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Abstract 30 

Information on the spatial distribution of forest aboveground biomass (AGB) and its uncertainty is important to 31 

evaluate management and conservation policies in tropical forests.  However, the scarcity of field data and robust 32 

protocols to propagate uncertainty prevent a robust estimation through remote sensing. We upscaled AGB from 33 

field data to LiDAR, and to landscape scale using Sentinel-2 and ALOS-PALSAR through machine learning, 34 

propagated uncertainty using a Monte Carlo framework and explored the relative contributions of each sensor. 35 

Sentinel-2 outperformed ALOS-PALSAR (R2 = 0.66, vs 0.50), however, the combination provided the best fit (R2 36 

= 0.70). The combined model explained 49% of the variation comparing against plots within the calibration area, 37 

and 17% outside, however, 94% of observations outside calibration area fell within the 95% confidence intervals. 38 

Finally, we partitioned the distribution of AGB in different management and conservation categories for evaluating 39 

the potential of different strategies for conserving carbon stock.40 



 

 

Introduction 41 

Tropical forests hold large stocks of carbon and play a key role in the global carbon cycle and its 42 

interactions with climate (Bonan et al., 2008; Pan et al. 2011; Mitchard, 2018). Carbon contained in 43 

aboveground biomass (AGB) is most susceptible to be emitted through deforestation and degradation, 44 

which are important sources of emissions in tropical forests (Houghton et al., 2005; Houghton, 2012; 45 

2013). Accurate estimation of the spatial distribution of AGB and its uncertainty is an important part of 46 

the implementation of strategies aimed at reducing emissions through deforestation and degradation 47 

throughout the tropics, such as REDD +. However, previous research has underestimated the uncertainty 48 

due to inadequate methods for estimating and propagating errors throughout the estimation process 49 

(Yunai et al., 2020). 50 

 The Yucatan Peninsula, located in the south-eastern part of Mexico, holds one of the largest 51 

extents of continuous tropical dry forest in Latin America (Dupuy et al., 2015). Mexico is an active 52 

participant in the REDD+ initiative, and particularly, the Yucatan Peninsula is a part of the REDD+ early 53 

actions priority areas, due to increasing pressure of permanent conversion to urban areas and the 54 

expansion of agriculture (Ellis et al., 2017). Several protected areas targeting conservation of forest 55 

resources are located within the Yucatan Peninsula (CONANP, 2017) encompassing old-growth forests. 56 

However, the extensive use of traditional agricultural practices, such as slash-and-burn agriculture, as 57 

well as other land use such as agricultural areas and pastures for cattle ranching, shapes the landscape 58 

outside the protected areas into a mosaic of forest areas in diverse stages of natural regeneration, with 59 

biodiversity and forest biomass gradually recovering after abandonment (Dupuy et al., 2012). In line with 60 

global policy efforts to restore forests across the tropics, significant areas of the Yucatan Peninsula have 61 

been allocated for restoration (CONANP, 2017). Whether this restoration will lead to significant carbon 62 

sequestration, and thus help mitigate climate change, will depend on the balance between forest loss 63 

through deforestation and degradation (including the exploitation of forest resources) and forest gain 64 

from forest regrowth from conservation and natural regeneration of disturbed areas (Houghton, 2013; 65 

Chazdon et al., 2016; Lewis et al., 2019).  66 

The balance between forest (re)growth and disturbance determines the distribution of AGB 67 

(Williams et al., 2013). Post-disturbance, forest ecosystems can aggrade, accumulating carbon until they 68 

reach a quasi-steady state, where gains through growth and recruitment become balanced by mortality 69 

losses. At steady state the distribution of AGB within the landscape tends towards a normal distribution 70 

(Williams et al., 2013). In disturbed forests, on the other hand, repeated removal of AGB results in a 71 

skewed distribution of AGB, resulting in a long tail of low AGB values. Therefore, information on the 72 

distribution of AGB can be used to assess the state of AGB stocks in areas under different management 73 

strategies. 74 



 

 

Reliable estimates of the spatial distribution of forest AGB are essential for effective forest 75 

management, to detect areas of loss and assess the success of conservation efforts. To date, AGB across 76 

Mexico has been mapped in a number of National (Cartus et al., 2014; Rodriguez-Veiga et al., 2016; 77 

Urbazev et al., 2018) and pan-tropical (Saatchi et al., 2011; Baccini et al., 2012., Avitabile et al., 2016) 78 

products. However, there are large and systematic uncertainties (Mitchard et al., 2013) with existing 79 

maps, which tend to underestimate the AGB in the Yucatan Peninsula (Rodriguez-Veiga et al., 2019; 80 

Hernández-Stefanoni et al., 2020), leading to potential underestimation of carbon emissions from 81 

deforestation and degradation. 82 

Production of regional AGB maps typically relies on upscaling field estimates of AGB based on 83 

a relationship between a network of field inventory plots (Chave et al., 2004; Réjou-Méchain et al., 2019) 84 

and remotely sensed data (Goetz et al., 2015). A number of passive sensors (e.g. multispectral optical 85 

imagery from Sentinel) 2) and active sensors (e.g. L-band Synthetic Aperture Radar (SAR) from 86 

Advanced Land Observation Satellite) (ALOS PALSAR; Shimada, 2010) are available that offer frequent 87 

coverage at global scales. Each sensor has its own limitations. Optical data are limited by cloud and 88 

smoke, both common in tropical forests (Asner et al., 2001); SAR penetrates clouds, and polarized 89 

backscatter has been shown to be sensitive to AGB (Mermoz et al., 2015, Thapa et al., 2015, Mitchard et 90 

al., 2009), however, optical and L-band saturate at ~150 Mg ha-1 (Lu et al., 2006; Mitchard et al., 2009; 91 

Joshi et al., 2017). Compared to tropical wet forests, old-growth tropical dry forest canopies are generally 92 

shorter and simpler, and AGB correspondingly lower (Murphy and Lugo 1986). Therefore, the AGB 93 

range occupied by tropical dry forests is potentially still within the sensitivity range of L-band systems. 94 

Multi-sensor approaches can leverage the strengths of these various data sources to improve AGB 95 

estimates (Bispo et al., 2020). 96 

Generating maps of AGB based on satellite data requires calibration against estimations of AGB 97 

typically taken from field inventories (e.g. Rodriguez-Veiga et al., 2016; Saatchi et al., 2011; McNicol et 98 

al., 2018). High-resolution airborne LiDAR surveys offer the potential to bridge the scale gap between 99 

inventory plots and satellite data and enhance the range of training sites over which to calibrate models 100 

