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We thank the reviewers, Associate Editor and Editor-in-Chief for their further evaluation and comments. 
We have prepared a revised manuscript based on the feedback, and provide a point-by-point response 
to the comments below. The additions and sections linked to the comments are shown in red font within 
our revised manuscript, and the changed wording throughout the manuscript (as suggested by the 
Associate Editor), indicated in light blue font.

Reviewer: 2
Comments to the Author:
Although the reported findings are quite interesting, they are also quite limited. Using a single molecule 
for assessment of decidualization and another single molecule for assessment of receptivity is a 
superficial analysis, despite the chosen markers being very good ones. In fact, the single measure of 
decidualization, IGFBP-1 immunofluorescence, remains unquantified. The representative images 
(figure 1) for IGFBP-1 would seem quite convincing, but there is no measure of variability using 
quantitative methods. The alphavbeta3 expression is quantified, but exhibits only a 3-fold increase. This 
is surprising, as the in vivo situation shows very little epithelial staining without stimulation and quite 
robust staining afterwards (except for endothelium). Thus, the markers are good ones, but without other 
markers, the reader is left to guess whether this truly recapitulates endometrial functional changes due 
to hormonal decidualization stimulus.

In addition to IGFBP-1 being a robust marker for assessing differentiation status and quality of the 
decidual response of ESCs in culture, we also observed clear morphological changes upon hormonal 
stimulation (such as enlargement and rounding of the nucleus, and larger cell size) in ESCs upon 
hormonal stimulation (Figure 1A), which also induced a transient upregulation of ST2L, on day 6 (Figure 
1B), indicating an acute inflammatory decidual response (lines 89-90, 92, and 291-298). Decidualising 
ESCs induce a transitory, acute autoinflammatory response, through secretion of IL-33 (a key regulator 
of the innate immune response), whilst upregulating the expression of its receptor, ST2L, and this 
signalling induces receptivity gene expression in the overlying epithelium (lines 401-405), which was 
indicated by the induction of epithelial V3.

We acknowledge, however, that further validation would be beneficial to confirm an accurate 
representation of these key endometrial functional changes in our model, and we have added a section 
within our manuscript to describe the limitations of our study, which could include, for example, the 
iGenomix® Endometrial Receptivity Array (ERA) genomic tool (lines 511-512).

In this regard, changes in steroid hormone receptors after decidualization stimulus would enlightening. 
The response that steroid receptors can be variable due to hormonal effects, and thus were not 
evaluated, is quite concerning. Eutherian mammals, including humans, universally show down 
regulation of epithelial ER and PR prior to implantation. Thus, demonstration of epithelial ER and/or PR 
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changes after decidual stimulus would be an important validation of the model and further evidence that 
the response to E+P+cAMP is mediated by the E+P stimulus. 

While the lack of induction of epithelial integrin V3 (upon hormonal stimulation) by EECs in 
monoculture suggests that the induction of epithelial V3 in our co-culture model may have resulted 
from EEC-ESC crosstalk, following potential hormonal downregulation of epithelial PR and ER, further 
experiments would be needed to confirm this (lines 478-483). The ‘Limitations of the study’ section 
therefore now states that characterisation of EEC and ESC steroid receptor expression upon hormonal 
stimulation could be conducted for further validation of a receptive endometrial phenotype (lines 510-
511).

The response about glandular versus luminal epithelium is confusing. There are molecular markers that 
have been proposed by DeMayo, Spencer and others, e.g. FOXA2 for glandular. Of course, there are 
light microscopic and ultrastructural markers as well. If none of those were done, it is unclear why the 
authors state that alphaVbeta3 appears on both luminal and glandular epithelium, but then indicate that 
it was luminal phenotype because they saw alphavbeta3 expression. This is a very minor issue.

We apologise for the lack of clarity that led to confusion. We have discussed luminal epithelial V3 
expression throughout the manuscript, as this is perceived as the fundamental site for endometrial 
receptivity (line 443). The comment regarding V3 expression in the glandular epithelium was in 
response to a question in the previous critique, regarding differential receptor expression patterns in 
luminal versus glandular epithelium, and we stated that V3 appears on both luminal and glandular 
epithelium. 

We have deleted the reference to glandular epithelial V3 expression from the manuscript, and we 
did not observe any gland-like structures within the epithelial monolayer in our 3D model.

As mentioned in the previous critique, there is no photomicrograph evidence that the structure 
represents a 3-D model of the endometrium, such as seen in figure 3A. The studies cited in response 
to the critique do not use the combination of cell types used in this study, thus it cannot be claimed that 
such recapitulation is “well-established”. Cell migration can easily occur in 3-D models and an intact 
epithelium would be necessary for a true model of receptivity that the title suggests - one that could 
measure function.

The ‘Limitations of the study’ section, which incorporates suggestions of how our model can benefit 
from additional confirmation of endometrial receptivity, now includes a statement that 
photomicrographic verification of accurately representative 3D spatial relationships of the cell-types 
would further validate our model (lines 509-510).
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Reviewer: 1
Comments to the Author:
In Supplement figure 1B, they authors show that integrin αVβ3 expression by endometrial epithelial 
cells (EECs) alone did not change following hormone stimulation. But were the EECs grown in 
monolayer 2D or 3D culture with Matrigel layer when they did this experiment?  This needs to be 
clarified since some marker proteins may have different expression patterns 2D cultures compared to 
3D cultures.

They were grown in monolayer, on Matrigel-coated plates. However, while there may be discrepancies 
in protein expression associated with degree of Matrigel thickness and in 2D vs. 3D culture models 
(although, even in our 3D construct, the EECs were seeded in a 2D monolayer above the 3D ESC 
assembly), rising progesterone levels are known to downregulate endometrial epithelial PR and ER 
expression, and therefore the hormonal stimulation is likely to not act directly on EECs to induce V3 
expression, although we concede that further investigation would be needed to confirm this (lines 478-
483).

[*If the editorial team deems it necessary, the following can be added to the manuscript at line 478: ‘…compartment. While 
there may be a degree of differential protein expression patterns associated with Matrigel thickness and in 2D vs. 3D cell 
culture (Liu, Qi et al. 2018, Edmondson, Broglie et al. 2014), rising progesterone levels…’]

Associate Editor's comment to Author:
The two reviewers have given quite disparate opinions on the resubmitted manuscript. The overall 
criticism from R2 is mainly that your suggested model is not validated for functionality, and no firm 
conclusions can be drawn. However, the model can be seen as a new concept to study receptivity, but 
in need for further development and validation. As such it can be of interest to the readers of HRO.

I have the following suggestions: 
1. Change the title and the wording throughout the manuscript to express that the model has a potential 
to improve receptivity insights. In the title and in the Summary answer in the abstract, ‘novel’ could be 
exchanged with ‘potential’. In Wider implications in the Abstract, ‘offers’ can be replaced by ‘may offer’ 
etc. to highlight that the model needs further validation.

As suggested, we have now removed the word ‘novel’ from both the title and the Abstract. We have 
also changed the title to: A 3-dimensional endometrial organotypic model simulating the acute 
inflammatory decidualisation initiation phase with epithelial induction of the key endometrial receptivity 
marker, integrin V3  
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We have changed the summary answer in the Abstract to: We present a new concept to investigate 
endometrial receptivity, with a 3-dimensional (3D) organotypic model to simulate an early and transient 
acute autoinflammatory decidual status that resolves in the induction of a receptive endometrial 
phenotype.
We believe these changes better represent our model as a new concept to investigate endometrial 
receptivity, via a simplified simulation of the uterine microenvironment leading up to the induction of a 
receptive endometrial phenotype, rather than stating that we present ‘a novel in vitro 3-dimensional 
(3D) organotypic functional co-culture model representing a receptive endometrial phenotype’ (as in the 
previous version of the manuscript). 

As suggested, we have changed the wording throughout (light blue font).

2. The Discussion section could be more structured. Under a subheading Limitations, the points raised 
by Reviewer 2 could be summarized, to emphasize that the model can be further developed. A specific 
question from Reviewer 1 regarding Suppl Fig 1B needs to be clarified. Also, line 160, the number of 
patients (three) could be added; “obtained from three women”.

We have restructured the Discussion and added the following: ‘Limitations of the study’ and ‘Concluding 
remarks’. 

We have included the points raised by Reviewer 2 in the Limitations of the study’ section, and we have 
addressed the specific question from Reviewer 1 in lines 478-483.

We have also changed the wording to “obtained from three women” (now line 177).

Editor-in-Chief
Comments to the Authors:
The views of the AE and one of the reviewers indicate the need to address a number of residual issues 
before this paper can be considered suitable for acceptance by HROpen. This paper does need a "What 
does this mean for Patients" lay summary.

We have now added a ‘What does this mean for patients?’ lay summary.

The authors have one more opportunity to respond to the queries and comply with the suggestions from 
the AE. 

We thank the Editor-in-Chief for this chance to respond to the queries, which we have now addressed, 
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and we have made changes to our manuscript in order to comply with the Associate Editor’s 
suggestions. 

In addition, they need to explain what they mean by "endometrial factor infertility" in line 493 as this is 
not a term used in clinical practice.

We were referring to abnormalities of the endometrium being the cause of infertility as ‘endometrial 
factor infertility’, as we have come across this term being used in a few papers (albeit without proper 
descriptions of its meaning). However, we realise that this does not need to be additionally stated, since 
we have described the dysregulation of endometrial events (such as decidualisation and induction of 
endometrial receptivity) being implicated in infertility, making the statement superfluous. We have 
therefore removed this redundant point.
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13 Abstract

14 Study question: There is a distinct lack of directly relevant in vitro models of endometrial receptivity; 

15 is it possible to develop a simplified physiological in vitro system representing the key cell-types 

16 associated with a receptive endometrial phenotype? 

