
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COVID-19 vaccine strategies for Aotearoa New Zealand

Citation for published version:
Nguyen, T, Adnan, M, Nguyen, BP, de Ligt, J, Geoghegan, JL, Dean, R, Jefferies, S, Baker, MG, Seah,
WK, Sporle, AA, French, NP, Murdoch, DR, Welch, D & Simpson, CR 2021, 'COVID-19 vaccine strategies
for Aotearoa New Zealand: a mathematical modelling study', The Lancet regional health. Western Pacific,
vol. 15, pp. 100256. https://doi.org/10.1016/j.lanwpc.2021.100256

Digital Object Identifier (DOI):
10.1016/j.lanwpc.2021.100256

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
The Lancet regional health. Western Pacific

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 22. Dec. 2021

https://doi.org/10.1016/j.lanwpc.2021.100256
https://doi.org/10.1016/j.lanwpc.2021.100256
https://www.research.ed.ac.uk/en/publications/b9286b34-794e-455c-86b6-f8c8cd92ddf9


The Lancet Regional Health - Western Pacific 15 (2021) 100256 

Contents lists available at ScienceDirect 

The Lancet Regional Health - Western Pacific 

journal homepage: www.elsevier.com/locate/lanwpc 

Research paper 

COVID-19 vaccine strategies for Aotearoa New Zealand: a 

mathematical modelling study 

Trung Nguyen, PhD 

1 , # , Mehnaz Adnan, PhD 

1 , # , Binh P Nguyen, PhD 

2 , # , Joep de Ligt, PhD 

1 , 
Jemma L Geoghegan, PhD 

3 , Richard Dean, MSc 

1 , Sarah Jefferies, MD 

1 , 
Michael G Baker, MBChB 

4 , Winston KG Seah, DrEng 

5 , Andrew A Sporle, MA(Hons) 6 , 
Nigel Peter French, PhD 

7 , David R Murdoch, MD 

8 , David Welch, PhD 

9 , 
Colin R Simpson, PhD 

10 , 11 , ∗

1 Institute of Environmental Science and Research, New Zealand 
2 School of Mathematics and Statistics, Victoria University of Wellington, New Zealand 
3 Department of Microbiology and Immunology, University of Otago, New Zealand and Institute of Environmental Science and Research, New Zealand 
4 Department of Public Health, University of Otago, New Zealand 
5 School of Engineering and Computer Science, Victoria University of Wellington, New Zealand 
6 Department of Statistics, The University of Auckland, New Zealand and iNZight Analytics Ltd 
7 School of Veterinary Science, Massey University, New Zealand 
8 Department of Pathology and Biomedical Science, University of Otago, New Zealand 
9 School of Computer Science, The University of Auckland, New Zealand 
10 School of Health, Wellington Faculty of Health, Victoria University of Wellington, Wellington, New Zealand 
11 Usher Institute, The University of Edinburgh, Edinburgh, United Kingdom 

a r t i c l e i n f o 

Article history: 

Received 5 May 2021 

Revised 15 July 2021 

Accepted 29 July 2021 

Keywords: 

SARS-CoV-2 

COVID-19 

Vaccination 

Modelling 

Elimination 

Herd immunity threshold 

Vaccine effectiveness 

a b s t r a c t 

Background: COVID-19 elimination measures, including border closures have been applied in New 

Zealand. We have modelled the potential effect of vaccination programmes for opening borders. 

Methods: We used a deterministic age-stratified Susceptible, Exposed, Infectious, Recovered (SEIR) 

model. We minimised spread by varying the age-stratified vaccine allocation to find the minimum herd 

immunity requirements (the effective reproduction number R eff< 1 with closed borders) under various 

vaccine effectiveness (VE) scenarios and R 0 values. We ran two-year open-border simulations for two 

vaccine strategies: minimising R eff and targeting high-risk groups. 

Findings: Targeting of high-risk groups will result in lower hospitalisations and deaths in most sce- 

narios. Reaching the herd immunity threshold (HIT) with a vaccine of 90% VE against disease and 80% 

VE against infection requires at least 86 • 5% total population uptake for R 0 = 4 • 5 (with high vaccination 

coverage for 30–49-year-olds) and 98 • 1% uptake for R 0 = 6. In a two-year open-border scenario with 10 

overseas cases daily and 90% total population vaccine uptake (including 0–15 year olds) with the same 

vaccine, the strategy of targeting high-risk groups is close to achieving HIT, with an estimated 11,400 total 

hospitalisations (peak 324 active and 36 new daily cases in hospitals), and 1,030 total deaths. 

Interpretation: Targeting high-risk groups for vaccination will result in fewer hospitalisations and 

deaths with open borders compared to targeting reduced transmission. With a highly effective vaccine 

and a high total uptake, opening borders will result in increasing cases, hospitalisations, and deaths. Other 

public health and social measures will still be required as part of an effective pandemic response. 

Funding: This project was funded by the Health Research Council [20/1018]. 
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vidence before this study 

We searched PubMed, medRxiv and SSRN for modelling studies 

sing the term “COVID-19 vaccine AND model AND New Zealand”. 

e found one study by Bubar et al. which investigated age-related 

accine allocations to minimise the total deaths for countries with- 

ut community transmission where total vaccination supply was 

imited to 50% of the population and found that direct vaccina- 

ion of adults aged over 60 years nearly always reduced mortality. 

oore et al. predicted a reproduction number of 1 • 58 after imple- 

enting vaccination in the UK and highlighted the risks of early 

elaxation of non-pharmaceutical interventions. Sandmann et al. 

lso considered, in a 10-year simulation, the economic impact in 

he UK and suggested that with COVID-19 vaccination, small out- 

reaks could continue. 

dded value of this study 

To our knowledge, this is the first detailed COVID-19 vaccina- 

ion programme modelling for Aotearoa New Zealand, a country 

ith closed borders and a COVID-19 elimination strategy. We fore- 

ast the effect of strategies of minimising disease spread in the 

ommunity and prioritisation of high-risk age groups. We mod- 

lled different vaccination programme strategies for the follow- 

ng health outcomes: number of cases, hospitalisations, and deaths 

ver two years with open borders. 