(Urbazaev et al., 2016; Wulder et al., 2012; Asner et al., 2018; Bispo et al., 2020). LiDAR is particularly 101 

powerful as it captures precise information on forest structure without signal saturation in dense tropical 102 

forests (Lefsky et al., 1999; Asner et al., 2014). However, the cost of obtaining airborne LiDAR data 103 

through on-demand surveys is high. Consequently, publicly available data are typically scarce over many 104 

tropical forests. The GEDI mission offers global open, spatially distributed waveform LiDAR (Dubayah 105 

et al., 2020), which will undoubtedly facilitate calibration of satellite-based biomass products (e.g. Qi 106 

and Dubayah, 2016). However, GEDI has a nominal mission lifetime of two years from its on-orbit 107 

checkout in April 2019, thus limiting its scope for future and past monitoring of change in tropical forests. 108 

Therefore, it is important to develop methods that utilize spatially limited airborne surveys inside 109 



 

 

upscaling frameworks and quantify their predictive uncertainty with robust error estimation (Zhao et al., 110 

2020). In developing upscaling frameworks, particularly when working with spatially limited data, it is 111 

critical to account for spatial autocorrelation to avoid overfitting and thus greatly overstating the 112 

predictive power of upscaled models (Roberts et al., 2017; Ploton et al., 2020). 113 

This research has three core aims: (i) to produce accurate spatially explicit estimations of AGB 114 

and its uncertainty in a semi-deciduous tropical dry forest of the Yucatan Peninsula; (ii) to quantify the 115 

effectiveness of active and passive sensors and their combination for achieving (i); (iii) to use the spatial 116 

distribution of AGB to inform on the state of carbon stock of forest areas under different management 117 

and conservation conditions. We develop an upscaling framework that uses airborne LiDAR surveys as 118 

an intermediate step to link field inventory AGB estimates to Sentinel 2 and ALOS PALSAR data. First, 119 

we generate a LiDAR AGB model, AGBLiDAR, calibrated using field inventory data. Subsequently, we 120 

use a machine-learning framework to upscale these AGBLiDAR maps with satellite data from Sentinel 2 121 

and ALOS PALSAR to generate a satellite-based model for AGB, AGBSAT. Previous studies suggest 122 

image texture metrics can improve estimates of AGB in dense forests (Castillo et al., 2005; Wood et al., 123 

2012; Thapa et al., 2015; Hernández-Stefanoni et al., 2020). We therefore explore the potential for texture 124 

variables to improve the predictive power of our machine-learning models. We assess the effect of spatial 125 

resolution in the calibration of the LiDAR-to-satellite model and explore the improvement in 126 

performance of multi-sensor models over single-sensor models. We propagate uncertainty through the 127 

analysis using a Monte Carlo framework, including a spatially independent cross-validation strategy for 128 

robust estimates of errors arising during upscaling (e.g. Roberts et al., 2017). Finally, we use the AGBSAT 129 

map to gain insight into the impact of forest management (production vs. protection) on forest biomass, 130 

and thus the likely carbon sequestration potential for areas set aside for restoration in this region. 131 

 132 

Methods 133 

Study Area 134 

 The study area comprises 3600 km2 of tropical dry forest in the centre of the Yucatan Peninsula, 135 

Mexico, located between 20° 09’ 39” and 19° 37’ 08” N latitude and 89° 16’ and 89° 50’ 36” W longitude 136 

(Figure 1). The vegetation at this site is predominately semi-deciduous tropical dry forest, sitting in the 137 

transition zone between deciduous tropical dry forest in the drier northern part of the Peninsula and semi-138 

evergreen tropical forest in the south-west (Rzedowski 2006). Trees in this region are typically 8–15 m 139 

tall, and 50–75 % of trees drop their leaves during the dry season, which typically falls between 140 

November and April (Carnevali et al., 2003). The limestone terrain underlying this region is characterized 141 

by a mixture of low hills (elevation range: 16–216 m) and flat areas. Three protected natural reserves 142 

exist within the study area: Kaxil Kiuic Biocultural Reserve (Reserva Biocultural Kaxil Kiuic) (1,800 143 



 

 

ha) a private reserve located inside a state protected area: del Puuc Biocultural reserve (Reserva Estatal 144 

Biocultural del Puuc) (135,849 ha), and a small fraction (~ 5,000 ha) of the Bala’an K’aax national 145 

protected area (128,390 ha) (CONANP 2017) (Figure 1). Several low impact subsistence activities occur 146 

in the adjacent forest surrounding the Kaxil Kiuic reserve (swidden agriculture, with some selective 147 

logging and cattle grazing) and agricultural fields. Unprotected forest areas are subdivided into areas 148 

suitable for production of forest species and areas suitable for forest restoration. These areas were 149 

designated according to structural characteristics such various degrees of degradation in the restoration 150 

forest and tree cover for production forest. For a detailed description refer to CONAFOR (2013). 151 

[insert Figure 1 around here] 152 

Field inventory data 153 

 Field data were taken from two surveys: (i) The Intensive Carbon Monitoring (ICM) site; (ii) a 154 

sparser, spatially more extensive dataset across the region, obtained from the Mexican National Forest 155 

Inventory (NFI). The majority of plots (20) from the ICM are located within the Kaxil Kiuic Biological 156 

Reserve, and 12 are placed outside the reserve boundary in a chronosequence in several ages of 157 

abandonment. (Figure 1). In both cases, plots are composed of clusters of four GPS-located circular 158 

subplots of 400 m2. The plots are distributed systematically with one central plot surrounded by three 159 

peripheral plots at 90°, 120° and 240° azimuths within a 1 ha sampling area (CONAFOR 2013). Within 160 

each plot, height and Diameter at Breast Height (DBH Diameter at 1.30 m) were recorded for all woody 161 

plants with DBH > 7.5 cm and each individual was identified to species level. In addition, small stems 162 

(2.5 cm ≤ DBH < 7.5 cm) were also measured at the ICM plots, within a central subplot of 80 m2 (Caamal-163 

