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Abstract

We examine the conceptual development of kinship through the lens of program induction. We present a

computational model for the acquisition of kinship term concepts, resulting in the first computational

model of kinship learning which is closely tied to developmental phenomena. We demonstrate that our

model can learn several kinship systems of varying complexity using cross-linguistic data from English,

Pukapuka, Turkish and Yanomamö. More importantly, the behavioral patterns observed in children

learning kinship terms, under-extension and over-generalization, fall out naturally from our learning model.

We then conducted interviews to simulate realistic learning environments and demonstrate that the

characteristic-to-defining shift is a consequence of our learning model in naturalistic contexts containing

abstract and concrete features. We use model simulations to understand the influence of logical simplicity

and children’s learning environment on the order of acquisition of kinship terms, providing novel

predictions for the learning trajectories of these words. We conclude with a discussion of how this model

framework generalizes beyond kinship terms, as well as a discussion of its limitations.

Keywords: word-learning; conceptual development; Bayesian modeling
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Logical word learning: The case of kinship

In order to acquire a language, learners have to map words to objects and situations in the world.

From these mappings, they must then learn the underlying concept of the word that will generalize to new

objects and situations. The mappings between words and concepts, acquired over a lifetime, will constitute

the majority of information a language user stores about linguistic representations (Mollica & Piantadosi,

2019). While there is a vast literature on how children might solve the problem of mapping words to the

world (e.g., Carey & Bartlett, 1978; L. Smith & Yu, 2008; Frank, Goodman, & Tenenbaum, 2009; Medina,

Snedeker, Trueswell, & Gleitman, 2011; Siskind, 1996), we know less about how children use these

mappings to inform their concepts in order to generalize words to new contexts. Research on children’s

early word generalization has focused on uncovering biases in children’s generalizations (e.g., taxonomic

constraints, Markman, 1991) and explaining the mechanism and types of input children need to overcome

these biases (e.g., Gentner & Namy, 1999; Graham, Namy, Gentner, & Meagher, 2010); however, research

has yet to precisely predict children’s behavior across the developmental trajectory. We propose a

theoretical model from two first principles—simplicity and strong sampling, to scale up our understanding

of how children’s word meanings should change as they observe more data. In the process, we demonstrate

that several seemingly unrelated patterns in children’s early word use can be explained by the process of

induction in naturalistic learning contexts.

Understanding how children’s conceptual knowledge changes over development is a non-trivial task.

It’s no secret that children’s early word usage does not reflect their underlying knowledge. In general,

young children’s definitions and, more importantly, their behavior suggest a partial knowledge of the

underlying concept even though they can produce the word and appear to fully understand the word

(Clark, 1973; P. Bloom, 2000). Interestingly, tasks assessing this partial knowledge have revealed

systematic patterns of word use as children learn the true underlying meanings of words. Around their first

birthday, children sometimes show a preference for words to label individual referents and, thus,

under-extend a term to other correct referents (Clark, 1973; Kay & Anglin, 1982). For example, a young

child may refer to their blanket as blanky and refuse to use blanky to refer to other blankets. Before their

second birthday, children will often over-extend a term, using it to describe inappropriate but often similar

referents (Clark, 1973; Rescorla, 1980). For example, children frequently over-extend dog to refer to any

animal with four legs. In some complicated semantic domains (e.g., kinship, morality), young children

continue to over-extend a term for several years. In these cases, children’s over-extensions gradually shift

from relying on characteristic features (e.g., a yellow cab with checkered signage is a taxi) to more defining

relations (a cab that can be hired for transport is a taxi; Keil & Batterman, 1984; Keil, 1989).

While these behavioral patterns are consistently observed in children’s early word use, it’s unclear
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whether they reflect partial conceptual knowledge (Clark, 1973; Kay & Anglin, 1982), performance

limitations—such as retrieving the correct word in the child’s small but rapidly increasing vocabulary

(Huttenlocher, 1974; Gershkoff-Stowe, 2001; Fremgen & Fay, 1980), or pragmatic reasoning—such as

generalizing a known word when the child’s vocabulary lacks a more appropriate word (L. Bloom, 1973;

Hoek, Ingram, & Gibson, 1986; Barrett, 1986). A major obstacle to teasing apart these alternative

hypotheses is the lack of a formalized account of conceptual development predicting children’s word use

over time. Specifically, what patterns of word use should we expect as children gather more data? How

should these patterns hold cross-linguistically? How do these patterns change as children learn

inter-connected conceptual systems (Murphy & Medin, 1985)?

Kinship is an ideal domain to test potentially universal learning mechanisms and to understand the

role data plays in acquisition. Kinship systems are present in almost every culture in the world, influencing

sociocultural arrangements (e.g., marriage and residence) and social reasoning (e.g., expectations of aid,

resource allocation; Mitchell & Jordan, 2021). Therefore, learning and understanding the kinship system

one is born into is a vital endeavor for almost every culture in the world. While the importance of kin

relationships might vary across cultures, the prominent structure in the world supporting kinship terms,

genealogy, is universal1. That being said, kinship systems show remarkable diversity across the languages

and cultures of the world both in terms of which relationships get expressed by words (e.g., Murdock,

1949) and the social sanctions for failing to use them correctly. However, despite over a century of data

collection and theorizing by anthropologists and linguists, a complete account of kinship systems eludes us.

Recent work on efficient communication has shown that two first principles, the trade-off between

communicative efficiency and simplicity, can explain at a coarse level the observed diversity in kinship

systems (Kemp & Regier, 2012); however, there appears to be no universal principles underlying the

evolution of kinship systems as traditionally categorised (Passmore & Jordan, 2020). Therefore, in order to

explain evolutionary trajectories, we need fine grained theories and constraints on how kinship systems are

structured (Passmore et al., 2021), how different components of kinship terms interact and how kinship

terms are acquired. Here, we take the first steps towards providing a formal account of kinship term

development that can be used to motivate such theoretical constraints on evolutionary trajectories and can

handle the challenge of learning diverse kinship systems.

The goals of this paper are i) to present a rational constructivist framework (F. Xu, 2007, 2016,

2019) of conceptual development formalized as logical program induction, ii) to evaluate this framework

1 Kinship as a construct potentially operates over multiple structures, including systems of address, sociological systems and

social categories (Read, 2001, 2007). As a point of scope, we focus here on genealogical notions of kinship terms—i.e., kinship

terms defined over a family tree.
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against the literature on children’s patterns of generalization over time—specifically under-extension,

over-generalization and the characteristic-to-defining shift, and their order of acquisition. A rational

constructivist theory of cognitive development posits that children start with a set of proto-conceptual

primitives, which they use to actively construct representations of the world via language and symbol

learning, Bayesian inductive learning and constructive thinking (F. Xu, 2019). We implement a model

based on this framework to learn kinship terms, providing the first formal developmental model for kinship

term acquisition. The paper is organized as follows: First, we review the empirical literature on kinship

term acquisition and computational models of kinship. We then flesh out our model framework and

implementation. In presenting the results, we first demonstrate that the model is powerful enough to learn

kinship systems of varied complexity based on its input data. We then provide simulations based on

informant provided learning contexts to show that the general patterns of children’s word use described

above fall out naturally from framing conceptual development as program induction in naturalistic

environments. In the process, we present evidence suggesting that children’s early word use might be

informative about conceptual development and derive a novel account of the characteristic-to-defining shift.

To demonstrate how this model can be used to entertain important theoretical questions about how

inductive biases and children’s input drive children’s behavior, we examine the roles of simplicity and

environmental input in determining the order of kinship term acquisition. Lastly, we conclude with a

discussion of novel predictions and limitations of our account.

Children’s Acquisition of Kinship Terms

Despite its pervasive influence on our social and cultural interactions, the study of kinship and

kinship term acquisition has been minimal (Mitchell & Jordan, 2021). Here, we will focus our review on

studies that speak to three specific behaviors: over-/under- extension, characteristic-to-defining shift and

order of acquisition. For a thorough review of kinship acquisition, we recommend Mitchell and Jordan

(2021), which synthesizes disciplinary approaches and provides a useful developmental toolkit suitable for

cross-cultural data collection. To our knowledge, there are no studies designed to directly test patterns of

over-/under- extension for kinship terms; however, there are a few lines of work that provide evidence for

the phenomena.

First, Piaget (1928)’s study of logical relationships and subsequent replications (Elkind, 1962;

Danziger, 1957; Chambers & Tavuchis, 1976; Swartz & Hall, 1972) provide evidence for under-extension.

Piaget (1928) conducted targeted interviews with 4-12 year old children to assess their knowledge of logical

relations using the sibling concept as a case study. Piaget’s task tested the reciprocity of sibling

relationships by soliciting definitions and investigating if children could note the contradiction between the

claims that “There are three brothers/sisters in your family” and “You have three brothers/sisters.” Based
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on his interviews, Piaget proposed that children learning logical relations (like kinship) progress through

three stages: egocentric, concrete relational (transitive), abstract relational (reciprocal). An egocentric

stage of kinship term use implies a specific pattern of under-extended kinship term use. However, the

literature provides sparse and conflicting evidence in support for Piaget’s account. Consistent with Piaget,

children (5-8 years old) make less mistakes on egocentric concepts (grandmother) than other-centric

concepts (granddaughter) (Macaskill, 1981, 1982). Children (4-10 years old) also perform better when

questions are framed with respect to themselves (What is the name of your sister?) as opposed to another

family member (As for your sister Mary, what is the name of her aunt?; Greenfield & Childs, 1977). At

the same time, equally young children succeed at taking other people’s perspective when providing kin

terms (Carter, 1984) and young adopted children (4-5 year olds) have more kinship knowledge than

non-adopted children (Price-Williams, Hammond, Edgerton, & Walker, 1977). Moreover, it’s unclear that

children providing examples of family members when giving a definition reflects an egocentric

understanding of kinship as opposed to the use of kinship terms as terms of address (for discussion see

Hirschfeld, 1989). Given the limited and conflicting data on egocentric biases in kinship acquisition, we do

not directly evaluate our model against the specific egocentric claims in the literature regarding perspective

taking. Nonetheless, an initial period of egocentric performance would predict under-extension.

A second line of kinship research lies at the merger of componential analysis in anthropology

(Goodenough, 1956) and the semantic feature hypothesis for word learning proposed by Clark (1973).

Componential analysis takes up the task of identifying the minimal set of features required to distinguish

relevant distinctions in meaning. For example, gender is a required feature of the English kin system

because gender is required to distinguish, for instance, mother from father. The semantic feature

hypothesis posits that children acquire the semantics of a concept “component-by-component” (Clark,

1973). Thus, developmental studies of kinship acquisition could inform theoretical anthropological studies

of componential analysis, especially when multiple sets of components are equally as expressive. As

Greenfield and Childs (1977) points out, the pattern of children’s mistakes in an elicitation task is

informative about the actual features of meaning children have acquired. These systematic errors are

evidence for over-/under-extension. For example, 4-5 year old Zinacantan children’s mistakes never violate

the feature that siblings have common parentage; however, half of their mistakes violate gender (i.e.,

over-extension to incorrect genders). Whereas, 8-10 year olds never violate common parentage and gender,

but violate relative age (over-extension across ages). Therefore, componential analyses that include

features for common parentage and gender are more likely than componential analyses that do not. For our

purposes, the systematic errors uncovered by the developmental evaluation of componential analyses

provides evidence for systematic patterns of over-extension.
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The semantic feature hypothesis has also been used to predict the order of acquisition of kinship

terms. Haviland and Clark (1974) proposed and found evidence for simplicity to be a driving force in the

order of acquisition of English kinship concepts. In their analysis, a relationship between two individuals

was considered one feature. Relations that could be explained by appealing to one parent/child

relationship (e.g., mother) were learned earlier than relations that required two parent/child relationships

(e.g., brother). Similarly terms that required three relationships (e.g., aunt) were learned after those

requiring two relationships. Surprisingly, terms that required both a parent and child relationship (e.g.,

brother) were learned before terms that required the same relationship twice (e.g., grandma). Further

support for the semantic feature hypothesis has been found cross-linguistically in definition elicitation

studies with German 5-10 years old children (Deutsch, 1979) and Vietnamese 4-16 years old children

(Van Luong, 1986). A similar pattern was reported by Benson and Anglin (1987); however, they explained

their data as different amounts of experience with relatives and input frequency of kinship terms. While

experience seems to explain differences in adopted children, there was no effect of household size on kinship

acquisition (Price-Williams et al., 1977). In general, the extent to which simplicity and experience

contribute to the order of acquisition of kinship terms is still an open question, which we directly address

in our analysis of order of acquisition effects from model simulations.