17 Summary answer: We present a new concept to investigate endometrial receptivity, with a 3-

18 dimensional (3D) organotypic co-culture model to simulate an early and transient acute 

19 autoinflammatory decidual status that resolves in the induction of a receptive endometrial 

20 phenotype.

21 What is known already: Embryo implantation is dependent on a receptive uterine environment. 

22 Ovarian steroids drive post-ovulation structural and functional changes in the endometrium, which 

23 becomes transiently receptive for an implanting conceptus, termed the ‘window of implantation’, 

24 and dysregulation of endometrial receptivity is implicated in a range of reproductive, obstetric, and 

25 gynaecological disorders and malignancies. The interactions that take place within the uterine 

26 microenvironment during this time are not fully understood, and human studies are constrained by 

27 a lack of access to uterine tissue from specific time-points during the menstrual cycle. Physiologically 

28 relevant in vitro model systems are therefore fundamental for conducting investigations to better 

29 understand the cellular and molecular mechanisms controlling endometrial receptivity.

30 Participants/materials, setting, methods: An endometrial stromal cell (ESC) line, and endometrial 

31 epithelial cells (EECs) isolated from uterine biopsy tissue and expanded in vitro by conditional 

32 reprogramming, were used throughout the study. Immunocytochemical and flow cytometric 

33 analyses were used to confirm epithelial phenotype following conditional reprogramming of EECs. 

34 To construct an endometrial organotypic co-culture model, ESCs were embedded within a 3D 

35 growth factor-reduced Matrigel structure, with a single layer of conditionally reprogrammed EECs 

36 seeded on top. Cells were stimulated with increasing doses of medroxyprogesterone acetate, cyclic 

37 adenosine monophosphate and estradiol, in order to induce ESC decidual transformation and 

38 endometrial receptivity. Decidual response and the induction of a receptive epithelial phenotype 

39 were assessed by immunocytochemical detection and quantitative in-cell western analyses, 

40 respectively.

41 Main results and the role of chance: A transient upregulation of the IL-33 receptor, ST2L, was 

42 observed in ESCs, indicating a transient autoinflammatory decidual response to the hormonal 

43 stimulation, known to induce receptivity gene expression in the overlying epithelium. Hormonal 

44 stimulation induced the EEC expression of the key marker of endometrial receptivity, integrin αVβ3 
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45 (n = 8; *P <0.05; ***P < 0.0001). To our knowledge, this is the first demonstration of a dedicated 

46 endometrial organotypic model, that has been developed to investigate endometrial receptivity, via 

47 the recapitulation of an early decidual transitory acute autoinflammatory phase and induction of an 

48 epithelial phenotypic change, to represent a receptive endometrial status.

49 Limitations, reasons for caution: This simplified in vitro ESC-EEC co-culture system may be only 

50 partly representative of more complex in vivo conditions.

51 Wider implications of the findings: The 3D endometrial organotypic model presented here may 

52 offer a valuable tool for investigating a range of reproductive, obstetric, and gynaecological 

53 disorders, to improve outcomes for assisted reproductive technologies, and for the development of 

54 advances in contraceptive methods.

55 Study funding/competing interest(s): This work was supported in part by an MRC Centre Grant 

56 (project reference MR/N022556/1). RF was the recipient of a Moray Endowment award and a 

57 Barbour Watson Trust award. C-JL is a Royal Society of Edinburgh Personal Research Fellow, funded 

58 by the Scottish Government. The authors have no conflicts of interest to declare.

59

60 Keywords: endometrial receptivity; window of implantation; decidualisation; endometrial 

61 organotypic model; conditional reprogramming
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62 What does this mean for patients?

63 During the first stage of the menstrual cycle, estrogen secretion from the developing ovarian follicle 

64 promotes growth of the endometrium (the lining of the womb). Following ovulation, rising 

65 progesterone and estrogen levels, produced by the corpus luteum (the remaining structure of the 

66 ovarian follicle that contained the maturing egg before its release during ovulation), promote 

67 structural and functional changes in the endometrium, in preparation for the ‘window of 

68 implantation’ – a period of 2−5 days when the endometrium is optimally receptive to an implanting 

69 embryo. This period of optimal endometrial receptivity is not only crucial for successful embryo 

70 implantation, but abnormal molecular and cellular events in the endometrium during this transient 

71 period have been implicated in fertility problems, obstetric complications, gynaecological disorders, 

72 and endometrial cancer. In this study, we have developed a simplified cellular model, with 

73 physiologically appropriate hormonal stimulation, to investigate endometrial receptivity. A more 

74 comprehensive understanding of these events can lead to the development of new interventions to 

75 promote pregnancy success, long-term maternal and fetal health, women’s health, as well as for 

76 improving contraceptive methods, and this new concept may be able to aid investigations to better 

77 understand the complex mechanisms involved in the generation of endometrial receptivity. 
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78 Introduction

79 Embryo implantation is a critical event in human pregnancy that is reliant on a receptive uterine 

80 environment. The cycling endometrium undergoes profound changes in women, leading to a 

81 carefully timed and defined period during which an embryo is able to attach and invade into a 

82 receptive uterus, resulting in the establishment of a successful pregnancy (Norwitz, Schust et al. 

83 2001).  Ovarian steroids, estrogen and progesterone, drive structural and functional changes in the 

84 uterine lining, preparing it for the implantation of a conceptus. The uterine lining, known as the 

85 endometrium, consists of a fibroblast-like stromal matrix lined by a single layer of columnar 

86 epithelium. Following ovulation, dynamic changes take place in the endometrial stromal cell (ESC) 

87 morphology, which undergo mesenchymal-to-epithelial transformation, and begin to differentiate 

88 into large, secretory, ‘decidualised’ stromal cells, in response to rising progesterone levels produced 

89 by the corpus luteum (Gellersen, Brosens et al. 2007, Salamonsen, Nie et al. 2009). Decidual 

90 transformation of ESCs is associated with enlargement and rounding of the nucleus, increased 

91 number of nucleoli, rough endoplasmic reticulum and Golgi complex expansion, and accumulation 

92 of glycogen and lipid droplets in the expanding cytoplasm (Gellersen and Brosens 2014, Kajihara, 

93 Tanaka et al. 2014, Okada, Tsuzuki et al. 2018). 

94

95 Decidualisation is a dynamic, multistep progression of events, comprising 3 critical transitory 

96 phases: (i) an acute inflammatory initiation phase that subsequently transitions to (ii) an anti-

97 inflammatory secretory phase during which time embryo implantation takes place, followed by (iii) 

98 a final resolution phase (Gellersen and Brosens 2014). First, ESCs undergo cell cycle exit at G0/G1 

99 and mount a transient pro-inflammatory response generated by a self-limiting autoinflammatory 

100 response, which, in turn, results in the expression of key receptivity genes in the overlying 

101 endometrial surface luminal epithelium (Salker, Nautiyal et al. 2012). This renders the endometrium 

102 receptive for embryo implantation for a limited period of time: the ‘window of implantation’. This 

103 period of optimal endometrial receptivity begins approximately 6 days post-ovulation and lasts 2−5 

104 days (i.e. approximately between days 20 and 25 of an idealised 28-day cycle) (Denker 1993). A 

105 receptive endometrial phenotype is not only imperative for embryo implantation and pregnancy 

106 success, but aberrant decidual transformation and dysregulation of uterine receptivity have also 

107 been implicated in several obstetric complications, gynaecological disorders and cancer (Norwitz 

108 2006, Strowitzki, Germeyer et al. 2006, Cartwright, Fraser et al. 2010, Lessey 2011, Patel and Lessey 

109 2011, Gellersen and Brosens 2014, Timeva, Shterev et al. 2014, Rabaglino, Post Uiterweer et al. 

110 2015, Tan, Hang et al. 2015, Conrad, Rabaglino et al. 2017).
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111

112 Interactions between different cell-types have reciprocal effects on cell phenotypes and ensuing 

113 functions (Freshney 2005). The same is true for uterine compartments and the contributions of 

114 these interactions to endometrial receptivity, since decidual transformation of the stroma confers 

115 its ability to create paracrine gradients necessary for expression of evolutionarily conserved 

116 molecules by the luminal epithelium that are fundamental for embryo implantation (Achache and 

117 Revel 2006, Salker, Nautiyal et al. 2012). It has been demonstrated that endometrial receptivity is 

118 mediated by the activation of autoregulatory feedback loops in decidualising ESCs underlying the 

119 luminal epithelium, which activate the sequential expression of pro- and anti-inflammatory gene 

120 networks, and that ESCs can exert this function independent of local immune cells (Salker, Nautiyal 

121 et al. 2012). As such, it is evident that there is a co-dependent relationship between the endometrial 

122 stroma and epithelium, to prepare the uterus for pregnancy (Cakmak and Taylor 2011), with ESC 

123 decidual transformation being a prerequisite for the generation of endometrial receptivity 

124 (Vinketova, Mourdjeva et al. 2016, Yu, Berga et al. 2016). The current study focuses on the uterine 

125 phenotype during the acute inflammatory initiation phase of decidual transformation implicated in 

126 the generation of endometrial receptivity.