mplications of all the available evidence 

To achieve the herd immunity threshold (HIT) (where R 0 = 4 • 5), 

nd limit community transmission (e.g. sporadic outbreaks) once 

orders are opened, a vaccine that has a vaccine effectiveness of 

0% for disease prevention and 80% for infection reduction will re- 

uire high vaccination coverage for 30–49-year-olds, and at least 

6 • 5% total population uptake. A number of possible scenarios 

ere modelled including where 10 overseas cases are introduced 

aily with open-borders and 90% total population vaccine uptake 

ith a vaccine with VE of 90% for disease prevention and 80% 

or infection reduction, and prioritisation of high-risk groups for 

accination. In the two-year simulation, this scenario was fore- 

asted to have 11,400 total hospitalisations (peak 324 active and 

6 new daily cases in hospitals), and 1,030 total deaths. Where 0–

1 year olds are not vaccinated and total population uptake is 80% 

the maximum uptake is 84 • 9% and HIT is not achieved) there is 

n estimated 37,700 total hospitalisations (peak 2,980 active and 

43 new daily cases in hospitals), and 3,120 total deaths. Other 

on-pharmaceutical interventions will still be required to sustain 

he pandemic response. These findings can support policy mak- 

rs in New Zealand (including the Ministry of Health) to inform 

heir vaccination programme and is generalisable to other coun- 

ries with closed borders and elimination strategies to ensure op- 

imal vaccination programmes. 

ntroduction 

COVID-19 has caused widespread morbidity and more than 4 • 0 
illion deaths globally as of July 9 th , 2021 1 with extensive so- 

ial and economic consequences. 2 To prevent COVID-19 outbreaks, 

ew Zealand (NZ) adopted an early elimination strategy with non- 

harmaceutical interventions, referred to as public health and so- 

ial measures (PHSMs) in this paper. 3 , 4 

PHSMs, such as border controls, lockdown measures, quaran- 

ine, and comprehensive testing, surveillance, and contact trac- 

ng, have led to the elimination of COVID-19 transmission in 

Z, but there are expectations that NZ will begin to reopen its 
2 
order once the vaccination programme has progressed. Open- 

ng borders without strict isolation will continuously introduce 

OVID-19 to the community. The NZ government is undertaking 

 vaccination programme 5 to protect NZ communities. Vaccina- 

ion modelling can help anticipate potential public health out- 

omes based on different vaccine effectiveness (VE) reported in 

linical trials 6 and ‘real-world’ studies, 7-10 and vaccination pro- 

ramme strategies. 5 Estimates of the minimal vaccine coverage 

or herd-immunity with vaccines of different effectiveness, for in- 

tance, is needed. Vaccine allocation strategies should also take 

nto account the potential ranges of VE in disease prevention (70–

5%) and infection reduction (30–90%) from the first available vac- 

ines including BNT162b2, mRNA-1273, and ChAdOx1 (AZD1222) 

accines. 6-13 

The aim of this study was therefore to provide age-related op- 

imisation and simulation results that can be used to design opti- 

al vaccine programmes; including: i. achievement of HIT and, ii. 

f borders are open and cases of COVID-19 are introduced to the NZ 

ommunity, minimisation of COVID-19 cases, hospitalisations and 

eaths. These include strategies to ensure maximum protection for 

 ̄aori and Pasifika populations, who are at higher risk for hospi- 

alisation and death from COVID-19. 14 , 15 

ethods 

We extended an age-stratified Susceptible, Exposed, Infectious, 

ecovered (SEIR) model 16 with a presymptomatic phase to include 

accinated compartments (Supplemental Figure S1). The whole 

opulation is divided into eight 10-year age groups G = {0–9,10–

9,20–29…,60–69,70 + }. 

We assume that a vaccine has three effects: e i is the reduction 

f infection in vaccinated people (i.e. susceptibility to infection), 

 d is the VE for disease prevention (the default concept of VE and 

ommonly used clinical endpoint in vaccine efficacy trials), and the 

hird effect is reduction of infectiousness. The vaccine effect on in- 

ection reduces the susceptibility of vaccinated people by a factor 

 i compared with unvaccinated people. Thus, if the susceptibility 

f an unimmunised person in an age group i is u i , the suscepti-

ility of a vaccinated person in the same age group is expected 

o be u v 
i 

= u i ( 1 − e i ) . e i has a direct influence on the viral trans-

ission. Likewise, the probability of developing clinical disease in 

accinated infected cases in age group i is ρv 
i 

= ρi ( 1 − e d ) / ( 1 − e i ) ,

here ρ i is the probability of having clinical disease in unvacci- 

ated infected cases. e d is, thus, the effect of the vaccine on pre- 

enting disease in vaccinated individuals and corresponds to the 

eported vaccine efficacy and effectiveness. 6-13 The effect of the 

accine on the reduction of infectiousness reduces the probabil- 

ty of spreading SARS-CoV-2 in vaccinated individuals. A detailed 

escription of the model can be found in the Supplementary Ap- 

endix S1. 

In addition to e i , another effect of vaccines that contributes to 

he change of the effective reproduction number R eff is the re- 

uction of infectiousness in vaccinated infections. 17 This parame- 

er is dependent on the reduction of viral shedding and/or symp- 

oms (e.g., coughing and sneezing). In our model, it is consid- 

red that the reduction of infectiousness is a result of the reduc- 

ion of clinical disease in vaccinated infections and the parame- 

er f (Supplemental Table S1). This dependency is different from 

onsidering a constant reduction of infectiousness across all age 

roups, where different rates of symptom reduction does not in- 

uence the reduction of infectiousness in vaccinated infections. 

his model enables us to model the effect of e d on the overall 

ransmission (R eff) while analysing the vaccine effect on reducing 

nfection ( e ). 
i 
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odel assumptions 

