be surprising but there is a good reason 1248

to leave them in: to allow layering of different mutation models. Suppose that we wanted to model 1249

the mutation process as a mixture of more than one model, e.g., Jukes-Cantor mutations at rate µ1, 1250

and HKY mutations occur at rate µ2. Layering multiple calls to sim_mutations is allowed, so we 1251

could first apply mutations with the JC69 model at rate µ1 and then add more with the HKY model 1252

at rate µ2. However, there is a small statistical problem: suppose that after applying Jukes-Cantor 1253

mutations we have an A→ C mutation, but then the HKY mutations inserts another mutation in 1254

the middle, resulting in A→ C → C. If neither mutation model allows silent transitions, then this 1255

is clearly not correct, i.e., it is not equivalent to a model that simultaneously applies the two models. 1256

(The impact is small, however, as it only affects sites with more than one mutation.) The solution 1257

is to make the Jukes-Cantor model state-independent (also called “parent-independent”), by placing 1258

mutations at rate 4/3µ1 and then choosing the derived state for each mutation independently of the 1259

parent (so that 1/4 of mutations will be silent). If so—and, more generally, if the first mutational 1260

process put down is state-independent—then the result of sequentially applying the two mutation 1261

models is equivalent to the simultaneous model. To facilitate this, many mutation models have 1262

a state_independent option that increases the number of silent mutations and makes the model 1263

closer to state-independent. 1264

Silent mutations are fully supported by tskit, which correctly accounts for their presence when 1265

computing statistics and performing other operations. For example, silent mutations have no effect 1266

on calculations of nucleotide site diversity. 1267

Likelihood calculations 1268

We provide two functions to facilitate likelihood-based inference. Both are implemented only for 1269

the simplest case of the standard ARG with a constant population size, and require tree sequences 1270

compatible with the record_full_arg option as their arguments. 1271

The msprime.log_arg_likelihood(ts, r, N) function returns the natural logarithm of the
sampling probability of the tree sequence ts under the ARG with per-link, per-generation recom-
bination probability r and population size N (e.g. Kuhner et al., 2000, equation (1)). Specifically,
the function returns the logarithm of(

1

2N

)qc(∏
i:R

rgi

)
exp

(
−

q∑
i=1

[1

2N

(
ki
2

)
+ rli

]
ti

)
,

where ti is the number of generations between the (i − 1)th and ith event, ki is the number of 1272

extant ancestors in that interval, li is the number of links in that interval that would split ancestral 1273

material should they recombine, q is the total number of events in the tree sequence ts, qc is the 1274

number of coalescences, R is the set of indices of time intervals which end in a recombination, 1275

and gi is the corresponding gap: the length of contiguous non-ancestral material around the link 1276

at which the recombination in question took place. The gap indicates the number of links (or 1277

length of genome in a continuous model) at which a recombination would result in exactly the 1278

observed pattern of ancestral material in the ARG. For a continuous model of the genome and a 1279

recombination in ancestral material, we set gi = 1 and interpret the result as a density. 1280

The msprime.unnormalised_log_mutation_likelihood(ts, m) function returns the natural
logarithm of the probability of the mutations recorded in the tree sequence ts given the corre-

38

sponding ancestry, assuming the infinite sites model, up to a normalising constant which depends
on the pattern of mutations, but not on the tree sequence or the per-site, per-generation mutation
probability m. Specifically, the function returns the logarithm of

e−Tm/2
(Tm/2)M

M !

∏
γ∈M

hγ
T
,

where T and M are the total branch length and set of mutations in ts, respectively, and for a 1281

mutation γ, hγ is the total branch length on which γ could have arisen while appearing on all 1282

of the leaves of ts it does, and on no others. Unary nodes on marginal trees arising from the 1283

record_full_arg option mean that, in general hγ corresponds to the length of one or more edges. 1284

Multiple merger coalescent model 1285

Multiple merger coalescents, in which a random number of ancestral lineages may merge into a 1286

common ancestor at a given time, are referred to as Λ-coalescents. The rate at which a given group 1287

of k out of a total of b lineages merges is 1288

λb,k =

∫ 1

0

xk−2(1− x)b−kΛ(dx) + a1{k=2}, 2 ≤ k ≤ b, (2)

where 1{A} := 1 if A holds, and zero otherwise, a ≥ 0 is a constant, and Λ is a finite measure on
the unit interval without an atom at zero (Donnelly and Kurtz, 1999; Pitman, 1999; Sagitov, 1999).
There is also a larger class of simultaneous multiple merger coalescents involving simultaneous
mergers of distinct groups of lineages into several common ancestors (Schweinsberg, 2000). These
are commonly referred to as Ξ-coalescents, and often arise from population models incorporating
diploidy or more general polyploidy (Birkner et al., 2013a; Blath et al., 2016). To describe a general
Ξ-coalescent, let ∆ denote the infinite simplex

∆ :=

{
(x1, x2, . . .) : x1 ≥ x2 ≥ · · · ≥ 0,

∞∑
j=1

xj ≤ 1

}
.