127

128 The mechanisms that control decidualisation and endometrial receptivity are highly complex, and 

129 we do not yet fully understand all the interactions that take place within the uterine 

130 microenvironment during this time. Uterine competence for embryo implantation sets the 

131 foundation for a successful pregnancy pathway; it is only when a clearer picture of the relative 

132 contributions of the cellular and molecular mechanisms leading to a receptive endometrial status 

133 become apparent, that the pathophysiology of several reproductive, obstetric and gynaecological 

134 disorders can be further defined, and appropriate interventions can be developed to promote 

135 pregnancy success as well as long-term maternal and fetal health. Likewise, a better understanding 

136 of these mechanisms will also be beneficial for innovations in contraceptive methods. We have 

137 developed a simplified 3-dimensional (3D) endometrial organotypic model to investigate 

138 endometrial receptivity, in which we simulate an early acute inflammatory endometrial status, that 

139 resolves in the generation of a receptive luminal epithelial phenotype, known as the ‘window of 

140 implantation’. Organotypic culture refers to in vitro cell culture models in which two or more 

141 previously disaggregated cell-types are recombined in experimentally determined ratios and spatial 

142 relationships to reconstruct a constituent of the corresponding in vivo organ, as opposed to 

143 histiotypic cultures (high density culture of a single cell-type within a 3D matrix) or organoid cultures 
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144 (simplified, self-organising stem cell-derived 3D multicellular aggregates with the ability to mimic its 

145 in vivo organ counterpart) (Freshney 2005, Simian and Bissell 2017). An endometrial organotypic 

146 culture model, albeit a simplified representation, is able to better recapitulate the morphological 

147 and functional features of the in vivo uterine microenvironment, than is possible conventional 2-

148 dimensional or even histiotypic cell culture methods. Physiologically representative in vitro model 

149 systems are vital for investigating the mechanisms implicated in endometrial receptivity, due to the 

150 ethical and logistical limitations of human studies. While there are reports of several in vitro 

151 endometrial co-culture models in the literature (Bentin-Ley, Horn et al. 2000, Arnold, Kaufman et 

152 al. 2001, Bläuer, Heinonen et al. 2005, Wang, Pilla et al. 2012, Chen, Erikson et al. 2013), these are 

153 not representative of the early acute inflammatory decidualisation phase that gives rise to a 

154 transiently receptive epithelial phenotype. The new functional co-culture system presented here 

155 may offer a convenient and accessible tool to improve our comprehension of interactions in the 

156 uterine microenvironment during this transitory phase. 

157

158 Materials and methods

159 Culture and hormonal stimulation of the endometrial stromal cell line St-T1b a

160 The human ESC-derived telomerase-immortalised cell line, St-T1b (Samalecos, Reimann et al. 2009), 

161 kindly provided by Professor Jan Brosens (University of Warwick, UK),  was maintained in phenol 

162 red-free Dulbecco's modified Eagle medium DMEM/Ham's F12  (DMEM/F12; Invitrogen, Renfrew, 

163 UK) with 10% steroid-depleted fetal calf serum (FCS) supplemented with 2mM L-glutamine, 1 μg/ml 

164 insulin, 0.3 ng/ml 17β-estradiol (E2), 50 μg/ml penicillin, 50 μg/ml streptomycin, and 0.2% Primocin 

165 (Invivogen, Toulouse, France) (ESC medium) at 37C in an atmosphere of 5% CO2. Phenol red-free 

166 medium was used in all experiments, due to phenol red’s known estrogenic activity (Berthois, 

167 Katzenellenbogen et al. 1986). To induce decidualisation, cells were treated with minimal medium 

168 1 (MM1; ESC medium without insulin and E2) containing increasing concentrations of the progestin, 

169 medroxyprogesterone acetate (MPA), 8-bromoadenosine 3',5'-cyclic adenosine monophosphate (8-

170 Br-cAMP; Cambridge Bioscience, Cambridge, UK) and E2, or MM1 with 0.001% ethanol (EtOH) (Table 

171 1) every 48 hours, and cultured over 8 days at 37C in an atmosphere of 5% CO2. All reagents for St-

172 T1b cell culture were purchased from Sigma-Aldrich (Sigma-Aldrich, Dorset UK) unless stated 

173 otherwise. Cultured cells were fixed in 4% paraformaldehyde (PFA) on days 4, 6 and 8 for 

174 immunocytochemical analysis.

175
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176 Isolation of epithelial cells from endometrial biopsies and ethical approval

177 Primary human endometrial biopsy tissue was obtained from three women attending 

178 gynaecological outpatient departments in NHS Lothian. Written informed consent was obtained 

179 from participants and ethical approval granted from Lothian Research Ethics Committee (REC 

180 16/ES/0007). The women reported regular menstrual cycles and did not have exogenous hormone 

181 exposure for 2 months prior to biopsy. Women receiving hormonal therapy, suffering from 

182 endometriosis or those with fibroids of >3 cm were excluded. Human endometrial epithelial cells 

183 (EECs) were isolated from endometrial biopsies by tissue digestion and separation from ESCs. 

184 Endometrial tissue was minced using scalpel blades, followed by digestion with 100 μg/ml 

185 collagenase II and 0.25 μg/ml DNAse I (Sigma-Aldrich, Dorset UK) for 1.5 h at 37°C. The tissue 

186 homogenate was then sequentially strained through 70-µm and 40-µm membrane filters to 

187 separate glandular epithelium from ESCs. The membrane filters were back-washed with PBS to 

188 retrieve endometrial gland clumps, further rinsed with PBS to flush out any digestion medium, and 

189 mixed well to disperse clumps. EECs were then suspended in PBS and centrifuged at 500 x g for 5 

190 minutes at room temperature (RT), supernatant subsequently discarded, followed by resuspension 

191 in PBS and centrifugation at 500 x g for 5 minutes at RT. 

192

193 Expansion of endometrial epithelial cells by conditional reprogramming

194 EECs were rapidly expanded in vitro by conditional reprogramming with the use of Y-27632 (a Rho 

195 kinase inhibitor) and fibroblast feeder cells. First, 3T3 Swiss Albino fibroblasts (cell line obtained 

196 from the European Collection of Authenticated Cell Culture, Public Health England, Salisbury, UK) 

197 were grown in MM1 to approximately 80% confluence in T175 flasks, trypsinated, washed, 

198 resuspended in MM1 and irradiated at 30 Gy. The irradiated cells were washed, cultured at 37C in 

199 an atmosphere of 5% CO2, and conditioned medium collected 72 hours post-irradiation. EEC 

200 medium was prepared with phenol red-free DMEM/Ham's F12 containing 10% steroid-depleted 

201 FCS, and supplemented with 2mM L-glutamine, 5 μg/ml insulin, 24 μg/ml adenine, 0.4 μg/ml 

202 hydrocortisone, 10 ng/ml epidermal growth (EGF), 8.4 ng/ml cholera toxin, 10 μmol/l Y-27632 

203 (Cambridge Bioscience, Cambridge, UK, 10 g/ml gentamycin and 0.25 g/ml amphotericin. The 

204 irradiated 3T3 conditioned medium was added to EEC medium in a 1:3 ratio, 1 part of IR 3T3 

205 conditioned media to 3 parts of EEC medium; CREEC medium (conditional reprogramming EEC 

206 medium), and the EECs maintained in CREEC medium at 37C in an atmosphere of 5% CO2. This 

207 method has previously been shown to directly alter cell growth without selecting for a small sub-

208 population of stem-like cells, while retaining a normal non-tumourigenic karyotype, and 
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209 conditionally inducing an indefinite proliferative state in primary mammalian epithelial cells (Liu, 

210 Ory et al. 2012, Suprynowicz, Upadhyay et al. 2012, Palechor-Ceron, Suprynowicz et al. 2013). All 

211 reagents for EEC culture and conditional reprogramming were purchased from Sigma-Aldrich 

212 (Sigma-Aldrich, Dorset UK) unless stated otherwise. EECs can be cryopreserved using mFreSRTM 

213 cryopreservation medium (Stemcell Technologies, Cambridge, UK). Cultured EECs were fixed in 4% 

214 PFA for immunocytochemical analysis.

215

216 Immunocytochemical confirmation of ESC decidualisation and EEC phenotype

217 Fixed cells (St-T1b cells and EECs) were permeabilised with 0.1% Triton X-100 in PBS for 10 minutes, 

218 and washed three times with 0.1% Tween-20 in PBS (PBST). Cells were then blocked with 5% BSA in 

219 PBS for 1 hour at RT, incubated with primary antibody overnight at 4C, washed three times with 

220 0.1% PBST, subsequently incubated with secondary antibody and 1:10,000 DAPI for 30 minutes at 

221 RT in the dark, followed by a final wash with PBS. Primary antibodies used were rabbit anti-human 

222 IGFBP-1 (Abcam, Cambridge, UK; ab111203; 1:100), rat anti-mouse ST2L (IL-33R/ST2) (eBioscience, 

223 Cheshire, UK; 17-9335-82; 1:100), rabbit anti-human cytokeratin-18 conjugated to phycoerythrin 

224 (Abcam, Cambridge, UK; ab218288; 1:1000), rabbit anti-human vimentin (New England Biolabs, 

225 Hitchin, UK; 5741; 1:100), and mouse anti-human integrin V3 (Abcam, Cambridge, UK; ab190147; 

226 1:100). A goat anti-rabbit antibody conjugated to Alexa Fluor 546 (Invitrogen, Renfrew, UK; A-11071; 

227 1:300), a donkey anti-rabbit antibody conjugated to Alexa Fluor 568 (Invitrogen, Renfrew, UK; 

228 A10042; 1:250) and a donkey anti-mouse antibody conjugated to Alexa Fluor 488 (Invitrogen, 

229 Renfrew, UK; A21202; 1:500) were used as secondary antibodies. The cytokeratin-18 staining did 

230 not require incubation with a secondary antibody. The ST2L staining did not require cell 

231 permeabalisation for detection, but did require a signal amplification step after primary antibody 

232 incubation, with a biotinylated goat anti-rat antibody (Vector Laboratories, Peterborough, UK; BA-

233 4000; 1:100) for 30 minutes at RT in the dark, followed by three washes with 0.1% PBST. Cells were 

234 then incubated with streptavidin conjugated to Alexa Fluor 488 (Invitrogen, Renfrew, UK; s11223; 

235 1:200) and 1 mg/ml Hoechst 33342 (Invitrogen, Renfrew, UK; H3570) for 30 minutes at RT in the 

236 dark, and then washed with PBS. Imaging was conducted on an Olympus IX71 microscope with a 

237 QImaging optiMOS camera and CoolLED PE4000 light source (Olympus, Tokyo, Japan) or a Zeiss Axio 

238 Observer 7 microscope (Carl Zeiss Ltd, Cambridge, UK) with a Hamamatsu ORCA-Flash LT camera 

239 (Hamamatsu Protonics, Hertfordshire, UK) and Zeiss Colibri 7 LED light source (Carl Zeiss Ltd, 

240 Cambridge, UK). Images were analysed using ImageJ software (ImageJ, US National Institute of 

241 Health, Bethesda, MD, USA).
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242

243 Flow cytometric confirmation of EEC phenotype

244 EECs were blocked with 10% normal goat serum for 10 minutes on ice. Cells were then either left 

245 unstained (negative control) or incubated with mouse anti-human E-cadherin-BV421 (BD 

246 Biosciences, Oxford, UK), mouse anti-human EpCAM-PE (Abcam, Cambridge, UK), mouse anti-

247 human CD31-PerCP-Cy5.5 and rat anti-human CD45-APC-Cy7 (BioLegend, London, UK). Flow 

248 cytometry was carried out on a BD LSR Fortessa 5L flow cytometer (BD Biosciences, Oxford, UK). 