Model assumptions included: i. For open-border modelling the 

ehaviour of New Zealanders is as observed prior to Alert level 1 

without PHSMs). The average duration from illness onset to iso- 

ation without any intervention is 7 • 2 days; 3 ii. age group sizes 

re constant in the open-border modelling; iii. infected, vaccinated 

eople, without disease, have the same spreading capability as 

he infected asymptomatic/paucisymptomatic cases without vacci- 

ation; iv. the effectively immunised people, against either infec- 

ion or disease, stay immunised with the same protection effect for 

he whole simulation period if they do not get re-infected. This can 

e interpreted as the waning vaccination effect (in the vaccinated 

roup) being balanced by the reinforcement of the vaccination pro- 

ess during the simulation period. This assumption is to separate 

ther effects from the vaccine distribution; v. vaccines are as ef- 

ective for children and teenagers (age below 16) as they are for 

ther tested age groups; vi. M ̄aori and Pasifika populations have 

he same contact matrix as the whole of NZ. 18 This assumption 

s, however, likely to underestimate the actual contact frequencies 

n this population 

19 as M ̄aori and Pasifika people live in larger 

ouseholds, have larger social networks (inter-dependent house- 

olds, family, church etc), have a higher proportion of the popu- 

ation that are young, as well as a greater likelihood of being in 

igh exposure risk occupations; 20 and vii. death rates (total rate 

nd age-specific rates) are unchanged even when the active COVID- 

9 hospitalisations exceeds available NZ hospital capacity. 21 

ata 

We used COVID-19 case data reported in EpiSurv 22 from Febru- 

ry 26 th 2020 (when the first case was reported) to October 21 st , 

020. COVID-19 hospitalisation rates for all age groups were in- 

erred from recorded hospitalised cases in the national notifiable 

isease surveillance system, EpiSurv. 22 We assumed that M ̄aori and 

asifika populations have twice the hospitalisation rates estimated 

rom EpiSurv based on previous evidence. 15 We used the estimated 

ge-stratified infection fatality rates modelled by Verity et al. 23 as 

he age-stratified death rates for the whole of NZ, and the rates 

odelled by Steyn et al. 14 as the age-stratified death rates for 

 ̄aori and Pasifika populations. We used the age distribution of 

mported cases as recorded in EpiSurv 22 as the age distribution of 

mported cases in the model (70.6% were aged 20-59 years). The 

usceptibility and clinical rates of COVID-19 for different ages were 

alculated using data from an age-stratified model published by 

avies et al. 16 A list of parameters with their source is shown in 

upplemental Table S1. 

trategies and scenarios 

accine effectiveness 

We investigated vaccine scenarios that only one vaccine is used 

or the whole population regarding the NZ vaccine plan. 5 We anal- 

sed varying effects of the vaccine by introducing a parameter for 

he effectiveness on disease prevention, e d , and a parameter for 

he effectiveness on infection reduction, e i . We looked at minimum 

accine effectiveness with different uptake levels (from 60% to 

00% coverage of total population) required to achieve HIT (R eff< 1) 

iven the R 0 values of 2 • 5, 4 • 5, and 6. 

We modelled VE (of disease prevention) in the range of 70–

5%. VE of infection reduction is normally smaller than VE of dis- 

ase prevention. Thus, the range of VE for infection reduction was 

0% to 90% and was no greater than VE of disease prevention in 

ll scenarios. Hereinafter, the effects of a vaccine with VE of dis- 

ase prevention ( e ) and VE of infection reduction ( e ) is short-
d i 

3 
ned to e d / e i % effectiveness for convenience. For instance, a vaccine 

ith 95/70% effectiveness has 95% effectiveness for disease preven- 

ion and 70% effectiveness for infection reduction. The effective- 

ess of a vaccine is considered “uniform” when their effectiveness 

s equal across age groups, while the effectiveness is called “var- 

ed” when the vaccine effectiveness is reduced in older age groups. 

he current vaccination strategy in NZ focuses on two dose vacci- 

ation, rather than maximising the number of administrations of 

rst dose. The second dose is administered at least 21 days after 

he first dose. 5 

accine strategies with closed borders 

In this study, we compared two vaccine strategies, where each 

ould be implemented through one of the following optimisation 

riteria: (1) minimising the effective reproduction number or the 

preading rate; and (2) minimising disease in the total high-risk 

opulation (risk for severe disease and deaths). The first strat- 

gy minimises the leading eigenvalue of the next generation ma- 

rix (i.e. R eff) or the spreading rate. This strategy requires min- 

mum requirements for vaccine effectiveness and the total up- 

ake to achieve HIT. Therefore, it is used to analyse the minimum 

erd immunity requirements. The total high-risk population in the 

econd strategy can be estimated as 
∑ 

i 

S i d i , which are the age- 

tratified susceptible populations ( S i ) weighted by their mortality 

ates due to COVID-19 ( d i ). This strategy begins with vaccination in 

he oldest groups, followed by the younger groups, because older 

roups are known to have higher risks for both severe disease and 

eath. 24 , 25 Hereafter, two strategies are referred to as the spread- 

inimising/minimise R eff strategy and the high-risk (group) target- 

ng strategy respectively. A third strategy that balances between 

hese two strategies is included in Supplemental Appendix S2. 

Both strategies are assumed to be implemented with closed 

orders until a certain uptake level is reached, i.e. from 60 to 100% 

otal population coverage ( Figure 1 ). A vaccination uptake of 80–

0% of the NZ population requires vaccinating individuals aged 

nder 16 and a higher rate of vaccination than being achieved 

n other countries. In the United Kingdom, Israel, and Canada, 26 

round 60% of total populations have been vaccinated with more 

han 95% in older age groups. 

We assumed the following constraints on all vaccine strategies: 

. each age group is vaccinated at least 20%, except for the 70 + year

lds with minimum 80% vaccine coverage. ii. the maximum cover- 

ge for each age group is 90% for variants with lower R 0 values 

2–3 • 5) and 100% for variants with higher R 0 values (4 • 5–6). The

ange of the higher R 0 values corresponds to the early estimates of 

 0 values for the variants of concern (4 • 5–6). 

To compare these strategies, we ran two-year simulations of 

wo vaccine strategies with open borders, where a continuous vac- 

ination process is assumed to mitigate any potential waning ef- 

ect of the vaccine ( Figure 1 ). We assumed there is a constant ten

aily imported cases that become part of the community, which 

re equivalent to a total of 7,300 imported cases. As part of a sen- 

itivity analysis, we also modelled on 100 daily imported cases 

73,0 0 0 total). Imported cases are assumed to be unvaccinated. 

omparison criteria include total COVID-19 deaths, total commu- 

ity cases, peak active cases, total hospitalisations, and peak active 

ospitalised cases (peak hospitalisations). The measures relating to 

ospitalisations and deaths include a predicted 4 4 4 total hospi- 

alised and 84 deaths from 7,300 imported cases (Supplemental 

ppendix S2). As vaccination has not been approved for 0–15 year 

lds in New Zealand, 5 we carried out a sensitivity analysis where 

ptake was 0% for 0–9 year olds and the vaccine coverage of 10–

9 year olds is assumed to have a maximum level of 35% as the 

ubgroup of 16–19 year olds contribute nearly 40% to the group of 
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Figure 1. Pre-transmission vaccination process. Note: A level of uptake (60–100% total population) has been reached before opening borders. 
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0–19 year olds. 27 We also limited our analysis to 0–11 year olds 

as clinical trials have yet to release findings). For this analysis, the 

accine coverage of 10–19 year olds is therefore assumed to have 

 maximum level of 70% as the subgroup of 12–19 year olds con- 

ribute about 79% to the group of 10–19 year olds. 