To summarise, studies on kinship term acquisition document a protracted developmental trajectory,

providing modest evidence for patterns of over- and under- extension in children’s use of kinship terms;

although the exact patterns of extension vary across cultures. For example, Bavin (1991) and Greenfield

and Childs (1977) find gender over-extensions in Walpiri and Zinacatan children’s kin usage; whereas,

Price-Williams et al. (1977)’s study of Hawiian and the studies on English kin acquisition report no

incorrect gender extensions. Interestingly, the children in these studies are well older than the age range

where the typical patterns of over- and under- extension described in the introduction are observed. While

not all of these studies solicit definitions, the elicitation tasks used are still likely to be challenging for

children who have limited verbal ability. Therefore, we should take these patterns with a grain of salt, as

young children might not understand the task and older children might lack the verbal ability to articulate

their knowledge. Given these limitations, it is unclear that these patterns should fall out of a model of

conceptual development as opposed to a model of how children verify semantics or produce labels. This

makes it all the more interesting if these patterns do emerge naturally from the inductive learning process,

which would suggest that conceptual development may still be contributing to these patterns despite the

limitations of the task.

To further ground the possibility of conceptual development giving rise to patterns of over- and

under- extension, it is worth mentioning a related field of studies regarding the characteristic-to-defining
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shift observed in children’s knowledge (Keil & Batterman, 1984; Keil, 1989; Landau, 1982). In Frank Keil’s

studies, children are presented with scenarios of a concept—take for example the concept, grandpa—that

emphasize either characteristic features but not defining features (e.g., a nice old man who isn’t related to

you) or defining features but not characteristic features (e.g., your parent’s evil father). Young children

(mean 5;7) are more likely than older children (mean 9;9) to accept a scenario with characteristic features

as being true than a scenario with defining features but not characteristic features. Older children are more

likely than younger children to accept the scenarios with the defining features of the concept. Remarkably,

even some of the older children were not at perfect performance, suggesting that there is significant

conceptual development still taking place in kinship beyond the ages in which one typically observes

patterns of over- and under- extension. Given this timescale, we argue that children’s over-extensions and

under-extensions might actually be due to conceptual development—in particular, rational construction of

a logical theory—as opposed to performance-based or pragmatic-based alternative explanations.

In this paper, we implement an ideal learning model using the default assumptions from the

rule-based concept learning literature. The model framework is designed to learn a kinship system

consistent with the input; however, the model is not engineered to match the patterns of behaviors children

demonstrate when learning kinship. In other words, the model is unaware of the behaviors children exhibit

and, thus, cannot be influenced by explicit knowledge of the evaluation metrics2. We evaluate the model

against these patterns of behavior to show that a system for learning program-like structures provides an

explanation for the patterns of over- and under-extension behavior we see in children even though it was

not engineered to do so. Further, we expand the model by adding assumptions about the learning context

(via interviews) and the environmental distribution of data to show that when this model operates under

naturalistic contexts and distributions of data, it predicts both a characteristic-to-defining shift and the

order of kinship term acquisition that we observe in children.

Computational Models of Kinship

From a formal modeling perspective, kinship is an ideal domain for studying how children’s

conceptual knowledge develops into the rich rule-like concepts and conceptual systems seen in adult

definitions. Kinship easily lends itself to logical representation (e.g., Greenberg, 1949; Wallace & Atkins,

1960). Kinship systems are relational by nature, which makes them interesting because they involve

structure, not just similarity. Further, kinship is a test-bed for how inter-related conceptual systems are

2 Of course, the modellers are aware of the behavioral patterns, which is why we take care in laying out the model

assumptions, where predictions are mutable and where further grounding is needed.
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learned, as adult kinship knowledge suggests inter-related, not independent, concepts for kinship terms3.

That being said, most of the previous computational models of kinship has focused on understanding

kinship as a mathematical object (e.g., Read, 1984) rather than a cognitive technology (Heyes, 2018;

Mitchell & Jordan, 2021).

The earliest computational models of kinship were primarily concerned with automating

componential analysis: given a large set of features about each kinship term in a language, what is the

minimal set of features required to distinguish the terms (Goodenough, 1956; Lounsbury, 1956)? As

Burling (1964) was quick to point out, the componential analysis of a kinship dataset has many possible

solutions. Pericliev and Valdés-Pérez (1998) implemented a model to perform componential analysis that

finds all possible solutions possessing both the smallest number of unique features and the shortest feature

conjunctions required to define all terms. Proving Burling’s point, Pericliev and Valdés-Pérez (1998)’s

automated analysis of Bulgarian kinship systems found two equally complex feature inventories that use

different features. To complement componential analyses, several behavioral studies used multidimensional

scaling techniques to uncover the dimensionality of kinship components and arbitrate between different

componential analyses (e.g., Wexler & Romney, 1972; Nakao & Romney, 1984). Recent work in the spirit

of componential analysis has taken up the search for kinship universals using optimality theory (Jones,

2010) and Bayesian methods (Kemp & Regier, 2012).

Early connectionist models have used learning kinship as a test case for distributed models of

abstract, relational concepts. Hinton (1986)’s family tree task focused on learning an encoding for the

family members on a given tree and the relationships between them. The connectionist model received

input vectors reflecting an individual on the tree (e.g., Simba) and a kinship relationship (e.g., father) and

output the individuals on the tree who completed the kin relation (e.g., Mufasa). The model learned

interpretable embeddings for people on the tree, such that semantic features (e.g., gender) could be easily

extracted. However, the relationship embeddings were not interpretable and the generalization

performance of the model was poor. Paccanaro and Hinton (2001) improved upon the early connectionist

models by learning the implicit tree structure behind the training data; however, their model did not fare

as well when incorporating held out relations to the model. The model learns the family members and all

of the relations on the tree without learning the actual tree structure. Therefore, it’s unclear how well the

relations learned will generalize to an entirely new family tree. Importantly, neither connectionist model

makes any claims about children’s behavior while learning. Though, Paccanaro and Hinton (2001) points

out the most common generalization error was over-extension of sibling terms to include the speaker—i.e.,

3 In the main text, we focus on learning independent kinship terms. A thorough analysis of learning inter-related system is

beyond our current scope; however, we discuss our preliminary exploration of inter-related learning schemes in Appendix C.



LOGICAL WORD LEARNING 10

the common failure of Piaget (1928)’s logic problem.

More recent computational models have approached the acquisition of kinship knowledge through a

Bayesian relational-learning or theory-learning perspective. The Infinite Relational Model (IRM; Kemp,

Tenenbaum, Griffiths, Yamada, & Ueda, 2006) uses the presence or absence of relations between

individuals and kinship term use to learn groupings of these individuals and properties shared by the

groups, which are diagnostic of the relationship. For example, applying the IRM to data from an

Australian kinship system results in groups of individuals that share “diagnostic” kinship relevant feature

dimensions such as age and gender. Katz, Goodman, Kersting, Kemp, and Tenenbaum (2008) proposed a

generative model similar to the IRM but with a richer representation system based in first order logic,

Horn Clause Theories. Their model learns each individual’s kinship relevant properties and the abstract

rule governing how those properties give rise to the kinship relation. Katz et al. (2008)’s representation

scheme has two advantages over the IRM. First, Horn Clause Theories take into account human reasoning

in order to be expressed in the simplest and fewest possible clauses (Kemp, Goodman, & Tenenbaum,

2007). Second, Horn Clause theories are context independent, which allows one’s knowledge of kinship to

easily generalize beyond the observed/training data. Similar first order logic representation schemes have

been used to analyze the space of all possible kinship systems to identify the pressures that influence which

kinship systems are extant in the world (Kemp & Regier, 2012). Surprisingly, extant kinship systems are

found at the optimal trade-off between simplicity and communicative efficiency.

Our model builds off the intuitions of the Bayesian models. Following Katz et al. (2008), we adopt

the use of a context-independent representation scheme. Like this model and others (Kemp, 2012; Haviland

& Clark, 1974), our model also incorporates a pressure for simplicity. However, our approach will depart

from past models in two ways. First, our representation scheme is inspired by set theory instead of e.g.

Horn clauses4, which provide poor fits to adult induction and generalization behaviors (Piantadosi,

Tenenbaum, & Goodman, 2016). Operating over extensional concepts like sets provides more affordances

as a representation scheme (e.g., generating members of those sets or possible word referents) than

intensional representations like logic. Second, we aim to provide not only a proof of learnability but an

evaluation of the full developmental trajectory of concepts, including the the common behavioral patterns

of mistakes children display.

The approach: Concept induction as program induction

The basic premise of our approach is that conceptual knowledge can be likened to a computer

program (e.g., Lake, Salakhutdinov, & Tenenbaum, 2015; Piantadosi & Jacobs, 2016; Goodman,

4 Although see Mollica and Piantadosi (2015) for a first order logic implementation of our model.
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Tenenbaum, & Gerstenberg, 2015; Goodman, Tenenbaum, Feldman, & Griffiths, 2008; Rule, Tenenbaum,

& Piantadosi, 2020; Piantadosi, Tenenbaum, & Goodman, 2012), at least following a computational level of

analysis (Marr, 1982). This metaphor capitalizes on several similarities between programs and concepts.

First, both programs and concepts are relational in nature. Concepts are defined in terms of both their

extension and their relations between other concepts (e.g., dog and wolf share common origin). Whereas,

programs can be mathematically defined in terms of input/output relations. Second, conceptual

development and program induction both emphasize the dynamic nature of knowledge. When a young

child originally pieces together a concept, it can be thought of as chaining inferences about what

underlying features or relationships are good approximations to the concept’s true meaning. Similarly in

program induction, the model chains inferences about what underlying base functions or relationships

between base functions are good approximations to the program’s desired output. Lastly, concept and

program induction can both result in many intensionally distinct representations that are extensionally

equivalent. The principles that a programmer might use to choose between two equivalent representations

(e.g., simplicity, minimal hidden structure and ease of deployment; see Rule et al., 2020) are the same

principles we see in children’s explanations (e.g., Walker, Bonawitz, & Lombrozo, 2017; Johnston, Johnson,

Koven, & Keil, 2016).

The Model

For our ideal learner model, we must specify three components: a hypothesis space over concepts H,

a prior over hypothetical concepts P (h) for h ∈ H and a likelihood function P (d|h) to score the hypothesis

according to the data d. The hypothesis space reflects the cognitive architecture supporting learning. For

example, our hypothesis space consists of compositional functions over family trees. The prior reflects the

inductive biases that we suspect children bring to a learning task.

For implementing our model, we must also specify how we simulate data for our learning analyses.

Here, a data point d is a collection of four objects: a speaker, who uses a word to refer to a referent in a

context (detailed further below). We model learning as the movement of probability mass across a

hypothesis space as a function of observing data. Following Bayes rule, the posterior probability of a

hypothesis h after observing a set of data points D is:

P (h|D) ∝ P (h)
∏
d∈D

P (d|h). (1)

We will discuss each component in turn.



LOGICAL WORD LEARNING 12

Hypothesis Space

Constructing the hypothesis space over possible programs involves specifying primitive5 base

functions for kinship that are available to the learner and the method by which these functions compose to

form hypotheses. The use of semantic primitives has a rich tradition in linguistics and anthropology6 (e.g.,

Goodenough, 1956; Lounsbury, 1956; Wierzbicka, 2016). In our model we specify several types of base

functions—tree-moving functions (parent, child, lateral), set theoretic functions (union, intersection,

difference, complement), observable kinship relevant properties (generation, gender, co-residing adult), and

variables—the speaker (denoted X) and the individuals in the context. Tree-moving functions take as

argument a reference node in a tree and return a set of nodes satisfying a specific relationship on the tree.