Sosa et al., 2016). AGB was calculated for each tree using the allometric equation of Chave et al. (2005) 164 

for trees with DBH ≥ 10 cm, and that of Ramirez et al., (2017), for trees with DBH < 10 cm, based on 165 

DBH and height from the above-mentioned datasets. Wood densities were taken from Sanaphre-166 

Villanueva et al. (2016) where species were present in the database, otherwise a mean value of wood 167 

density at the genus or the plot level were used. Plot AGB was estimated based as the sum of the AGB 168 

of all individual trees. In the ICM plots, the contribution of small stems averaged 24.4 ± 13.5 Mg ha -1. 169 

This contribution was added to the NFI plots to standardize the two datasets. In total, 33 plots (132 170 

subplots) fell within the LiDAR survey. A further 435 subplots fell outside the survey, providing 171 

independent validation of the final upscaled map outside the LiDAR survey. 172 

The workflow of methods applied in this research is displayed in supplementary material 1 and 173 

described in more details in the following sections. 174 

 175 

LiDAR data 176 



 

 

 We obtained LiDAR data from NASA’s Goddard's LiDAR, Hyperspectral and Thermal (G-177 

LiHT) airborne imager (Cook et al., 2013) available for the study area (Figure 1). The LiDAR point cloud 178 

was pre-processed using the USFS FUSION software (McGaughey et al., 2012) resulting in two 1-m 179 

resolution raster representing the top of canopy elevation and the underlying topography. The difference 180 

in elevation between these surfaces provides a direct estimate of canopy height. 181 

ALOS PALSAR and Sentinel-2 data processing 182 

Two scenes of Advanced Land Observation Satellite Phased Array L-Band Synthetic Aperture 183 

Radar (ALOS PALSAR) yearly mosaics at 25 m spatial resolution for the year 2015 were merged to 184 

cover the extent of the study area. The images, obtained in digital numbers, were converted to backscatter 185 

coefficient by means of the formula provided by Shimada et al. (2010). Afterward, they were pre-186 

processed to obtain gridded, topographically corrected backscatter amplitudes for HH and HV 187 

polarizations (Mitchard et al., 2009). The ALOS PALSAR backscatter was processed to remove 188 

“speckle” (Woodhouse, 2017) using the standard enhanced Lee filter (Lee 1980), as implemented in the 189 

GIS software package ENVI 5.0 (Hernández-Stefanoni et al., 2020). 190 

Two Sentinel 2A scenes corresponding to April 2017 were mosaicked using linear normalization 191 

in order to produce a seamless mosaic of the study area. We used the following bands: blue (492.4 nm, 192 

hereafter named as Band 1), green (559.8 nm, Band 2), red (664.6 nm, Band 3) and near infrared (832.8 193 

nm, NIR, Band 4) with a spatial resolution (pixel size) of 10 m. Also, we calculated the Normalized 194 

difference vegetation index (NDVI). 195 

We also used image texture metrics such as Gray Level Co-occurrence Matrix (GLCM Haralick 196 

et al., 1979), since they are able to capture the spatial variability in the spectral response of different 197 

elements in the landscape and have been related by previous work to variability in forest structure 198 

(Gallardo-Cruz et al., 2012, Wood et al., 2012). These statistics can be categorized into homogeneity and 199 

heterogeneity metrics. Higher values in metrics such as contrast and dissimilarity indicate a higher 200 

variability in the elements in an area, whereas metrics such as homogeneity, second moment and 201 

correlation, indicate similarity within an area. The mean and variance of the surface reflectance of bands 202 

in addition to the aforementioned GLCM measures (hereby texture measures) were calculated at the 203 

spatial resolution of the LiDAR-satellite upscaling step for all individual bands and for NDVI using 204 

scikit-image, a collection of algorithms for image processing in python 3.6 (Van der Walt et al., 2014).  205 

 206 

Upscaling field inventory to regional AGB 207 

 In order to estimate the spatial distribution of AGB we carried out a two-step process: (1) 208 

creation of the LiDAR AGB map, AGBLiDAR at 20 m resolution, corresponding to the resolution of the 209 



 

 

individual 0.04 ha inventory plots (AGBField); (2) upscaling AGBLIDAR across the study area using 210 

machine learning models based on data from Sentinel 2 and/or ALOS PALSAR to produce AGBSAT. 211 

Spatial mapping of AGB with LiDAR 212 

The first step in upscaling the field inventory AGB estimates (AGBField) was to extrapolate these 213 

across the LiDAR survey extent. To do this we fitted a power law relationship between the AGB of the 214 

0.04 ha inventory plots and the mean top of canopy height (TCH) measured by the LiDAR sensor within 215 

the footprint of each 0.04 plot (Figure 2). This follows from the allometric expectation of power law 216 

scaling of AGB with tree height, and therefore stand height (e.g. Asner and Mascaro, 2014). To reduce 217 

the risk of bias in canopy height estimates from areas of low point density (Roussel et al., 2017), we 218 

filtered out areas of the survey with less than 6 pts m2. We also investigated alternative variants and 219 

canopy metrics, including gap fraction (e.g. Jucker et al., 2017), but these did not lead to significant 220 

overall improvement in the model under leave-one-out (LOO) cross validation. 221 

To model the power law relationship, we fitted a linear mixed effects model in log-transformed space to 222 

account for the hierarchical structure of the inventory data (i.e. four 0.04 ha plots within each plot cluster): 223 

[𝑙𝑛(𝐴𝐺𝐵𝐿𝑖𝐷𝐴𝑅)]𝑖,𝑗 = 𝛼 + 𝛽*[𝑙𝑛(𝑇𝐶𝐻)]𝑖,𝑗 + 𝑢𝑖 + 𝜀𝑖,𝑗, 224 

where i represents the plot cluster, j represents the plot within the cluster, 𝛼 is the intercept term, 𝛽 is the 225 

fixed effect for 𝑙𝑛(𝑇𝐶𝐻), 𝑢𝑖represents a random effect associated with the plot cluster i, and 𝜀𝑖,𝑗 226 

represents the residuals for each plot. Finally, after back-transformation of the final estimates, we applied 227 

the necessary correction factor (Baskerville, 1972): 228 

𝐶𝐹 = 𝑒𝑥𝑝(
𝜎2

2
). 229 

where 𝜎2 is the RMSE of the model fit in log-space. The RMSE under Leave-One-Out (LOO) cross 230 

validation (Supplementary 2) was 46.14 Mg ha-1 and the R2 was 0.40, for a spatial resolution of 0.04 ha. 231 