thics and permissions 

The study protocol was approved by the Health and Disabil- 

ty Ethics Committee, New Zealand, under the protocol number 

0/NTB/156. 

ole of the funding source 

The sponsors of the study had no role in study design, data col- 

ection, data analysis, data interpretation, or the writing of this re- 

ort. 

esults 

inimum herd immunity requirements 

Figure 2 (A-B) and Figure 4 (A-D) show minimum herd im- 

unity requirements for two vaccine strategies at multiple up- 

ake levels given the R 0 value is in the range of 4.5–6 and 2–3.5

here there is a minimum 80% vaccine uptake for high risk groups. 

eaching the HIT with a vaccine of 90/80% effectiveness requires 

t least 86.5% total population uptake for R 0 = 4.5 and 98.1% up- 

ake for R 0 = 6 with high vaccination coverage for 30–49-year-olds, 

.e. the spread-minimising strategy. With the same vaccine and the 

igh-risk targeting strategy, reaching HIT requires 92% and 99.2% 

otal population uptake levels for R 0 = 4.5 and 6 respectively. With 

0% total population coverage with a vaccine of 90% VE for disease 

revention, a minimum 76% VE of infection reduction for R 0 = 4.5 

nd 86% VE of infection reduction for R = 6 is required (using the
0 

4 
pread-minimising strategy). For 80% population vaccine coverage, 

 VE of 87% for infection reduction is needed. For all VE scenarios 

 Figures 2 , 4 , Supplemental Appendix S3), the spread-minimising 

trategy has the minimum requirements of VE for HIT among vac- 

ine strategies given the same uptake levels although it may not be 

ptimal for protecting the whole population from the risk of hospi- 

alisations and deaths. Vaccinating the age groups 30–39 and 40–

9 can minimise the initial effective reproduction numbers (given 

 limited number of doses), while 60 + and 0–9 are the age groups 

hat contribute the least to the reduction of the effective reproduc- 

ion number and the achievement of HIT. 

pen border modelling results 

The differences in vaccine allocation of the investigated strate- 

ies can be found in Figure 3 . The spread-minimising strategy 

minimise R eff) in this figure has enabled HIT at 80% total popu- 

ation coverage. Probable scenarios of VE and vaccine uptake lev- 

ls in a two-year simulation of the model can be found in Table 1

open borders, ten cases daily introduced to the community and 

 0 = 4.5). Further vaccine scenarios for the whole of NZ can be 

ound in Supplemental Tables S2–8. 

The spread-minimising strategy (i.e. minimise R eff) resulted in 

he smallest peak and total community cases in all scenarios (as- 

uming the vaccine can reduce infection e t > 0). The strategy 

hich targeted high-risk groups yielded the fewest hospitalisations 

active or total) and total deaths in the majority of modelled sce- 

arios ( Table 1 ). For the high-risk group targeting strategy, a high 

otal vaccine uptake is required that is enough to also cover young 

dults to achieve better outcomes in general. For instance, in a sce- 

ario with R 0 = 4.5 and a vaccine having a VE of 90/70% and 90%

opulation uptake, the high-risk group targeting strategy was fore- 

asted to have the lowest number of deaths and total hospitalisa- 

ions, i.e. 2,880 vs 5,810 fatalities and 30,100 vs 39,700 hospital- 

sations (peak active hospitalisations 1,480 vs. 1,310) respectively, 
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Figure 2. Vaccine effectiveness and New Zealand population vaccine uptake requirements for herd immunity threshold. Note: The minimal vaccine effectiveness on infection 

reduction and disease prevention for the herd immunity threshold at multiple vaccine uptake levels: (A) R 0 = 4 • 5 and (B) R 0 = 6. The spread-minimising strategy (i.e. minimise 

R eff) offers lower requirements of vaccine effectiveness (on both effects) than the high-risk targeting strategy given the same uptake levels. Both effects are considered equal 

across age groups in this analysis. As the vaccine effectiveness on infection reduction is expected to be not greater than the vaccine effectiveness on disease prevention, all 

herd immunity lines are limited to the bottom half of the plot (divided by the black line). 

Figure 3. Age-stratified allocations for two strategies with a vaccine of 95/90% uniform effectiveness and 80% coverage (A), and their minimum herd-immunity allocations 

(R0 = 4 • 5) (B). Note: Illustration of vaccine allocations for two strategies (i.e. minimising R eff and prioritising high-risk groups). A – shows 80% coverage with 95% (uniform) 

effectiveness on disease prevention and 90% (uniform) of infection reduction. B – shows the minimal age-stratified allocations required for HIT by the corresponding strate- 

gies. The high-risk targeting strategy requires more than 80% coverage ( ∼90 • 5%) to achieve HIT, while the spread-minimising strategy needs less vaccine uptake for HIT 

(78 • 2% total coverage). For R 0 = 6.0 near complete coverage for all age groups is required to achieve the herd-immunity threshold. 

5 
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Table 1 

Comparison of cases, hospitalisations, and deaths in New Zealand population (R 0 = 4 • 5) – 10 imported cases per day with open borders or 7,300 total imported 

cases with two-year open borders 

Vaccine scenarios ( e d / e i & uptake) Vaccine strategies Peak active cases Total community cases Peak hosps. Total hosps. Total deaths 

