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Abstract
Cranial cavity extraction is often the first step in quantitative neuroimaging analyses. However, few automated, validated
extraction tools have been developed for non-contrast enhanced CT scans (NECT). The purpose of this study was to compare
and contrast freely available tools in an unseen dataset of real-world clinical NECT head scans in order to assess the performance
and generalisability of these tools. This study included data from a demographically representative sample of 428 patients who
had completed NECT scans following hospitalisation for stroke. In a subset of the scans (n = 20), the intracranial spaces were
segmented using automated tools and compared to the gold standard of manual delineation to calculate accuracy, precision,
recall, and dice similarity coefficient (DSC) values. Further, three readers independently performed regional visual comparisons
of the quality of the results in a larger dataset (n = 428). Three tools were found; one of these had unreliable performance so
subsequent evaluation was discontinued. The remaining tools included one that was adapted from the FMRIB software library
(fBET) and a convolutional neural network- based tool (rBET). Quantitative comparison showed comparable accuracy, preci-
sion, recall and DSC values (fBET: 0.984 ± 0.002; rBET: 0.984 ± 0.003; p = 0.99) between the tools; however, intracranial
volume was overestimated. Visual comparisons identified characteristic regional differences in the resulting cranial cavity
segmentations. Overall fBET had highest visual quality ratings and was preferred by the readers in the majority of subject results
(84%). However, both tools produced high quality extractions of the intracranial space and our findings should improve
confidence in these automated CT tools. Pre- and post-processing techniques may further improve these results.

Keywords Computed tomography . Image segmentation . Brain extraction . Intracranial volume . Validation

Introduction

In research, extraction of the cranial cavity from neuroimaging
scans is an important pre-processing step which is usually
completed prior to further quantitative analyses. In many ap-
plications, additional tissue segmentation is applied to extract
the brain tissue from other intracranial tissue such as cerebral
spinal fluid (CSF), and measurements of intra-cranial volume
are also useful for normalisation purposes. In MR analysis,
tissue segmentation, image registration, and diagnosis often
rely on brain extraction techniques (de Boer et al., 2010;
Fennema-Notestine et al., 2006; Klein et al., 2010). It is there-
fore critically important to develop robust, effective, and ex-
ternally validated techniques for performing brain extraction.
Myriad brain extraction tools (BETs) have been developed
and rigorously validated for MRI brain scans (Wang et al.,
2014). In comparison, there is a paucity of equivalently well
validated tools that extract the intracranial space for CT head
scans. The wide availability, tolerability and low cost of CT
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has led it to becoming established as a mainstay of neuroim-
aging, particularly within acute clinical settings. Ideally, these
tools would be fully automated, accurate and generalisable
across the range of CT scanners while being able to cope with
pathologies and image artefacts that are common amongst
clinical and research CT scans.

A handful of automated tools have been developed to seg-
ment the intracranial space from non-contrast enhanced CT
scans. Often the segmentation is colloquially referred to as
brain extraction; however, the segmentations will include ven-
tricular and subarachnoid CSF, meninges and other non-brain
tissue. Therefore, it is more correct to say that these tools
extract the cranial cavity (or intracranial space).
Nevertheless, to maintain consistency with the previous liter-
ature, the term brain extraction tools (BETs) will subsequently
be used throughout this paper. In two previous studies the
MRI-based BET from the FMRIB software library (FSL;
(Smith, 2002)) was independently adapted for CT scans.
However, neither of these studies provided validation against
a ground truth (Rorden et al., 2012; Solomon et al., 2007).
Building on this, a subsequent study investigated the optimal
settings for an FSL adapted tool and provided a rigorous val-
idation (Muschelli et al., 2015), the authors implemented the
tool using the publicly available R open-source program. A
high accuracy of the resulting extractions was found (>99%)
when compared to ground truth with dice similarity coeffi-
cient values exceeding 0.98. Another tool that has been vali-
dated was based on a particulate filter and was compared to
manual delineations, but this tool was not fully automated
(Jason G. Mandell et al., 2015). Besides the adapted FSL
BET, two other automated tools have been recently developed
for use in NECT. A deep learning model, based on a
convolutional neural network (CNN), was trained and evalu-
ated in stroke patients. Comparison with manual delineations
revealed the tool produced brain extractions with high accu-
racy and precision. Further, dice similarity coefficient values
were improved compared to the adapted FSL BET (0.998 vs
0.995) and the CNN-based tool had a substantially reduced
execution time (Akkus et al., 2020). However, data were col-
lected from a single centre and CT scanner, so it is unclear
whether the tool will generalise to CT scans acquired under
different conditions. The CNN-based tool is implemented in
the freely available Python programming language and Keras
deep learning framework. An additional tool, based on con-
tour evolution with a novel propagation framework, has also
shown promising results in non-contrast enhanced CT and CT
angiography scans from stroke patients, again outperforming
the adapted FSL BET approach based on dice similarity coef-
ficient values (0.965 vs 0.877)(Najm et al., 2019). To further
evaluate the robustness of the contour evolution tool, the in-
vestigators visually evaluated the results of their own tool in a
large cohort of 1331 scans drawn from multiple-centres using
CT scanners from several vendors. The investigators found a

