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Abstract: 1 

Aims: Endothelial cell dysfunction drives the initiation and pathogenesis of pulmonary arterial 2 

hypertension (PAH). We aimed to characterise endothelial cell (EC) dynamics in PAH at 3 

single-cell resolution. 4 

Methods and Results: We carried out single-cell RNA sequencing (scRNA-seq) of lung ECs 5 

isolated from an EC lineage-tracing mouse model in Control and SU5416/Hypoxia-induced 6 

PAH conditions. EC populations corresponding to distinct lung vessel types, including two 7 

discrete capillary populations, were identified in both Control and PAH mice. Differential gene 8 

expression analysis revealed global PAH-induced EC changes that were confirmed by bulk 9 

RNA-seq. This included upregulation of the major histocompatibility complex class II 10 

pathway, supporting a role for ECs in the inflammatory response in PAH. We also identified a 11 

PAH response specific to the second capillary EC population including upregulation of genes 12 

involved in cell death, cell motility and angiogenesis. Interestingly, four genes with genetic 13 

variants associated with PAH were dysregulated in mouse ECs in PAH. To compare relevance 14 

across PAH models and species, we performed a detailed analysis of EC heterogeneity and 15 

response to PAH in rats and humans through whole-lung PAH scRNA-seq datasets, revealing 16 

that 51% of up-regulated mouse genes were also up-regulated in rat or human PAH. We 17 

identified promising new candidates to target endothelial dysfunction including CD74, the 18 

knockdown of which regulates EC proliferation and barrier integrity in vitro. Finally, with an 19 

in silico cell ordering approach, we identified zonation-dependent changes across the 20 

arteriovenous axis in mouse PAH and showed upregulation of the Serine/threonine-protein 21 

kinase Sgk1 at the junction between the macro- and micro-vasculature. 22 

Conclusions: This study uncovers PAH-induced EC transcriptomic changes at a high 23 

resolution, revealing novel targets for potential therapeutic candidate development. 24 

 25 

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article/doi/10.1093/cvr/cvab296/6370960 by guest on 23 Septem

ber 2021



CVR-2020-1310 

2 
 

 26 

Translational perspective 27 

Pulmonary arterial hypertension (PAH) is a rare and progressive disease with substantial unmet 28 

clinical need. Despite well-established treatment regimes, PAH prognosis remains poor, 29 

leading to right heart failure and death. Endothelial cells play a crucial role in the primary 30 

vascular changes evident in PAH development and progression. Here, we dissect the mouse 31 

endothelial response to PAH at a single-cell resolution, and integrate human and rat genomic 32 

and transcriptomic datasets to identify genes and pathways relevant to pathogenesis. The 33 

identification of distinct molecular mechanisms and potential therapeutic targets is crucial for 34 

the future development of pharmacological interventions targeting endothelial dysfunction. 35 

  36 
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Introduction 37 

Pulmonary arterial hypertension (PAH) is a rare (15-50 cases per million1) but progressive 38 

disease characterised by elevated pulmonary arterial pressure (mean >25 mmHg), and right 39 

ventricular hypertrophy2. While treatments to delay disease progression are available, PAH has 40 

a poor prognosis with eventual right heart failure and death2. Clinical subtypes include heritable 41 

PAH, with mutations most commonly found in the bone morphogenic protein receptor II 42 

(BMPR2) gene, and idiopathic PAH (IPAH)3. PAH pathogenesis is complex, involving 43 

pulmonary vessel remodelling, enhanced vasoconstriction, and inflammation affecting the 44 

arteries and microvasculature4. In humans and some mammals, PAH is also characterised by 45 

the presence of plexiform lesions in arterial branching points4. Animal models have been 46 

developed to study the pathogenesis of PAH. The widely used SuHx mouse model, which 47 

utilises Sugen 5416 (SU5416) injection and chronic hypoxia (10% O2), leads to increased right 48 

ventricular systolic pressure (RVSP) and right ventricular hypertrophy5, 6.  49 

Endothelial cells (ECs) are involved in the primary vascular changes leading to PAH7. 50 

Subsequent changes include smooth muscle hyperplasia and proliferation contributing to 51 

intima remodelling and the recruitment of inflammatory cells. Endothelial injury is common in 52 

vascular diseases such as atherosclerosis, peripheral disease8 and pulmonary hypertension9. In 53 

PAH, EC apoptosis has been observed in the early stages of the disease, while 54 

hyperproliferative apoptosis-resistant ECs may directly contribute to vessel remodelling in 55 

later stages7. Loss of endothelium barrier integrity, and altered autocrine and paracrine EC 56 

signalling in PAH lead to vasoconstrictor and vasodilator imbalance, and impaired recruitment 57 

and/or activation of other cell types10. ECs may also contribute to arterial remodelling via 58 

endothelial to mesenchymal transition (EndMT), a process by which ECs acquire mesenchymal 59 

phenotypes11-13. 60 
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Transcriptomic changes in PAH have previously been investigated at the whole-organ and 61 

tissue level predominantly using microarray, identifying several genes associated with vascular 62 

remodelling and inflammation14. However, as different cell types contribute to PAH 63 

throughout its development, these global approaches may hinder the identification of novel 64 

targets for therapeutic development. Single-cell RNA-sequencing (scRNA-seq) has 65 

revolutionised the study of complex tissues in biological and pathological conditions15. In 66 

cardiovascular applications, scRNA-seq has improved our understanding of EC development 67 

and heterogeneity16-18, the characterisation of cell zonation19 and the identification of 68 

pathological cell populations 20. Recently, scRNA-seq was applied to whole-lung tissues from 69 

two different rat models of PAH21 and IPAH patient lung tissues22, revealing changes in the 70 

distinct pulmonary cell populations, including ECs21, 22. However, the whole-lung approach 71 

does not allow for the study of EC heterogeneity at a high resolution.  72 

Here, we utilised an endothelial lineage-tracing mouse to assess pulmonary EC responses to 73 