249 Analysis was carried using FlowJo software (BD Biosciences, Oxford, UK).

250

251 Generation of a 3D in-vitro organotypic model of a receptive endometrium

252 EECs were primed in ESC medium (containing 1 μg/ml insulin and 0.3 ng/ml E2) for 48 hours at 37C 

253 in an atmosphere of 5% CO2. When the EECs had already been incubating with ESC medium 24 

254 hours, St-T1b cells were seeded at a ratio of 1:3 growth factor-reduced (GFR) Matrigel (BD 

255 Biosciences, Oxford, UK) in ESC medium, at a density of 6 x 106 cells/ml, 60 l/well (3.6 x 105 

256 cells/well) in wells of a 96-well plate, and allowed to set into a 3D structure at 37C in an atmosphere 

257 of 5% CO2 over 45 minutes. A further 200 l ESC medium was subsequently added to wells and 

258 maintained overnight at 37C in an atmosphere of 5% CO2. Once the EECs had been primed in ESC 

259 medium for 48 hours, and the St-T1b cells grown within GFR Matrigel overnight, the medium was 

260 removed from wells containing the St-T1b 3D structures, and EECs were trypsinated, washed, 

261 resuspended in ESC medium and seeded on top of the 3D St-T1b cells at a density of 1 x 107 cells/ml, 

262 100 l/well (1 x 106 cells/well). To confirm that the phenotypic changes resulting from the hormonal 

263 stimulation were dependent on cell-to-cell communication between the stromal and epithelial 

264 compartments in our model, a parallel group was included, in which EECs were cultured alone 

265 without ESCs on GFR Matrigel-coated plates. Cells were further incubated overnight at 37C in an 

266 atmosphere of 5% CO2. Following overnight incubation, hormonal stimuli were added to cells every 

267 48 hours as described in Table 1, with the first addition of stimuli considered as day 0. Cells were 

268 fixed with 4% PFA on days 4, 6 and 8 for quantitative in-cell western analyses. 

269

270 Quantification of integrin V3 expression by in-cell western assay

271 Fixed cells were blocked overnight with Odyssey® buffer (LI-COR Biosciences, Cambridge, UK), 

272 followed by incubation with mouse anti-human integrin V3 (Abcam, Cambridge, UK; ab190147; 

273 1:100), overnight at 4C. Cells were then washed with PBS and the subsequent protocol, using a 

274 goat anti-mouse IRDye 800CW antibody and the CellTagTM 700 normalisation stain (LI-COR 

Page 15 of 65

https://mc.manuscriptcentral.com/hropen

Manuscripts submitted to Human Reproduction Open



For Review Only

11

275 Biosciences, Cambridge, UK), was carried out according to the manufacturer’s instructions. Cells 

276 were imaged and analysed using the Odyssey CLx Near-Infrared Fluorescence Imaging System (LI-

277 COR Biosciences, Cambridge, UK). In each experiment, data were normalised such that the integrin 

278 V3 expression in the control (unstimulated) wells were given a value of 100.

279

280 Statistical analysis

281 One-way ANOVA with Tukey’s multiple comparison post-test was used to determine P values using 

282 GraphPad Prism. P < 0.05 was considered statistically significant.

283

284 Results

285 Decidualisation induces the transient upregulation of ST2L in St-T1b cells 

286 Decidualisation was induced in St-T1b cells with increasing levels of MPA, E2 and cAMP over 8 days 

287 (Table 1), to model the rising progesterone and estrogen levels that drive the structural and 

288 functional changes in the secretory stage endometrium. Transformation of the St-T1b cells into 

289 characteristically larger, rounded cells, ‘decidualised’ stromal cells, with increased cytoplasmic and 

290 nuclear size, was observed. Decidualisation was confirmed by immunocytochemical analyses of 

291 insulin-like growth factor-binding protein-1 (IGFBP-1) expression (Figure 1A). IGFBP-1 is a widely 

292 used marker to assess the differentiation status and quality of the decidual response of ESCs in 

293 culture (Gao, Mazella et al. 1994, Giudice, Mark et al. 1998, Fazleabas, Kim et al. 2004, Kim, Taylor 

294 et al. 2007, Samalecos, Reimann et al. 2009, Gellersen and Brosens 2014, Tamura, Jozaki et al. 2018). 

295 Furthermore, decidual transformation of ESCs was additionally corroborated by visible enlargement 

296 and rounding of the nucleus and an expanding cytoplasm upon hormonal stimulation, which also 

297 induced a transient upregulation of the interleukin-33 (IL-33) transmembrane receptor, ST2L, on 

298 day 6 (Figure 1B), indicating a transient autoinflammatory decidual response.

299

300 Primary human endometrial epithelial cells were rapidly expanded in vitro, by conditional 

301 reprogramming, with retention of epithelial markers cells 

302 Epithelial cells can be rapidly expanded in vitro, by conditional reprogramming, with the use of a 

303 Rho kinase inhibitor (Y-27632) and irradiated fibroblast feeder cells (Liu, Ory et al. 2012, 

304 Suprynowicz, Upadhyay et al. 2012, Palechor-Ceron, Suprynowicz et al. 2013). This technique was 

305 adapted for human EECs in the current study, following isolation from clinical endometrial biopsies 

306 by tissue digestion with collagenase and DNase, and separation from ESCs (Figure 2A). Conditionally 
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307 reprogrammed EECs were generated, and these cells could be passaged several times with retention 

308 of epithelial markers. The conditionally reprogrammed EECs could be cryopreserved in single cell 

309 suspension in mFreSR™1 freezing medium and successfully revived following cryopreservation. EEC 

310 phenotype was confirmed by immunocytochemical expression of the epithelial marker cytokeratin-

311 18 (CK-18) and absence of the stromal cell marker vimentin (Figure 2B). Further validation of an 

312 epithelial phenotype was conducted by flow cytometric analyses, which demonstrated that the cells 

313 expressed two additional epithelial markers, EpCAM and E-cadherin, but did not express the 

314 leukocyte and endothelial cell markers, CD45 and CD31, respectively (Figure 2C). 

315

316 Generation of a novel endometrial organotypic in vitro co-culture model of the ‘window of 

317 implantation’ 

318 Firstly, EECs and ESCs were primed in medium containing with E2 and insulin to model the 

319 proliferative stage of the uterine cycle. EECs were then co-cultured with St-T1b cells in a 3D structure 

320 (Figure 3A), to produce an endometrial organotypic co-culture model. The organotypic 3D co-

321 cultures were subjected to decidualisation hormonal stimuli over 8 days (Table 1), to model the 

322 secretory stage of the uterine cycle and ultimately a receptive endometrial phenotype. EECs were 

323 monitored for expression of integrin αVβ3 (a key marker of uterine receptivity) by quantitative 

324 immunocytochemical detection, and in-cell western analyses demonstrated that integrin αVβ3 

325 expression by EECs was significantly higher on day 8 after hormonal stimulation compared to basal 

326 expression where the cells did not receive any hormonal stimuli (P < 0.0005), as well as in 

327 comparison to integrin αVβ3 expression on day 4 of treatment (P < 0.05) (Figure 3B). There was no 

328 significant change over time in basal integrin αVβ3 expression in the control unstimulated group, 

329 and the data from the stimulated cells were therefore normalised to the control unstimulated 

330 group. Furthermore, there was no induction of epithelial V3 expression in a parallel group in 

331 which EECs were cultured alone and subjected to hormonal stimuli over 8 days, indicating combined 

332 effects of hormone treatment and cell-to-cell communication between the stromal and epithelial 

333 compartments in our model (Supplementary figure 1).

334

335 Discussion

336 Decidualisation begins during the secretory phase of the menstrual cycle in response to rising 

337 steroid hormone levels, and is marked by the differentiation of fibroblast-like ESCs into specialised 

338 decidual cells, secretory changes in the uterine epithelial glands, the accumulation of uterine natural 
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339 killer cells, and vascular changes in the uterine spiral arteries (Maruyama and Yoshimura 2008, 

340 Cartwright, Fraser et al. 2010, Fraser, Whitley et al. 2015). These changes are not only important for 

341 implantation success, but defective endometrial receptivity is also associated with a wide range of 

342 gynaecological, reproductive, obstetric disorders, as well as in the pathophysiology reproductive 

343 malignancies (Makieva, Giacomini et al. 2018). 