high degree of accuracy and a low failure rate (0.5%) even in
the presence of image artefacts. Yet, they did not directly
compare these against the quality of the brain extractions from
the adapted FSL BET. The contour evolution tool is imple-
mented in Matlab (MATLAB, 2010) and is also publicly
available to researchers. Therefore, despite the recent progress
in CT brain extraction, it is still challenging for a prospective
researcher to distinguish the differences in performance of
these tools and gauge the generalisability of these existing
methods.

In this study, we sought to compare all freely available,
automated BETs for use in non-contrast enhanced scans. We
independently assessed these tools in an unseen cohort of real-
world clinical CT head scans with varying image quality ac-
quired from multiple scanners and evaluated their perfor-
mance, ease of use and failure rate. In addition, we visually
evaluated the performance of all the brain extraction tools on a
regional basis, to identify the location of common errors in the
brain extractions. Further, we aimed to identify post-
processing techniques which may help to improve the results.

Materials and Methods

Participants

This investigation presents a retrospective analysis of a sub-
set of routinely collected clinical CT scans from patients as
part of cognitive screening studies led by ND (OCS-Tablet,
OCS-Recovery, and OCS-CARE studies - NHS REC refer-
ences 14/LO/0648, 18/SC/0550, and 12/WM/00335) between
2012 and 2020. These studies recruited consecutive stroke
survivors, regardless of lesion location or behavioral patholo-
gy, during acute hospitalization. OCS-Tablet and OCS-
Recovery recruited only within Oxford (e.g. (Demeyere
et al., 2015, 2016)), though OCS-CARE recruited from 37
different stroke hospitals throughout the UK (Demeyere
et al., 2019). No scans were excluded due to motion or beam
hardening artefacts.

CT Tools and Image Analyses

The literature was searched for BETs that had been developed
or adapted for non-contrast enhanced CT scans. Existing tools
were included for evaluation provided they were fully auto-
mated, were freely available at the time and had been used in
at least one study that was published within the last 10 years.
We searched the following databases: Embase, Medline,
PubMed, SCOPUS and Web of Science for terms including
CT or NECT, automated, brain, extraction, BET, segmenta-
tion, and delineation. Githubwas also searched using the same
terms to identify available software. Besides conversion to the
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NifTI-1 format, no pre-processing of the CT scans was per-
formed prior to their use in the tools.

Three brain extraction tools met our criteria for evaluation,
the tools are summarised in Table 1 along with information on
previous validations. Herein, we refer to the convolution neu-
ral network (CNN)-based tool as rBET (robust-BET), the con-
tour evolution-based tool as cBET (as in contour-BET) and
the FSL adapted tool as fBET. In brief, rBET is based on a 2D
U-Net CNN with five encoder-decoder architecture, trained
on 122 CT head scans of stroke patients from a single centre.
cBET identifies the initial axial slice with the largest estimated
brain cross section, then uses a convex optimisation algorithm
based on a fully time-implicit level set scheme with global
optimisation to propagate the brain outline. fBET models the
brain surface by triangular tessellation and through an iterative
process allows the surface to grow to find the optimal brain
outline. More details on these algorithms are provided in the
supplemental information. The tools were used as specified in
the available documentation or appropriate publications.
Since the fractional intensity (FI) parameter in fBETwas eval-
uated at different values previously, we chose 0.01 based on
experience and previous work (Muschelli et al., 2015; Najm
et al., 2019). The average run time was calculated from 10

scans with different slice thicknesses, using an i7 core 2.5GHz
CPU.