95/90% uniform – 100% coverage n/a 133 5,010 7 587 64 

95/90% uniform minimise R eff 217 12,100 15 1,170 173 

90% coverage high-risk 1,380 80,400 34 1,950 145 

hybrid 270 16,800 10 814 77 

95/90% uniform minimise R eff 1,090 75,700 78 5,210 863 

80% coverage high-risk 66,700 821,000 1,530 17,400 947 

hybrid 1,950 127,000 123 7,490 1,150 

95/90% uniform minimise R eff 46,500 974,000 2,910 55,200 8,140 

70% coverage high-risk 163,000 1,500,000 3,640 31,700 1,710 

95/80% uniform – 100% coverage n/a 272 18,100 9 708 76 

95/80% uniform minimise R eff 584 43,500 29 2,120 333 

90% coverage high-risk 7,050 318,000 127 5,130 383 

hybrid 803 60,100 28 2,010 261 

95/80% uniform minimise R eff 16,600 673,000 908 32,200 5,440 

80% coverage high-risk 110,000 1,360,000 2,050 22,800 1,400 

95/80% uniform minimise R eff 122,000 1,790,000 5,840 75,400 11,100 

70% coverage high-risk 240,000 2,140,000 4,480 36,900 2,190 

95/70% uniform – 100% coverage n/a 1,560 119,000 24 1,630 168 

95/70% uniform minimise R eff 14,600 734,000 459 19,600 3,210 

90% coverage high-risk 42,600 1,180,000 575 13,700 1,130 

95/70% uniform minimise R eff 91,900 1,820,000 3,560 60,100 9,910 

80% coverage high-risk 188,000 2,200,000 2,800 28,900 1,960 

95/70% uniform minimise R eff 236,000 2,650,000 8,970 87,900 12,900 

70% coverage high-risk 341,000 2,830,000 5,330 40,400 2,530 

95/60% uniform – 100% coverage n/a 59,500 1,590,000 561 12,700 1,330 

95/60% uniform minimise R eff 119,000 2,190,000 2,500 39,300 6,260 

90% coverage high-risk 146,000 2,340,000 1,540 21,200 1,870 

95/60% uniform minimise R eff 221,000 2,800,000 6,670 72,400 11,900 

80% coverage high-risk 303,000 2,990,000 3,670 32,300 2,300 

95/60% uniform minimise R eff 370,000 3,330,000 11,700 92,600 13,700 

70% coverage high-risk 455,000 3,390,000 6,060 41,600 2,670 

90/80% uniform – 100% coverage n/a 337 23,200 15 1,140 120 

90/80% uniform minimise R eff 918 67,500 54 3,750 559 

90% coverage high-risk 11,100 439,000 324 11,400 1,030 

hybrid 1,470 105,000 71 4,640 609 

90/80% uniform minimise R eff 29,200 928,000 1,780 50,100 7,890 

80% coverage high-risk 122,000 1,500,000 3,430 38,800 3,170 

90/80% uniform minimise R eff 145,000 1,960,000 7,770 94,400 13,200 

70% coverage high-risk 259,000 2,260,000 7,020 58,600 4,590 

90/70% uniform – 100% coverage n/a 5,170 329,000 130 7,060 720 

90/70% uniform minimise R eff 34,000 1,200,000 1,310 39,700 5,810 

90% coverage high-risk 63,100 1,490,000 1,480 30,100 2,880 

90/70% uniform minimise R eff 121,000 2,080,000 5,400 80,600 12,200 

80% coverage high-risk 212,000 2,390,000 4,910 49,900 4,320 

90/70% uniform minimise R eff 267,000 2,810,000 11,400 107,000 15,000 

70% coverage high-risk 366,000 2,950,000 8,400 63,800 5,220 

90/60% uniform – 100% coverage n/a 93,700 1,940,000 1,740 30,600 3,260 

90/60% uniform minimise R eff 157,000 2,460,000 4,430 59,900 8,590 

90% coverage high-risk 183,000 2,590,000 3,400 41,700 4,150 

90/60% uniform minimise R eff 262,000 3,000,000 8,900 89,400 13,300 

80% coverage high-risk 335,000 3,140,000 6,420 54,400 4,860 

90/60% uniform minimise R eff 404,000 3,440,000 14,700 113,000 15,800 

70% coverage high-risk 483,000 3,490,000 9,460 64,400 5,380 

80/70% uniform – 100% coverage n/a 41,800 1,310,000 2,000 55,000 5,780 

80/70% uniform minimise R eff 95,100 1,930,000 5,170 93,500 11,900 

90% coverage high-risk 122,000 2,090,000 5,340 81,600 8,510 

80/70% uniform minimise R eff 190,000 2,560,000 10,800 131,000 17,500 

80% coverage high-risk 268,000 2,770,000 11,000 105,000 10,600 

80/70% uniform minimise R eff 333,000 3,100,000 18,000 156,000 20,000 

70% coverage high-risk 419,000 3,190,000 16,200 119,000 11,800 

80/60% uniform – 100% coverage n/a 175,000 2,510,000 6,290 79,400 8,690 

80/60% uniform minimise R eff 244,000 2,930,000 9,990 107,000 13,600 

90% coverage high-risk 265,000 3,000,000 9,130 92,600 9,940 

80/60% uniform minimise R eff 340,000 3,300,000 15,500 138,000 18,600 

80% coverage high-risk 406,000 3,420,000 13,600 106,000 10,900 

80/60% uniform minimise R eff 475,000 3,650,000 21,500 155,000 20,200 

70% coverage high-risk 543,000 3,680,000 17,600 115,000 11,600 

70/60% uniform – 100% coverage n/a 266,000 2,940,000 13,900 141,000 15,800 

70/60% uniform minimise R eff 336,000 3,280,000 18,300 165,000 20,100 

90% coverage high-risk 354,000 3,330,000 17,600 154,000 17,100 

70/60% uniform minimise R eff 426,000 3,570,000 23,700 187,000 23,600 

80% coverage high-risk 483,000 3,660,000 22,900 166,000 18,100 

( continued on next page ) 
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Table 1 ( continued ) 

70/50% uniform – 100% coverage n/a 421,000 3,520,000 17,500 136,000 15,600 

70/50% uniform minimise R eff 491,000 3,780,000 21,400 154,000 19,000 

90% coverage high-risk 503,000 3,800,000 20,200 144,000 16,300 

90/80%: age 50 + 70/60%: younger 80% coverage dual vaccine 175,000 2,180,000 8,410 95,300 12,000 

Peak active and total community cases do not include imported cases. All measures related to hospitalisations and deaths (in all 

scenarios) include imported cases, which are equivalent to the expectations of 4 4 4 total hospitalisations and 49 • 6 total deaths. 

Note: Forecasts for a two-year simulation. e d is VE of disease prevention. e i is VE of infection reduction. The total community cases 

include vaccinated cases, who are less likely to develop symptoms, need hospitalisation or die than unvaccinated individuals. A 

scenario of “95/90% uniform, 80% coverage” means that the vaccine has uniform effects across age groups with 95% disease 

prevention and 90% infection reduction, and the uptake is 80% coverage of total population. HIT is not achievable in the third and 

fourth scenarios, where the vaccine has poor effectiveness on infection reduction. The last scenario has 80% vaccine uptake when 

two vaccines are available. The “dual vaccines’’ strategy reused the vaccine allocation from the high-risk (group) targeting strategy. 