Relatively high RMSE values are in line with expectations for small plot sizes (e.g. Mascaro et al., 2011), 232 

but relative errors should drop considerably when aggregating across larger regions (Gonzalez et al., 233 

2010). 234 

Upscaling AGB with satellite data 235 

In order to produce spatially explicit estimations of AGB in the Kiuic landscape we upscaled 236 

the AGBLiDAR map with the satellite data using random forest regression (Breiman, 2001), with a 237 

bootstrap bias correction (Hooker and Mentch, 2018; Xu et al., 2016). Random forest regression is a 238 

flexible, non-parametric machine learning algorithm that has previously been employed to fuse LiDAR 239 

and satellite data and produce maps of AGB and other structural parameters (e.g. Luther et al., 2019; 240 



 

 

Mascaro et al., 2014; Urbazaev et al., 2018; Wulder et al., 2012). Random forest models were fitted using 241 

the implementation of scikit-learn in Python (Pedregosa et al., 2011). To optimize the random forest 242 

regression models, we employed a Bayesian hyperparameter search seeded with 100 random trials, 243 

followed by a further 350 iterations (Bergstra et al., 2011). To determine the best spatial resolution at 244 

which to undertake the LiDAR-satellite upscaling, we tested the effect of aggregating to three different 245 

spatial resolutions (20 m, 50 m and 100 m). The relative importance of the sensors and textures to explain 246 

the variation in AGB in the fitted models was explored based on the drop in R2 following permutation of 247 

each variable (permutation importance e.g. Strobl et al., 2007). Given the strong collinearities between 248 

texture metrics for different bands, we permuted all variables associated with (i) each sensor, and (ii) 249 

each texture index, to capture their contributions more concisely. Finally, we compared the performance 250 

of the combined Sentinel 2/ALOS PALSAR model against single-sensor models to investigate the 251 

improvement in predictive power provided by the complementary attributes of these sensors. 252 

Error propagation 253 

Robust characterization of uncertainty is critical to understanding the utility and limitations of 254 

remotely sensed maps of AGB (Ploton et al., 2020). Uncertainty arises from a multitude of factors. 255 

Uncertainties in the field AGB estimates (Chave et al., 2004), combined with spatial registration errors 256 

(Hernández-Stefanoni et al., 2018), crown overlap at plot boundaries (Mascaro et al., 2011); and temporal 257 

lags (Babcock et al., 2016; Clark and Kellner, 2012) lead to uncertainties in AGBLiDAR. These 258 

uncertainties are compounded by unexplained variance in the subsequent LiDAR-satellite upscaling 259 

model. In addition, geospatial data are frequently spatially autocorrelated. In scenarios like this one, the 260 

clustered geometry of the available LiDAR data survey precludes the robust inclusion of a spatial effect 261 

into the random forest models through additional spatial covariates (e.g. Mascaro et al., 2014). Spatial 262 

autocorrelation, if not accounted for, can lead to overfitting resulting in significant underestimation in 263 

predictive error during cross-validation and misleading diagnostic analyses regarding feature importance 264 

(Roberts et al., 2017; Ploton et al., 2020). 265 

In order to propagate uncertainty in the upscaling process we employed Monte-Carlo 266 

simulations to propagate errors across every step of the upscaling framework. Uncertainty in AGBfield 267 

was estimated based on estimates of uncertainty in the biomass of individual trees, assumed to be 47% 268 

of tree AGB (see Chave et al., 2004). Uncertainties between trees were assumed to be independent and 269 

thus they were aggregated at the plot-level by adding in quadrature (the square root of the sum of 270 

squares), a standard procedure for combining uncorrelated errors (Yanai et al., 2020). Relative errors at 271 

the plot level were therefore significantly lower and tended to be dominated by the largest trees. To 272 

characterize the uncertainty in AGBLiDAR, we fitted the mixed effects model 100 times. In each iteration 273 

we resampled the biomass of AGBfield assuming normally distributed uncertainties. We accounted for 274 



 

 

spatial registration errors by shifting the plot location randomly assuming a standard deviation of 5 m in 275 

the plot coordinates. Corresponding uncertainties in TCH were strongly non-normal in some cases, 276 

particularly close to forest edges. We did not attempt to account for canopy overlap, or temporal lags. 277 

Fitting the model 100 times produced 100 candidate AGBLiDAR maps for upscaling with the satellite data. 278 

To propagate uncertainty across the LiDAR-satellite step, the 100 AGBLiDAR maps were used as 279 

the target for an ensemble of 100 random forest models. To account for predictive uncertainty of these 280 

models, we also fitted a model to predict the median AGBLiDAR using a 16-fold buffered, blocked cross 281 

validation procedure, whereby the training data were split into square blocks (block width 1 km), and 282 

randomly allocated to one of the folds. In each iteration, we buffered the validation set by a distance of 283 

500 m to reduce the impact of spatial autocorrelation and therefore minimize overfitting (Note that in the 284 

optimization and feature importance calculations, only five folds were used to reduce processing time). 285 

This spatial cross-validation was undertaken for the three tested upscaling resolutions (20 m, 50 m and 286 

100 m) to determine the best option for upscaling (Figure 4). Errors in predicted AGB resulting from 287 

fitted spatial correlations were modelled by resampling from the residuals from the results of this cross-288 

validation (using median AGBLiDAR). As the residuals were not uniformly distributed along the range of 289 

predicted AGB (AGBupscaled), residuals were resampled from a 20 Mg ha-1 window around the AGB 290 

estimate for each pixel. Thus, the 100 x 100 iterations of the upscaling procedure capture both uncertainty 291 

in AGBLiDAR propagated through the random forest models, and the predictive uncertainty associated 292 

with fitting models with spatially autocorrelated data. We present the median and 95% confidence 293 

intervals as our best estimates and uncertainty in the upscaled AGB maps (AGBupscaled). 294 

Comparison with other work 295 

 The AGB map obtained in this study was compared with previous AGB maps generated by 296 

Santoro et al., (2018), Rodriguez-Veiga et al., (2016) and Cartus et al., (2014). We performed a validation 297 

between field AGB data used in this study for validation and estimated AGB values from our AGB map 298 

and  the previously mentioned maps. We also calculated the root mean square error (RMSE) and the 299 

relative root mean square error (%RMSE) obtained as the RMSE divided by mean AGB observed values 300 

for comparisons.  301 

Relative contributions by sensor 302 

In order to obtain the relative contributions by sensor, we partitioned the information provided by 303 