Quantitative Comparison to Ground Truth

Manual cranial cavity delineation was performed on 20 ran-
domly selected CT head scans from the full dataset of 428
scans. An experienced neuroimaging researcher (MJM)
employed MRIcron to outline the intracranial space; voxels
within the intracranial space were assigned a value of 1, all
other voxels were assigned a value of zero, thus a binary mask
was produced for each of the 20 subjects. Although this binary
mask does not represent brain tissue alone, we use the term
binary mask and brain mask interchangeably, to maintain con-
sistency with previous publications. The brain masks were
approved by an experienced neuro-radiologist (GM). The bi-
nary masks produced by the BETs were used in all subsequent
analyses. To assess performance of the tools we calculated the
dice similarity coefficient (DSC), accuracy, precision and re-
call. The DSC measures similarity between two sets of data at
a voxel level; it can be defined as DSC ¼ 2TP

2TPþFPþFN where

TP, FP and FN represent true positives, false positives and
false negatives, respectively.

Table 1 Summary of the CT brain extraction tools included in this study

Tool name fBET rBET cBET

Reference Muschelli et al., 2015
[10]

Akkus et al., 2020 Najm et al., 2019
[15]

Base Method FSL BET CNN Level-set evolving contour

Implementation and availability Requires R and FSL -
free

Requires Python and Keras -
free

Requires Matlab subscription

Validation subjects

Quantitative (n) 36 22 20

Visual (n) 129* – 1337

Demographics of validation
subjects+

Age**: 60.6 (11.6)
Sex: 67% male

None provided Age***: 73 (67–81)
Sex: 60%
NIHSS score***: 17 (12–19)

Inclusion criteria for trials in
visual assessment++

Age: 18–80
Supratentorial ICH

(>20 mL)

N/A age >18****

acute ischemic stroke less than 12 h from symptom onset
baseline NIHSS >5 ASPECTS >5

Comparisons with other tools None fBET, ITK skull stripping
(Bauer et al., 2013)

fBET, ITK skull stripping (Bauer et al., 2013)

* Longitudinal data, the number of scans analysed was 1095
**Mean (standard deviation)
***Median (interquartile range)
**** Summarises 3 trials, age >40 applied INTERRSECT trial only (Menon et al. 2018) baseline NIHSS and ASPECTS applied to ESCAPE trial only
(Demchuk et al., 2015)
+ These only apply to the subjects with quantitative results

++ Reduced version of inclusion criteria

ASPECTS Alberta stroke programme early CT score, BET brain extraction tool, CNN convolution neural network, FSL FMRIB software library, n
number of subjects, ICH intracerebral haemorrhage, NIHSS National Institutes of Health Stroke Scale
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As a complementary method to assess the regional differ-
ences between the two tools, average voxel-wise FP and FN
maps were generated. Each subject’s BET masks were com-
pared to the ground truth mask to produce a spatial map of FP
voxels and a map of FN voxels. Next, each subject’s CT scan
was registered to a common space using an affine registration
to an age appropriate CT head template (i.e. mean age 65 years
old) (Jenkinson et al., 2002; Jenkinson & Smith, 2001). For
each of the 20 subjects, the FN and FP maps were subsequent-
ly registered to this common space using the calculated affine
transformation matrix. Since all the FP and FN maps were
now aligned to a common space, we could calculate the mean
number of FN and FP voxels.