This dual strategy allocated a vaccine with lower effectiveness 70/60% for the five younger age groups and the 90/80% vaccine 

for the three oldest groups (aged 50 and over). Targeted vaccine strategies: (minimise R eff) Targeting of younger (socialised) age 

groups to minimise R eff; (high-risk) Groups susceptible to hospitalisation and death. Results are rounded to the third significant 

number. The lowest values that are at least 10% lower than other corresponding numbers of the same scenarios are in bold. 
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I

nd more community cases than the spread-minimising strategy, 

.e. a total of 1,490,0 0 0 vs. 1,20 0,0 0 0 cases (peak active commu-

ity cases 63,10 0 vs. 34,0 0 0). Where the R 0 value is 6 and 90% to-

al population uptake with the same vaccine, modelling the high- 

isk group targeting strategy resulted in lower hospitalisations and 

eaths but higher cases than the spread-minimising strategy, i.e. 

,10 0 vs. 11,70 0 deaths, 59,60 0 vs. 82,60 0 hospitalisations (peak 

ctive 5,960 vs. 7,320), 2,860,0 0 0 vs. 2,750,0 0 0 cases (peak active 

ommunity cases 253,0 0 0 vs. 213,0 0 0). 

A dual vaccine approach has been investigated where the vac- 

ine distribution follows the high-risk targeting strategy ( Table 1 ). 

ll groups aged 50 and over are allocated with a vaccine of 90/80% 

ffectiveness and the rest are allocated with a vaccine of lower 

0/50% effectiveness. The outcomes of this scenario are 2,180,0 0 0 

ases (peak active 175,0 0 0 cases), 95,30 0 hospitalisations (peak ac- 

ive 8,410 in hospital), and total 12,0 0 0 fatalities. These numbers 

re in between the corresponding outcomes of two scenarios us- 

ng either one of the two vaccines. 

We have modelled vaccine scenarios of immunesenescence 

ith a 50% reduction in effectiveness (for both disease prevention 

nd infection reduction) in people aged 60 and over (Supplemental 

able S9). We also analysed the sensitivity of the results on the as- 

umed average daily imported cases and the synthetic contact ma- 

rix 18 in Supplemental Appendix S4. Customised vaccine strategies 

nd open-border modelling results for M ̄aori and Pasifika popula- 

ions are provided in Supplemental Appendix S5. 

accination excluding youngest age-groups 

Where vaccination is not allocated to the 0–15 year olds 5 or 

he 0–11 year olds, the maximum attainable total population vac- 

ine coverage is 79.8% or 84.9%. At a high R 0 value of 4.5 or higher,

hese maximum total coverage levels are not enough to achieve 

IT. Therefore, opening borders without vaccinating the under-12 

roup or the under-16 group were predicted to result in a large 

umber of cases, hospitalisations, and deaths ( Table 2 and Supple- 

ental Table S2). For instance, where 0–11 year olds are not vac- 

inated and R 0 = 4.5 ( Table 2 ), the high-risk targeting strategy with

 high uptake level 80% (over the maximum 84.9%) and a vaccine 

f 90/80% effectiveness was predicted to have lower deaths and to- 

al hospitalisations and more community cases, i.e. 3,120 vs. 5,850 

eaths, 37,70 0 vs. 44,10 0 hospitalisations (peak 2,980 vs 2,630), 

,480,0 0 0 vs 1,180,0 0 0 cases (peak 107,0 0 0 vs 62,700). 

At a lower R 0 value of 2.5 ( Figure 4 and Supplemental Fig- 

res S5-6), the achievement of HIT will require a minimum VE 

gainst infection of 61% for excluding 0–15 year olds and 73% for 

xcluding 0–11 year olds with the limits of 76.4% and 71.8% respec- 

ively (maximum 90% coverage for each age group). The open bor- 

er modelling outcomes have higher numbers of cases, hospitali- 
7 
ations, and deaths in almost all scenarios and vaccine strategies 

ompared with vaccinating all age groups. 

iscussion 

Reaching HIT will prevent widespread community outbreaks 

nd, as a result, vulnerable populations will have a greater chance 

f protection from severe disease. A long-term lockdown may 

nly postpone future outbreaks if a high level of immunity (by 

accination or natural immunity) is not targeted. Achieving HIT 

hrough vaccination in New Zealand while borders are closed will 

equire an effective vaccine that can reduce infection, and high na- 

ional vaccine uptake. Achievement of HIT without vaccinating the 

oungest age groups will require a vaccine with higher VE against 

nfection. In an open border scenario with the relaxation of PHSMs 

nd a highly effective vaccine for both disease prevention and in- 

ection reduction, targeting high-risk groups (including M ̄aori and 

asifika) and achieving a high national uptake level, e.g. 80%, will 

esult in a relatively low number of forecasted COVID-19 hospitali- 

ations and deaths by international comparisons. 28 Where the vac- 

ine has lower VE for infection reduction, more COVID-19 cases, 

ospitalisations and deaths are likely. 

A strategy to achieve HIT will ensure limited community trans- 

ission (e.g. sporadic outbreaks) once borders are opened but 

ould require a vaccine with a minimum 87% VE for infection re- 

uction (where R 0 = 4.5) and a high vaccine coverage rate of 80% 

otal population. This estimated VE for infection reduction is higher 

han the 85% effectiveness for preventing infections that was pre- 

icted to result in a reproduction number of 1.58 in the UK. This 

tudy did not however account for further reduced viral shedding 

rom vaccinated individuals, reducing onward transmission. 28 

Although, HIT is potentially possible e.g. with recent evidence of 

he BNT162b2 vaccine’s effect against infection, 29 it is also possible 

hat emerging effectiveness challenges against new virus variants 

ill necessitate a shift in focus away from herd immunity strate- 

ies to protection of at-risk individuals against severe disease. 30 

lthough the range of estimated VE used in this study are plausi- 

le, in particular for the mRNA vaccines licensed in NZ, 11 the lower 

ounds of VE may need to be extended in the presence of variants 

f concern. 31 

Comparisons of our forecast peaks (with 80% uptake, and 95% 

E for disease and 70% for infection) with other countries who 

ad widespread community transmission during the first waves 

f disease (with no available vaccination) can be made. Scotland 

as a broadly comparable population size but higher population 

ensity (e.g. Scotland, UK, 5.4m vs. 5.1m population, 19.0/km 

2 vs. 