As justification for including tree primitives, we note that affording these abilities to children is in line with

the proposal from comparative cognition that these relations are innate biological predispositions7

(Chapais, 2014) and a common assumption in the literature (e.g., Haviland & Clark, 1974). Set functions

allow for first-order quantification, which has been shown to be relevant for adults’ concept acquisition

(Piantadosi et al., 2016; Kemp, 2012). Infants can discriminate between gender (e.g., Quinn, Yahr, Kuhn,

Slater, & Pascalis, 2002) and preschoolers can discriminate age (Edwards, 1984). We assume that children

can compute functions from a speaker’s perspective. We note that these are all non-trivial assumptions, but

we have made them based on our best guess about children’s abilities. However, it is simply an empirical

question—left for future work—what resources children have before they begin acquiring these terms.

We compose the base functions using a probabilistic context free grammar (PCFG; see Table 1)

following Goodman et al. (2008); Piantadosi et al. (2012); Ullman, Goodman, and Tenenbaum (2012).

Briefly, a PCFG is a set of rewrite rules which describe how functions can compose while defining a

5 Our use of “primitive” reflects the atomic nature of the functions within the kinship domain and is not a claim about

innateness.

6 Unlike linguistic or componential analyses, we do not intend for these base functions to be a complete account of all of the

functions required for learning kinship systems or all of the functions children might bring to the task. For example, children

would require primitives to compute relative age or patrilineage to learn some kinship systems (e.g., Japanese and Korean). It

is easy to see how one could decompose certain primitives into one level less of abstraction (e.g., generation might be

represented in terms of primitives that check for perceptual features) or how one could choose to augment a set at a greater

level of abstraction (e.g., adding a sibling primitive). For any model of learning, the granularity and span of a hypothesis

space depends on the characterization of the learning problem (Perfors, 2012). Our general findings will not strongly depend

on any particular base function inventory; however, inventories can make different predictions about the precise pattern and

timing of children’s behavior over learning.

7 Specifically, Chapais (2014) argue that we are innately predisposed to recognize maternal bonds and maternal siblings;

however, paternal recognition is a derived human adaptation.
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SET 1−→ union(SET,SET) SET 1−→ parent(SET) SET 1−→ generation0(SET) SET 1−→ male(SET)

SET 1−→ intersection(SET,SET) SET 1−→ child(SET) SET 1−→ generation1(SET) SET 1−→ female(SET)

SET 1−→ difference(SET,SET) SET 1−→ lateral(SET) SET 1−→ generation2(SET) SET 1−→ sameGender(SET)

SET 1−→ complement(SET) SET 1−→ coreside(SET) SET
1

37−−→ concreteReferent SET 1−→ all SET 10−−→ X
Table 1

The Probabilistic Context Free Grammar (PCFG) specifying the base functions and the rewrite rules that

govern their composition. Each hypothesis starts with a SET symbol and there are 37 concrete referents in

our learning context.

potentially infinite space of possible compositions. For example, the composition leading to the concept of

grandpa would require applying the male rule, parent rule, parent rule and speaker rule, resulting in the

program: male(parent(parent(X))). A program can then be evaluated in a context to produce a set of

possible referents8. The use of a PCFG is meant to formalize the space of possible hypotheses, not

necessarily to provide an algorithmic model of how people search this space. In addition to defining the

hypothesis space, the PCFG also provides the prior probability distribution over that space. In this

distribution, we weight each rule equally as likely with two exceptions. First to prevent infinite recursion

when generating hypotheses, the speaker, X, is weighted 10 times as likely as the other rules. Second, we

divide the weight for concrete referents equally among the individuals in our context (detailed below).

We note that here we do not include recursive calls in our PCFG, meaning, for instance, that we

cannot represent grandpa as father(parent(X)). In Appendix C, we provide a version of the model that

uses recursion, but we note that it is computationally more difficult to implement and also makes identical

predictions in many formulations.

Simplicity Prior

One advantage of using a PCFG is that it builds in a natural prior towards simplicity. Hypotheses

that compose more rules are less probable than hypotheses that compose less rules. We motivate this bias

towards simplicity in several ways. First, adults have been shown to learn logically simpler concepts faster

than complex concepts (Feldman, 2003, 2000; Goodman et al., 2008; Piantadosi et al., 2016). Second,

children prefer simpler explanations over more complex explanations (Lombrozo, 2007; E. B. Bonawitz &

Lombrozo, 2012) (though see Walker et al., 2017). In language learning, simplicity has been suggested as a

guiding principle (Chater & Vitányi, 2007) that solves the logical problem of acquisition. In kinship

specifically, simplicity has previously been proposed as the driving factor behind the order of acquisition of

8 We make the assumption that programs do not return the speaker as referent—i.e., a bias against computing a kinship term

as self-referential. For example, when a male speaker computes the set of his brothers male(children(parent(X))) he excludes

himself from the output.
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kinship terms (Haviland & Clark, 1974). In a global analysis of all possible kinship systems, simplicity is a

good predictor of which kinship systems are actually observed in the languages of the world (Kemp &

Regier, 2012). Therefore, we believe simplicity is an important inductive bias for our model. The model

exhibits a simplicity bias because the PCFG scores the probability of a hypothesis as a product over rules

(thus each additional rule lower’s a hypothesis’ prior):

P (h) =
∏
r∈h

P (r), (2)

where r reflects a single use of a rule from Table 1. Our measure of simplicity has recently been empirically

validated for explaining adult acquisition of kinship terms (K. Smith, Frank, Rolando, Kirby, & Loy, 2020).

Size Principle Likelihood

The last component of the model to be specified is the method of scoring the probability of the data

under each hypothesis, P (d | h). Based on past research with adults (Tenenbaum, 1999; Tenenbaum &

Griffiths, 2001), children (F. Xu & Tenenbaum, 2007a, 2007b; M. L. Lewis & Frank, 2018) and infants

(Gweon, Tenenbaum, & Schulz, 2010), we use a size-principle likelihood. This comes from the notion that

the data we observe is generated from a structure in the world (i.e., strong sampling) as opposed to

randomly generated (i.e., weak sampling). Our implementation marginalizes over two possible ways a

learner might think the data was generated. First, the data might be generated according to the learner’s

current hypothesis. For a given context, there is a finite set of data points that a learner expects to receive.

Following a size principle likelihood, data points are sampled randomly from these expected data points:
1
|h| , where |h| is the number of unique data points (i.e., speaker-word-referent combinations) that a learner

expects to see in a given context. Second, a learner might think that a data point was generated by

noise—i.e., randomly mapping a speaker, word and referent. In this case, the probability of a data point is

given by 1
|D| , where |D| reflects the number of all possible speaker-word-referent pairs in a given context.

Our likelihood mixes these two generative processes together by adding a new parameter α reflecting the

reliability of the data. At high values of α, the learner thinks that most of the data is being generated by

their conceptual hypothesis; whereas at low values of α, the learner thinks the data they see is randomly

generated. Combining both of these processes, our likelihood function is given by:

P (d|h) = δd∈h ·
α

|h|
+ 1− α
|D|

. (3)

where δd∈h is 1 when the speaker-word-referent d is true under h, and 0 otherwise. This likelihood, strong

sampling, is a powerful likelihood function that can lead to convergence on the true generative process of

the data from positive evidence alone (Tenenbaum, 1999) and even in the presence of significant noise

(Navarro, Dry, & Lee, 2012).
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Having a noisy process directly accounts for an attribution problem that every learner faces: was

this data point generated from some true structure in the environment (i.e., is it reliable and valid?) or was

this data point possibly a mistake? Social learners are sensitive to the reliability of their instruction (Birch,

Vauthier, & Bloom, 2008; Jaswal & Neely, 2006; Koenig & Harris, 2005; Pasquini, Corriveau, Koenig, &

Harris, 2007, cf. ; Gweon & Asaba, 2018) and language learners have been shown to filter their input to

focus on explaining a subset of their data (Perkins, Feldman, & Lidz, 2017). This reliability filtering allows

us to account for any issues the learner has mapping words to referents, including the significant challenge

of resolving allo-centric reference the mapping for genitive (e.g., your daddy) or alter-centric (e.g., a mother

saying daddy is coming) uses of kinship terms. If the learner cannot successfully map words and referents,

they should act as if their data is being generated unreliably. In Appendix A, we check that our results are

robust to different implementations of a noisy size principle likelihood—i.e., values of α.

Environmental Assumptions for Simulating Data
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Figure 1 . Family tree context for our simulations. Connections above figures reflect parent/child

relationships. Connections under figures reflect lateral/spousal relationships. Men denoted with hats.

Numbers reflect the rank order of the amount of interaction a learner (i.e, 1) has with the other individuals

on the tree.

Ideally, we should be using this model to predict empirical measures of word understanding or use.

Unfortunately, there are no existing data sets that either quantitatively measure children’s kinship term

use or span the nine years of a single child’s experience with kin and kinship terms with the required detail

to fully specify the input data for the learning model. As a result, we adopt a simulation approach to

generate predictions about children’s word use from basic assumptions about what data children see. We

then qualitatively compare our predictions to the trends in children’s behavior reported in the literature.

For our model, a data point has four components, the speaker, the word, the referent and the



LOGICAL WORD LEARNING 16

context. The context is a family tree, which contains each member of the family, their parent, child and

lateral connections and their gender (see Figure 1). To simulate the data for learning, we first generate all

true possible data points given the target word and the context. We then sample data points from the true

set with probability α or construct a random data point with probability 1− α. For all analyses reported

in the paper, α was set at 0.90.9 In simulating the data this way, we make two simplifying assumptions.

First for tractability, we only sample the data from one family tree even though children are exposed to

multiple family trees. To ensure the learner received adequate data that might be obtained by children

across trees, our tree context spans more of the possible familial relations than our informant provided

family trees. To ensure our learner does not over-fit to our context, we vary the speaker across data points,

resulting in 29 different perspectives of the same tree. We describe where this assumption influences our

conclusions. Second, for convenience, we assume that the referent is computed with respect to the speaker.

This is not an assumption about children’s learning but a necessary assumption for formalization in the

absence of natural data with explicit annotation of the kinship relation. Ideally, our model would calculate

the relation after the appropriate reference person has been identified via perspective taking and/or

linguistic processing (e.g., genitives).

Model Evaluation

While our model links data, inductive biases and conceptual representations, there are many ways

these could be related to children’s behavior. For example, in a comprehension task, a child might have a

context containing several individuals and their goal is to point to uncle. Our model provides a posterior

distribution over what this word might refer to, but there are many ways a child might use that posterior

to respond. For example, they could just select the maximum probability referent. They could sample from

the referents based on each individual’s probability. They could perform pragmatic reasoning as in a

rational speech act model (Frank & Goodman, 2012) and condition on other words in their vocabulary to

adjust these probabilities. Alternately, children might sample a single hypothesis (e.g., E. Bonawitz,

Denison, Gopnik, & Griffiths, 2014; Medina et al., 2011) either based on the posterior probability or

weighted by the value of computation as in a feed-forward pragmatics (Ferreira, 2019; Lieder & Griffiths,

2017). Here, we present our results marginalizing over the posterior, meaning we show posterior average

responses, which might correspond to subject average responses under the assumption that subject

behavior matches the probability estimated by the model. We further discuss how mutual exclusivity will

emerge from a rational speech act linking hypotheses in Appendix D.