Qualitative Assessment

Qualitative, visual assessment of the brain masks was per-
formed for all 428 CT brain scans by three experienced neu-
roimaging researchers (LV, MJ, MJM). To provide informa-
tion on both the global and regional BET performance, each
brain mask was assessed in 11 different regions (see Table 2).
These regions were chosen either due to the expectation for
the region to be a common failure point (e.g. foramina) or
because the region was considered an area where accuracy
may be important for research outcomes (e.g. temporal lobes,
cerebellum). Each BET’s performance was rated on a scale of
1–4: 1 = excellent, 2 = good, 3 = intermediate and 4 =
failure. To minimise inter-rater variability, all assessors rated
a small test subset of brain masks to harmonise ratings before
proceeding to the full scan set. These test ratings were not
included in the results.

Statistics

Bland-Altman (BA) plots were used to compare the automat-
ed brain extractions to the ground truth manual delineations.
The mean difference in intracranial volume (ICV) between the

BET masks and the corresponding ground truth masks is re-
ported along with the limits of agreement (mean ± 1.96 x
standard deviation of the differences). The assumption of nor-
mally distributed differences was tested using the Shapiro-
Wilks test. Median, first and third interquartile values are
shown in boxplots. Paired t-tests were used to assess signifi-
cant differences in performance metrics. Unless otherwise
stated, p < 0.05 was considered significant.

Results

Overall Comparison

The demographics and characteristics of the patients from
whom CT head scans were obtained are summarised in
Table 3. The scans included were from 28 different sites
representing a diverse set of CT scanners and image charac-
teristics. The three BETs were evaluated in 428 CT head
scans: fBET produced an output mask for all patient scans,
rBET did not produce an output mask in 4% of patient scans,
cBET did not produce an output mask in 63% of the scans.
The average run time per scan for fBET, rBET and cBET was
142 ± 35 s, 20.5 ± 3.8 s and 16.4 ± 4.5 s. Given the unex-
pectedly high failure rate of cBET, data from this tool was not
included in subsequent analyses (more information regarding
this decision is provided in the Discussion section).

Comparison with Ground Truth

The Bland-Altman plots for fBET and rBET are shown in
Fig. 1, data were normally distributed according to the
Shapiro-Wilks test (p = 0.68 and 0.54, respectively) and there
was no statistically significant linear association between the
differences and the mean. The mean difference in ICV be-
tween fBET and the manual delineation was 23.2 ±
7.3 cm3; the limits of agreement were 9.0 and 37.5cm3. This

Table 2 Description of regions
for visual assessment Reference region Abbreviation Description

Overall Overall quality of the extraction

Pituitary fossa PF Errors in mask within the PF

Petrous temporal bone PTB Mask within the inner skull table

Internal auditory meatus IAM Errors in mask within the internal auditory canal

Olfactory bulb OB Mask within the inner skull table

Cerebellum CB Included, including tonsillar descent

Temporal lobe TL Both lobes included in entirety of mask

Frontal lobe FL Included in entirety of mask

Extracranial EC Regions outside of skull excluded

Intracranial IC Errors in mask within skull (not covered by other categories)

Skull defect SD Mask continuous with inner table of skull in presence of defects
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mean difference is equivalent to 1.79% of the average ICV of
1291cm3. Similarly, the mean difference in ICV between

rBET and ground truth was 21.9 ± 7.4 cm3 (or 1.69% of the
average ICV); the limits of agreement were 7.41 and 36.3cm3

Both measurements show evidence of bias by over-estimating
the volume compared to the manual delineations.

The accuracy, precision, recall and DSC values are
summarised in Fig. 2. The performance metrics were excellent
and comparable between the two tools: the mean accuracy,
precision and recall were indistinguishable (fBET: 0.995 ±
0.001, 0.993 ± 0.003, 0.976 ± 0.004; rBET: 0.995 ± 0.001,
0.993 ± 0.002, 0.976 ± 0.005; p = 0.86, p = 0.47, p = 0.46,
respectively). Equally, the mean DSC values were equivalent
between the two tools (fBET: 0.984 ± 0.002; rBET: 0.984 ±
0.003; p = 0.99).

Clear differences were noted between the tools from their
respective FN and FP maps (see Fig. 3). rBET tended to ex-
clude brain tissue in the pituitary fossa and inferior frontal
lobe. In two patients, fBET excluded part of the parietal lobe.
The FP maps reveal that rBET had a predilection to include
tissues within the eye socket, fBET tended to include tissues in
the olfactory bulb region in the mask. In common, both tools
were more likely to produce FPs rather than FNs. Another
common feature of both tools was the inclusion of tissue be-
yond the lower margin of our manual delineations; chosen as
5 mm inferior to the foramen magnum to allow for normal
cerebellar tonsillar descent.