PAH with scRNA-seq. With a well-established mouse model of pulmonary hypertension which 74 

induces right ventricular hypertrophy and increased RVSP 5, 6, we elucidate the dynamic EC 75 

responses at a subpopulation level and across the arteriovenous axis. In addition, our dataset is 76 

available for interrogation at http://bakergroup.shinyapps.io/mouse_ec_pah. 77 

 78 

 79 

Methods 80 

Extended methods can be found in the online Supplementary Methods. 81 

 82 

Mouse cell line and PAH induction: 83 
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All animal experiments were performed in accordance with the guidelines from Directive 84 

2010/63/EU of the European Parliament on the protection of animals used for scientific 85 

purposes and under the auspices of UK Home Office Project and Personal Licenses held within 86 

The University of Edinburgh facilities. Cdh5-CreERT2-TdTomato mice were generated by 87 

breeding Cdh5-CreERT2 with ROSA-TdTomato (B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze) 88 

(JAX stock #00790923). To achieve induction of Cre, female Cdh5-CreERT2-TdTomato mice 89 

were gavaged with 400mg/kg of tamoxifen, followed by a two-week wash-out period. To 90 

induce PAH in Cdh5-CreERT2-TdTomato mice and C57/BL6 mice, female mice were treated 91 

with three weeks of weekly 20 mg/kg SU5416 injection, while exposed to chronic hypoxia 92 

(10% oxygen) as previously described24, 25. At the end of the procedure, right ventricular 93 

systolic pressure (RVSP) was measured under terminal anaesthesia (4% isoflurane) and the 94 

mice were euthanised by exsanguination. 95 

scRNA-seq sample preparation and analysis: 96 

TdTomato+ mouse lung cells were isolated and sorted as previously described26. ScRNA-seq 97 

libraries were prepared using the Single Cell 3′ Reagent Kit User Guide v2 (10x Genomics). 98 

Libraries were sequenced on NovaSeq S2 at Edinburgh Genomics. Read mapping and 99 

generation of the expression matrix were done with CellRanger using a custom annotation 100 

containing the transcript sequence of TdTomato. Low-quality cells were removed using 101 

Scater27. The data was normalised using batchelor28. Dimensionality reduction, cluster 102 

identification on “merged” or “integrated” data, and differential gene expression analysis were 103 

performed with Seurat29. SingleR was used for cell annotation30. KEGG Pathway and Gene 104 

Ontology analysis and visualisation were done using ClusterProfiler31, pathview32 and topGO 105 

packages. Cell ordering across the arteriovenous axis was obtained with Slingshot33.  106 
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Raw and processed data is accessible at the Gene Expression Omnibus (scRNA-seq: 107 

GSE154959 and bulk RNA-seq: GSE180169). We also provide data exploration through a 108 

web-based application: http://bakergroup.shinyapps.io/mouse_ec_pah.  109 

 110 

Results 111 

 112 

Study design of mouse pulmonary EC single-cell transcriptomes in Control and PAH 113 

To study mouse ECs from healthy and PAH lungs, we used a Cdh5-CreERT2-TdTomato mouse 114 

line (Figure 1A), in which the EC-specific Cdh5-driven expression of TdTomato is inducible 115 

with tamoxifen and maintained in all ECs regardless of subsequent phenotypic changes. After 116 

a two-week tamoxifen wash-out period, TdTomato+ cells from the lungs were isolated using 117 

flow cytometry (Supplementary Figure S1). We designed two scRNA-seq experiments, 118 

allowing the final characterisation of Control and PAH TdTomato-positive cells with three 119 

replicates per conditions (Figure 1B). Experiment 1 aimed to assess the TdTomato+ cell-120 

sorting approach and analyse TdTomato+ cells from two Control lungs, ContA and ContB 121 

(Figure 1B). Experiment 2 was performed next and included three PAH samples (PAH1, 122 

PAH2, PAH3) and one Control (Cont1), kept in normoxic condition (Figure 1B). PAH was 123 

induced by exposing the Cdh5-CreERT2-TdTomato mice to chronic hypoxia for three weeks, 124 

alongside weekly injections of SU5416. We also performed bulk RNA-seq on TdTomato+ cells 125 

from 5 normoxic mice (bCont1-5) and 4 SuHx mice (bPAH1-4) to validate our scRNA-seq 126 

findings, and collected lung tissues from C57BL/6 mice in Control and SuHx conditions. We 127 

confirmed a significant increase in RVSP and right ventricular hypertrophy in PAH compared 128 

with Control mice for both the Cdh5-CreERT2-TdTomato and C57BL/6 lines (Supplementary 129 

Figure S2A) and a significant increase in the proportion of fully remodelled vessels in PAH 130 

C57BL/6 mice (Supplementary Figure S2B).  131 
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From Experiment 1, we obtained an average of 3,621 cells per mouse with an average 100,273 132 

reads per cell using 10X Genomics scRNA-seq (Supplementary Figure S3A). Visualisation 133 

based on dimensionality reduction using Uniform Manifold Approximation and Projection 134 

(UMAP) and clustering revealed the presence of several cellular subpopulations comprising of 135 

cells from both mice, showing reproducibility between the two biological samples 136 

(Supplementary Figure S3B). Three main clusters out of five, corresponding to 88 % of the 137 

cells, had high TdTomato expression, confirming the quality of our TdTomato cell-sorting 138 

strategy (Supplementary Figure S3B). 139 

For Experiment 2, we obtained between 3,162 and 6,310 cells per mouse with an average of 140 