The rate of mergers is determined by Ξ = Ξ0 + aδ0, where a ≥ 0 is a constant, δ0 is the Dirac delta
measure, and Ξ0 is a finite measure on ∆ with no atom at (0, 0, . . .). For an initial number of
blocks b ≥ 2 and r ∈ {1, 2, . . . , b − 1}, let k1 ≥ 2, . . . , kr ≥ 2 be the sizes of r merger events and
s = b − k1 − · · · − kr be the number of blocks not participating in any merger. The rate of each
possible set of mergers with sizes (k1, . . . , kr) is

λn;k1,...,kr;s =

∫
∆

s∑
`=0

∞∑
i1,...,ir+`=1
all distinct

(
s

`

)
xk1i1 · · ·x

kr
ir
xir+1

· · ·xir+`

1−
∞∑
j=1

xj

s−`
1∑∞

j=1 x
2
j

Ξ0(dx)

+ a1{r=1,k1=2},

and the number of such (k1, . . . , kr) mergers is

N (b; k1, . . . , kr) =

(
b

k1 . . . kr s

)
1∏b

j=2 `j !
,

39

where `j := #{i ∈ {1, . . . , r} : ki = j} is the number of mergers of size j ≥ 2 (Schweinsberg, 2000). 1289

Viewing coalescent processes strictly as mathematical objects, it is clear that the class of Ξ- 1290

coalescents contains Λ-coalescents as a specific example in which at most one group of lineages can 1291

merge at each time, and the class of Λ-coalescents contain the Kingman-coalescent as a special case. 1292

However, viewed as limits of ancestral processes derived from specific population models they are not 1293

nested. For example, one can obtain Λ-coalescents from haploid population models incorporating 1294

sweepstakes reproduction and high fecundity, and Ξ-coalescents for the same models for diploid 1295

populations (Birkner et al., 2013a). One should therefore apply the models as appropriate, i.e. Λ- 1296

coalescents to haploid (e.g. mtDNA) data, and Ξ-coalescents to diploid or polyploid (e.g. autosomal) 1297

data (Blath et al., 2016). 1298

In msprime we have incorporated two examples of multiple-merger coalescents. One is a diploid 1299

extension (Birkner et al., 2013a) of the haploid Moran model adapted to sweepstakes reproduction 1300

considered by Eldon and Wakeley (2006). Let N denote the population size, and take ψ ∈ (0, 1] 1301

to be fixed. In every generation, with probability 1 − εN a single individual (picked uniformly at 1302

random) perishes. With probability εN , bψNc individuals picked uniformly without replacement 1303

perish instead. In either case, a surviving individual picked uniformly at random produces enough 1304

offspring to restore the population size back to N . Taking εN = 1/Nγ for some γ > 0, Eldon and 1305

Wakeley (2006) obtain Λ-coalescents for which the Λ measure in (2) is a point mass at ψ. The 1306

simplicity of this model does allow one to obtain some explicit mathematical results (see e.g. Der 1307

et al. (2012); Eldon and Freund (2018); Freund (2020); Matuszewski et al. (2018)), and the model 1308

has also been used to simulate gene genealogies within phylogenies (Zhu et al., 2015). As well as 1309

the haploid model of Eldon and Wakeley (2006), msprime provides the diploid version of Birkner 1310

et al. (2013a), in which individuals perish as above, but replacements are generated by sampling 1311

a single pair of diploid individuals as parents, with children sampling one chromosome from each 1312

parent. Hence, there are four parent chromosomes involved in each reproduction event, which can 1313

lead to up to four simultaneous mergers, giving rise to a Ξ-coalescent with merger rate 1314