Qualitative Comparison

Table 4 summarises the average visual ratings and the propor-
tion of scans that received each rating for global and regional
BET performance. In general, the majority of errors occurred
in the base of the brain for both tools. The average rating for
overall performance was considered ‘good’ for both fBET and
rBET; however, fBET had fewer scans with a rating of inter-
mediate (11% vs 34%) and more with an excellent rating
(12% vs 2%; see Fig. 4a).

Regional comparison of the results in the petrous temporal
bone, cerebellum and olfactory bulb found similar ratings for
the tools, the majority were either excellent or good. However,
there were characteristic features of both tools that resulted in
different performances in certain regions.

Brain extraction using fBET had a higher quality rating in
the frontal and temporal lobes compared to rBET. This was
due to the tendency for rBET to underestimate the frontal
lobes, typically missing the inferior axial slice(s). Equally,
rBET underestimated the temporal lobes (see Fig. 4b), this
resulted in 25% of scans receiving intermediate quality ratings
in this region whereas using fBET only excellent or good
ratings were given in this region. There was also a tendency
for rBET to incorrectly include small regions outside the skull
including the eyes, tongue and throat (see Fig. 4c); this result-
ed in poorer quality in the extracranial category and a large
proportion of failures (27%). Notably, rBET failed in the

Table 3 Demographics and characteristics of patients with CT head
scans used as inputs to the brain extraction tools

Number of subjects 428

Age (mean) 71.3±13.3

Sex (% Male) 57

Number of hospital sites 28

Axial slice thickness <1 mm 2%

3mm>x≥1mm 24%

5mm>x≥3mm 8%

≥5 mm 66%

5.3 mm maximum

Fig. 1 Bland Altman plots comparing intracranial volume (ICV) mea-
sured using automated CT tools to ICV derived frommanual delineations
(considered ground truth). In (a) ICV measured using rBET is compared
to ground truth and (b) shows ICV measured using fBET compared to
ground truth. The blue dotted lines indicate the mean, red dotted lines
indicate upper and lower limits of agreement. ICV = Intracranial vol-
ume, fBET = FSL adapted tool brain extraction tool, rBET = CNN-
based brain extraction tool
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pituitary fossa region in a much larger proportion of cases than
fBET (26% vs 2%); in these cases, the tool failed to include
the pituitary gland (see Fig. 4b).

Conversely, rBET performed on average better than fBET in
the region of the internal auditory meati and skull defects. There
was a tendency for the brainmask produced by fBET to spill into
the ear canals; this resulted in an excellent rating only occurring
in 35% of subjects compared to 65% when using rBET. Skull
defects were rare in these data (only 2 subject scans) but fBET
spilled out of any holes in the skull whilst brain masks using
rBET remained within the expected inner skull line. In addition,
the consistency of the brain was better using rBET (i.e. the
internal category in Table 4), due to the tendency of fBET to
contain multiple small holes in the brain masks. These holes
appear in regions of negative CT numbers; typically, in cisterns
and ventricles with values between −10 – 0 HU, this is likely due
to drift in the CT scanners calibration (Fig. 4d shows one of the
more pronounced examples). Importantly, despite similar overall
ratings, the brain mask produced by fBETwas preferred over the
one produced by rBET in 83% of the scans.

Discussion

In this study, we independently tested CT brain extraction
tools on a large number of clinical quality non-contrast

enhanced CT head scans; scans acquired from a large, diverse,
and representative cohort of acute stroke patients. Overall per-
formance in all but one of the tools was comparable with high
levels of accuracy, precision and DSC values compared to the
ground truth. However, intracranial volume was
overestimated using the tools due to inclusion of tissue inferior
to the foramen magnum. Although it was difficult to distin-
guish differences between the tools using quantitative metrics
alone, we identified clear regional differences in the resulting
brain masks which may be prove helpful to guide future in-
vestigators requiring brain extraction in CT scans.