7.2/km 

2 ). Variants of concern with high R 0 values such as Alpha 
2 and Delta variants, 33 were dominant in Scotland in Spring 2021. 

n an open border scenario, our NZ model for R = 4.5, where a 
0 
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Table 2 

Comparison of cases, hospitalisations and deaths when vaccination is not allocated to the 0–11 year olds (R 0 = 4 • 5) – 10 imported cases per day with two-year 

open borders 

Vaccine scenarios ( e d / e i , uptake, & R 0 ) Vaccine strategies Peak active cases Total community cases Peak hosps. Total hosps. Total deaths 

95/90% uniform – 84 • 9% coverage n/a 17,900 413,000 388 8,310 513 

95/90% uniform minimise R eff 23,400 511,000 918 18,300 2,500 

80% coverage high-risk 50,600 783,000 1,140 16,100 909 

95/90% uniform minimise R eff 64,100 1,050,000 3,510 52,400 8,070 

70% coverage high-risk 157,000 1,490,000 3,490 31,100 1,690 

95/90% uniform minimise R eff 179,000 1,860,000 10,000 95,900 12,500 

60% coverage high-risk 310,000 2,180,000 7,860 53,800 2,680 

95/90% uniform minimise R eff 361,000 2,570,000 19,500 133,000 15,500 

50% coverage high-risk 508,000 2,790,000 15,300 84,800 3,980 

95/80% uniform – 84 • 9% coverage n/a 39,000 826,000 695 13,100 894 

95/80% uniform minimise R eff 51,000 1,010,000 1,690 29,300 4,110 

80% coverage high-risk 93,500 1,330,000 1,710 21,700 1,370 

95/80% uniform minimise R eff 128,000 1,780,000 5,700 70,000 10,600 

70% coverage high-risk 232,000 2,130,000 4,290 36,400 2,150 

95/80% uniform minimise R eff 279,000 2,560,000 13,100 108,000 14,100 

60% coverage high-risk 403,000 2,780,000 8,750 57,200 3,010 

95/80% uniform minimise R eff 466,000 3,150,000 22,000 139,000 16,400 

50% coverage high-risk 604,000 3,300,000 16,000 85,700 4,080 

95/70% uniform – 84 • 9% coverage n/a 99,200 1,730,000 1,390 21,000 1,590 

95/70% uniform minimise R eff 122,000 1,960,000 3,200 44,100 6,300 

80% coverage high-risk 174,000 2,180,000 2,540 28,100 1,950 

95/70% uniform minimise R eff 233,000 2,630,000 8,400 82,700 12,500 

70% coverage high-risk 331,000 2,830,000 5,130 40,100 2,510 

95/70% uniform minimise R eff 399,000 3,220,000 15,700 114,000 15,000 

60% coverage high-risk 506,000 3,320,000 9,500 58,500 3,150 

95/70% uniform minimise R eff 576,000 3,640,000 24,100 141,000 16,800 

50% coverage high-risk 698,000 3,720,000 16,600 85,200 4,030 

90/80% uniform – 84 • 9% coverage n/a 47,900 973,000 1,360 24,700 2,140 

90/80% uniform minimise R eff 62,700 1,180,000 2,630 44,100 5,850 

80% coverage high-risk 107,000 1,480,000 2,980 37,700 3,120 

90/80% uniform minimise R eff 148,000 1,950,000 7,550 89,200 12,800 

70% coverage high-risk 250,000 2,250,000 6,750 58,000 4,580 

90/80% uniform minimise R eff 303,000 2,680,000 15,700 128,000 16,200 

60% coverage high-risk 422,000 2,860,000 12,200 81,700 5,930 

90/70% uniform - 84 • 9% coverage n/a 123,000 1,980,000 2,860 40,300 3,690 

90/70% uniform minimise R eff 148,000 2,190,000 5,020 64,900 8,660 

80% coverage high-risk 199,000 2,380,000 4,580 49,200 4,310 

90/70% uniform minimise R eff 262,000 2,800,000 10,900 104,000 14,700 

70% coverage high-risk 356,000 2,960,000 8,140 63,500 5,220 

90/70% uniform minimise R eff 426,000 3,320,000 18,700 134,000 17,100 

60% coverage high-risk 529,000 3,400,000 13,200 82,700 6,130 

80/70% uniform – 84 • 9% coverage n/a 184,000 2,460,000 7,790 93,900 9,670 

80/70% uniform minimise R eff 213,000 2,640,000 10,500 118,000 14,600 

80% coverage high-risk 258,000 2,770,000 10,600 104,000 10,600 

80/70% uniform minimise R eff 327,000 3,100,000 17,300 152,000 19,700 

70% coverage high-risk 411,000 3,210,000 15,900 120,000 11,800 

80/70% uniform minimise R eff 483,000 3,510,000 25,600 178,000 21,800 

60% coverage high-risk 576,000 3,560,000 22,000 137,000 13,000 

80/60% uniform – 84 • 9% coverage n/a 328,000 3,240,000 11,100 99,500 10,500 

80/60% uniform minimise R eff 358,000 3,360,000 14,400 124,000 15,500 

80% coverage high-risk 398,000 3,430,000 13,200 106,000 11,000 

80/60% uniform minimise R eff 468,000 3,660,000 20,700 152,000 20,100 

70% coverage high-risk 537,000 3,710,000 17,400 116,000 11,600 

80/60% uniform minimise R eff 610,000 3,920,000 27,900 173,000 21,600 

60% coverage high-risk 683,000 3,930,000 22,500 130,000 12,300 

70/50% uniform – 84 • 9% coverage n/a 555,000 3,920,000 21,900 148,000 16,700 

70/50% uniform minimise R eff 671,000 4,160,000 31,200 189,000 24,300 

70% coverage high-risk 717,000 4,160,000 27,500 159,000 17,400 

Note: NZ’s vaccination plan has not included vaccinating 0–11 year olds. 5 The total population coverage is therefore no more than 84 • 9% (other age groups have a 

maximum coverage of 100%). 27 At the maximum total coverage (84 • 9%), both vaccine strategies become identical. 
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accine of 90/80% effectiveness is not allowed for individuals aged 

nder 16, has estimated a peak of 355 new daily hospitalisations 

3,090 peak active hospitalised cases) vs. 92 peak daily hospital- 

sations found during the ongoing wave in Scotland (from June 

ntil July 2021), and a higher peak of daily cases 14,800 (includ- 

ng asymptomatic cases, 110,0 0 0 peak active cases) vs. 3,930 found 

n Scotland with 64.7% two-dose vaccine coverage and 88.1% first- 

ose vaccine coverage of all people aged 18 and over. 34 The num- 

ers hospitalisations and deaths for NZ will be higher as this in- 

ludes 7,300 unvaccinated imported cases. 
8 
Several studies have addressed COVID-19 vaccination strategies. 