λDirac
b;k1,...,kr;s =

cψ2/4

1 + cψ2/4

4

ψ2

s∧(4−r)∑
`=0

(
s

`

)
(4)r+`(1− ψ)s−`

(
ψ

4

)k1+···+kr+`

+
1{r=1,k1=2}

1 + cψ2/4
, (3)

The interpretation of (3) is that ‘small’ reproduction events in which two lineages merge occur at 1315

rate 1/(1 + cψ2/4), while large reproduction events with the potential to result in simultaneous 1316

multiple mergers occur at rate (cψ2/4)/(1 + cψ2/4). 1317

The other multiple merger coalescent model incorporated in msprime is the haploid population 1318

model considered by Schweinsberg (2003), as well as its diploid extension (Birkner et al., 2018). 1319

In the haploid version, in each generation of fixed size N , individuals produce random numbers of 1320

juveniles (X1, . . . , XN) independently, each distributed according to a stable law satisfying 1321

lim
k→∞

CkαP (X ≥ k) = 1 (4)

with index α > 0, and where C > 0 is a normalising constant. If the total number of juveniles 1322

SN := X1 + . . .+XN produced in this way is at least N , then N juveniles are sampled uniformly at 1323

random without replacement to form the next generation. As long as E [X1] > 1, one can show that 1324

{SN < N} has exponentially small probability in N , and does not affect the resulting coalescent 1325

as N → ∞ (Schweinsberg, 2003). If α ≥ 2 the ancestral process converges to the Kingman- 1326

coalescent; if 1 ≤ α < 2 the ancestral process converges to a Λ-coalescent with Λ in (2) given by 1327

40

the Beta(2− α, α) distribution, i.e. 1328

Λ(dx) = 1{0<x≤1}
1

B(2− α, α)
x1−α(1− x)α−1dx, (5)

where B(a, b) = Γ(a)Γ(b)/Γ(a+b) for a, b > 0 is the beta function (Schweinsberg, 2003). This model 1329

has been adapted to diploid populations by Birkner et al. (2018), and the resulting coalescent is 1330

Ξ-coalescent with merger rate 1331

λBeta
b;k1,...,kr;s =

s∧(4−r)∑
`=0

(
s

`

)
(4)r+`
4k+`

B(k + `− α, s− `+ α)

B(2− α, α)
, (6)

where k := k1+. . .+kr (Blath et al., 2016; Birkner et al., 2018). The interpretation of (6) is that the 1332

random number of lineages participating in a potential merger is governed by the Λ-coalescent with 1333

rate (5), and all participating lineages are randomly allocated into one of four groups corresponding 1334

to the four parental chromosomes, giving rise to up to four simultaneous mergers. 1335

The stable law (4) assumes that individuals can produce arbitrarily large numbers of juveniles. 1336

Since juveniles are at least fertilised eggs, it may be desirable to suppose that the number of 1337

juveniles surviving to reproductive maturity cannot be arbitrarily large. Hence we also consider 1338

an adaptation of the Schweinsberg (2003) model, where the random number of juveniles has a 1339

deterministic upper bound φ(N), and the distribution of the number of juveniles produced by a 1340

given parent (or pair of parents in the diploid case) is 1341

P (X = k) = 1{1≤k≤φ(N)}
φ(N + 1)α

φ(N + 1)α − 1

(
1

kα
− 1

(k + 1)α

)
. (7)

See Eldon and Stephan (2018) for a related model. One can follow the calculations of Schweinsberg 1342

(2003) or Birkner et al. (2018) to show that if 1 < α < 2 then, recalling that k = k1 + · · ·+ kr, the 1343

merger rate is 1344

λBeta,M
b;k1,...,kr;s =

s∧(4−r)∑
`=0

(
s

`

)
(4)r+`
4k+`

B(M ; k + `− α, s− `+ α)

B(M ; 2− α, α)
(8)

where B(z; a, b) :=
∫ z

0
ta−1(1 − t)b−1dt for a, b > 0 and 0 < z ≤ 1 is the incomplete beta function,

and
M := lim

N→∞

φ(N)/N

φ(N)/N + E [X1]
∈ (0, 1]

(Chetwynd-Diggle et al., 2021). In other words, the measure Λ driving the multiple mergers is of 1345

the same form as in (5) with 0 < x ≤M in the case 1 < α < 2 and limN→∞ φ(N)/N > 0. If α ≥ 2 1346

or φ(N)/N → 0 then the ancestral process converges to the Kingman-coalescent (Chetwynd-Diggle 1347

et al., 2021). 1348

41