9 In Supplementary Figure A1, we emulate the simulations conducted by Navarro et al. (2012) to demonstrate that our main

findings are robust under realistic values of α.
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We divide the model evaluation into three sections: Model Outcomes, the Characteristic-to-Defining

Shift and Order of Acquisition. In Model Outcomes, we first check that the model successfully learns the

conventionally agreed upon extension for each kinship term in finite amounts of data. We conduct this

analysis using four different kinship systems: Pukapukan, English, Turkish and Yanomamö. We then take

a closer look at how the model behaves locally at the outset of learning to demonstrate how children’s early

preference for concrete reference—i.e., under-extension, naturally follows from the process of induction

with few data points. Afterwards, we look at how the broad pattern of over-generalization falls naturally

out of the process of induction when trading off simplicity and fit to the data. Our primary finding is that

an inductive learning model with program-like representations and biases for simplicity and strong

sampling will accurately learn a kinship system consistent with its input in finite amounts of data and

predict under-/over- extension as a consequence of insufficient data.

In Characteristic-to-Defining Shift, we augment the model’s hypothesis space, allowing rules based

on characteristic features (e.g., uncle : union(big, strong)). We first replicate our previous analyses using

simulations based on naturalistic learning contexts—i.e., informant provided family trees. For each word

learned by each informant, we demonstrate the characteristic-to-defining shift. We discuss how the

characteristic-to-defining shift arises from properties of the learning context and under what circumstances

we would predict to see a characteristic-to-defining shift. Our primary finding is that the

characteristic-to-defining shift emerges from an inductive learning mechanism in naturalistic environments

without appealing to a discontinuity in representation space or learning process or the development of

abstraction.

In Order of Acquisition, we return to an open question in the kinship acquisition literature: is the

order of acquisition driven by experience or the conceptual complexity of the kinship relations? We

evaluate the model predicted order of English kinship acquisition against the empirically observed order of

concept acquisition in children. We illustrate that while the simplicity of the minimal description length

correct kinship concepts aligns with the observed order of acquisition in children, the model does not

predict acquisition in that order. Inspired by accounts of children’s experience with kin relations (Benson

& Anglin, 1987), we simulate several plausible data distributions based on kin experience and find that the

order of acquisition is more likely driven by both conceptual simplicity and naturalistic data distributions

rather than by conceptual simplicity alone. Of course, fine-grained household data will be invaluable for

addressing the question of experience and collecting such data will require a significant, concerted effort.

Model Outcomes

The model learns typologically diverse systems as input varies. We first simulated data

for four kinship systems that vary in descriptive complexity and are common in the languages of the world:
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Word Extension MAP Hypothesis

Pukapuka kainga† z, pgd, ped difference(generation0(X), sameGender(X))

matua-tane pb male(child(parent(parent(X))))

matua-wawine pz female(child(parent(parent(X))))

taina† b, pgs, pes intersection(generation0(X), sameGender(X))

tupuna-tane pf male(child(parent(parent(parent(X)))))

tupuna-wawine pm female(child(parent(parent(parent(X))))

English aunt pz, pgw female(difference(generation1(X), parent(X)))

brother b male(child(parent(X)))

cousin pgc, pgec difference(generation0(X), child(parent(X)))

father f male(parent(X))

grandma pm female(parent(parent(X)))

grandpa pf male(parent(parent(X)))

mother m female(parent(X))

sister z female(child(parent(X)))

uncle pb, pgh male(difference(generation1(X), parent(X)))

Turkish abi b male(child(parent(X)))

abla z female(child(parent(X)))

amca†† fb intersection(sameGender(fabio), difference(child(parent(male(parent(X)))), parent(X)))

anne m female(parent(X))

anneanne mm female(parent(female(parent(X))))

baba f male(parent(X))

babaanne fm female(parent(male(parent(X))))

dayi mb male(child(parent(female(parent(X)))))

dede pf male(parent(parent(X)))

eniste pgw intersection(lateral(child(parent(parent(X)))), male(complement(parent(X))))

hala fz female(child(parent(male(parent(X)))))

kuzen pgc, pgec difference(generation0(X), child(parent(X)))

teyze mz difference(difference(female(generation0(female(parent(X)))),X),parent(X))

yenge pgh difference(female(generation1(X)),union(child(parent(parent(X))),parent(X)))

Yanomamö amiwa z, fbd, mzd female(child(coreside(X)))

eiwa b, fbs, mzs male(child(coreside(X)))

haya f, fb male(coreside(X))

naya m, mz female(coreside(X))

soaya mb male(difference(generation1s(X), coreside(X)))

soriwa mbs, fzs difference(male(generation0(X)), child(coreside(X)))

suaboya mbd, fzd female(difference(generation0(X), child(coreside(X))))

yesiya fz difference(female(generation1s(X)), coreside(X))
Table 2

The maximum-a-posterior (MAP) hypotheses after learning. f:father, m:mother, p:parent, s:son,

d:daughter, c:child, b:brother, z:sister, g:sibling, h:husband, w:wife, e:spouse † The extension is provided

with regards to a male speaker. For a female speaker, swap the two words. The MAP hypothesis will

compute the correct extension regardless of speaker’s gender. †† The MAP hypothesis for amca makes use

of Fabio, the individual ranked 29 in Figure 1 in order to construct the set of all men in the context.
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Pukapukan, English, Turkish and Yanomamö. Extensions for the kinship terms of these languages are

provided in the insets of Figure 2 and Table 2. The Pukapukan kinship system is six kinship terms that are

fully described by generation and gender. The English kinship has nine terms that require representing

parent/child relations. The Turkish system has fourteen kinship terms with high specificity in the first

generation. In addition to requiring tree moving functions, the Turkish requires separating paternal and

maternal brothers and sisters and their spousal relationships. The Yanomaö system has eight kinship terms

with a notable distinction between cross-cousins—i.e., the children of parents’ opposite-sex siblings, and

parallel-cousins—i.e., the children of parent’s same-sex siblings. Capturing this distinction between cousins

is possible with the same set of primitives required for Turkish; however, the hypothesized concepts would

require many primitives to be composed. The complexity required for this distinction, however, may be

mitigated by its importance to Yanomamö society, which follows strict bilateral cross-cousin marriages and

maintains patrilocal residence. When we incorporate this important sociocultural information into the

hypothesis space via the coresidence primitive, the complexity of Yanomamö kinship concepts decreases10.

Figure 2 shows the predicted learning curves for each kinship term in Pukapuka, English, Turkish

and Yanomamö. The x-axis shows the number of data points for each word observed by the child. Note

the differences in scale across languages. The y-axis is the probability that a learner has acquired the

conventionally-aligned upon meaning of that term—i.e., extends the term appropriately. The shaded region

represents the 95% bootstrapped confidence interval. The line for each word is color coded to match the

word’s extension in the inset. Table 2 provides the maximum-a-posteriori hypotheses learned for each

kinship term.

While different languages favor different base functions and require differing levels of complexity, the

same model successfully learns a set of computations equivalent to the conventional kinship systems for

each of these languages based solely on differences in data input. This is therefore important for explaining

how children learn abstract, structured systems like kinship terms. Further, the model learns these kinship

systems with fairly few data points, on average between 30− 50 data points per word learned. As a back of

10 For ease of computational search, we modified two primitives used to capture the relations in Yanomamö compared to the

other kinship systems. Specifically, we exclude exclude “in-laws” when calculating generation for Yanomamö but include them

for the other cultures. Second, we added a primitive that takes an individual as input and returns the set of adults who

co-reside with the input individual only for Yanomamö. Our co-residence primitive is motivated by the patrilocal residence

patterns and prescriptive cross-cousin marriage in Yanomamö society. Following patrilocality, a father’s brothers live locally

and following strict cross-cousin marriage, a mother’s sisters are likely to live locally to her. Our modifications for Yanomamö

was motivated primarily by a desire to decrease computational search time. That being said, related-generation and

co-residing adults are plausibly noticed by children and would serve as a strong cue for relevant genealogical relationships in

some kinship systems.



LOGICAL WORD LEARNING 20

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

0
2
0

4
0

6
0

N
u
m

b
e

r 
o
f 
D

a
ta

 P
o
in

ts

Proportion

P
u
k
a
p
u

k
a
n

k
a
in

g
a

m
a
tu

a
-t

a
n
e

m
a
tu

a
-w

a
w

in
e

ta
in

a
tu

p
u
n
a
-t

a
n
e

tu
p
u
n
a
-w

a
w

in
e

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

N
u
m

b
e

r 
o
f 
D

a
ta

 P
o
in

ts

Proportion

a
b
i

a
b
la

a
m

c
a

a
n
n
e

a
n
n
e
a
n

n
e

b
a
b
a

b
a
b
a
a
n

n
e

d
a
y
i

d
e
d
e

e
n
is

te

h
a
la

k
u
z
e
n

te
y
z
e

y
e
n
g
e

T
u
rk

is
h

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

0
2
5

5
0

7
5

1
0
0

N
u
m

b
e

r 
o
f 
D

a
ta

 P
o
in

ts

Proportion

h
a
y
a

s
o
a
y
a

a
m

iw
a

s
o
ri
w

a
s
u
a
b
o
y
a

n
a
y
a

y
e
s
iy

a
e
iw

a

Y
a

n
o

m
a

m
ö

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

0
3
0

6
0

9
0

1
2
0

N
u
m

b
e

r 
o
f 
D

a
ta

 P
o
in

ts

Proportion

E
n
g
lis

h

a
u
n
t

b
ro

th
e
r

c
o
u
s
in

fa
th

e
r

g
ra

n
d

m
a

g
ra

n
d

p
a

m
o
th

e
r

s
is

te
r

u
n
c
le

Fi
gu
re

2.
Av

er
ag
e
le
xi
co
n
po

st
er
io
r-
w
ei
gh

te
d
ac
cu

ra
cy

fo
r
ea
ch

w
or
d
as

a
fu
nc

tio
n
of

da
ta

po
in
ts

of
th
at

w
or
d.

Sh
ad

ed
re
gi
on

de
no

te
s

95
%

bo
ot
st
ra
pp

ed
co
nfi

de
nc

e
in
te
rv
al
s.

In
se
ts

sh
ow

th
e
co
lo
r-
co
de

d
ex
te
ns
io
n
of

th
e
te
rm

s.



LOGICAL WORD LEARNING 21

●

●

● ● ●

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5
Number of Unique Data Points

P
ro

ba
bi

lit
y 

of
 A

bs
tr

ac
tio

n

Concrete Prior

● 1

10

100

Figure 3 . Probability of using abstraction as a function of unique data points at several different prior

strengths for concrete reference. At higher prior values of concrete reference, the rise in the probability of

abstraction is shifted to require more unique data points.

the envelope feasibility check, if we assumed that an effective data point, following Mollica and Piantadosi

(2017) arrives on average once every two months, we would expect the mean age of acquisition to be

between 5 and 8.333 years after children start attending to kinship terms. This is consistent with the

observed protracted trajectory discussed in our review of empirical acquisition phenomena. We discuss the

differences between this model’s predicted acquisition order and children’s empirical order for English in

the Order of Acquisition section. Unfortunately, we could not find empirical data for the order of

acquisition of Pukapukan, Turkish and Yanomamö kinship terms.

The model shows an early preference for concrete reference. Young children typically

restrict their word usage to refer to particular individuals, or concrete referents, rather than draw

abstractions over individuals (Clark, 1973; Kay & Anglin, 1982). This pattern naturally falls out of our

model’s push to explain the data when there are few unique data points, suggesting that the preference for

using concrete reference is driven by the data observed rather than by inductive biases of the model. To

look at the model’s preference for concrete reference, we highlight a single concept, uncle, and focus on

the first five unique data points that the model observes (see Figure 3). The x-axis in Figure 3 reflects the

number of unique data points (i.e., distinct referents) for a word. The y-axis represents the probability the

model uses abstraction to move away from concrete reference. With no inductive bias favoring concrete

reference (red circles), the model initially favors concrete referents approximately 75% of the time. As more

unique data points are observed, the model quickly switches to abstracting away from concretes referents.