344 The key molecular players of ESC decidual transformation are progesterone and cAMP, which act 

345 synergistically to stimulate successful differentiation of ESCs into their decidualised state (Brar, 

346 Frank et al. 1997, Gellersen and Brosens 2003). Progesterone acts on ESCs by binding to the 

347 progesterone receptor (PR), a member of the steroid/thyroid hormone receptor superfamily of 

348 ligand-activated transcription factors (Gellersen and Brosens 2003). Estrogen is responsible for 

349 inducing PR expression in ESCs that determine progesterone responsiveness during the secretory 

350 stage of uterine cycle (Patel, Elguero et al. 2015). Rising progesterone levels drive the structural and 

351 biochemical changes from proliferative to secretory ESC status, with a simultaneous generation of 

352 endometrial receptivity and opening of the ‘window of implantation’ (Paulson 2011), and activation 

353 of the cAMP second messenger pathway can direct cellular specificity to progesterone action 

354 through the induction of diverse transcription factors that affect PR function (Gellersen and Brosens 

355 2003).  The initiation of endometrial receptivity is dependent on the local removal of steroid action 

356 in the endometrial epithelium, facilitated via selective downregulation of epithelial PRs and 

357 estrogen receptors (ERs), combined with the steroid-mediated paracrine effects from the stromal 

358 compartment. Through the selective epithelial cell PR and ER downregulation, it is believed that 

359 progesterone and estrogen act on stromal cells, which then influence epithelial cells through specific 

360 paracrine factors (Lessey, Ilesanmi et al. 1996, Lessey 1998). However, although adequate 

361 progesterone signalling is required to establish a receptive endometrial status, some studies suggest 

362 that untimely, excess progesterone can compromise decidualisation and endometrial receptivity 

363 (Labarta, Martínez-Conejero et al. 2011, Liang, Liu et al. 2018). Furthermore, while progesterone is 

364 responsible for the structural ESC changes during decidualisation, animal studies have 

365 demonstrated that uterine estrogen biosynthesis is crucial for the progression of decidualisation, 

366 possibly by promoting stromal cell gap junction communication, which is known to be implicated in 

367 preparing the endometrium for implantation (Ma, Song et al. 2003, Das, Mantena et al. 2009). 

368 Moreover, studies in mice have shown that estrogen is critical in regulating the receptive 

369 endometrial state; low estrogen levels can extend the ‘window of implantation’, whereas 

370 excessively high estrogen levels can promptly initiate a refractory state, indicating that a very 

371 narrow range of estrogen levels can determine the duration of endometrial receptivity, which could 
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372 have implications in the human setting (Ma, Song et al. 2003). Ovarian hormonal signalling must 

373 therefore be stringently regulated to establish an adequately programmed, appropriately timed 

374 receptive uterine environment to ensure pregnancy success, and to maintain gynaecological and 

375 reproductive health.

376

377 In the present study, decidualisation was induced with increasing doses of MPA, 8-Br-cAMP and E2 

378 over 8 days, in order to recapitulate the time it takes for these functional changes to occur in vivo, 

379 since the ‘window of implantation’ becomes apparent (through detection of epithelial integrin V3 

380 expression) 68 days after ovulation (Lessey 1998). Frequently used in vitro decidualisation 

381 protocols include treatment of ESCs with constant doses of various combinations of progesterone 

382 or a progestin, a cAMP-inducing analogue and E2, with high variability in duration of treatment 

383 (Logan, Ponnampalam et al. 2013, Gellersen and Brosens 2014, Michalski, Chadchan et al. 2018). 

384 Early in vitro decidualisation studies established that progestins (such as MPA) induce enhanced 

385 decidual effects in cultured ESCs compared to progesterone, that a combination of progesterone 

386 with E2 can amplify decidual effects in ESCs compared to treatment with progesterone alone, and 

387 that the cAMP signal transduction cascade is a key stimulant in progesterone-dependent 

388 decidualisation (Eckert and Katzenellenbogen 1981, Irwin, Kirk et al. 1989, Levin, Tonetta et al. 1990, 

389 Gellersen, Kempf et al. 1994, Brar, Frank et al. 1997). Observations were based on physiological 

390 doses of ovarian hormones and cAMP stimulation that induced ESC ultrastructural and molecular 

391 changes characteristic of in vivo decidualisation (Eckert and Katzenellenbogen 1981, Irwin, Kirk et 

392 al. 1989, Gellersen, Kempf et al. 1994). While the majority of in vitro decidualisation protocols make 

393 use of continuous hormonal stimulatory doses (Logan, Ponnampalam et al. 2013, Gellersen and 

394 Brosens 2014, Michalski, Chadchan et al. 2018), we used increasing doses of hormonal and cAMP 

395 stimulation, to better represent the in vivo post-ovulatory rise in ovarian hormones and local cAMP 

396 production that controls decidualisation and endometrial receptivity. Our study demonstrates that 

397 these rising levels of ovarian hormones and cAMP can induce the transient upregulation of the IL-

398 33 receptor, ST2L, which was not observed when ESCs were subjected to the standard continuous 

399 doses of hormonal and cAMP stimulation reported in the literature (Logan, Ponnampalam et al. 

400 2013, Gellersen and Brosens 2014, Michalski, Chadchan et al. 2018) (Supplementary Figure 1). 

401 Decidualising ESCs have been shown to induce a transitory, acute autoinflammatory response, 

402 through secretion of IL-33 (a key regulator of the innate immune response), whilst upregulating the 

403 expression of its receptor, ST2L. This IL-33-ST2L signalling induces receptivity gene expression in the 

404 overlying epithelium, rendering the endometrium transiently receptive for the implantation of a 
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405 conceptus (Salker, Nautiyal et al. 2012). In the absence of an implanting conceptus, the ESCs mount 

406 an anti-inflammatory response that involves the downregulation of ST2L (Salker, Nautiyal et al. 

407 2012). 

408

409 Human studies are restricted by a lack of access to tissue throughout the different stages of the 

410 menstrual cycle. The current study provides a simple in vitro organotypic co-culture model of a 3D 

411 uterine structure, using Matrigel, an ESC cell line, and conditionally reprogrammed EECs. Matrigel is 

412 rich in laminin and collagen, bearing similarities to the uterine extracellular matrix composition 

413 (Tarrade, Goffin et al. 2002). Furthermore, it has been suggested that in addition to inducing a 

414 stromal regulatory phenotype, Matrigel is able to act as a mediator for ESCs to signal to EECs, in a 

415 similar paracrine manner to what occurs in living uterine tissue, when ESCs and EECs are co-cultured 

416 with Matrigel serving as the basement membrane (Arnold, Kaufman et al. 2001). The St-T1b ESC cell 

417 line used in our study expresses phenotypic ESC markers and can mimic primary decidual stromal 

418 cell responses in vitro (Samalecos, Reimann et al. 2009), and its use eliminates patient variability, as 

419 well as the possibility of ‘contaminating’ EECs being present within the stromal ESC component of 

420 the model. However, an EEC cell line was not utilised, as all commonly-used EEC cell lines are derived 

421 from malignant endometrial adenocarcinoma tissues. Since cancer cells have undergone numerous 

422 genetic and epigenetic alterations, adenocarcinoma-derived cell lines are not representative of non-

423 cancerous biological processes such as decidualisation and the induction of endometrial receptivity. 

424 Conditional reprogramming transcends the difficulty of growing primary EECs in long-term culture, 

425 but allows propagation of primary epithelial cells into a highly proliferative state, whilst cells 

426 maintain their original karyotype and remain in a non-neoplastic state (Liu, Ory et al. 2012, 

427 Suprynowicz, Upadhyay et al. 2012, Palechor-Ceron, Suprynowicz et al. 2013). Cells are denoted as 

428 ‘conditionally reprogrammed’ due to the conditional induction of cell proliferation, with increased 

429 telomerase expression, by a combination of Y-27632 (which suppresses differentiation and extends 

430 life span in calcium- and serum-containing medium) and diffusible factor(s) released by the 

431 irradiation-induced apoptotic 3T3 feeder cells (Suprynowicz, Upadhyay et al. 2012, Palechor-Ceron, 

432 Suprynowicz et al. 2013). It has been suggested that the unrestricted cell proliferation induced by 

433 conditional reprogramming is mediated through the induction of telomerase and cytoskeletal 

434 remodelling and/or interference with the p16/Rb pathway (Liu, Ory et al. 2012, Palechor-Ceron, 

435 Suprynowicz et al. 2013). The capacity for rapid establishment of karyotype-stable cell cultures from 

436 normal human epithelium facilitates in vitro cellular studies without the drawbacks of cell cultures 

437 generated, for example, from induced pluripotent stem cells, such as genetic instability, 
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438 tumourigenicity and altered antigenicity (Suprynowicz, Upadhyay et al. 2012). Large numbers of 

439 EECs were generated through conditional reprogramming in the present study, which could be 

440 passaged multiple times with the retention of epithelial markers, thus providing the advantages of 

441 a conventional cell line. 

442  

443 The luminal epithelium is perceived as the fundamental site for endometrial receptivity (Idelevich 

444 and Vilella 2020), and integrin V3 is a cell-surface adhesion receptor that appears on the apex of 

445 endometrial luminal epithelial cell surfaces, coincident with the ‘window of implantation’, and has 

446 putative roles in embryo attachment during implantation (Rai, Hopkisson et al. 1996, Apparao, 

447 Murray et al. 2001, Lessey 2002, Lessey and Castelbaum 2002). Integrin V3 is maximally 

448 expressed during the ‘window of implantation’ (Apparao, Murray et al. 2001), and its endometrial 

449 expression is significantly lower in cases of unexplained infertility, indicating that aberrant epithelial 

450 integrin V3 expression may be associated defective endometrial receptivity (Elnaggar, Farag et 

451 al. 2017). Here, we capitalise on the acute inflammatory initiation phase of decidual transformation 

452 that promotes the generation of endometrial receptivity. This temporal endometrial phenotypic 

453 change is not only important for implantation success, but its dysregulation is also associated with 

454 a wide range of gynaecological, reproductive, and obstetric disorders, as well as in the 

455 pathophysiology of reproductive malignancies (Makieva, Giacomini et al. 2018). It has been 

456 suggested that endometrial receptivity is mediated through both direct and indirect progesterone 

457 action (Lessey 2003). Epithelial steroid receptor expression varies during the menstrual cycle, with 

458 high PR levels in the proliferative phase and selective loss of epithelial PR (and reduced ER) 

459 expression in the secretory phase (Lessey, Ilesanmi et al. 1996), demonstrating a direct action of 

460 progesterone on epithelial cells. Endometrial receptivity is tightly associated with the shifts in PR 

461 and ER expression, which occur at the time of its onset around 56 days post-ovulation, concomitant 

462 with the appearance of epithelial integrin V3 (Lessey 1998). Stromal cells, on the other hand, 

463 maintain their PR expression throughout the menstrual cycle, and progesterone action on stromal 

464 cells generates paracrine mediators (such as the secretion of specific growth factors, cytokines and 

465 inflammatory mediators) (Al-Sabbagh, Fusi et al. 2011, Salker, Nautiyal et al. 2012, Chen, Erikson et 

466 al. 2013) that promote epithelial gene expression, indicating the indirect action of progesterone, via 

467 stromal cells, in the induction of an epithelial receptive phenotype (Lessey 1998, Lessey 2003, 

468 Salker, Nautiyal et al. 2012). The addition of hormonal stimuli to our ESC-EEC co-culture system 

469 induced an autoinflammatory decidual stromal response and the upregulation of epithelial integrin 

470 V3, representing phenotypic endometrial changes coincident with the ‘window of implantation’. 
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471

472 Epithelial integrin V3 expression within our 3D co-culture model coincided with the timing of the 

473 transient ST2L upregulation that was observed in ESCs, and was subsequently further amplified. 