(a) Sentinel 2 reflectance and texture; (b), ALOS PALSAR backscatter and texture; and (c) shared 304 

variation, which is the variance in AGB that can be explained by either sensor. Total variation explained 305 

by the full model using information from both sensors can be summarized as: Y = (a + b + c) + ε, where 306 

ε is variation that cannot be accounted for by the predictor variables. The relative contribution of the two 307 



 

 

sensors and the shared variation can then be partitioned by comparison against the variance explained by 308 

single sensor models using only Sentinel-2 (a + c) and only ALOS PALSAR (b + c).  309 

 310 

 311 

Results 312 

Calibrating LiDAR biomass estimates at the plot scale 313 

Validation of the AGB TCH model had an R2= of 0.40, RMSE of 46.14 Mg ha-1 between AGB 314 

measured by Top of Canopy Height (TCH) and our field calculated AGB (in 400 m2 plots) 315 

(Supplementary 2). Due to spatial uncertainty, heterogeneous canopies can result in large uncertainties 316 

in plot TCH, particularly where plots are located at or close to sharp transitions between short, secondary 317 

vegetation and old-growth forest. In this case, three field plots showed large residuals in the validation 318 

of the AGB TCH model (Figure 2). This derives from the presence of very large trees inside these plots 319 

which increase the field calculated biomass considerably, without a corresponding increase in height or 320 

TCH. Nevertheless, at 20 m resolution, estimations of AGB using LiDAR TCH show a good fit with the 321 

power law relationship (Figure 2). 322 

[insert figure 2 around here] 323 

Upscaling AGB using single sensor and combined models 324 

 Models upscaled at 100 m resolution provided greater explanatory power (R2 = 0.70, RMSE = 325 

27.9%) than either models upscaled at 50 m (R2 = 0.67, RMSE = 29.8%) or 20 m resolution (R2 = 0.62, 326 

RMSE = 31.8%), after aggregation post-upscaling to the same resolution grid (i.e. 100 m). This highlights 327 

that the reduction in noise by averaging spatially prior to upscaling led to a more robust upscaling model. 328 

Therefore, we only consider the 100 m resolution models from now onwards. 329 

The upscaled models were clearly able of distinguishing forest from non-forest cover (Figure 330 

3). However, sensitivity to AGB variations within the forest area was limited, especially for models 331 

reliant only on ALOS PALSAR, which had very little explanatory power regarding AGB variations above 332 

100 Mg ha-1 (Figure 3). The best upscaling model combined both Sentinel 2 and ALOS PALSAR (R2 = 333 

0.70; RMSE = 27.8%). In comparison, the Sentinel 2-only model had slightly lower predictive power 334 

(R2 = 0.66; RMSE = 29.5%), while the model solely reliant on ALOS PALSAR performed worst (R2 = 335 

0.50; RMSE = 36.2%). Sentinel 2 explained a greater amount of variation of AGB (20%) solely compared 336 

to ALOS PALSAR (4 %). The majority of the explained variation (46% of the total variance) was shared 337 

between both sensors. Uncertainties in the combined model and in the Sentinel 2 model were highest in 338 

the mid-range of AGB < 100 Mg ha-1. Conversely, ALOS PALSAR showed higher uncertainty above 339 

100 Mg ha-1, as its sensitivity saturated (Figure 3). 340 



 

 

[insert figure 3 around here] 341 

Relative contributions by sensor and variable importance 342 

Sentinel 2 explained a greater amount of variation of AGB (20 %) by itself, compared to ALOS PALSAR 343 

(4 %), although a considerable amount of variation was shared between both sensors (46%). Sentinel 2 344 

on its own was able to provide reasonable estimations of AGB in the study area, explaining 66 % in the 345 

single sensor model, whereas ALOS PALSAR proved to be less effective explaining 50%, while the 346 

combination of sensors provided the best fit (70 %).  347 

The results of the permutation importance under spatial cross-validation highlighted the relative 348 

importance of Sentinel 2 reflectance and texture measures over ALOS PALSAR in the random forest 349 

model (Figure 4). Moreover, of the texture metrics, only the mean of AGB showed a high importance in 350 

the model. Variables relating to heterogeneity (variance, contrast, dissimilarity) had marginal importance. 351 

Variables relating to homogeneity (correlation, angular second moment 'ASM') were not important 352 

indicated by the low values in permutation importance (Figure 4). 353 

[insert figure 4 around here] 354 

Validation of the AGB random forest model inside vs. outside the LiDAR survey area 355 

  AGB showed a much higher fit (R2 = 0.49) and a much lower error (relative RMSE = 24.6%) 356 

inside the LiDAR survey extent compared to outside the LiDAR survey area (R2 = 0.17 and relative 357 

RMSE = 39.3%) (Figure 5). Importantly, the uncertainty estimates appear to be robust as estimates for 358 

all plots inside the LiDAR survey area and 94% of plots outside of the LiDAR survey fell under the 95% 359 

confidence intervals for AGBField and AGBsatellite. Outside the LiDAR survey extent there is one plot with 360 

unusually large trees and exceptionally high AGBfield (>300 Mg ha-1), considerably higher than any of 361 

the other plots in the inventory. Excluding this plot leads to a significant improvement in the fit outside 362 

of the LiDAR area (R2 = 0.22, relative RMSE = 36%).  363 

The validation analysis to compare the AGB maps with previous studies revealed that the RMSE 364 

and %RMSE obtained in this study were the lowest compared to the other maps (RMSE= 42.5 Mg ha-1 365 

and %RMSE = 35.0 in this study, RMSE= 51.2 Mg ha-1 and %RMSE = 42.0 for Santoro et al (2018), 366 

RMSE= 57.5 Mg ha-1 and  %RMSE = 47.0 for Cartus et al. (2016) and RMSE= 90.59 Mg ha-1 367 

and  %RMSE = 90 in that of Rodriguez-Veiga et al (2014)) (Figure 6). 368 

[insert figure 5 around  here] 369 

[insert figure 6 around  here] 370 

Spatial distribution of AGB and its uncertainty in the study area 371 

The spatial distribution of AGB (Figure 7) indicates that the higher biomass areas are located in 372 

the north-east portion of the window, coinciding with the distribution of the state reserve Reserva Estatal 373 