This behavior is observed because at low data amounts, the best hypothesis that explains the data is

a concrete referent. For example, if you only ever encounter the word uncle to refer to Joey the best
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hypothesis is to think that uncle just denotes Joey. As the model observes more data, it becomes too

complicated to store all the possible referents and so the model adopts simpler rules that abstract away

from the data. This movement away from concrete reference after seeing two unique referents might seem

fast, given that children are often willing to provide multiple example referents before their definitions use

abstraction. One possibility is that children are using kinship terms as a form of address. Therefore, their

provision of referents is not a reflection of their kinship concept but of their terms of address for specific

people, which extends beyond kin (e.g., teacher). Another possibility is that children have an inductive bias

favoring concrete referents. In Figure 3, we plot the probability of abstraction when the model has a 10 : 1

(green triangles) and 100 :1 (blue squares) bias for using concrete reference as opposed to abstraction. As

the bias for concrete referents increases, more unique data points need to be observed before the model

favors using abstraction. Whereas, if children memorize terms of address like proper names, the number of

unique referents should not influence their use of kinship terms. Given the importance of unique referent

amount to our model, future work may directly tease apart the conceptual origin (genealogical vs an

address-system) for kin terms and when children switch from learning one structure to the other by

investigating children’s sensitivity to unique referents in artificial kinship learning tasks.

The model predicts over-extension. Older children embrace abstraction; however, the rules

they learn often over-extend a word to include incorrect referents (Clark, 1973; Rescorla, 1980). For

example, all women might be recognized as aunts. Unlike under-extension, which is driven by the local

data distribution at the onset of learning, over-extension is a global behavior of our model. The model not

only predicts over-extension but predicts specific patterns of over-extension as a function of the data it has

observed and the base functions supporting the hypothesis space. For example, Figure 4 shows the model’s

predicted pattern of use for the term uncle conditioned on a learner, represented in black at different

amounts of data. At low amounts of data, everyone in the context is equally unlikely to be denoted by

uncle. Within the first 5 data points, the model extends the term to all members of the learner’s parent’s

generation (which is a base function). By 14 data points, the model has narrowed that down to only the

men of that generation (which is the composition of two base functions). Near 33 data points, the model’s

extension looks very adult-like; however, it is important to note that the model still needs to tease apart

several different hypotheses that might make unwarranted predictions if the context was to vary. In fact,

the model does not come to learn the context-invariant concept of uncle until around 45 data points.

Over-extension in the model falls out of the interaction between the size-principle likelihood and the

base functions supporting the hypothesis space. The size principle likelihood posits that it is better to

predict both observed and unseen data than to fail to predict observed data. Therefore, once the model has

exhausted simple concrete hypotheses, it begins to abstract but it prefers to abstract using base functions
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Figure 4 . The posterior probability that each person on the tree is an uncle of the learner (in black) at

various data amounts. Yellow (lighter color) indicates high probability and blue (darker color) indicated

low probability.

that cast wide nets over referents—i.e., predicting many referents. The model will shift from these simple

wide-reaching hypotheses to narrower hypotheses as it observes more data that can be explained better by

a more complicated hypothesis. As a result, the patterns of over-extension should be predicted by base

functions and compositions of base functions that increasingly approximate the true concept. We provide

model predictions of the over-extension pattern for each kin term in supplemental material as an

illustration11.

We can also compare the model’s posterior weighted recall and precision. Recall is the probability of

comprehending a word when it is used correctly. With a wide enough hypothesis, a learner will accept all

of the correct uses of a word—although they will often accept incorrect uses of a word as well. Precision is

the probability of producing a correct referent given the learner’s current hypothesis. For example, if the

learner had the correct definition of uncle, they would produce only and all the correct uncles and so

precision would be 1.0. If the learner had a current hypothesis that over-generalized, they would produce

correct uncles only a fraction of the time, even if their current hypothesis contained all of the real uncles.

As a result, precision would be less than one. To visualize the presence of over-generalization, we use an F1

score plot to compare posterior weighted precision to posterior weighted recall. Greater recall than

precision is a hallmark of over-extension. Figure 5 illustrates this signature pattern of over-extension for

11 The specific patterns of over-generalization will depend heavily on the base functions and more empirical data is needed to

distinguish between base function inventories.
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Figure 5 . Average lexicon posterior-weighted accuracy, precision and recall for each word as a function of

data points. Recall greater than precision is a hallmark of overgeneralization. Shaded regions represent

95% bootstrapped confidence intervals.

each word in English12. The variation in precision is driven by the specific patterns of over-extension

predicted by the model (see supplemental materials for model predictions). We will discuss order effects in

the Order of Acquisition section.

The Characteristic-to-Defining Shift

The characteristic-to-defining shift is a prevalent pattern of children’s over-extension. Young

children are more likely to over-extend using characteristic features (e.g., robbers are mean) as opposed to

defining features (e.g., robbers take things). While the characteristic-to-defining shift is commonly

observed, the process which leads to it is unclear. One possibility is that the characteristic-to-defining shift

is a stage-like transition that occurs in the representational system (Werner, 1948; Bruner, Olver, &

Greenfield, 1966). For example, the shift could be explained by a transition from representing concepts

holistically—i.e., using all the features of objects, to representing concepts analytically—i.e., narrowing in

specific relevant features of objects (Kemler, 1983). Neural network models of conceptual classification

inherently capitalize on this idea when demonstrating a shift (e.g., Shultz, Thivierge, & Laurin, 2008).

Another possibility is that there is a change in the mechanism by which one learns concepts. For example,

12 Appendix B contains F1 score plots for every language and context simulated in this paper.
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concept learning might change from storing exemplars to constructing prototype or rule-based

representations. These hypothetical changes in representation or processing might be maturational in

nature, such as the development of abstraction (Piaget & Inhelder, 1969). Alternately, they may be driven

by inductive inference mechanisms operating over observed data, a la rational constructivism.

From the outset we can narrow down this space of theoretical hypotheses. The

characteristic-to-defining shift is most likely a function of data, not maturation (Keil, 1983). One

prediction of a maturational-shift is that at a single time-point, children should represent all words using

characteristic features or defining features, whereas a data-driven shift predicts that both adults and

children should have more exemplar-based representations in unfamiliar domains, and more rule-based

representations in familiar domains. The former does not explain children’s behavior: children seem to

possess characteristic representations and defining representations of different words at a single time point.

The prediction of the latter—that individuals have more exemplar-based representations in unfamiliar

domains and more rule-based representations in familiar domains—is observed in children (Chi, 1985) and

in adults (Chi, Feltovich, & Glaser, 1981).

All of the aforementioned explanations for the characteristic-to-defining shift require a discrete shift

in representation or process. However, no model has tested whether a characteristic-to-defining shift could

be a natural by-product of the continuous data-driven construction of concepts, as found in our model, and

similar to conceptual garden-pathing (Thaker, Tenenbaum, & Gershman, 2017) or learning traps (Rich &

Gureckis, 2018). We expect our model to demonstrate a characteristic-to-defining shift only if the

characteristic features of the people in the context are informative but imperfect in their ability to capture

the underlying concept (by denoting the proper referents). If the characteristic features accurately capture

a concept, the model should never shift from favoring characteristic hypotheses to defining hypotheses. On

the contrary, if the characteristic features are uninformative, and thus poor at capturing a concept, our

model should favor defining hypotheses, predicting either no shift or an implausibly rapid shift from

characteristic-to-defining hypotheses.

Because these model predictions depend critically on the types of characteristic features present in

real data, it is not straightforward to use simulation to create these features because the outcome will

depend on the nature of the simulated data. Instead, we collect data about the characteristic and logical

relationships of real people to test if natural data will contain features within the range of informativity

that will show a characteristic-to-defining shift.

Data Collection. We asked informants to provide us with information about their family trees.

Four informants, who were unaware of our purpose, drew their family tree, ranked each family member in

terms of how frequently they interacted with them as a child (see Figure 6), and provided ten one-word
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adjectives for each family member. For each informant, the unique adjectives were used to construct a

binary adjective by family member feature matrix. Each informant was presented with the feature matrix

and asked to indicate if each feature applied to each family member. Informants made a response to every

cell of the matrix: zero if the feature did not apply; one if the feature did apply. The informants provided

between 59—107 (M = 86.5) unique features including both experiential features (e.g., strict) and

perceptually observable features (e.g., blonde)13.

Implementation Details. To model the characteristic-to-defining shift, we used the informant

provided tree contexts to simulate data for learning. For each informant, we used their solicited features to

augment the hypothesis space (Table 1) with the rules in Table 3. As a result, the hypothesis space now

includes characteristic hypotheses that return the set of individuals the informant labeled as having that

feature. For example, outgoing(Yes) generates the set of individuals in the context marked as outgoing and

union(small(Yes), outgoing(Yes)) returns the set of individuals in the context marked both small and

outgoing. This augmented grammar allows us to model learners as comparing characteristic (elicited)

features vs. defining (logical, as above) features and compute the probability of each type of hypothesis.

Results and Discussion. It should be noted that the informant provided contexts are

smaller/sparser than the context used in our previous analyses (Figure 1). As a result, the model might

not see types of data that are required for learning the context-invariant kinship concept14. Nevertheless, it

does not influence our ability to observe a characteristic-to-defining shift. While the MAP hypotheses are

not context-invariant, the model always learns a program that selects the individuals consistent with the

observed data. In Appendix B, we provide F1 plots for all informants and English kinship terms, and

discuss the situations in which the model does not learn the “correct” concept for a kin term. Our failure

to learn all terms from these simulations suggest that egocentric kinship data is not always sufficient for

learning kinship terms.

Figure 7 plots the posterior probability of entertaining either a characteristic or defining hypothesis

13 All family trees, feature matrices and code can be found at https://github.com/MollicaF/LogicalWordLearning

14 The model could accommodate for this limitation by sampling across multiple contexts; however, this is computationally

expensive to do for each of our informants. For computational efficiency, we only sample data for each informant within their

context.

START 1−→ SET FSET 1−→ union(FSET,FSET) FSET 1−→ intersection(FSET,FSET) FSET 1−→ feature(VALUE)

START 1−→ FSET FSET 1−→ complement(FSET) FSET 1−→ difference(FSET,FSET) VALUE 1−→ {Yes|No}
Table 3

Additional rules for the PCFG in Table 1. Now, each hypothesis starts with a START symbol.
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Figure 6 . Distance-ranked family trees from informants. Circles represent women; squares men. Bold

lateral lines denote spousal relationships. Informant 1 (top left) provided 107 unique features; Informant 2

(top right) 88; Informant 3 (bottom left) 92; and Informant 4, 59.

(y-axis) as a function of the amount of data observed (x-axis). For all of the words15, we observe the

characteristic-to-defining shift—i.e., the probability of entertaining a characteristic hypothesis is initially

greater than the probability of entertaining a defining hypothesis. This means that a simple conceptual

learning model shows a characteristic-to-defining shift purely due to the learning context—i..e, realistic

data about logical relations and characteristic features. As these graphs average over the exact data points

a learner observes, they hide the early preference for concrete referents; however, when plotted in terms of

unique data points the early preference for concrete referents holds.

To further illustrate why the model exhibits this the characteristic-to-defining shift, we have

replicated the table from Mollica, Wade, and Piantadosi (2017) as Table 4, which contains the three most

likely hypotheses at different data amounts for Informant One’s simulated learning of grandma. Recall

from the Model Outcomes that before seeing data, the model prefers simpler hypotheses that tend to

over-extend. As the model sees more data points, the broad over-extensions narrows to better approximate

the data. This is present in Table 4 as after seeing 3 data points, the extensions narrow from, for example,

all women in the context to the outgoing individuals in the context, which include both of our informant’s

grandmas as well as an aunt and a cousin. Importantly, the hypotheses that are favored after three data

points are characteristic in nature yet imperfect in representing the concept. At one data point after the

shift (i.e., the 13th data point), the most likely hypothesis still over-extends (in Table 4 by including

15 Informant 2 has no grandfather relations in their family tree context.
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Figure 7 . Average posterior probability of using a characteristic or a defining hypothesis (y-axis) as a

function of the amount of data observed (x-axis) for words (rows) and informants (columns). Shaded

regions reflect 95% bootstrapped confidence intervals. For all words, there is a characteristic-to-defining

shift.
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Hypothesis Posterior Probability

Before seeing data X (i.e., the speaker) 0.354

male(X) 0.006

complement(X) 0.006

After seeing 3 data points outgoing(Yes) 0.283

nosy(Yes) 0.283

small(Yes) 0.084

One data point after shift parents(parents(X)) 0.289

female(parents(parents(X))) 0.268

outgoing(Yes) 0.219
Table 4

Best hypotheses for Informant One learning grandma at three different time points.

grandpas) and is defining in nature; however, there still is mass on characteristic hypotheses. At the model

observes more data, the expected extensions will continue to narrow until the correct concept for

grandma is the most probable16.