We identified three BETs that were designed specifically
for non-contrast enhanced CT: rBET, fBET and cBET.
However, we decided not to include cBET in the final analysis
due to the high number of extraction failures. This high failure
rate was unexpected given the extensive validation of this tool
in 1331 non-contrast enhanced CT scans gathered from mul-
tiple centres (Najm et al., 2019). In the present study, cBET
extraction failures were not associated with obvious potential
scan variations such as image quality or gantry tilt. The source
code is not made available to users, and so this obfuscation
limited our ability to further investigate the failures. We
contacted the authors but were unable to perform further in-
vestigations with their help due to a combination of restric-
tions around intellectual property and ethics requirements.
Whilst it is not possible to make firm conclusions about

Fig. 2 Comparison of
performance metrics using CT
brain extraction tools in 20
patients. DSC = Dice similarity
coefficient, fBET = FSL adapted
tool, rBET = CNN-based tool
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cBET, excellent quality was generally observed in those sub-
jects with completed brain extractions. Additional research is
needed to further understand the high failure rate found in our
data.

We utilised the tools as specified, with no additional pre-
processing or manipulation of the input CT images. This lack
of pre-processing is an advantage as it makes the extraction
tools more straightforward to implement on a diverse range of
datasets. As research tools, both rBET and fBET were well
packaged and easy to install and run, although both require a
basic familiarity with executing code using a command line
interface. If brain extraction is required on a large numbers of
scans, rBET was found to be favourable due to the reduced
execution time.

Comparison of the resulting BET masks with manual de-
lineation revealed equivalent results for rBET and fBET

across performance metrics. This demonstrates that both tools
appear to generalise well. This is reassuring for deployment of
rBET, given that the training data used to develop rBET was
obtained solely from one site and the lack of information sur-
rounding the diversity of their clinical characteristics. Other
investigators observed lower DSC values (= 0.877 ± 0.038)
when using fBET (Najm et al., 2019); however our results
show higher values that are consistent with other reported
DSC values for fBET (i.e. DSC = 0.9895 ± 0.002
(Muschelli et al., 2015) and 0.995 ± 0.002 (Akkus et al.,
2020)).

Bland-Altman analysis demonstrates that the tools gave
comparable agreement with the ground truth when estimating
intracranial volume. Yet, the agreement is notably poorer than
the previously reported values (Akkus et al., 2020), exhibiting
an overestimation bias. This bias is likely due to the difference

Fig. 3 Average false positive and
negative voxel wise maps for CT
brain extraction tools in 20
subjects. Multiple axial slices are
shown highlighting interesting
features in the brain extractions.
In (a) the top row is the average
FP map using rBET, the bottom
row shows the average FP map in
the corresponding slice using
fBET. Shown is the propensity for
both rBET and fBET masks to
include the brain stem (left hand
side, LHS) and on the right (RHS)
the eyes are included in rBET (see
arrows). In (b) the top row is the
average FN map using rBET, the
bottom row shows average FN
map in the corresponding slice
using fBET. The LHS shows the
tendency for rBET to exclude the
pituitary gland and part of the
frontal lobe, the RHS shows that
fBET missed a portion of the pa-
rietal lobe. Each individual sub-
ject map was registered to stan-
dard space using a CT template.
The scale is indicated on the RHS:
a value of 0.05 is equivalent to a
FN or FP for one single patient at
that voxel position. FN = false
negative, FP = false positive,
LHS = left hand side, RHS =
right hand side
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in inferior margin of the mask: our manual delineations termi-
nated 5 mm inferior to the foramen magnum whereas the
automated tools overestimated intracranial volume by extend-
ing the brain mask several centimetres further. In future stud-
ies, end-users should be careful near the base of the brain as
we observed inconsistent stopping points among our data.