127,892 mean reads per cell (Supplementary Figure S4).  141 

 142 

PAH-induced lung EC transcriptome  143 

Samples from Experiment 1 and 2 were merged, allowing the comparison of three biological 144 

replicates per condition (PAH/Cont). UMAP visualisation and clustering analysis revealed a 145 

clear separation between PAH and Control cells (Figure 1C), suggesting a distinct PAH-146 

induced EC transcriptomic profile. These data also showed Control replicates overlapping 147 

within the same clusters (Figure 1C), despite the independent experimental process and 148 

sequencing. TdTomato expression analysis confirmed that most clusters (cluster 0, 1, 2, 3, 5 149 

and 7), which correspond to the majority of cells (95.5%) (Supplementary Figure S5A), showed 150 

high TdTomato expression (Figure 1C-D). These clusters also showed high expression of the 151 

pan-endothelial markers Cdh5 (Figure 1D) and Pecam1 (Supplementary Figure S5B). There 152 

was low TdTomato expression in clusters 4 and 6 (Figure 1D), which correspond to only 0.5% 153 

of the sequenced cells (Supplementary Figure S5A). Marker analysis for these two clusters 154 

revealed the presence of immune cell markers and mesenchymal markers respectively, 155 
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suggesting that these were non-EC contaminants (Figure 1D, Supplementary Figure S5C). To 156 

confirm the identity of these cells, we use the tool SingleR which infers cell identities using 157 

transcriptomic data from pure cell type populations30. As expected, 96% of cells (24,333 out 158 

of 25,357) were annotated as ECs while cluster 4 contained immune cells and cluster 6 had a 159 

high proportion of fibroblasts (Figure 1E). This analysis confirmed the high recovery of ECs, 160 

with minimal contamination from other cell types, and suggested global maintenance of EC 161 

identity in normoxic and PAH-induced conditions. 162 

 163 

Limited endothelial to mesenchymal transition in Control and PAH lungs 164 

As EndMT has previously been reported in PAH 11-13, we investigated the potential presence 165 

of such a population in the scRNA-seq dataset. We could not detect cell populations with high 166 

TdTomato expression coupled with low endothelial marker (Cdh5 and Pecam1) expression 167 

(Figure 1C, 1D, Supplementary Figure S6A) or expression of mesenchymal markers (Acta2 168 

and Col1a1) (Supplementary Figure S6B). We also assessed the expression profiles of several 169 

EndMT regulators (Snai1, Snai2 and Smad3), but did not identify cell populations distinctly 170 

expressing these markers (Supplementary Figure S6C). To further investigate the presence of 171 

cells undergoing EndMT, we evaluated the percentage of Acta2+ cells within TdTomato+ cells 172 

in the different samples. Less than 1% of TdTomato+ cells expressed Acta2 in both Control 173 

and PAH (Supplementary Figure S6D). Similar profiles were found when considering Col1a1+ 174 

cells (Supplementary Figure S6E). We could not confirm the EndMT status of the Acta2+ cells, 175 

as they did not show increased expression of the mesenchymal marker Col1a1 and had 176 

comparable EC marker Cdh5 expression compared to Acta2- cells (Supplementary Figure 177 

S6F). This suggests that Acta2+ TdTomato+ cells are minimal in the lung and do not seem to 178 

be associated with this specific stage of PAH.   179 
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 180 

Identification of pulmonary ECs subpopulations 181 

To further characterise the distinct EC populations in PAH and Control mice, we analysed only 182 

cells defined as “endothelial cells” by SingleR. UMAP reduction and clustering of the merged 183 

Control samples suggested inter-individual variation, rather than cell type-specific clustering 184 

(Supplementary Figure S7). Therefore, we used the Seurat integration tool to correct for batch 185 

effects, which resulted in 7 clusters for the merged Control samples (Figure 2A, Supplementary 186 

Table S1). EC subpopulation identification was based on canonical markers and guided by 187 

three recent scRNA-seq of lung ECs16, 34, 35. As expected, most ECs (around 70%) belong to a 188 

cluster identified as capillary (CapillaryA) (Figure 2B), based on Nrp1 and Sema3c enrichment 189 

(Figure 2C-D). We identified a second capillary cluster, herein defined as CapillaryB, 190 

characterised by Car4 expression, as described previously16, 34, 35. Two clusters expressed large 191 

vessel markers (Vwf and Vcam1) and were defined as venous (higher expression of Vwf and 192 

specific expression of Prss23) or arterial ECs (specific expression of Cxcl12 and Mgp) (Figure 193 

2C-D). An EC subpopulation with enriched expression of lymphatic EC markers Ccl21a and 194 

Prox1 was defined as “Lymphatic”. Additionally, we observed a small cluster with high cell 195 

cycle-related gene expression, here defined as “Proliferating”, and a second small cluster (< 196 

0.4% of cells) defined as “Sftp+”, with high surfactant protein gene (Sftpa1, Sftpb, Sftpc and 197 

Sftpd) expression (Figure 2C-D). Similar analysis of PAH samples detected the same 7 clusters 198 

(Supplementary Figure S8). 199 

 200 

EC subpopulation responses in PAH 201 

To define the transcriptional changes mediated by PAH in EC subpopulations, we integrated 202 

all Control and PAH samples. The 7 subpopulations identified in the separate analysis of 203 

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article/doi/10.1093/cvr/cvab296/6370960 by guest on 23 Septem

ber 2021



CVR-2020-1310 

10 
 

Control and PAH were also identified in this integrated analysis (Figure 3A-B). PAH samples 204 

showed a slightly higher proportion of Vein ECs compared to Control samples and similar 205 

proportion of the 4 other vessel type-specific ECs (i.e. Artery, CapillaryA, CapillaryB and 206 

Lymphatic ECs) (Figure 3C). The relative proportion of proliferative ECs was constant 207 

between Control and PAH lungs (Figure 3C). As human PAH is often associated with increased 208 

EC proliferation5, 7, we also assessed the percentage of cells in each cell cycle phase in each 209 

individual cluster and across all ECs but did not detect any significant differences between 210 

PAH and Control (Supplementary Figure S9), suggesting that the proportion of proliferating 211 

ECs is not increased at this stage of the SuHx model. 212 

We performed a differential gene expression analysis in each of the vessel type-specific EC 213 

clusters to identify PAH-dependent changes. Global and vessel-type specific changes were 214 

identified with a total of 222 significant differentially expressed genes (DEGs) detected, based 215 

on a log fold change of 0.25 (Figure 3D, Supplementary Table S2). This analysis revealed a 216 

greater number of DEGs in Artery, CapillaryA and CapillaryB ECs compared to Vein and 217 