It’s important to note that our model does not have a discrete change in processing or

representation as appealed to by previous research (e.g., Kemler, 1983). Additionally, our model had access

to abstraction from the outset of learning. Recall from Model Outcomes that without a bias promoting

concrete referents, the model without characteristic features had a 25% chance of using abstraction after

only observing a single data point (Figure 3). Therefore, Piaget and Inhelder (1969)’s explanation, that the

characteristic-to-defining shift reflects the development of abstraction, is not required. Our model shows

that a rational learner would still undergo a characteristic-to-defining shift even if they had perfect access

to the data and the ability to abstract from the outset of learning simply because characteristic features

are simple and explain children’s initial data well. As children observe more data, children can justify more

complex defining hypotheses if and when characteristic features fail to explain the data. If the characteristic

features perfectly explain the data, children should never switch to defining hypotheses. Perhaps this is

why the characteristic-to-defining shift is only observed in some conceptual domains and absent in others.

Order of Acquisition: Simplicity and Data Distributions

The extent to which simplicity, as opposed to experience, drives the order of acquisition of kinship

terms is an open question. Previous research has found that American children tend to acquire kinship

terms in a specific order: mother/father, brother/sister, grandpa/grandma, aunt/uncle and cousin.

Haviland and Clark (1974) first explained this in terms of simplicity, measured as the number of predicates

16 While we focus here on learning a single rule for kinship terms, it’s more likely that adults retain several rules which they

can flexibly deploy to determine kin relationships. For example, characteristic features of kin relations still influence human

reasoning well after rule-like definitions have been learned (Lupyan, 2013).



LOGICAL WORD LEARNING 30

Empirical Order Word Original H&C Order & Formalization Log Prior CHILDES Freq.

1 mother Level I: [X parent Y][female] -9.457 6812

1 father Level I: [X parent Y][male] -9.457 3605

2 brother Level III: [X child A][A parent Y][male] -13.146 41

2 sister Level III: [X child A][A parent Y][female] -13.146 89

3 grandma Level II: [X parent A][A parent Y][female] -13.146 526

3 grandpa Level II: [X parent A][A parent Y][male] -13.146 199

4 aunt Level IV: [X sib A][A parent Y][female] -19.320 97

4 uncle Level IV: [X sib A][A parent Y][male] -19.320 68

4 cousin Level IV: [X child A][A sib B][B parent Y] -18.627 14
Table 5

Complexity in terms of Haviland and Clark (1974) aligns with the prior probability of our model. Contrary

to Benson and Anglin (1987)’s survey, CHILDES frequencies do not align with order of acquisition.

in first order logic required to define the kinship term. They later revised their account to additionally

penalize reusing the same relational predicate (e.g., [X parent A][A parent Y] is more complicated than

[X parent A][A child Y]). Other researchers have argued that data and the environment drive the order

of kinship term acquisition. Benson and Anglin (1987) had parents rank order how frequently children

spend time with, hear about or talk about twelve different kinship terms. They found that children’s

experience with different kinship relations correlated with their observed order of acquisition. In our

model, we can directly pit experience against simplicity and evaluate these theoretical hypotheses to

determine if simplicity or experience drive the order of acquisition.

Implementation Details. Here, we use the model to evaluate the predicted order of acquisition

under several sets of assumptions. Starting with simplicity, our initial prior distribution over hypotheses

(i.e., the PCFG in Table 1) mostly aligns with Haviland and Clark (1974)’s original formulation of

simplicity, as seen in Table 5. If the likelihood of a data point across words was equal and data comes at a

uniform rate for each word, we would expect to recover this order of acquisition. However, under the

size-principle, the likelihood of a data point is not equal across words in this context, and CHILDES

frequencies suggest that the frequency distribution for kinship terms is not uniform either17 (MacWhinney,

2000). Further, CHILDES frequency estimates differ from the surveys of Benson and Anglin (1987) and a

larger corpus analysis of kinship term use across Indo-European languages (Rácz, Passmore, Sheard, &

17 As a larger point, it is not clear that children make use of every instance of a word in their environment as input for

learning. While frequency is a good predictor of mean age of acquisition (Braginsky, Yurovsky, Marchman, & Frank, 2019),

Mollica and Piantadosi (2017) inferred the rate of input and amount of input children require for learning and found that

frequency was not strongly correlated with how many effective learning instances children required to learn a word. However,

frequency was moderately correlated to the rate of effective learning instances children received.
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Jordan, 2019), which finds that frequency decreases as genealogical distance increases18.

Following Benson and Anglin (1987)’s surveys, we assume that children are more likely to be spoken

to by people closer to them, and children are more likely to hear about people who are closer to them. We

add these assumptions by sampling data from two Zifpian distributions over referents based on their

distance to the speaker (see methods for details). In this, the relative grouping of different kinship relations

will influence acquisition. For example, grandparents tend to be closer than cousins in our dataset, which

would bias the learner to acquire grandparent before cousin. Second, the distance ranking of individuals

that have the same kinship relationship will influence acquisition. For example, consider a learner with two

uncles, one married-in and ranked more distant and one by-blood ranked closer. Due to distance on the

tree, the learner will get data about the married-in uncle less frequently, which can delay their ability to

acquire uncle because the learner must wait longer for data that teases apart the adult-like hypothesis

from candidate hypotheses like male(child(parents(parents(X)))) that don’t capture uncles by marriage.

For our analysis, we factorially manipulated the model’s prior (Uniform/Simplicity) and the data

distribution (Uniform/CHILDES/Zipfian). For each set of assumptions, we simulated 1000 data sets of

1000 data points from the tree in Figure 1 and ran the learning model with only the base primitives to

measure the probability that kinship terms are acquired in a specific order19.

Figure 8 illustrates four possible patterns that we might see with these simulations: an accurate and

reliable order of acquisition (top left panel), an inaccurate, reliable order (top right), an accurate,

unreliable order (bottom left) and an inaccurate, unreliable order (bottom right). In each panel, the x-axis

reflects the ordinal position in which words were learned. The fill reflects the probability that a word was

acquired at that time. If the order of acquisition is reliable, there should be only one probable word

acquired at each ordinal position (top panels of Figure 8). Whereas, if the order of acquisition is unreliable,

there should be several probable words at each ordinal position (bottom panels of Figure 8). We will

quantitatively describe consistency using entropy (low entropy means more consistent) and describe the

relationship between simulated orders and the attested order using Kendall’s tau correlation20.

Results and Discussions. Our simulations are plotted in Figure 9 and quantitative descriptors

are provided in Table 6. As a sanity check, we can see if the model would predict the empirical order of

acquisition without simplicity or experience (top left corner). With a uniform prior and random input, the

18 Although, Rácz et al. (2019) did not include grandparents in their analysis.

19 We returned to the simulated tree for practical convenience and because the sparseness of the solicited trees lead to

incomplete learning of kinship terms (see Appendix B).

20 Statistics presented resolve the ties in the attested order alphabetically, which is consistent with how we handle ties in

model predictions.
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Figure 8 . Possible patterns of order of acquisition. The x-axis reflects the ordinal position of acquisition.

The y-axis represents each word. The tiles are filled according to the probability of acquisition. Words that

have zero probability at a given ordinal position are omitted.

model does not closely match the attested order. Instead the likelihood imposes a relatively unreliable

ordering favoring aunts and uncles. Comparison across the top row shows the influence of the assumed

data distribution: matching frequencies to CHILDES results in little qualitative change, suggesting that

the bias in word frequency distribution is not skewed enough to reliably alter the order of acquisition.

Looking at the top right panel, using a Zipfian distribution increases the consistency of the predicted order

of acquisition; however, the consistent trajectory does not closely follow attested order of acquisition (e.g.,

predicting uncle before sister). Taken together, experience alone does not seem sufficient to predict the

empirical order.

Comparing the top and bottom left column, we can analyse the influence of the prior (Uniform vs.

Simplicity). Using a simplicity prior pushes against the likelihood’s influence resulting in a less consistent
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Figure 9 . Simulations of the order of acquisition of kinship terms as a function of changes in environmental

data distributions (columns) and the inductive biases of the learner (rows). A tiny amount of random noise

was added to probabilities in each simulation to settle ties.

pattern. Importantly, the less consistent pattern pushes off the incorrect ordering imposed by the

likelihood. We can see the interaction between the simplicity prior and different data distributions in the

bottom center and right panels. Looking at the center panel, the model predictions do not qualitatively

change when adding a CHILDES frequency distribution. However, adding a Zipfian bias to a simplicity

prior increases the consistency of the predictions (similar to the uniform prior case). Importantly, the

predicted trajectory significantly correlates with attested trajectory, although imperfectly. This analysis

suggests that the simplicity-based prior we have used throughout the paper has potential to explain

detailed patterns of the timing of acquisition, although the predictions are dependent on the specific data

distributions assumed. Both simplicity and experience drive the order of acquisition of kinship terms.

The discrepancies between empirical order of acquisition and our model predictions might be

explained by how we assigned distances in the tree. For example, if aunt/uncles were further from the

learner than grandparents, we might expect grandparents to be acquired earlier. Ideally, these distances

would be informed by cultural/environmental factors that further constrain the learning problem. For

example, we would expect matrilinear/patrilineal residence patterns to influence the order of acquisition
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Prior Environment Joint Entropy Rank Correlation

Simplicity CHILDES 3.43 0.475 [0.197, 0.704]

Simplicity Uniform 3.42 0.469 [0.254, 0.704]

Simplicity Zipf 2.83 0.687 [0.592, 0.761]

Uniform CHILDES 3.28 0.365 [0.197, 0.535]

Uniform Uniform 3.25 0.365 [0.197, 0.535]

Uniform Zipf 2.96 0.611 [0.479, 0.761]
Table 6

Quantitative description of consistency and correlation to attested order of acquisition. Intervals reflect

95% posterior weighted interval. For reference, τ = 0.535 would be considered a significant correlation.

through these distances. In our simulations, differences between concepts of the same complexity (e.g.,

grandma and grandpa) are slightly influenced by ties such that the alphabetical order appears dominant

in Figure 9 where there is likely no bias. Importantly, under this Zipfian environmental distribution the

model still shows under-extension, over-generalization and the characteristic-to-defining shift (Mollica et

al., 2017).

General Discussion

By framing kinship concept induction as logical program induction, we have demonstrated how

simplicity and the size principle predict several of the empirical phenomena seen in children’s acquisition.

Specifically, an ideal learner model incorporating these principles learns the kinship system consistent with

its input, offering a cross-linguistic proof of learnability that works for typologically diverse kinship

systems. The trade-off between simplicity and the size principle drives the model to predict both an early

preference for concrete reference and patterns of over-generalization broadly consistent with the patterns in

children’s behavior, including the characteristic-to-defining shift. Additionally, our model provides a novel

explanation for the characteristic-to-defining shift seen in children’s early understanding of words,

highlighting the role of the learning context instead of proposing discrete changes in representation and

processing. Lastly, the model has addressed open theoretical questions about the forces driving the order of

acquisition of kinship terms in English.

Beyond kinship, our model derives strong predictions for how conceptual development should unfold

over time from first principles—i.e., simplicity and strong sampling. Previous research has highlighted the

limitations of using children’s early word use as evidence for their comprehension, arguing that

performance limitations and pragmatic reasoning heavily influences early productions (Fremgen & Fay,

1980; L. Bloom, 1973). Having independent predictions for how conceptual knowledge unfolds over time

provides leverage to further investigate how conceptual knowledge interacts with developmental models of

retrieval and pragmatic reasoning. For example, can out-of-vocabulary over-extensions be explained better
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Empirical Behavior Model Explanation Behavioral Predictions

Cross-linguistic learnability Inductive learning The number of data points before acquisition

Under-extension Local data distribution The number of data points before abstraction.