Biocultural del Puuc. Lower biomass areas are distributed around non-forest urban or agricultural areas, 374 



 

 

where forests are likely to be more degraded. The largest uncertainties are associated to areas with 375 

intermediate ranges (50 – 75 Mg ha-1) of AGB (Figure 8). 376 

[insert figure 7 around here] 377 

[insert figure 8 around here] 378 

 Land management appears to have a significant effect on forest AGB stocks (Tables 1 and 2). 379 

The highest AGB densities by management class were located in the protected reserves of Kaxil Kiuic 380 

and Del Puuc Biocultural reserve. Conversely, the small portion of the Bala’an Kaax reserve contained 381 

within our study area showed similar AGB to unprotected forest. 382 

Moreover, we found greater areas of high biomass and smaller areas of low AGB in protected areas. 383 

Forest areas suitable for production and restoration showed large areas of both low and high AGB. 384 

 Comparing the distributions of the median AGB estimates from the Monte Carlo upscaling 385 

process there are marked differences between the protected and unprotected areas (Figure 9). Kaxil 386 

Kiuic and Reserva Estatal Biocultural del Puuc have higher AGB, with very low frequencies with AGB 387 

< 100 Mg ha-1. These distributions contrast with the potential production and restoration areas, which 388 

both show much lower frequencies in the upper end of the AGB distributions, and a long tail of AGB < 389 

100 Mg ha-1. This is consistent with these areas of forest being subject to high levels of disturbance 390 

(Williams et al., 2013). The portion of the Reserva Bala’an Kaax within the study area has a similar 391 

distribution of AGB to forest production and restoration areas, suggesting this area of the reserve may 392 

have been subjected to similar degradation pressures. 393 

[insert figure 9 around here] 394 

 395 

Discussion 396 

This study provides a spatially explicit estimation of AGB and its uncertainty in a semi-397 

deciduous tropical dry forest of Yucatan using LiDAR data and a combination of information from 398 

passive and active sensors. As a first step, LiDAR data was used to estimate AGB using field plot 399 

information. The effectiveness of using LiDAR-derived AGB for upscaling plot-based estimations to 400 

continuous landscape level estimations has been demonstrated in various forests worldwide (Mascaro et 401 

al., 2011, Wulder et al., 2012, Asner et al., 2018). Random Forest models using information from a 402 

combination of Sentinel 2 and ALOS PALSAR were able to upscale AGB estimates based on a locally 403 

calibrated map of AGB based on LiDAR top-of-canopy height. Several studies have shown that tropical 404 

forest AGB can be estimated using ALOS PALSAR backscatter (Mitchard et al., 2013; Hernández-405 

Stefanoni et al., 2020) and Sentinel 2 reflectance (Pandit et al., 2018), however, the combination of both 406 

sensors has been little explored (but see Vafaei et al., 2017). To assess the improvement on the precision 407 

of estimates by combining active and passive sensors we tested each sensor individually then produced 408 

a combined model using information from both sensors. Our results suggest that the estimation of AGB 409 



 

 

in the semi deciduous tropical forest of Yucatan can be improved through a combination of ALOS 410 

PALSAR backscatter information and Sentinel 2 reflectance and texture variables, increasing the 411 

variance explained by the best single sensor model from 66% to 70% and reducing the RMSE from 412 

29.5% to 27.8%. This improvement in AGB estimation is similar to the results found in Vafaei et al., 413 

(2017) in a subtropical forest in Iran also combining ALOS PALSAR backscatter and Sentinel 2. 414 

Furthermore, we tested the contribution of each sensor to explain AGB and found that Sentinel 2 on its 415 

own explained a greater amount of variation of AGB, compared to ALOS PALSAR, although the 416 

majority of the explained variation was shared between both sensors. One of the main caveats in the 417 

sensor combination approach is the difference in spatial resolution between the ALOS PALSAR 418 

backscatter (25 m) and Sentinel 2 (10 m). It is possible that this difference has an impact on the amount 419 

of variability that can be captured by each sensor at the plot level. Given its higher spatial resolution, 420 

Sentinel 2 could capture a greater range of variability of AGB within the plots than ALOS PALSAR. 421 

Coarser resolutions may not reflect the variability of structure as they contain averaged information from 422 

varying heights and may include reflectance from non-forest areas or canopy gaps within the same pixel 423 

(Lu, 2006).  424 

We tested the use texture information as a way to quantify the variability of reflectance and 425 

backscatter within the plots and related this to LiDAR-estimated AGB. In this case, the upscaled models 426 

were principally reliant on the mean with limited additional contributions to the predictive power added 427 

by texture information. Other studies that have used texture information from ALOS PALSAR 428 

backscatter (Thapa et al., 2015; Hernández-Stefanoni et al., 2020) and Sentinel 2 reflectance (Pandit et 429 

al., 2019) have found large improvements in estimations of AGB by capturing the spatial variability and 430 

minimizing sensor saturation. To test the effect of spatial resolution in the upscaling process we compared 431 

models with different resolutions and found that an upscaling resolution of 100 m increased the fit of  the 432 

best model by 8% and decreased the errors by 3.9%, compared to upscaling at 20 m resolution 433 

(Supplement 3). This suggests that the aggregation of information prior to upscaling might improve 434 

models and reduce the overall errors. However, as there is a trade-off between the information lost and 435 

the reduction of error when aggregating information (Camel, 2003), we chose not to aggregate further 436 

than 100 m, as this would reduce the spatial information gained from Sentinel’s 10 m resolution. The 437 

comparison with the work of Santoro et al., (2018), Rodriguez-Veiga et al., (2016), and Cartus et al., 438 

2014 suggests that by performing a bias-corrected upscaling procedure we were able to reduce the error, 439 

thus, improving upon previous AGB mapping efforts in the dry forests of Yucatan. Such procedures can 440 

be used to produce AGB maps to inform regional and national strategies for reducing greenhouse gas 441 

emissions such as REDD+. 442 

Furthermore, by propagating errors through each step of the upscaling process and applying a 443 

spatially independent validation procedure, we were able to produce a robust estimation of errors (94% 444 



 