Lymphatic ECs (Figure 3D). Some DEGs were commonly regulated in Artery, CapillaryA and 218 

Vein ECs, while CapillaryB and Lymphatic ECs exhibited subpopulation-specific 219 

transcriptomic responses to PAH (Figure 3D-E). For each EC subpopulation, we assessed the 220 

expression of the DEGs across the 3 Control and 3 PAH biological replicates and confirmed 221 

comparable responses across all replicates (Supplementary Figure S10). We also validated the 222 

changes of 42 genes (out of the 222 DEGs) in additional replicates using the bulk RNA-seq 223 

dataset (Supplementary Figure S11A). PCA analysis of the bulk RNA-seq confirmed the 224 

distinct profiles of the Control and PAH samples (Supplementary Figure S11B) and differential 225 

gene expression analysis identified 345 and 689 significant up- and down-regulated genes 226 

respectively, based on a 1.5-fold change (Supplementary Table S3). As bulk RNA-seq averages 227 

gene expression, we expect a higher validation of changes detected in the largest cell 228 
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populations from the scRNA-seq. Delimiting our scRNA-seq analysis to a 1.5-fold change 229 

threshold in CapillaryA, 56% of DEGs could be validated in the bulk RNA-seq data 230 

(Supplementary Figure S11A).    231 

In addition to the vessel type EC clusters, we also analysed DEGs in the Proliferating EC 232 

clusters in PAH and Control. From the 42 significantly regulated genes (35 up-regulated, 7 233 

down-regulated), 36 genes were also differentially expressed in the vessel type EC clusters 234 

(Supplementary Figure S12A), suggesting that Proliferating ECs did not show a PAH-specific 235 

transcriptional response.   236 

In the scRNA-seq dataset, we also noticed 10 genes displaying upregulation in PAH1 and 237 

PAH3 but not PAH2 (Supplementary Figure S13A). Four of these genes were previously 238 

reported as downstream targets of the transcription factor AhR36, 37, which is activated by 239 

SU541638, suggesting that PAH2 had a limited response to SU5416 treatment. However, up-240 

regulation of six genes was validated in the bulk RNA-seq data (Supplementary Figure S13B), 241 

confirming their relevance to the SuHx model. 242 

To address inter-individual variability and identify high confidence candidates, we performed 243 

a stringent analysis of the scRNA-seq dataset. By comparing all individual PAH to all Controls 244 

samples and focusing on common changes, we obtained a list of 30 DEGs (Supplementary 245 

Figure S14, Supplementary Table S2). The lower number of cells in each comparison had less 246 

power to identify significant genes, hence the shorter DEG list, but this stringent approach gave 247 

priority to candidates with high and consistent changes. We confirmed the dysregulation of 14 248 

genes in the bulk RNA-seq (Supplementary Table S3).  249 

 250 

PAH-induced activation of the antigen processing and presentation pathway in ECs  251 
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To understand the functional effects of these transcriptional changes, we performed a KEGG 252 

pathway enrichment analysis with the 222 DEGs identified in the group analysis (Figure 3D). 253 

The antigen processing and presentation pathway, involved in T-cell recruitment and 254 

activation39, was enriched across all vessel type ECs (Figure 4A) and Proliferating cells 255 

(Supplementary Figure S12B).  Seventeen genes from distinct segments of this pathway were 256 

up-regulated in Artery ECs in PAH (Figure 4B). The highest upregulation was observed for 257 

the major histocompatibility complex class II (MHC-II) and its chaperone, Cd74, in Artery and 258 

CapillaryA ECs (Figure 4C). However, the Cd80 and Cd86 co-stimulatory molecules required 259 

for naïve T-cell activation39 showed low expression in both Control and PAH (Figure 4C). The 260 

up-regulation of genes relevant to the antigen processing and presentation pathway was 261 

confirmed in the bulk RNA-seq (Figure 4D).  262 

 263 

PAH regulation of apoptosis, pro-migratory and pro-angiogenic genes in CapillaryB ECs  264 

To identify PAH-mediated gene up-regulation specific to CapillaryB ECs, we performed a 265 

hierarchical clustering of all CapillaryB DEGs based on their expression profiles across all EC 266 

subpopulations and conditions, and focussed on 37 genes showing a stronger response to PAH 267 

in CapillaryB (Figure 5A). Gene Ontology analysis revealed that these genes are involved in 268 

the regulation of localisation and cell death (Figure 5B-C).  EC cell death has been observed in 269 

early-stage PAH, with a peak of apoptotic cells detected at 1 week in the SuHx mouse model, 270 

followed by a longitudinal decrease5. Therefore, increased apoptotic cell numbers is not 271 

expected in the current study. Additionally, as the cell preparation for scRNA-seq includes a 272 

live cell selection, apoptotic cells, specifically late apoptotic cells, might not be represented in 273 

the scRNA-seq dataset. We did not observe a difference in the number of cells with high 274 

mitochondrial genes (i.e. apoptotic cells) between Control and PAH during scRNA-seq quality 275 
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control and filtering (Supplementary Figure S3A, S4), suggesting apoptotic cells might not be 276 

associated with this stage of PAH. However, as changes in apoptotic regulatory genes may still 277 

be detectable, we analysed the signature score of genes involved in the execution of apoptosis 278 

(based on Gene Ontology GO:0097194) and positive and negative regulation of apoptosis (Go 279 

terms GO:0043065 and GO:0043066). While the expression of the execution phase of 280 

apoptosis genes was negligible across all EC types and condition (Supplementary Figure 281 

S15A), we observed an increase in expression of both positive and negative apoptotic 282 

regulatory genes in PAH (Supplementary Figure S15B), likely reflecting the ongoing 283 

regulation of apoptosis following the 1-week peak. We noted the significant up-regulation of 284 

the pro-apoptotic regulator Bax in CapillaryB in PAH (Figure 5D). 285 

Among the 37 genes with CapillaryB-specific changes, we also noticed the presence of three 286 

known tip cell-enriched genes: Cd34, Plasminogen Activator Urokinase Receptor (Plaur) and 287 