Over-generalization Trade-off between prior

and likelihood

The pattern of generalization at each data

amount

Characteristic-to-defining shift Learning context The presence of and the number of data points

before the shift

Order of Acquisition Environmental experience The order of acquisition and number of data

points before each term is acquired
Table 7

Summary of the empirical behavior, how the model explains this behavior and the behavioral predictions to

be generated by the model.

by under-developed concepts or pragmatic reasoning with adult-like semantics for a limited number of

words (Y. Xu & Pinto Jr, in press)?

Table 7 outlines each behavioral phenomena this model explains and the components of the model

that do so. There are two ways in which the behavioral predictions of our computational model can be

used. First, experiments can be designed to directly assess components of the model, and the learning

environment. For example, we can evaluate the model predictions under different primitive functions

against children’s patterns of generalization as in the tradition of componential analysis. Similarly,

assumptions about how children use data (i.e., the likelihood function) and the inductive biases they bring

to the learning task make different predictions for patterns of generalization and the timing of those

behaviors. The model also makes predictions for if and when a learning context should result in a

characteristic-to-defining shift. Second, this model can be used as a baseline or normative model for

comparison against other theories of conceptual learning and for the development of theories of related

processes. Take for example a foundational debate in anthropology that kinship is uniquely disposed to

address (Kroeber, 1909; Rivers, 1914): do we learn the structures in the world or do we learn the

conventions of lexical production through linguistic structure? Our model shows how a learner should

behave if their goal was learning the structure in the world. Comparing the predictions of our model with

those of formal models built to learn from linguistic structure would give us leverage to tell when and to

what extent children are learning from world structure or through linguistic structure. Additionally, the

model makes predictions of how children’s competence should change as a function of data, which has the

potential to aid the construction of theoretical models of word use and early learning.

With regards to kinship specifically, the model contributes to the long-standing challenge of
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identifying constraints on possible kinship systems. For over a century, anthropologists and linguists have

attempted to explain why there is such rich but constrained diversity in kinship systems and how this

diversity and structure has arisen. Traditionally studies have approached this problem viewing kinship

systems as a mathematical object (e.g., Goodenough, 1956; Read, 2007), with little concern for the

psychological reality. In the last decade, formal modelling has started incorporating functional pressures to

explain kinship (Jones, 2010; Kemp & Regier, 2012). While these endeavors have some success explaining

why there is diversity in kinship systems, they fail to explain the rich structure within kinship diversity

(Passmore et al., 2021) and how kinship systems have evolved (Passmore & Jordan, 2020). In order to

understand evolutionary trajectories, we will need to combine constraints inspired by mathematical

descriptions of kinship structure (e.g., Jones, 2010) with constraints inspired by viewing kinship as a

cognitive technology, including acquisition. The model can serve as an additional constraint to explain why

there is repeated structure across attested kinship systems despite the lack of support for universal models

of evolutionary change (Passmore & Jordan, 2020).

An important direction for future models is to learn all of the parallel structures supporting

kinship—i.e., how kinship terms (sometimes simultaneously) map to address, sociological and attitudinal

structures. For example, it’s easy to imagine a child construing uncle in Uncle Ben as a term of address

like doctor in Doctor Octavius. Similarly, kin terms can be used to express an attitude toward an

individual. For example, calling an individual a grandpa because they go to sleep and wake up early.

Furthermore, future work should seek to evaluate these systems against social reasoning behavior in

addition to establishing reference. Future implementations of models in our framework could map kinship

terms to different structure or simultaneously learning multiple mappings. Of course, these endeavors will

also require a substantial investment in both experimental and observational data collection for kinship

across cultures.

Conclusion

Programs are a powerful representational scheme to formalize concepts because they have the ability

to capture logical structure, features, and potentially graded or stochastic aspects of conceptual structure.

A critical component of our program representation scheme is that our programs are functions of contexts.

Concept deployment and language use are heavily context-sensitive and to generalize across contexts,

thinkers need something like a program, that can operate over a given context. When combined with

data-driven inductive approaches, programs not only capture the end state representation of concepts but

provide rich behavioral predictions across the entire developmental trajectory, including phenomena like

the characteristic-to-defining shift in a single model.
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Methods

Generating the Hypothesis Space

To construct a finite lexicon space appropriate for our analyses, we utilized a variety of Markov

Chain Monte-Carlo methods to draw samples from the posterior distribution over lexicons at different data

amounts. Our model is implemented using LOTLib, a Language of Thought library for python (Piantadosi,

2014a). Here a lexicon is a collection of hypotheses, one per kinship term. First, we searched the space of

all possible lexicons using MCMC, resulting in many partially correct lexicons. Across all of these lexicons,

every word was learned and therefore, the learning trajectory for each word was present in the space.

Nonetheless, few if any lexicons contained the correct hypothesis for all of the words, which is important to

ensure that the finite approximation of the space that we use contains as many lexicons that are

developmentally plausible as possible.. In our second phase, we mixed the hypotheses generated in the first

phase to construct lexicons that contained the developmental trajectories of multiple words. A small

percentage of these lexicons contained correct hypotheses for all of the words. Phase one and two combined

generated too many lexicons to tractably analyse further. Therefore, we truncated the space by

normalizing the lexicons and selecting the top 1000 hypotheses at various data amounts. For our main

analyses, we collapse across lexicons and analyse developmental trajectories for each word independently to

avoid any complications with not having a complete lexicon space.

To generate an initial set of hypotheses, we used the Metropolis-Hastings algorithm using

tree-regeneration proposals following (Goodman et al., 2008; Piantadosi et al., 2012). For each language,

we ran 16 chains at each of 25 equally spaced data amounts between 10 and 250. Due to memory

limitations, we only saved the top 100 best lexicons from each chain. For English, Pukapukan and

Yanomaman lexicons, each chain was run for one million steps. For Turkish, we first ran 5 chains for three

million steps on a smaller lexicon—i.e., the search did not include the three words for grandparents or the

word for cousin. We then ran 5 chains for three million steps on the full lexicon. Few if any lexicons

resulting from this search contained the correct hypothesis for all words; however, across all lexicons the

correct hypothesis for every word was learned.

In our second phase, we used Gibbs sampling to mix the hypotheses generated in the first phase,

constructing lexicons that contained the developmental trajectories of multiple words. A small percentage

of these lexicons contained correct hypotheses for all of the words. Phase one and two combined generated

too many lexicons to tractably analyse further (around 200, 000 nine-word lexicons for English). Therefore,

we truncated the space by normalizing the likelihoods and selecting the top 1000 lexicons at various data

amounts favoring lower amounts (8 equally spaced intervals between 1 and 25, and 6 equal intervals

between 25 and 250 data points). For the analyses presented in the main text, we marginalize over lexicons
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to analyse hypotheses for different kinship terms independently. As hypotheses are included in the space

based on their performance at varying data amounts, we normalize the likelihood by simulating 1000 data

points, computing the likelihood of each hypothesis and taking the average likelihood for each hypothesis.

Learnability, F1 and Over-extension Analyses

To evaluate if a hypothesis ĥ was correct, we compared the hypothesis’s extension to the

hand-constructed, ground truth hypothesis h for each kinship term system. We obtain the trajectories for

posterior weighted accuracy, precision and recall by marginalizing over hypotheses at each data amount.

For example, the posterior weighted accuracy is given by:

P (ĥ = h|d) =
H∑
δĥhP (h|d). (4)

We adopt this same approach to estimate the extension probability for each referent x in a context as a

function of data:

P (x|d) =
H∑
P (x ∈ |h|)P (h|d), (5)

where P (x ∈ |h|) is given by:

P (x ∈ |h|) =


1 if x ∈ |h|

0 else.
(6)

Concrete Reference Analysis

As concrete reference is heavily influenced by local data distributions, we constructed a fixed data

set of five unique data points for uncle and ran one MCMC chain 100, 000 steps for each amount of data.

We collected the top 100 hypotheses from each chain to use for analysis. We operationalize abstraction as

the probability the hypothesis is a function of the speaker:

P (rSET→p ∈ h) =


1 if rSET→p ∈ h

0 else
. (7)

The posterior probability of using abstraction at a given data amount is therefore:

P (rSET→p|d) =
H∑
P (rSET→p ∈ h)P (h|d). (8)

We manipulate the prior bias for concrete reference by changing the PCFG production probabilities given

in Table 1, which influences the prior probability following Equation 2.

Characteristic-to-Defining Shift

We build the hypothesis space for characteristic and defining features separately for each informant.

To gather defining hypotheses, we ran 7 chains at each of 25 equally spaced data amounts between 10 and
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250 using the PCFG in Table 1 for 500, 000 steps. To gather characteristic hypotheses, we ran 7 chains at

each of 25 equally spaced data amounts between 10 and 250 using the PCFG in Table 3 for 500, 000 steps.

Due to memory limitations, we only saved the top 100 best lexicons from each chain. For each informant,

the defining and characteristic hypotheses were concatenated to form a single finite hypothesis space. As

our analyses collapsed over lexicons, we did not perform Gibbs sampling as above.

We replicate the learnability and F1 analyses (described in Appendix B) using the same methods

described above. Our analysis of the characteristic-to-defining shift is similar to our analysis of concrete

referents. The posterior probability of using a characteristic hypothesis at a given data amount is

P (rF SET→feature|d) =
H∑
P (rF SET→feature ∈ h)P (h|d), (9)

where P (rF SET→feature ∈ h) is:

P (rF SET→feature ∈ h) =


1 if rF SET→feature ∈ h

0 else.
(10)

Order of Acquisition Analysis

For the uniform data distribution, we sampled 1000 different datasets each containing 1000 data

points from a uniform distribution over all possible true data points. For the CHILDES data distribution,

we sampled 1000 different datasets each containing 1000 data points as follows. A kinship term w is

sampled from a multinomial distribution with θ values reflecting CHILDES frequencies. Given that term, a

speaker-referent pair (x, p) is sampled uniformly from all possible speaker-referent pairs.

w ∼ Multinomial(θ) (11)

(x, p) ∼ Uniform({(x, p)}) (12)

To simulate experience according to Benson and Anglin (1987), we modified the data generating

process. For each data point, speakers ranked closer in distance to the learner are more likely to be

sampled than data from speakers ranked distant to the learner. Conditioned on a speaker and a word, valid

referents ranked closer to the learner are more likely to be sampled than referents ranked distant to the

learner. We implement both of these models with the same noise model used in Equation 3. First, a

kinship term is sampled following (11). Conditioned on a word, a speaker is sampled from a Zipfian

distribution over the set of all possible speakers of that word Xw:

P (x|w) ∼ αd−s
x∑

x∈Xw
d−s

x
+ (1− α)
|X|

, (13)
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where dx is the ranking of the speaker x, s is the Zipfian exponent and X is the set of all individuals in the

tree context. Conditioned on the word and speaker, a referent is sampled from a Zipfian distribution over

the set of all possible referents for that word and speaker Pwx:

P (p|x,w) ∼
αd−s

p∑
p∈Pwx

d−s
p

+ (1− α)
|X|

. (14)

For our analyses, s = 1, reflecting the typical bias observed in texts (Piantadosi, 2014b). We

assigned distances to the tree context in Figure 1 by fixing the learner as the central female in the youngest

generation that had both a brother and a sister, and assigning relatives closer in Euclidean distance smaller

distance values. The assignment of distance in our informant provided data suggests this relationship has

great individual variability, so we refrain from making strong predictions about the order of acquisition for

individual terms. For the Zipfian distribution, we sampled 1000 different datasets each containing 1000

data points as outlined in Equations 13 and 14.