ubar et al. 35 compared five vaccine strategies that allocate vac- 

ine doses on ‘under 20’, ‘adults 20–49’, ‘adults 20 + ’, ‘adults 60 + ’,

nd ‘all ages’ in terms of the reduction of deaths and infections. 

his study focused on the initial phase of vaccination, modelling 

 total vaccine uptake of no more than 50% of the population and 

pplying non-pharmaceutical interventions to reduce the spreading 

ate. Moore et al. predicted 96,700 deaths (51,800–173,200) if in- 

erventions are removed after vaccination with a vaccine that could 

revent 85% infections. 28 Sandmann et al. used an age-structured 
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Figure 4. Vaccine effectiveness and New Zealand population vaccine uptake requirements for the herd immunity threshold at lower R0 values. Note: The minimal vaccine 

effectiveness on inf ection reduction and disease prevention for HIT at multiple vaccine uptake levels: (A) R 0 = 2; (B) R 0 = 2 • 5; (C) R 0 = 3; and (D) R 0 = 3 • 5. The maximum vaccine 

coverage in each age group is 90%. 
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ransmission and economic model to estimate the economic im- 

act of vaccination for the UK in a ten-year simulation. 36 This 

tudy suggested that vaccination could add substantial health and 

conomic value and population-wide physical distancing might not 

e justifiable. 
9 
Compared with other models used for vaccination studies, the 

EIR model used in this study provides a model with fewer as- 

umptions for the same disease dynamics. By grouping individuals 

f the same disease phase into a compartment, this SEIR model ap- 

roach only requires transitions among phases instead of requiring 



T. Nguyen, M. Adnan, B.P. Nguyen et al. The Lancet Regional Health - Western Pacific 15 (2021) 100256 

n

i

u

d

h

i

a

d

q

p

c

m

n

p

t

b  

v

a

b

i

c

o

w

c

a

m

t

c

v

s

m

c

c

c

u

t

c

o

h

t

d

g

t

e

w

a

t

s

m

f

t  

9

c

w

i

h

i

s

C

 

t

e

o

t

d

l

p

D

G

A

A

w

C

V

t

t

I

J

N

t

f

f

a

S

B

r

d

D

A

C

v

D

d

a

S

f

R

 

 

 

umerous rules representing all the disease phases that are used 

n agent-based models. Although agent-based models have been 

sed to apply a number of assumptions which are useful for un- 

erstanding the effect of multiple public health interventions, they 

ave limitations due to being computationally demanding. 37 For 

nstance, agent-based models do not integrate age groups, but use 

verages for the whole population, whereas we know that vaccine 

istribution across age groups is unlikely to be uniform. 38 The re- 

uired uptake levels for HIT are subject to an estimated basic re- 

roduction number R 0 of COVID-19 in NZ, national priorities and 

onsideration to protect health and social care workers and the 

ost clinically susceptible groups. While the R 0 value for NZ has 

ot been reliably estimated, its actual value is also probably de- 

endent on seasonality. 39 , 40 Moreover, R 0 is likely to increase with 

he emergence of the new virus strains. 41 , 42 To consider possi- 

le increases in R 0 , a strength of this study is that we also in-

estigated herd immunity requirements for higher R 0 values (4.5 

nd 6). These R 0 values could be the potential reproduction num- 

er of new variants. However, this study does not include chang- 

ng R 0 values over time (with the introduction of new variants of 

oncern). Rather R 0 values are fixed for the two-year period. An- 

ther strength of this work is that the model can be calibrated 

hen more accurate parameter values are available. There is un- 

ertainty with new variants of concern. Model parameters, such 

s R 0 , latent/infectious periods, and age-structured mortality rates 

ay therefore vary. However, further parameters can be added to 

he model once evidence of new parameters emerges. 

The safe opening of borders in NZ will be dependent on a vac- 

ine that has high effectiveness against both COVID-19 disease and 

iral transmission. A limitation of our study is that there is still 

ome uncertainty regarding the vaccine effectiveness against trans- 

ission. Therefore, modelling strategies and scenarios and fore- 

asting their potential impact on the NZ population with more ac- 

urate assumptions (including infection reduction and waning vac- 

ine immunity) needs further investigation. A further limitation is 

ncertainty around the potential number of imported cases in par- 

icular if travel is restricted from regions with high numbers of 

ases. There is also uncertainty regarding immunesenescence and 

ur assumption of uniform effectiveness across age groups may not 

old, although we have modelled vaccine scenarios with a reduc- 

ion in effectiveness (for both disease prevention and infection re- 

uction) in people aged 60 and over. The targeting of high-risk 

roups (in an open border scenario), in this case, may not yield 

he lower total deaths in many scenarios as the disease prevention 

ffect is now lower. This is in contrast to another modelling study 

hich found that, in the event of low effectiveness amongst older 

dults and no more than 50% uptake level, the advantage of priori- 

ising all adults or adults 20–49 vs. adults 60 + was small. 35 

This work provides data on a range of vaccine scenarios and 

trategies to inform NZ vaccine planning. 5 While research to esti- 

ate vaccine effectiveness for reducing severe outcomes and in- 

ection is underway, a 70% VE against infection is predicted to be 

he minimum required to achieve HIT for NZ with an R 0 = 4.5 and

5% total vaccine coverage. As NZ’s vaccination plan has not yet in- 

luded those aged 0–15 years for vaccination, 5 achievement of HIT 

ithout vaccinating this group may be impossible, especially if the 

mported cases are Alpha or Delta variants of concern. 33 Thus, to 

elp reduce cases, hospitalisations, and deaths, other public health 

nterventions will be required to manage the public health re- 

ponse. 
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