Apelin (Apln). Tip cells are localised at the tips of growing vessels during sprouting 288 

angiogenesis 40, 41 and are characterised by the expression of Dll4, Angpt2, Cxcr4, Apln 42, 43. 289 

We assessed the expression of these markers in the scRNA-seq but a tip cell subpopulation 290 

could not be identified (Supplementary Figure S16A) and only Apln was enriched in CapillaryB 291 

ECs (Figure 5C, Supplementary Figure S16A). In agreement with a lack of tip cells, the 292 

expression of genes involved in sprouting angiogenesis (GO:0002040) was negligible across 293 

EC subpopulations and conditions (Supplementary Figure S16B). In contrast, we observed a 294 

higher gene expression for positive, but not negative, regulators of angiogenesis (GO:0045766 295 

and GO:0016525) in CapillaryB ECs, with the PAH group having a higher expression than 296 

Control (Supplementary Figure S16C). These data suggest angiogenic regulatory pathways are 297 

activated in CapillaryB ECs and enhanced in PAH. Interestingly, 10 out of the 37 CapillaryB-298 

specific DEGs are also among the top 50 markers of CapillaryB ECs in Control (Supplementary 299 
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Table S1), suggesting that characteristics of CapillaryB ECs were enhanced in response to 300 

PAH.  301 

Overall, we showed PAH-mediated regulation of apoptotic, pro-migratory and pro-angiogenic 302 

genes in CapillaryB ECs.  303 

 304 

Relevance of PAH-mediated mouse EC changes in rat and human PAH  305 

To evaluate the relevance of the SuHx mouse scRNA-seq data in human PAH, we examined 306 

whether the expression of human genes with PAH-associated variants were also altered in 307 

mouse PAH ECs. From the 12 high-confidence genetic drivers of PAH3, 4 genes were 308 

identified: Aquaporin (Aqp1), Caveolin1 (Cav1), Bone Morphogenetic Protein Receptor Type 309 

2 (Bmpr2) and Endoglin (Eng). Aqp1, with the highest fold change and part of the stringent 310 

DEG set, was up-regulated in Artery, Vein, CapillaryA and Lymphatic ECs (Figure 6A). Cav1 311 

was also up-regulated while Bmpr2 and Eng were down-regulated (Figure 6A).  312 

We also mined recent rat21 and human PAH22 whole-lung scRNA-seq datasets. The rat dataset 313 

includes two different models of PAH: SuHx and monocrotaline (MCT). We retrieved data 314 

corresponding to the 758 annotated ECs, ranging from 1 to 343 per sample (Supplementary 315 

Figure S17A). Due to the low number of rat ECs, we integrated the rat with the mouse EC 316 

dataset, and obtained 7 EC subpopulations, per the mouse analysis (Supplementary Figure 317 

S17B-D). Rat Control, SuHx, and MCT ECs were present in all 7 clusters (Supplementary 318 

Figure S17D) and expressed similar EC subpopulation markers as the mouse ECs 319 

(Supplementary Figure S17E). The human dataset, which included 6 Controls and 3 IPAH 320 

samples, was analysed similarly to the mouse dataset starting from the raw sequencing data. 321 

After dimensional reduction and clustering, cluster 3 was annotated as ECs based on the 322 

enriched expression of several EC markers including CDH5 (Supplementary Figure S18A-C). 323 
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We identified 3950 ECs (45 to 1137 per sample) across Control and IPAH (Supplementary 324 

Figure S18D). To identify EC subpopulations, we selected all ECs and performed a new 325 

dimensional reduction and clustering analysis after sample integration to take sample variation 326 

into account. We obtained 7 clusters, 5 of which correspond to different vessel types (Artery, 327 

Vein, CapillaryA, CapillaryB, and Lymphatic), and also identified bronchial ECs, as previously 328 

described in lung scRNA-seq44, and 3 minor clusters, not annotated in this study. 329 

To compare PAH-induced EC response across species, we performed a differential expression 330 

analysis between PAH and Control in the rat and human data for the four blood vessel type EC 331 

subpopulations (Artery, Vein, CapillaryA and CapillaryB). We obtained 991 DEGs in human 332 

ECs using the same threshold per the mouse analysis (Supplementary Table S4). We identified 333 

884 DEGs in rat ECs with a similar analysis but without multiple comparison corrections as 334 

the number of ECs was low in the different clusters and conditions (Supplementary Table S5). 335 

Overall, we found that 51% of the up-regulated mouse genes (14% of the mouse down-336 

regulated genes) were also differentially expressed in rat or human, and found 20 genes 337 

commonly regulated across all three species (Figure 6B). As Artery and CapillaryA ECs have 338 

a high number of up-regulated genes in mouse PAH, we analysed the DEG overlap in these 339 

two EC subpopulations (Supplementary Figure S19). Interestingly, three (Cd74, Sparc, Slc6a6) 340 

and five (Sparc, Cd81, Anxa2, Id3, Slc9a3r2) genes were up-regulated in mouse, rat and human 341 

Artery and CapillaryA ECs respectively (Supplementary Figure S19). In addition to CD74, 342 

genes in the MHC-II complex (HLA genes) were also up-regulated in human IPAH, suggesting 343 

the importance of this pathway (Figure 6C, Supplementary Figure S19). Several genes, 344 

including Adam15 and Sgk1, were up-regulated in all species but with some differences in the 345 

expressing EC subpopulation (Figure 6C, Supplementary Figure S19), likely reflecting species-346 

specific regulation or variability in categorising artery, vein and capillary EC clusters within 347 

the arteriovascular network. We observed SuHx-specific up-regulation of Cyp1a1 and Cyp1b1 348 
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in rat ECs (Supplementary Figure S17F), in agreement with a regulation by SU5416. Finally, 349 

five genes showing CapillaryB specificity in mouse were also up-regulated in human 350 

CapillaryB ECs in PAH, with APLN, CD31 and MYL6 specifically enriched in this 351 

subpopulation in human (Figure 6C).  352 

To determine functional relevance of the identified targets, we selected CD74 for its global 353 

alteration across mouse vessel type ECs in PAH and its regulation in rat and human datasets. 354 