For all simulations schemes, we calculate the posterior accuracy of each hypothesis as a function of

data following Equation 4 after each data point is sampled. If the posterior weighted accuracy is greater

than or equal to 0.99, we mark the word as learned and record it’s ordinal position. Ties were resolved

alphabetically. As a result, we do not make strong predictions about order of acquisition for equally

complex concepts (e.g., the relative ordering of mother and father), which often pattern alphabetically

in our simulations.
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Appendix A

Alpha Analysis
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Figure A1 . Posterior weighted accuracy (y-axis) as a function of data (x-axis) for models with different

sampling assumptions (linetype and color) for different words (columns) and environmental reliability

values (rows). The virtually invisible shaded regions reflect 3 standard errors of the mean.

Navarro et al. (2012) investigated how the reliability parameter α, which mixes between strong and

weak sampling influences an inductive generalization task. They simulated environments where the data

was generated to be reliable 30− 60% of the time, and checked how distinguishable a noisy size-principle

likelihood with varying reliability parameter α would be from pure strong sampling (α = 1). They found

that in the limit of data, models with reliability parameters as low as 0.1 converge to the predictions of

strong sampling. We parametrically vary the reliability of the environment by simulating data with

30− 60% reliability and set our model’s reliability parameter to either 0.1, 0.5 and 0.9 to gauge whether

learning in our simulations will be robust to unreliable environments and different reliability assumptions.

As can be seen in Figure A1, we find no qualitative differences in learning across reliability assumptions

and environments.
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Appendix B

F1 Score Plots

As described in the main text, F1 score plots are a visualization of learnability and over-generalization.

Each figure in this appendix plots the posterior weighted accuracy, precision and recall (y-axis) as a

function of data (x-axis). Accuracy reflects the the probability that the model has acquired the adult-like

concept for that kinship term. Recall corresponds to the probability that the model will recognize a correct

referent, and is given by: ∑
x∈ĥ[x ∈ h]
|h|

, (15)

where x is a referent, ĥ is the proposed hypothesis, h is the ground truth hypothesis. Precision corresponds

to the probability that the model will propose a correct referent, and is given by:∑
x∈ĥ[x ∈ h]
|ĥ|

. (16)

When recall is greater than precision, the model is over-extending the term.

Figure B1 displays the F1 plots for Pukapuka, Turkish and Yanomamö. As shown in the main text,

the model learns the correct extension for every word. As expected, the posterior weighted recall is greater

than the posterior weighted precision for every word, suggesting that the model over-extends the meaning

of kinship terms. Predictions for the pattern of over-extension for each word is provided in supplemental

material.

The Characteristic-to-Defining Shift

Figure B2 displays the F1 plots for each of our informants. For all words, posterior weighted recall is

greater than posterior weighted precision, consistent with over-extension of kinship words. As discussed in

the main text, the model fails to learn the correct hypothesis for some words due to the impoverished

input/context. That being said, the model always learns a hypothesis that is consistent with it’s input. If

we had provided evidence from multiple family tree contexts, we expect the model to learn the adult-like

extension for all of the concepts. This suggests that having evidence from multiple families is likely an

important property of the kinship data that childern use to learn their kinship terms.

In the majority of cases where the model does not acquire the correct extension, the conventional

hypothesis was blocked by a hypothesis that overfit the context. For example, Informant 3 overfits for

grandma and Informant 4 overfits for grandpa because there is only one of those relations in their family

tree. Hence, it is sufficient to just point to that person. Informant 2 does not learn aunt, Informant 3 does

not learn sister and Informant 4 does not learn cousin for similar reasons. In these cases, the

conventional hypotheses do have some posterior probability (as evidenced in Figure B2 by non-zero

Accuracy) but do not come to dominate the posterior distribution of possible hypotheses. The conventional
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hypotheses are blocked by hypotheses that are less complex, explain the observed data, but would not

generalize properly across contexts.

Instead of overfitting, Informant 1 and 4 do not learn the conventional hypotheses for aunt and

uncle because there are children out of wedlock, which complicates how we have defined the conventional

hypotheses. Importantly, the maximum-a-posteriori, or best, hypothesis recovered by the model actually

generalizes correctly over trees without out of wedlock children. Informant 2 does not have any

grandfathers in their family tree context and, therefore, the model never receives data to learn grandpa.
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Figure B1 . Average lexicon posterior-weighted accuracy, precision and recall for each word as a function of

data points. Precision greater than recall is a hallmark of over-generalization. Shaded regions represent

95% bootstrapped confidence intervals.
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Figure B2 . Average lexicon posterior-weighted accuracy, precision and recall for each word as a function of

data points. Precision greater than recall is a hallmark of over-generalization. Shaded regions represent

95% bootstrapped confidence intervals.
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Appendix C

Learning an inter-related system

Throughout the paper, we have described a model that learns kinship terms independently of each other.

One trivial way to implement learning an inter-related system would be to change the likelihood function to

operate over the lexicon instead of individual words (e.g., Mollica, 2019). However, the more natural way to

think of learning an inter-related system like kinship would be to allow for recursive calls21. For example, a

learner might use their current concept for brother in their concept for uncle. We have implemented

recursive calls in the model; however, despite multiple attempts, we were unable to construct an acceptable

lexicon space to evaluate the model against developmental behavior. Without a proper finite approximation

to the space of probable lexicons, there are no guarantees that any “conclusions” drawn will be robust.

One common issue with the search was finding lexicons that only learned a subset of the words after

a lengthy search process. In the main text, we could easily mix lexicons using Gibbs sampling to help

ensure the relevant lexicons—i.e., lexicons that contain all high probability combinations of hypotheses

across the developmental trajectory, were in our finite approximation of the space. Unfortunately, recursive

calls introduces dependencies between words in a lexicon, which prohibits techniques like Gibbs sampling

that rely on independence.

father male(parent(X))

mother female(parent(X))

brother child(parent(X))

sister female(brother(X))

uncle male(brother(parent(X)))

aunt female(brother(parent(X)))

cousin difference(generation0(X), brother(X))
Table C1

An example local max lexicon when permitting recursive calls in the lexicon space.

Another common issue was the presence of local maxima in search (illustrated in C1. Often the

21 While the computations that we ultimately find for our kinship terms may differ from our intuitive definitions, it’s not clear

that definitions are simply read off from our conceptual representations (Miller & Johnson-Laird, 1976). In formal semantics,

the definition, for example, of the quantifier most is distinct from the conceptual process by which the meaning is verified

(Pietroski, Lidz, Hunter, & Halberda, 2009). In this paper, we demonstrated that recursive calls are not necessary to illustrate

the behavioral phenomena we are interested in. Separating recursive computations from finite computations is a challenging

task behaviorally because a recursive computation can be flattened out to a computation that performs identically.
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model would construct a useful primitive (e.g., sibling) instead of the definition of a word (e.g, brother),

which blocks that word from being acquired. In the example lexicon in Table C1, sister, uncle, aunt

and cousin are all defined in terms of the learner’s hypothesis for brother. The learner’s hypothesis for

brother is incorrect and would be better glossed as sibling. The problem with this local maxima is that

any change to brother to fix it would result in errors for sister, uncle, aunt and cousin. Therefore,

the sampling chain cannot propose a better lexicon and is essentially stuck.

Due to the search issues, we adopted a different tactic to explore the effect of recursion on kinship

learning. Hypotheses with recursive calls have extensionally-equivalent hypotheses defined in terms of the

base primitives. For example from Table C1, sister could be expressed as female(child(parent(X))). Being

extensionally-equivalent, the two hypotheses have the same likelihood. The only difference on the posterior

probability is in the prior. Recursive hypotheses should be simpler and thus more probable. Therefore, we

can change the prior distribution over our existing hypothesis space to behave equivalently as if it was

recursive. We capture the same intuitions as recursion using the Lempel-Ziv compression of the lexicon in

terms of the grammar as a prior over lexicons. This prior distribution favors the reuse of specific

combinations of primitives in the lexicon similar to the recursive calls in Table C1.
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Figure C1 . The English lexicons are plotted as a function of the recursive (compression) and lexicon prior.

The color of each point represents the point log likelihood (PLL) of the lexicon. If the learner searched the

space starting from the simplest to the most complex lexicon and terminated at the first correct lexicon,

they would have to search a smaller space under a compression prior (red shade) than under a lexicon prior

(green shade). Importantly, the developmental trajectory is not predicted under the recursive prior without

additional assumptions about the complexity/development of recursion.
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We found that when using a compression prior, the model predicts an inductive leap from most of

the kinship terms not being properly acquired to all of the kinship terms being learned. We see this leap

because the correct lexicon under the compression prior is significantly less complex than the lexicons

required in search space to get you there (Figure C1). As a result, order of acquisition behavior are not

predicted To remove this inductive leap, we could add a parameter that penalizes recursion (as in

Piantadosi et al., 2012); however, we think that the better explanation would be through the development

and integration of a more cognitively grounded notion of hypothesis generation—i.e., an algorithmic level

explanation.
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Appendix D

Mutual exclusivity through pragmatics

At first glance, our model fails to capture mutual exclusivity, or the bias for a referent to map to a single

word (Golinkoff, Hirsh-Pasek, Bailey, & Wenger, 1992; Markman & Wachtel, 1988). Our model often

predicts patterns of over-extension where a term like aunt would include a referent that overlaps with

another term like the speaker’s mother. This is counter-intuitive and anecdotally it’s rare that children

would actually use the word aunt to refer to their mother. There are several ways we could add mutual

exclusivity directly to the model. For example, Markman and Wachtel (1988); Markman, Wasow, and

Hansen (2003) suggested that children have an inductive bias specifically for mutual exclusivity. Instead, we

suggest that mutual exclusivity should be handled by the natural pragmatic reasoning of a communication

task. Let’s take for example, the pragmatic reasoning model proposed by (Frank & Goodman, 2012). We

will consider a learner sitting in a room with their aunt and mother, and has the following kinship concepts:

Concept Hypothesis Relative Frequency

aunt female(generation1(X)) 0.3

mother female(parent(X)) 0.7
Table D1

Example leaner

First, let’s look at production. If our learner is a pragmatic speaker and needs to refer to a target

referent r in the context C, they should select the word w in their vocabulary that is most likely to extend

to the target referent P (w|r, C). This can be formalized using Bayes rule as:

P (w|r, C) = P (r|w,C)P (w)∑
w P (r|w,C)P (w) , (17)

where P(r|w, C) is our noisy size-principle likelihood Equation 3. Using this equation, if the learner needs

to refer to their mother, they should use mother because there is an 82% chance that mother would be

used to refer to their target referent and only 12% chance that aunt would. If they need to refer to their

aunt, they should use aunt because there is an 81% chance that aunt would be used to refer to their target

and a 19% chance that mother does.

Now looking at comprehension. If our learner is a pragmatic listener, they will infer reference based

on what a pragmatic speaker should do. Formally, the probability of a referent given a word is:

P (r|w,C) ∝ P (w|r, C)P (r|C). (18)

Thus, the pragmatic listener propagates the mutual exclusivity bias of the pragmatic speaker. Assuming an

equal prior on referents in the context, a pragmatic listener should understand mom to refer to their
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mother, as their is an 81% chance that mom refers to their mother, and aunt to refer to their aunt, as

there is an 82% chance that aunt refers to their aunt.

Allowing this kind of pragmatic generalization is potentially beneficial for communicating

out-of-vocabulary referents (Y. Xu & Pinto Jr, in press) and establishing reference with an ambiguous

linguistic signal. To be clear though, we offer this explanation at the computation level. We are not

claiming that children solve this pragmatic reasoning problem explicitly; however, they must implicitly

solve this problem for successful and efficient communication regardless of their semantics. Our conclusion

is just that we might be able to get mutual exclusivity from pragmatics without requiring an inductive

bias. For further evidence against the inclusion of a specific inductive bias for mutual exclusivity, see Frank

et al. (2009), which discusses how a simplicity bias is sufficient to predict mutual exclusivity in the

word-referent mapping problem. Similar observations can be drawn from several implemented models of

cross-situational word learning (Fazly, Alishahi, & Stevenson, 2010; Kachergis, Yu, & Shiffrin, 2012;

McMurray, Horst, & Samuelson, 2012). For a recent review and meta-analysis of mutual exclusivity, see

M. Lewis, Cristiano, Lake, Kwan, and Frank (2020).