 

of field AGB estimates for aggregated plot clusters overlap within the estimated 95% confidence interval 445 

outside of the LiDAR survey area). While the error propagation estimates appear to be robust, it is evident 446 

from the distribution of residuals (Figure 8) that there remains a trend in the residuals highlighting a 447 

tendency to underpredict the AGB of higher biomass field plots and overpredict the AGB at low biomass 448 

field plots. This suggests that the bootstrap bias correction was not sufficient to fully remove the bias in 449 

the random forest models, possibly a consequence of spatial correlations. Given that degradation and 450 

deforestation act to lower AGB, this outstanding source bias will likely lead to conservative estimates of 451 

the AGB differences between protected and unprotected forests, and therefore conservative estimates of 452 

restoration potential. This result suggests an improvement of previous efforts to estimate AGB in semi-453 

deciduous dry forests of the Yucatan Peninsula using active sensors such as ALOS PALSAR (Hernandez-454 

Stefanoni et al., 2020) and national scale efforts (Cartus et al., 2014; Rodriguez-Veiga et al., 2016).  455 

Previous attempts to map AGB across Mexico have found a wide range of AGB values in the Yucatan 456 

Peninsula reaching 150 Mg ha-1 (Hernandez-Stefanoni et al., 2020; Rodriguez-Veiga et a., 2016; Cartus 457 

et al., 2014) and greatest uncertainties in the lower end of the AGB distribution (Rodriguez-Veiga et al., 458 

2016). The spatial distribution of uncertainty showed that the largest uncertainties were associated to the 459 

middle range of AGB distribution (Figures 7 and 8) and it is derived from the underrepresentation of 460 

areas with this range of AGB values ranging between 25 and 75 Mg ha-1 in the calibration data (Figure 461 

8). However, in accordance with Hernandez-Stefanoni et al. (2020), estimates were also found to be 462 

constrained by the range of AGB variation captured by LiDAR data available across the calibration 463 

landscape. In particular, the predictability of the upper bounds of the biomass ranges was severely 464 

affected by the lack of LiDAR coverage in the very high biomass forest (> 200 Mg ha -1). Therefore, 465 

areas with high biomass, located in the north-east of the window area, in the protected area of “del Puuc 466 

Biocultural reserve”, are underrepresented in the LiDAR survey with only a portion of the area, 467 

corresponding to the location of “Kaxil Kiuic Biocultural reserve”, represented by both field and LiDAR 468 

data (Figure 1). To estimate AGB in tropical forests where forest protection areas and areas where 469 

disturbances such as slash-and-burn agriculture shape the spatial variability of forest AGB, the accuracy 470 

of estimates will depend on the distribution of LiDAR and field data available across all the possible 471 

ranges of AGB. As it has been previously cautioned, the range of variability in AGB captured by both 472 

the LiDAR data and the forest inventory constrained the next stages of the analysis (Hernadez-Stefanoni 473 

et al., 2020), limiting the predictability in the lower and upper ranges of our estimated AGB. In order to 474 

reduce the uncertainty in AGB mapping, future upscaling efforts could aim for a more thoroughly 475 

distributed airborne sampling campaign that better characterizes the full range of AGB values in the 476 

landscape. Moreover, uncertainty in the upper and lower ranges of AGB was reduced when combining 477 

information from both sensors, suggesting that the combination of these sensors is an effective way to 478 

improve AGB mapping. 479 



 

 

Within the study region, larger areas with high biomass were found in the protected areas of 480 

“del Puuc Biocultural reserve” and “Kaxil Kiuic Biocultural Reserve”, which were created for the 481 

conservation of forests and their environmental services (Table 2). In particular, the Kaxil Kiuic protected 482 

area shows a more symmetric distribution with the highest mean AGB (Figure 9; Table 2) indicating a 483 

large proportion of this area may be approaching a steady state condition (Williams et al., 2013). 484 

However, several other low impact activities such as extraction of woody species for fuel, and agricultural 485 

and pastures for cattle ranching take place inside del Puuc Biocultural reserve. This is reflected in the tail 486 

of low AGB values in this area, although significantly less prevalent than outside the forest reserves. The 487 

study region has a long history of land use, mainly for slash-and-burn agriculture, also practiced presently 488 

in the area (Ellis et al., 2017). The effect of the more recent repeated disturbance is reflected in the AGB 489 

distributions of the production forest, which have skewed AGB distributions with a long tail of low AGB 490 

(Figure 9). Critically, regions allocated for restoration have large areas with low AGB (Table 2) and 491 

similar AGB distributions to existing production forest (Figure 9). Therefore, while there is potential for 492 

substantial gains in aboveground carbon stocks through restoration, whether these gains are realized is 493 

likely to be dependent on these restored forests being protected and allowed to develop into high biomass 494 

old-growth systems (Lewis et al., 2019; Chazdon et al., 2016). 495 

Conclusions 496 

LiDAR data proved a useful upscaling tool for calibrating and validating satellite models of AGB, 497 

however, the reliability of these estimates is constrained by the degree to which the sampled areas 498 

represent the range of AGB values found in the whole landscape, to avoid potential biases when upscaling 499 

outside the training area. The sensitivity to within-forest variation in AGB was more limited particularly 500 

in the upper end of the AGB range, thus limiting our ability to predict AGB in high biomass forest areas.  501 

We found that the information from active (ALOS PALSAR backscatter) and passive (Sentinel 2 502 

reflectance) sensors can be combined to improve spatially explicit estimations of AGB in semi-deciduous 503 

tropical forest. However, Sentinel 2 explained a higher proportion of the variance in the combined model 504 

and performs better than ALOS PALSAR when considered separately. We believe the methods described 505 

in this study can be used to improve estimations of AGB and its uncertainty in tropical forests. Using a 506 

combination of LiDAR and satellite data, we upscaled LiDAR estimates of AGB across a landscape of 507 

semi-deciduous forest in the Yucatan peninsula to gain insights on the distribution of AGB in different 508 

categories of forest protection. The frequency distributions of AGB obtained from our maps highlighted 509 

the benefits of protected areas for maintaining forest carbon stocks. On the other hand, a significantly 510 

greater portion of the areas designated for restoration currently have low AGB, comparable to the 511 

distribution of AGB in existing production forest. The similarity in the distributions of these categories 512 

suggests areas of restoration should be effectively protected for carbon sequestration, biodiversity 513 



 