Increased CD74 protein levels in IPAH ECs were previously reported from immunostaining of 355 

human IPAH tissues and western blot of isolated IPAH ECs45. Additionally, CD74 contributed 356 

to the recruitment of peripheral blood mononuclear cells to pulmonary ECs in vitro45, 357 

supporting the involvement of the CD74/MHC-II complex in PAH. As CD74 also affects cell 358 

proliferation in other cell types, including epithelial cells 46, we aimed to further characterise 359 

the role of CD74 via gene knockdown in human umbilical vein endothelial cells (HUVEC) 360 

(Figure 6D). CD74 depletion led to a decrease in EC proliferation measured by EdU 361 

incorporation (Figure 6E, Supplementary Figure S20A), and a loss of barrier resistance 362 

(Supplementary Figure S20B), specifically cell-cell interaction (Figure 6F) but not cell-matrix 363 

interaction (Supplementary Figure S20C). These data support the important contribution of 364 

CD74 to EC function.  365 

 366 

Mapping transcriptomic changes across the arteriovenous axis in PAH 367 

From the UMAP visualisation shown in Figure 3A, we observed Artery and Vein EC clusters 368 

attached to either side of the CapillaryA EC cluster, recapitulating the continuous lung vascular 369 

architecture. To study EC zonation across the arteriovenous axis, we performed an in silico 370 

lineage-tracing analysis using Slingshot33. Cells were ordered along the arteriovenous axis 371 

(Figure 7A) and the expression of Vein, CapillaryA and Artery markers, Prss23, Sema3c and 372 
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Cxcl12 respectively, were used to confirm a gradient of expression along the vasculature 373 

(Figure 7B). Control and PAH ECs were found across the arteriovenous axis, with slight 374 

differences in their distribution (Figure 7C). PAH cells were less distributed in large arteries 375 

and in the arterial side of the microvasculature (Figure 7C). This observation might reflect the 376 

enlarged arterioles and loss of distal vessels which are characteristic of PAH4. We carried out 377 

a stringent differential gene expression analysis in 10 sections along this axis, identifying 33 378 

DEGs, with a lower number of DEGs in the venous region of the axis (Figure 7D). This analysis 379 

revealed zonation-dependent changes (Figure 7E) with the Serum/Glucorticoid Regulated 380 

Kinase 1 (Sgk1) and Cd34 genes displaying a peak of upregulation at the junction between 381 

capillary and arterial ECs (Figure 7E-F). Two genes from the SPARC (secreted protein acidic 382 

and rich in cysteine) family of proteins also showed different expression profiles, with Sparc 383 

up-regulated in ECs from arteries and Sparcl1 up-regulated in the microvasculature (Figure 384 

7E-F).  385 

 386 

Discussion 387 

 388 

To characterise PAH-induced EC molecular changes at the single-cell level, we performed 389 

scRNA-seq analysis across 3 SuHx-mediated PAH and 3 Control mice. Sorted EC sequencing 390 

enabled high resolution identification of PAH-induced EC responses at a subpopulation level 391 

and across the arteriovenous zonation. We showed the strong activation of the MHC-II pathway 392 

in Artery and CapillaryA ECs and the specific upregulation of pro-migratory and pro-393 

angiogenic genes in CapillaryB ECs in PAH. By comparing with rat and human genetic and 394 

transcriptomic data, we demonstrated the relevance of this mouse data across models and to 395 

human disease. We also identified promising and novel candidates regulated in ECs in PAH, 396 

specifically CD74, which is involved in the regulation of EC proliferation and barrier function 397 
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in vitro. We also developed a web-based application for interactive exploration of this scRNA-398 

seq data (http://bakergroup.shinyapps.io/mouse_ec_pah). 399 

Using the Cdh5-CreERT2-TdTomato mouse line, we identified five main EC clusters 400 

corresponding to the different lung vessel types (Artery, Vein, CapillaryA, CapillaryB and 401 

Lymphatic), previously identified with different EC isolation strategies based on the surface 402 

markers CD3116, 34 or ICAM235. Interestingly, our analysis of publicly available rat21 and 403 

human22 PAH scRNA-seq datasets also revealed the presence of these 5 distinct subpopulations 404 

in rat and human PAH lung tissues. In mouse, we also identified two additional small clusters 405 

annotated as “Proliferating” and “Sftp+”. Proliferating ECs are sometimes found in healthy 406 

tissues at a low level16, 35, while “Sftp+” cluster corresponded to cells expressing high level of 407 

surfactant protein genes. As Sftp genes are highly expressed in alveolar type 2 cells (AT2)47, 408 

further work is required to determine if these cells are AT2 contaminants or a novel EC subtype. 409 

No major changes in cell population proportions were observed between Control and PAH 410 

mice. We noted a slight increase in the relative proportion of vein ECs in PAH. While this 411 

could indicate an absolute increase of vein ECs, this change could also reflect pruning of the 412 

distal vasculature leading to a change in the relative proportion of vein ECs if other vessel types 413 

regressed. Rat and human EC analysis also showed similar EC population proportions between 414 

PAH and Control samples, suggesting persistence of cell type identity and relative numbers, 415 

but with associated transcriptional changes. While late-stage PAH has previously been 416 

associated with EC proliferation7, the scRNA-seq suggest that EC proliferation is not evident 417 

at this time point in the SuHx model of PAH. 418 

The use of the mouse Cdh5-CreERT2-TdTomato line allowed us to assess the contribution of 419 

endothelial to mesenchymal transition in Control and PAH lungs. We did not identify any cell 420 

populations with high TdTomato level and high expression of EndMT markers and/or 421 
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regulators. In our initial clustering, two small clusters showed non-EC marker expression. 422 

However, these two clusters also showed a low level of TdTomato expression, suggesting the 423 

presence of contaminants rather than transitioned ECs. The low proportion of 424 

TdTomato+/Acta2+ cells in both Control and PAH samples also suggests a minimal 425 

contribution of EndMT at this stage of PAH. Previous studies have shown the presence of 426 