474 Furthermore, there was no induction of epithelial integrin V3 expression when EECs were 

475 cultured alone, without ESCs, and subjected to hormonal stimulation (Supplementary Figure 1), 

476 suggesting that the induction of epithelial integrin V3 expression upon hormonal stimulation may 

477 have resulted from EEC-ESC crosstalk following IL-33-ST2L signalling within the stromal 

478 compartment, particularly since rising progesterone levels induce the downregulation of epithelial 

479 PR and ER expression during the secretory stage, permitting progesterone and estrogen to act on 

480 ESCs (Lessey, Ilesanmi et al. 1996, Lessey 1998). However, further experiments would be required 

481 to confirm whether these well-known endometrial functional changes are responsible for the lack 

482 of induction of integrin V3 in EECs in monoculture, following hormonal stimulation, that was 

483 observed in the current study. In addition, differences were observed with modifications of 

484 decidualisation stimulation doses: while ESCs treated with increasing doses exceeding physiological 

485 hormonal and cAMP levels still elicited a transient ST2L upregulation, continuous stimulatory doses 

486 did not. Nonetheless, both of these stimulation protocols induced epithelial V3 expression, albeit 

487 to a lesser amplitude (Supplementary Figure 1) than detected upon treatment with increasing 

488 physiological stimulatory doses. Such observations and nuances highlight the significance of 

489 appropriate experimental design, and also denote the importance of the interdependent 

490 relationship between the timing and level of ovarian hormonal signalling that is a likely requisite in 

491 the process of endometrial receptivity. 

492

493 Limitations of the study

494 We acknowledge that the simplified functional endometrial organotypic model system presented 

495 here does not fully represent all the cellular components and communications that are implicated 

496 in the early events leading up to and during the ‘window of implantation’. These include glandular 

497 epithelial cells that undergo secretory transformation to provide histiotrophic nutrition for 

498 implanting embryo, decidual natural killer cells that have important functions in stromal-immune 

499 crosstalk, uterine vascular development, embryo implantation and trophoblast invasion, or vascular 

500 components that undergo changes (Maruyama and Yoshimura 2008, Cartwright, Fraser et al. 2010, 

501 Weimar, Post Uiterweer et al. 2013, Fraser, Whitley et al. 2015). However, ESCs are the main cell-

502 type in the uterine microenvironment, and through an initial acute autoinflammatory decidual 

503 response, they are pivotal for transforming the uterus into a receptive phenotype by signalling to 
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504 the overlying epithelium to induce the expression of key receptivity molecules. We have therefore 

505 put emphasis on the stromal and luminal epithelial components for the development of our 

506 organotypic model system, paracrine interactions of which are central to the generation of 

507 endometrial receptivity (Lessey 1998, Lessey 2003, Al-Sabbagh, Fusi et al. 2011, Salker, Nautiyal et 

508 al. 2012, Lucas, Dyer et al. 2016). In addition, our model could benefit from further validation, for 

509 example, via photomicrographic verification of accurately representative 3D spatial relationships of 

510 the cell-types, through characterisation of EEC and ESC steroid receptor expression upon hormonal 

511 stimulation, and by using the iGenomix® (iGenomix UK Ltd, Surrey, UK) Endometrial Receptivity 

512 Array (ERA) genomic tool (Katzorke, Vilella et al. 2016), for additional confirmation of a receptive 

513 endometrial phenotype.

514

515 Concluding remarks

516 Endometrial cell and molecular signalling errors are widely associated with uterine pathologies 

517 ranging from infertility to cancer (Makieva, Giacomini et al. 2018). Any disturbance in decidual 

518 transformation of the endometrium, and in turn endometrial receptivity, can cause endometrial 

519 functional inadequacy, leading to implantation failure or pregnancy loss resulting from abnormal 

520 implantation. Dysregulation of decidualisation and endometrial receptivity have been implicated in 

521 infertility, implantation failure, recurrent miscarriage, pre-eclampsia and intrauterine growth 

522 restriction (Norwitz 2006, Strowitzki, Germeyer et al. 2006, Cartwright, Fraser et al. 2010, Lessey 

523 2011, Patel and Lessey 2011, Gellersen and Brosens 2014, Timeva, Shterev et al. 2014, Rabaglino, 

524 Post Uiterweer et al. 2015, Tan, Hang et al. 2015, Conrad, Rabaglino et al. 2017). In addition, several 

525 gynaecological disorders, including endometriosis, polycystic ovarian syndrome, hydrosalpinges and 

526 luteal phase defect, are also associated with decreased endometrial receptivity and anomalous 

527 expression of endometrial biomarkers (Donaghay and Lessey 2007). The endometrial organotypic 

528 system presented here may therefore facilitate a better understanding of interactions within the 

529 uterine microenvironment. These could include, for example, the immunomodulatory and vascular 

530 changes that are of critical importance during the secretory stage, as well as the application to the 

531 current model of previously described organoid systems, or embryo implantation and trophoblast 

532 invasion study protocols (Teklenburg, Salker et al. 2010, Fraser, Whitley et al. 2012, Wang, Pilla et 

533 al. 2012, Wallace, Host et al. 2013, James, Tun et al. 2016, Turco, Gardner et al. 2017), taking into 

534 consideration both the respective distinct stages of decidualisation and implantation in any future 

535 studies conducted. Other further potential applications would be for the development of advances 

536 in contraceptives, as well as to investigate how various drugs (such as those used in infertility or 
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537 chemotherapy treatments) may interfere with endometrial signalling pathways, particularly where 

538 human in vivo studies are not feasible. The co-culture system developed here, therefore has the 

539 scope to be applied in an extensive range of settings, allowing investigations for the comprehensive 

540 understanding of the molecular interactions and cellular consequences within the uterine 

541 microenvironment during this early transitory period, in the broad context of several of 

542 reproductive, obstetric and gynaecological pathologies. 
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769 Table and figure legends 

770 Table 1: To produce a physiologically representative decidual response in vitro, cells were stimulated 

771 with minimal medium 1 (MM1) containing increasing concentrations of medroxyprogesterone 

772 acetate (MPA), 8-bromoadenosine 3',5'-cyclic adenosine monophosphate (8-Br-cAMP) and 17-

773 estradiol (E2), or MM1 with 0.001% ethanol (EtOH), every 48 hours, and monitored over 8 days.

774

775 Figure 1: Hormonal stimulation of St-T1b cells with medroxyprogesterone acetate, 8-

776 bromoadenosine 3',5'-cyclic adenosine monophosphate and 17-estradiol. Decidualisation 

777 confirmed by immunohistochemical detection of [A] IGFBP-1 expression, and [B] the transient 

778 upregulation of ST2L expression. Scale bars = 100 m.

779

780 Figure 2: [A] Endometrial epithelial cells (EECs) were isolated from endometrial biopsies and 

781 expanded in vitro by conditional reprogramming. Confirmation of epithelial phenotype by [B] 

782 immunocytochemical analyses demonstrated cytokeratin-18 (CK18) expression and negative 

783 vimentin staining in EECs, with endometrial stromal cells (ESCs) serving as negative and positive 

784 controls, respectively. Scale bars = 100 m. [C] Flow cytometric analyses demonstrated EpCAM and 

785 E-cadherin expression by EECs, but no CD31 and CD45 expression.

786

787 Figure 3. [A] To construct a 3D endometrial organotypic co-culture model, St-T1b cells were 

788 embedded in growth factor-reduced Matrigel, with a single layer of EECs seeded on top. [B] In-cell 

789 western analysis was conducted to quantify epithelial integrin αVβ3 expression with or without 

790 treatment with medroxyprogesterone acetate, cyclic adenosine monophosphate and 17β-estradiol, 

791 on days 4, 6 and 8. Results are mean ± SEM of eight separate experiments. **P <0.05; ***P < 0.0001; 

792 one-way ANOVA with Tukey’s multiple comparison post-test analysis. 
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13 Abstract

14 Study question: There is a distinct lack of directly relevant in vitro models of endometrial receptivity; 

15 is it possible to develop a simplified physiological in vitro system representing the key cell-types 

16 associated with a receptive endometrial phenotype? 

17 Summary answer: We present a new concept to investigate endometrial receptivity, with a 3-

18 dimensional (3D) organotypic co-culture model to simulate an early and transient acute 

19 autoinflammatory decidual status that resolves in the induction of a receptive endometrial 

20 phenotype.