Despite the good quantitative agreement between fBET
and rBET masks, the false negative and false positive
maps and visual comparisons identified consistent region-
al differences in tool performance. Analysis of false pos-
itive maps revealed that rBET was more likely to incor-
rectly include tissues in the eye sockets and tissues of the
throat than fBET. This was consistent with the results of
the visual evaluation as rBET had a larger proportion of
failures and a lower rating of intermediate quality in this
category. Nevertheless, these false positive regions could
be readily excluded using a post-processing procedure
such as a connected components algorithm (Preim &
Botha, 2014). In addition, rBET was more likely to ex-
clude the pituitary gland and parts of the inferior temporal
lobes than fBET. If consistent extraction of the pituitary
gland is required, then this tool may be unsuitable. In
comparison, fBET tended to erroneously include tissues
near the olfactory bulb, the ear canals and extended out-
side the skull when defects were present; rBET performed
better in these regions. On rare occasions, fBET missed
substantial proportions of the brain due to self-intersec-
tion, resulting in failure. More generally, it was noted
from the visual assessments that there were small holes
in fBET masks, typically only a few voxels and these
were coincident with voxels that had negative CT

intensity values. fBET was adapted from its original pur-
pose to extract MRI brain scans, since MRI scans do not
have negative values, it is likely the program had not
encountered the negative values seen in CT scans.
However, this was a very minor issue and could be easily
resolved using pre-processing. Overall, the visual compar-
ison demonstrated that the brain extractions using fBET
were decidedly preferred by the readers (i.e. in 83% of the
scans). Interestingly, in the 27% of cases where the rBET
brain extractions were preferred, ratings in the temporal
lobes and extracranial tissues were more comparable to
the fBET tool, indicating that if the performance of
rBET could be consistently improved in these regions
then future investigators may find that overall preference
is more equivalent than reported here.

The observed performance differences between the tools
can be accounted for by differences in the underlying
methods. Given the black-box nature of the deep-learning
rBET algorithm, only limited understanding of this
approach’s exact underlying method is possible. However,

Table 4 Average visual quality
ratings of brain extraction tool
results. Overall, the brain
extractions using fBET were
preferred in 83% of the subjects

Average rating % with rating 1 % with rating 2 % with rating 3 % with rating 4

fBET rBET fBET
(%)

rBET
(%)

fBET
(%)

rBET
(%)

fBET
(%)

rBET
(%)

fBET
(%)

rBET
(%)

Overall 2 2.4 12 2 75 61 11 34 3 4

TL 1.4 2.2 59 13 40 58 0 25 0 4

FL 1.4 1.6 65 51 34 42 0 7 1 0

CB 1.7 1.8 32 39 66 46 2 11 0 4

PF 1.7 2.7 40 11 49 35 9 28 2 26

PTB 1.9 1.7 29 41 57 47 14 12 0 0

IAM 1.8 1.4 30 64 63 31 6 5 0 0

OB 1.7 1.9 44 33 46 47 9 15 1 5

SD* 3.0 2.0 0 0 0.14 0.5 0.35 0 0 0

EC 1.9 2.6 32 18 47 29 15 25 6 27

IC 1.6 1.5 45 55 49 40 3 5 4 1

Ratings: 1 = excellent, 2 = good, 3 = intermediate, 4 = failure

fBET = FSL adapted tools, rBET = CNN based tool
* Only 2 scans had skull defects so reported percentages are small

�Fig. 4 Examples of the brain masks from automated tools used in the
visual assessment: (a) shows an example of excellent quality for the fBET
and rBET masks. In (b) the inferior portion of the temporal lobes are
partially missing in the brain mask using rBET (indicated by arrows),
for comparison the fBET mask has performed better. In (c) the rBET
mask includes tissue inferior to the hard palate, i.e. in the roof of
mouth, otherwise the quality is excellent. (d) provides an example of
the fBET mask containing a series of internal holes. Red = brain mask
using fBET, blue = brain mask using rBET, (a) and (b) have the rBET
mask overlaid on the fBET mask, so it is purple where they agree. From
left to right: sagittal, coronal and axial slices are shown
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the observed results of rBET may be partly driven by the
training data. For example, rBET often failed to completely
capture the pituitary gland and the inferior portion of the tem-
poral lobes. The appearance of these regions are more heter-
ogenous between patients’ scans than, for example, the parie-
tal lobe due to prominent differences in skull shape and head
angles. Given that a comparatively small training set from a
single institution was used to develop rBET, it is possible that
the training data were insufficiently diverse to provide accu-
rate predictions in these regions. In contrast, fBET relies on
constructing an optimal brain surface through an iterative pro-
cess, and therefore demonstrated a tendency to overestimate
the intracranial space caused by surface spilling over near the
olfactory bulb and ear canals. With fBET it is possible to
control the size of the final mask by manual optimisation of
parameters e.g. increasing the fractional intensity (option ‘-f’)
will reduce the overall outline size, but the value of 0.01 pro-
duced the best quality of brain extractions in our experience
and in previous studies (Muschelli et al., 2015; Najm et al.,
2019).