EndMT in the SuHx mouse model using immunofluorescence and flow cytometry13. These 427 

differences could be explained by the sensitivity limitations of 10X Genomics scRNA-seq 428 

technology for low expressed genes and/or the transient and reversible nature of EndMT, which 429 

has been confirmed in recent scRNA-seq of ECs after myocardial infarction48. Further studies 430 

combining diverse detection methods and different pathological models across time points are 431 

required to confirm the contribution of EndMT in PAH at different stages of the disease.  432 

Our joint analysis of Control and PAH, combining three animals per group, revealed 222 DEGs 433 

across the 5 vessel type EC clusters. Overall, we found high reproducibility across replicates 434 

even when integrating two independent experiments, and confirmed the regulation of many 435 

candidates in additional mouse samples using bulk RNA-seq.  DEGs showing inter-individual 436 

differences in PAH mouse scRNA-seq included four direct targets of the transcription factor 437 

AhR36, 37 such as Cyp1a1 and Cyp1b1, up-regulated in PAH1 and PAH3 but not PAH2. In the 438 

rat SuHx model, SU5416 may exacerbate PAH through the activation of AhR38, suggesting 439 

that PAH2 had a reduced response to SU5416 treatment. All three PAH mice showed 440 

comparable RVSP and right ventricular hypertrophy, indicating that the AhR pathway is not 441 

necessary to induce PAH but may contribute to PAH progression. In agreement, Cyp1a1 and 442 

Cyp1b1 were found up-regulated in the rat SuHx scRNA-seq data but not in the MCT model 443 

nor in the human IPAH samples. Further work, including a larger mouse cohort and more in-444 

depth phenotypic characterisation, is required to dissect the contribution of SU5416 versus 445 

hypoxia in PAH phenotypes. 446 
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The largest change in PAH was the upregulation of MHC-II genes, affecting all ECs and 447 

particularly Artery and CapillaryA ECs (Figure 4). MHC-II genes are expressed by 448 

professional antigen-presenting cells39 and ECs under inflammatory conditions49. Our data 449 

suggests that this activation occurs in PAH. We did not detect the up-regulation of MHC-II co-450 

stimulatory molecules such as Cd80 and Cd86, suggesting that in PAH, ECs can contribute to 451 

the activation of antigen-experienced T-cells50, or to T-cell adhesion51, but not to the activation 452 

of naïve T-cells. In human studies, single-nucleotide polymorphisms and allele frequency of 453 

the MHC-II genes, HLA-DPA1 and HLA-DPB1, have been associated with PAH52. The effects 454 

of these variants on the pulmonary vasculature warrant further investigation.  455 

In contrast to the pan EC DEGs, we identified a CapillaryB-specific response to PAH, 456 

consisting of the up-regulation of many genes involved in cell localisation, negative regulation 457 

of cell death and angiogenesis. However, no apoptotic cells could be identified in the dataset, 458 

suggesting that apoptosis is not occurring at this stage in the SuHx model, in agreement with a 459 

peak of EC apoptosis occurring earlier, at 7 days5. We revealed the CapillaryB-specific 460 

regulation of tip cell-enriched genes Apln and Cd3440, 41 in both the mouse and human data, but 461 

without the detection of genuine tip cells. Interestingly, vessel regression, which is thought to 462 

be associated with dysfunctional sprouting angiogenesis in PAH4, can occur via different 463 

processes, including intussusceptive angiogenesis53 or EC migration involving a tip cell 464 

phenotype as seen in zebrafish54. More work is required to determine if any of these processes 465 

occur in PAH34.  466 

We analysed zonation-dependent changes across the arteriovenous axis in PAH, confirming 467 

the continuum of transcriptional states, as previously described for brain ECs19. The 468 

comparison between PAH and Control samples revealed specific gene regulation in distinct 469 

regions of the axis. In particular, Sgk1 showed an up-regulation in ECs corresponding to 470 

arterioles/pre-capillary vessels, vasculature which is particularly affected by remodelling and 471 
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neomuscularization in PAH7. Since Sgk1 regulates angiogenesis55 and Sgk1 deficiency 472 

prevents hypoxia-induced PAH in mice56, Sgk1 appears to be a key regulator of the primary 473 

changes occurring in ECs. Two extracellular matrix-associated protein in the SPARC family 474 

were also up-regulated, with a prominent up-regulation of Sparc in pre-capillary ECs and 475 

Sparcl1 in capillary ECs. Sparc contributes to angiogenesis, with both pro-angiogenic and anti-476 

angiogenic effect reported57 while Sparcl1 has recently been reported as a biomarker of 477 

maladaptive right ventricular remodelling in pulmonary hypertension58.  478 

To identify promising EC gene targets relevant to the human disease, we compared the mouse 479 

PAH scRNA-seq with human genetic3, and rat21 and human22 transcriptomic data. In addition 480 

to the down-regulation of Bmpr2 gene, the main genetic driver of PAH, we showed up-481 

regulation of Aqp1 in ECs in PAH. The Aqp1 knockout mouse has an attenuated response to 482 

hypoxia-induced PAH59, suggesting Aqp1 function in ECs contributes to PAH progression. Our 483 

transcriptomic comparison across models and species showed the relevance of this high-484 

resolution mouse EC PAH analysis and highlighted novel candidates to modulate EC 485 

dysfunction in PAH. The cross-species analysis was also essential to define gene targets 486 

differentially regulated across species and in early and late stages of the disease. However,  the 487 

human IPAH scRNA-seq22 analysis was limited by the small number of patient samples, 488 

preventing an analysis of patient variability. Future studies, including more human samples 489 

and additional time points in the rodent PAH models, are required to fully characterise PAH 490 

disease progression.   491 

Among the candidates conserved across species, we focussed on CD74, as an increase in EC 492 