21 What is known already: Embryo implantation is dependent on a receptive uterine environment. 

22 Ovarian steroids drive post-ovulation structural and functional changes in the endometrium, which 

23 becomes transiently receptive for an implanting conceptus, termed the ‘window of implantation’, 

24 and dysregulation of endometrial receptivity is implicated in a range of reproductive, obstetric, and 

25 gynaecological disorders and malignancies. The interactions that take place within the uterine 

26 microenvironment during this time are not fully understood, and human studies are constrained by 

27 a lack of access to uterine tissue from specific time-points during the menstrual cycle. Physiologically 

28 relevant in vitro model systems are therefore fundamental for conducting investigations to better 

29 understand the cellular and molecular mechanisms controlling endometrial receptivity.

30 Participants/materials, setting, methods: An endometrial stromal cell (ESC) line, and endometrial 

31 epithelial cells (EECs) isolated from uterine biopsy tissue and expanded in vitro by conditional 

32 reprogramming, were used throughout the study. Immunocytochemical and flow cytometric 

33 analyses were used to confirm epithelial phenotype following conditional reprogramming of EECs. 

34 To construct an endometrial organotypic co-culture model, ESCs were embedded within a 3D 

35 growth factor-reduced Matrigel structure, with a single layer of conditionally reprogrammed EECs 

36 seeded on top. Cells were stimulated with increasing doses of medroxyprogesterone acetate, cyclic 

37 adenosine monophosphate and estradiol, in order to induce ESC decidual transformation and 

38 endometrial receptivity. Decidual response and the induction of a receptive epithelial phenotype 

39 were assessed by immunocytochemical detection and quantitative in-cell western analyses, 

40 respectively.

41 Main results and the role of chance: A transient upregulation of the IL-33 receptor, ST2L, was 

42 observed in ESCs, indicating a transient autoinflammatory decidual response to the hormonal 

43 stimulation, known to induce receptivity gene expression in the overlying epithelium. Hormonal 

44 stimulation induced the EEC expression of the key marker of endometrial receptivity, integrin αVβ3 
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45 (n = 8; *P <0.05; ***P < 0.0001). To our knowledge, this is the first demonstration of a dedicated 

46 endometrial organotypic model, that has been developed to investigate endometrial receptivity, via 

47 the recapitulation of an early decidual transitory acute autoinflammatory phase and induction of an 

48 epithelial phenotypic change, to represent a receptive endometrial status.

49 Limitations, reasons for caution: This simplified in vitro ESC-EEC co-culture system may be only 

50 partly representative of more complex in vivo conditions.

51 Wider implications of the findings: The 3D endometrial organotypic model presented here may 

52 offer a valuable tool for investigating a range of reproductive, obstetric, and gynaecological 

53 disorders, to improve outcomes for assisted reproductive technologies, and for the development of 

54 advances in contraceptive methods.
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56 (project reference MR/N022556/1). RF was the recipient of a Moray Endowment award and a 
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62 What does this mean for patients?

63 During the first stage of the menstrual cycle, estrogen secretion from the developing ovarian follicle 

64 promotes growth of the endometrium (the lining of the womb). Following ovulation, rising 

65 progesterone and estrogen levels, produced by the corpus luteum (the remaining structure of the 

66 ovarian follicle that contained the maturing egg before its release during ovulation), promote 

67 structural and functional changes in the endometrium, in preparation for the ‘window of 

68 implantation’ – a period of 2−5 days when the endometrium is optimally receptive to an implanting 

69 embryo. This period of optimal endometrial receptivity is not only crucial for successful embryo 

70 implantation, but abnormal molecular and cellular events in the endometrium during this transient 

71 period have been implicated in fertility problems, obstetric complications, gynaecological disorders, 

72 and endometrial cancer. In this study, we have developed a simplified cellular model, with 

73 physiologically appropriate hormonal stimulation, to investigate endometrial receptivity. A more 

74 comprehensive understanding of these events can lead to the development of new interventions to 

75 promote pregnancy success, long-term maternal and fetal health, women’s health, as well as for 

76 improving contraceptive methods, and this new concept may be able to aid investigations to better 

77 understand the complex mechanisms involved in the generation of endometrial receptivity. 
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78 Introduction

79 Embryo implantation is a critical event in human pregnancy that is reliant on a receptive uterine 

80 environment. The cycling endometrium undergoes profound changes in women, leading to a 

81 carefully timed and defined period during which an embryo is able to attach and invade into a 

82 receptive uterus, resulting in the establishment of a successful pregnancy (Norwitz, Schust et al. 

83 2001).  Ovarian steroids, estrogen and progesterone, drive structural and functional changes in the 

84 uterine lining, preparing it for the implantation of a conceptus. The uterine lining, known as the 

85 endometrium, consists of a fibroblast-like stromal matrix lined by a single layer of columnar 

86 epithelium. Following ovulation, dynamic changes take place in the endometrial stromal cell (ESC) 

87 morphology, which undergo mesenchymal-to-epithelial transformation, and begin to differentiate 

88 into large, secretory, ‘decidualised’ stromal cells, in response to rising progesterone levels produced 

89 by the corpus luteum (Gellersen, Brosens et al. 2007, Salamonsen, Nie et al. 2009). Decidual 

90 transformation of ESCs is associated with enlargement and rounding of the nucleus, increased 

91 number of nucleoli, rough endoplasmic reticulum and Golgi complex expansion, and accumulation 

92 of glycogen and lipid droplets in the expanding cytoplasm (Gellersen and Brosens 2014, Kajihara, 

93 Tanaka et al. 2014, Okada, Tsuzuki et al. 2018). 

94

95 Decidualisation is a dynamic, multistep progression of events, comprising 3 critical transitory 

96 phases: (i) an acute inflammatory initiation phase that subsequently transitions to (ii) an anti-

97 inflammatory secretory phase during which time embryo implantation takes place, followed by (iii) 

98 a final resolution phase (Gellersen and Brosens 2014). First, ESCs undergo cell cycle exit at G0/G1 

99 and mount a transient pro-inflammatory response generated by a self-limiting autoinflammatory 

100 response, which, in turn, results in the expression of key receptivity genes in the overlying 

101 endometrial surface luminal epithelium (Salker, Nautiyal et al. 2012). This renders the endometrium 

102 receptive for embryo implantation for a limited period of time: the ‘window of implantation’. This 

103 period of optimal endometrial receptivity begins approximately 6 days post-ovulation and lasts 2−5 

104 days (i.e. approximately between days 20 and 25 of an idealised 28-day cycle) (Denker 1993). A 

105 receptive endometrial phenotype is not only imperative for embryo implantation and pregnancy 

106 success, but aberrant decidual transformation and dysregulation of uterine receptivity have also 

107 been implicated in several obstetric complications, gynaecological disorders and cancer (Norwitz 

108 2006, Strowitzki, Germeyer et al. 2006, Cartwright, Fraser et al. 2010, Lessey 2011, Patel and Lessey 

109 2011, Gellersen and Brosens 2014, Timeva, Shterev et al. 2014, Rabaglino, Post Uiterweer et al. 

110 2015, Tan, Hang et al. 2015, Conrad, Rabaglino et al. 2017).
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111

112 Interactions between different cell-types have reciprocal effects on cell phenotypes and ensuing 

113 functions (Freshney 2005). The same is true for uterine compartments and the contributions of 

114 these interactions to endometrial receptivity, since decidual transformation of the stroma confers 

115 its ability to create paracrine gradients necessary for expression of evolutionarily conserved 

116 molecules by the luminal epithelium that are fundamental for embryo implantation (Achache and 

117 Revel 2006, Salker, Nautiyal et al. 2012). It has been demonstrated that endometrial receptivity is 

118 mediated by the activation of autoregulatory feedback loops in decidualising ESCs underlying the 

119 luminal epithelium, which activate the sequential expression of pro- and anti-inflammatory gene 

120 networks, and that ESCs can exert this function independent of local immune cells (Salker, Nautiyal 

121 et al. 2012). As such, it is evident that there is a co-dependent relationship between the endometrial 

122 stroma and epithelium, to prepare the uterus for pregnancy (Cakmak and Taylor 2011), with ESC 

123 decidual transformation being a prerequisite for the generation of endometrial receptivity 

124 (Vinketova, Mourdjeva et al. 2016, Yu, Berga et al. 2016). The current study focuses on the uterine 

125 phenotype during the acute inflammatory initiation phase of decidual transformation implicated in 

126 the generation of endometrial receptivity.

127

128 The mechanisms that control decidualisation and endometrial receptivity are highly complex, and 

129 we do not yet fully understand all the interactions that take place within the uterine 

130 microenvironment during this time. Uterine competence for embryo implantation sets the 

131 foundation for a successful pregnancy pathway; it is only when a clearer picture of the relative 

132 contributions of the cellular and molecular mechanisms leading to a receptive endometrial status 

133 become apparent, that the pathophysiology of several reproductive, obstetric and gynaecological 

134 disorders can be further defined, and appropriate interventions can be developed to promote 

135 pregnancy success as well as long-term maternal and fetal health. Likewise, a better understanding 

136 of these mechanisms will also be beneficial for innovations in contraceptive methods. We have 

137 developed a simplified 3-dimensional (3D) endometrial organotypic model to investigate 

138 endometrial receptivity, in which we simulate an early acute inflammatory endometrial status, that 

139 resolves in the generation of a receptive luminal epithelial phenotype, known as the ‘window of 

140 implantation’. Organotypic culture refers to in vitro cell culture models in which two or more 

141 previously disaggregated cell-types are recombined in experimentally determined ratios and spatial 

142 relationships to reconstruct a constituent of the corresponding in vivo organ, as opposed to 

143 histiotypic cultures (high density culture of a single cell-type within a 3D matrix) or organoid cultures 
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144 (simplified, self-organising stem cell-derived 3D multicellular aggregates with the ability to mimic its 

145 in vivo organ counterpart) (Freshney 2005, Simian and Bissell 2017). An endometrial organotypic 

146 culture model, albeit a simplified representation, is able to better recapitulate the morphological 

147 and functional features of the in vivo uterine microenvironment, than is possible conventional 2-

148 dimensional or even histiotypic cell culture methods. Physiologically representative in vitro model 

149 systems are vital for investigating the mechanisms implicated in endometrial receptivity, due to the 

150 ethical and logistical limitations of human studies. While there are reports of several in vitro 

151 endometrial co-culture models in the literature (Bentin-Ley, Horn et al. 2000, Arnold, Kaufman et 

152 al. 2001, Bläuer, Heinonen et al. 2005, Wang, Pilla et al. 2012, Chen, Erikson et al. 2013), these are 

153 not representative of the early acute inflammatory decidualisation phase that gives rise to a 

154 transiently receptive epithelial phenotype. The new functional co-culture system presented here 

155 may offer a convenient and accessible tool to improve our comprehension of interactions in the 

156 uterine microenvironment during this transitory phase. 