In this study, we were able to assess CT brain extraction
tools in real-world clinical data using different scanners with
varying image quality. These scans are representative of the
older patients in whom CT is a front-line imaging modality.
We compared the results of each tool both against the gold
standard of manual delineations and in detailed regional visual
assessments. However, there were limitations in this study.
We did not investigate the reproducibility of manual delinea-
tions on our data, however previous results indicate that 95%
of the differences in intracranial volume between two experts
lie within approximately −7 and 8 cm3 (Akkus et al., 2020)
and with a mean difference in intracranial volume of 1.2% [8].
Accounting for the previously mentioned discrepancy in brain
stem inclusion, these appear comparable to automated
methods reported here. In addition, we applied these tools in
stroke patient scans only - similar to previous studies, other
patient cohorts may result in more pronounced differences in
performance (e.g. neonates, craniotomy). Further, we did not
investigate the difference in performance due to changes in the
CT reconstruction kernel, which was found to be a factor in
the performance of fBET (Akkus et al., 2020). However, our
data was reconstructed using soft tissue reconstructions,
which is advisable for CT brain studies. We could not assess
the repeatability of the tools, it is hoped that future longitudi-
nal studies will be able to assess repeatability. To produce the
FN and FP maps we relied on registration to an age appropri-
ate CT template which may introduce errors and hence there
may be some mis-alignment in the position of the voxels in
template space, although this would only mis-locate the errors
and neither create nor suppress FPs or FNs. In addition, we
performed quality control and visually compared original po-
sitions of the FN/FP voxels to those registered in template

space; we noted no substantial difference in native and tem-
plate space.

For clarity, it is worth reiterating that the tools
reviewed in this study extract the intracranial space rath-
er than purely the brain tissue, so are not truly brain
extraction tools. This is useful for intracranial volume
measurements, but subsequent processing of the intracra-
nial masks is required to extract the brain tissue. To
facilitate translation of such tools into clinical practice
and further research endpoints, CT tools need to be ro-
bust, accurate and reliable. The relative importance of
these will depend to a varying extent on the endpoint
of the analysis. For example, in a longitudinal analysis
of intracranial volume, repeatability will be of para-
mount importance, while as a pre-processing step prior
to deep learning methods it may be less important. In our
data, we found quantitative metrics alone led to difficul-
ty in distinguishing the tools. Overall rBET and fBET
exhibited high accuracy but our findings indicate that
robust reporting of different features from visual assess-
ment is also required to evaluate overall tool perfor-
mance. Overall the masks produced by fBET were pre-
ferred but both tools seemed robust when generalised to
unseen clinical quality scans of unselected stroke pa-
tients. Without large publicly available datasets of scans
– as are readily available for MRI – validation of CT-
based tools is limited by those datasets available at indi-
vidual research and healthcare institutions. It is hoped
that the results presented here will help to inform choices
and improve confidence in the tools used in non-contrast
enhanced CT head scans and aid future investigators in
understanding the limitations and strengths of existing
tools.

Conclusion

We independently tested freely available, fully automated
CT tools that extract intracranial space in an unseen
dataset of 428 CT head scans from stroke patients.
Although one CT extraction tool did not perform well
on our data, we found high accuracy for the two remain-
ing available tools, suggesting they are robust and
generalisable when applied to CT head scans of stroke
patients. Subsequent global and regional visual evaluation
revealed that the independently adapted version of the
FSL brain extraction tool was preferred in our dataset.
Straightforward pre-processing and post-processing tech-
niques may improve performance further.
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