CD74 protein level has previously been identified in human PAH samples45.  CD74 is a 493 

receptor for the macrophage migration inhibitory factor, and the CD74/MIH complex was 494 

associated with PAH and linked to the recruitment of leukocytes to ECs in-vitro45. The scRNA-495 

seq revealed that Cd74 up-regulation is associated with changes to MHC-II genes, suggesting 496 
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that the CD74/MHC-II complex might contribute to PAH progression. As multiple functions 497 

for CD74 have been reported46, we expanded the functional characterisation of CD74 in ECs 498 

and showed its role in barrier function as well as proliferation, suggesting a potential role of 499 

CD74 in the hyperproliferative EC phenotypes characteristics of late PAH. 500 

Overall, our study provides high resolution insights into the diversity of EC subpopulation 501 

responses to pulmonary hypertension and highlights novel candidates for future therapeutic 502 

development. 503 
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 744 

Figure legends: 745 

 746 

Figure 1: Single-cell RNA-seq of lung ECs in Control and PAH mice. 747 

A. Mouse breeding schema to produce the Cdh5-CreERT2-TdTomato line. 748 

B. Experimental timeline for Experiment 1 and 2. 749 

C. Uniform Manifold Approximation and Projection (UMAP) plot of the merged data. Colours 750 

represent cell clusters, samples and TdTomato expression, respectively. 751 

D. Violin plot of TdTomato, Cdh5, Tyrobp and Gsn expression in the defined clusters. 752 

E. UMAP plot of cell identity defined by the tool SingleR. 753 

 754 

Figure 2: Identification of EC subpopulations in integrated Control samples.  755 

A. UMAP plot of integrated Control samples. Colours represent annotated cell clusters and 756 

individual sample, respectively. 757 

B. Proportion of EC subpopulation in individual Control samples. 758 

C. Heatmap of the top 10 marker gene expression in a downsampling of 100 cells from each 759 

cluster. 760 

D. UMAP plot of representative markers expression in the different clusters. 761 

 762 

Figure 3: Differential gene expression analysis between PAH and Control in the vessel 763 

type EC populations. 764 

A. UMAP plot of integrated Control and PAH samples. Colours represent annotated cell 765 

clusters.  766 

B. Violin plot of vessel type-specific markers expression in the annotated EC subpopulations. 767 
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C. Proportion of the annotated EC subpopulations in Control and PAH samples. Error bars 768 

correspond to standard error of the mean. P-value obtained using an unpaired t-test on the log10 769 

proportion (* p-value<0.05). 770 

D. Venn diagram of differential gene expression changes (number of up-regulated genes/ 771 

number of down regulated genes) in the 5 vessel type EC subpopulations.  772 

E. Heatmap of all differentially expressed genes across vessel type EC subpopulations and 773 

conditions in a downsampling of 50 cells per category. 774 

 775 

Figure 4: Activation of the antigen processing and presentation pathway in ECs in PAH. 776 

A. Top 3 enriched KEGG pathways for each vessel type DEG. 777 

B. Visualisation of the Artery DEGs on the “Antigen Processing and Presentation” pathway 778 

graph. 779 

C. Dot plot showing the expression of DEG annotated in the KEGG “Antigen Processing and 780 

Presentation” pathway and their co-stimulators across the EC subpopulations and conditions.  781 

D. Heatmap (z-score of Log2(FPKM+1) of significant genes involved in the Antigen 782 

Processing and Presentation pathway in the bulk RNA-seq of TdTomato+ cells. 783 

 784 

Figure 5: Characterisation of the PAH response in CapillaryB EC subpopulation. 785 

A. Heatmap of up-regulated genes in CapillaryB in a downsampling of 50 cells per category. 786 

A hierarchical clustering approach was used to identify genes with a specific up-regulation in 787 

CapillaryB compared to the other EC populations. 788 

B. Top 10 enriched Go Terms (Biological Process) of the CapillaryB-specific up-regulated 789 

genes. 790 

C. Dot plot showing the expression of genes specifically up-regulated in CapillaryB and 791 

annotated in the “regulation of localisation” and “cell death” Go Terms. 792 
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D. Violin plot of Bax expression across EC populations and conditions. 793 

 794 

Figure 6:  Comparison of the mouse PAH DEGs with human genetics and transcriptomics 795 

data. 796 

A. Violin plot showing the expression of 4 DEGs with PAH-associated variants, across EC 797 

populations and conditions. 798 

B. Number of mouse up/down-regulated genes regulated in the same direction in rat or human 799 

PAH ECs. 800 

C. Dot plot showing the expression of selected candidates across EC populations and 801 

conditions in mouse and human scRNA-seq. 802 

D. Expression of CD74 in Control (siCT) and CD74 (siCD74) knockdown HUVECs by RT-803 

qPCR. RQ: Relative quantification normalized to UBC relative to siCT (n=4). 804 

E. Quantification of EdU uptake in siCT and siCD74 HUVECs (n=3). 805 

F. Cell-to cell interaction, expressed as Rb [Ohm x cm2], in siCT and siCD74 HUVECs across 806 

a 6h time course with bar graph showing the average across the time points (n=3). 807 

Graph in panel D, E and F correspond to mean ± standard error of the mean and p-values were 808 

obtained using an unpaired t-test. * p-value<0.05 and *** p-value<0.0001. 809 

  810 

Figure 7: Differential gene expression changes across the arteriovenous axis 811 

A. UMAP plot of Artery, CapillaryA and Vein selected clusters. Colours correspond to EC 812 

subpopulations and trajectory unit, respectively. Trajectory arbitrary unit corresponding to the 813 

arteriovenous axis unit and trajectory line were obtained with Slingshot.  814 

B. Expression of the vein marker Prss23, capillary marker Sema3c and artery marker Cxcl12 815 

in Control and PAH cells ordered along the arteriovenous axis. 816 

C. Cell density across the arteriovenous axis in Control and PAH groups. 817 
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D. Differential gene expression changes in 10 distinct sections of the arteriovenous axis based 818 

on a stringent analysis of individual samples. 819 

E. Heatmap of the stringent DEG Log Fold change across 10 distinct sections of the 820 

arteriovenous axis.  821 

F. Expression profile across the arteriovenous axis in Control and PAH conditions for Sgk1, 822 

Sparc, Sparcl1 and Cd34. 823 
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