 

conservation and for other important ecosystem services, which can take several decades to reach old-514 

growth forest values. 515 

 We believe the information obtained can provide insights on the state of the AGB stock in 516 

different management or protection categories in the region and thus aid conservation, restoration, and 517 

sustainable management policies in the semi-deciduous forests of the Yucatan Peninsula. 518 
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 782 

Table 1. Mean AGB and confidence intervals (CI) [Mg ha -1] for protected areas and areas without 783 

protection in the Kiuic area. 784 

Management 

condition 
Site AGB CI 

Protected  Kaxil Kiuic 129.14 125 - 134 

 
Reserva Estatal 

Biocultural del Puuc 
126.13 122 - 132 

 Bala'an Kaax 100.64 97 - 104 

Without protection Restoration 106.63 103 - 110 

  Production 99.23 96 - 103 

 785 

  786 



 

 

Table 2. Summary of the area occupied by different AGB classes for different management 787 

conditions, with 95 confidence intervals provided in parentheses. Area in size classes is expressed as 788 

percentage relative to total area (last column). 789 

 Area by AGB Class (%) Total 

Area 

(km2) 

AGB class 

(Mg ha-1) 
0-25 25-50 50-75 75-100 100-125 125-150 >150 

Kaxil Kiuic  

(protected) 

0.2 

(0.0/0.3) 

1.0 

(0.5/1.6) 

4.5 

(3.2/5.8) 

11.8 

(9.5/14.0) 

26.5 

(23.1/29.7) 

30.3 

(27.8/32.6) 

25.7 

(20.8/32.3) 
18.5 

Reserva 

Estatal 

Biocultural 

Del Puuc 

(protected) 

2.3 

(2.0/2.6) 

3.1 

(2.6/3.5) 

5.3 

(4.5/6.0) 

10.6 

(9.2/11.9) 

22.1 

(19.1/24.7) 

27.4 

(25.1/28.9) 

28.7 

(23.8/35.7) 
697.0 

Bala’an 

kaax 

(protected) 

7.2 

(5.9/8.3) 

9.4 

(8.3/10.4) 

10.5 

(9.3/11.7) 

15.2 

(12.7/16.7) 

25.0 

(23.3/26.9) 

20.0 

(18.5/21.8) 

12.1 

(9.9/14.9) 
53.3 

Production 

forest 

10.2 

(9.6/10.7) 

6.6 

(6.1/7.1) 

8.0 

(7.1/8.8) 

13.5 

(12.1/14.5) 

24.2 

(22.5/25.5) 

21.3 

(20.1/22.9) 

13.2 

(11.0/16.5) 
2154.2 

Restoration 

forest 

7.6 

(6.8/8.2) 

6.9 

(6.2/7.5) 

8.1 

(7.2/8.8) 

12.8 

(11.4/14.0) 

23.1 

(21.0/24.9) 

22.4 

(21.3/23.7) 

17.6 

(14.7/21.7) 
216.8 
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Figure captions 793 

 794 

Figure 1. Location of study area in Mexico (upper-right box) and location of protected areas within study 795 

area, LiDAR and field data used in this study. National Protected Area (Bala’an K’aax), State Protected 796 

Area (del Puuc Biocultural Reserve) (CONANP 2017) and private protected area (Kaxil Kiuic 797 

Biocultural Reserve). Areas without protection are subdivided into areas suitable for production and those 798 

suitable for restoration (CONAFOR 2015). 799 

Figure 2. Comparison of field inventory AGB and LiDAR TCH for the 0.04 ha inventory plots, shown 800 

with a series of example plots (numbers in blue) highlighting variations in TCH across the range of AGB 801 

spanned by the plot network. In the first panel, the line is the fitted relationship between field AGB and 802 

plot TCH. Error bars (horizontal and vertical lines) represent the uncertainty in plot field AGB (points), 803 

and the uncertainty (both 50% CI and 95% CI shown) in plot TCH, modelled by randomly sampling the 804 

TCH with positional uncertainty. 805 

Figure 3. Regression lines, R2, RMSE and relative %RMSE based on a five-fold buffered-blocked cross-806 

validation between LiDAR estimated AGB (AGBlidar) and upscaled AGB (AGBsatellite) for models using 807 

both sensors a), Sentinel 2 reflectance and textures b), and ALOS PALSAR and textures c). The dashed 808 

line represents the 1:1 relationship, the solid and dotted lines represent the median estimate and 95% 809 

confidence interval for a 20 Mg ha-1 moving window across the predicted AGB range (AGBsatellite). 810 

Figure 4. Permutation importance based on permutation of different aggregated input variables 811 

corresponding to specific sensors (green) and texture measures (grey). 812 

Figure 5. Regression lines of the validation of the upscaled AGB against field inventory data inside and 813 

outside the LiDAR survey area. Points represent clusters of four 400 m2 plots (1600 m2), uncertainty is 814 

shown as vertical and horizontal lines. 815 

Figure 6. Comparison of observed AGB (obtained with field data used for validation)) and predicted 816 

AGB values (mapped AGB of different studies). The predicted values were obtained from Santoro et al. 817 

(2018), Rodriguez-Veiga et al. (2016), and Cartus et al. (2014). Solid lines indicate the regression 818 

between observed and predicted AGB, while dashed gray line shows a 1:1 relationship. 819 

 820 

Figure 7. Spatial distribution of AGB (left pane) and its uncertainty (right pane) in the sudy area. Grid 821 

lines are spaced 10 km. Letters correspond to the location of officially designated protected areas within 822 

the study landscape: A) Kaxil Kiuic Biocultural Reserve, B) del Puuc Reserva Biocultural reserve C) 823 

National protected area Bala’an K’aax. Dark blue color corresponds to non forest areas such as urban 824 

settlements, agriculture, and water bodies. 825 



 

 

Figure 8. Residuals from field-calculated AGB (inventory) - upscaled AGB (satellite) in Mg ha –1 826 

distributed by categories of AGB. 827 

Figure 9. Kernel-Density Estimation (KDE) plots showing the frequency distribution of AGB [Mg ha -828 

1] in protected areas (‘Kaxil Kiuic’ Kaxil Kiuic Biocultural reserve, ‘del Puuc’ del Puuc Biocultural 829 

reserve, ‘Bala’an Kaax’, Bala’an Kaax protected area) vs unprotected areas (areas designated for 830 

restoration and production), based on the median AGB per pixel from the Monte Carlo upscaling 831 

process. 832 