157

158 Materials and methods

159 Culture and hormonal stimulation of the endometrial stromal cell line St-T1b a

160 The human ESC-derived telomerase-immortalised cell line, St-T1b (Samalecos, Reimann et al. 2009), 

161 kindly provided by Professor Jan Brosens (University of Warwick, UK),  was maintained in phenol 

162 red-free Dulbecco's modified Eagle medium DMEM/Ham's F12  (DMEM/F12; Invitrogen, Renfrew, 

163 UK) with 10% steroid-depleted fetal calf serum (FCS) supplemented with 2mM L-glutamine, 1 μg/ml 

164 insulin, 0.3 ng/ml 17β-estradiol (E2), 50 μg/ml penicillin, 50 μg/ml streptomycin, and 0.2% Primocin 

165 (Invivogen, Toulouse, France) (ESC medium) at 37C in an atmosphere of 5% CO2. Phenol red-free 

166 medium was used in all experiments, due to phenol red’s known estrogenic activity (Berthois, 

167 Katzenellenbogen et al. 1986). To induce decidualisation, cells were treated with minimal medium 

168 1 (MM1; ESC medium without insulin and E2) containing increasing concentrations of the progestin, 

169 medroxyprogesterone acetate (MPA), 8-bromoadenosine 3',5'-cyclic adenosine monophosphate (8-

170 Br-cAMP; Cambridge Bioscience, Cambridge, UK) and E2, or MM1 with 0.001% ethanol (EtOH) (Table 

171 1) every 48 hours, and cultured over 8 days at 37C in an atmosphere of 5% CO2. All reagents for St-

172 T1b cell culture were purchased from Sigma-Aldrich (Sigma-Aldrich, Dorset UK) unless stated 

173 otherwise. Cultured cells were fixed in 4% paraformaldehyde (PFA) on days 4, 6 and 8 for 

174 immunocytochemical analysis.

175
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176 Isolation of epithelial cells from endometrial biopsies and ethical approval

177 Primary human endometrial biopsy tissue was obtained from three women attending 

178 gynaecological outpatient departments in NHS Lothian. Written informed consent was obtained 

179 from participants and ethical approval granted from Lothian Research Ethics Committee (REC 

180 16/ES/0007). The women reported regular menstrual cycles and did not have exogenous hormone 

181 exposure for 2 months prior to biopsy. Women receiving hormonal therapy, suffering from 

182 endometriosis or those with fibroids of >3 cm were excluded. Human endometrial epithelial cells 

183 (EECs) were isolated from endometrial biopsies by tissue digestion and separation from ESCs. 

184 Endometrial tissue was minced using scalpel blades, followed by digestion with 100 μg/ml 

185 collagenase II and 0.25 μg/ml DNAse I (Sigma-Aldrich, Dorset UK) for 1.5 h at 37°C. The tissue 

186 homogenate was then sequentially strained through 70-µm and 40-µm membrane filters to 

187 separate glandular epithelium from ESCs. The membrane filters were back-washed with PBS to 

188 retrieve endometrial gland clumps, further rinsed with PBS to flush out any digestion medium, and 

189 mixed well to disperse clumps. EECs were then suspended in PBS and centrifuged at 500 x g for 5 

190 minutes at room temperature (RT), supernatant subsequently discarded, followed by resuspension 

191 in PBS and centrifugation at 500 x g for 5 minutes at RT. 

192

193 Expansion of endometrial epithelial cells by conditional reprogramming

194 EECs were rapidly expanded in vitro by conditional reprogramming with the use of Y-27632 (a Rho 

195 kinase inhibitor) and fibroblast feeder cells. First, 3T3 Swiss Albino fibroblasts (cell line obtained 

196 from the European Collection of Authenticated Cell Culture, Public Health England, Salisbury, UK) 

197 were grown in MM1 to approximately 80% confluence in T175 flasks, trypsinated, washed, 

198 resuspended in MM1 and irradiated at 30 Gy. The irradiated cells were washed, cultured at 37C in 

199 an atmosphere of 5% CO2, and conditioned medium collected 72 hours post-irradiation. EEC 

200 medium was prepared with phenol red-free DMEM/Ham's F12 containing 10% steroid-depleted 

201 FCS, and supplemented with 2mM L-glutamine, 5 μg/ml insulin, 24 μg/ml adenine, 0.4 μg/ml 

202 hydrocortisone, 10 ng/ml epidermal growth (EGF), 8.4 ng/ml cholera toxin, 10 μmol/l Y-27632 

203 (Cambridge Bioscience, Cambridge, UK, 10 g/ml gentamycin and 0.25 g/ml amphotericin. The 

204 irradiated 3T3 conditioned medium was added to EEC medium in a 1:3 ratio, 1 part of IR 3T3 

205 conditioned media to 3 parts of EEC medium; CREEC medium (conditional reprogramming EEC 

206 medium), and the EECs maintained in CREEC medium at 37C in an atmosphere of 5% CO2. This 

207 method has previously been shown to directly alter cell growth without selecting for a small sub-

208 population of stem-like cells, while retaining a normal non-tumourigenic karyotype, and 
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209 conditionally inducing an indefinite proliferative state in primary mammalian epithelial cells (Liu, 

210 Ory et al. 2012, Suprynowicz, Upadhyay et al. 2012, Palechor-Ceron, Suprynowicz et al. 2013). All 

211 reagents for EEC culture and conditional reprogramming were purchased from Sigma-Aldrich 

212 (Sigma-Aldrich, Dorset UK) unless stated otherwise. EECs can be cryopreserved using mFreSRTM 

213 cryopreservation medium (Stemcell Technologies, Cambridge, UK). Cultured EECs were fixed in 4% 

214 PFA for immunocytochemical analysis.

215

216 Immunocytochemical confirmation of ESC decidualisation and EEC phenotype

217 Fixed cells (St-T1b cells and EECs) were permeabilised with 0.1% Triton X-100 in PBS for 10 minutes, 

218 and washed three times with 0.1% Tween-20 in PBS (PBST). Cells were then blocked with 5% BSA in 

219 PBS for 1 hour at RT, incubated with primary antibody overnight at 4C, washed three times with 

220 0.1% PBST, subsequently incubated with secondary antibody and 1:10,000 DAPI for 30 minutes at 

221 RT in the dark, followed by a final wash with PBS. Primary antibodies used were rabbit anti-human 

222 IGFBP-1 (Abcam, Cambridge, UK; ab111203; 1:100), rat anti-mouse ST2L (IL-33R/ST2) (eBioscience, 

223 Cheshire, UK; 17-9335-82; 1:100), rabbit anti-human cytokeratin-18 conjugated to phycoerythrin 

224 (Abcam, Cambridge, UK; ab218288; 1:1000), rabbit anti-human vimentin (New England Biolabs, 

225 Hitchin, UK; 5741; 1:100), and mouse anti-human integrin V3 (Abcam, Cambridge, UK; ab190147; 

226 1:100). A goat anti-rabbit antibody conjugated to Alexa Fluor 546 (Invitrogen, Renfrew, UK; A-11071; 

227 1:300), a donkey anti-rabbit antibody conjugated to Alexa Fluor 568 (Invitrogen, Renfrew, UK; 

228 A10042; 1:250) and a donkey anti-mouse antibody conjugated to Alexa Fluor 488 (Invitrogen, 

229 Renfrew, UK; A21202; 1:500) were used as secondary antibodies. The cytokeratin-18 staining did 

230 not require incubation with a secondary antibody. The ST2L staining did not require cell 

231 permeabalisation for detection, but did require a signal amplification step after primary antibody 

232 incubation, with a biotinylated goat anti-rat antibody (Vector Laboratories, Peterborough, UK; BA-

233 4000; 1:100) for 30 minutes at RT in the dark, followed by three washes with 0.1% PBST. Cells were 

234 then incubated with streptavidin conjugated to Alexa Fluor 488 (Invitrogen, Renfrew, UK; s11223; 

235 1:200) and 1 mg/ml Hoechst 33342 (Invitrogen, Renfrew, UK; H3570) for 30 minutes at RT in the 

236 dark, and then washed with PBS. Imaging was conducted on an Olympus IX71 microscope with a 

237 QImaging optiMOS camera and CoolLED PE4000 light source (Olympus, Tokyo, Japan) or a Zeiss Axio 

238 Observer 7 microscope (Carl Zeiss Ltd, Cambridge, UK) with a Hamamatsu ORCA-Flash LT camera 

239 (Hamamatsu Protonics, Hertfordshire, UK) and Zeiss Colibri 7 LED light source (Carl Zeiss Ltd, 

240 Cambridge, UK). Images were analysed using ImageJ software (ImageJ, US National Institute of 

241 Health, Bethesda, MD, USA).
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242

243 Flow cytometric confirmation of EEC phenotype

244 EECs were blocked with 10% normal goat serum for 10 minutes on ice. Cells were then either left 

245 unstained (negative control) or incubated with mouse anti-human E-cadherin-BV421 (BD 

246 Biosciences, Oxford, UK), mouse anti-human EpCAM-PE (Abcam, Cambridge, UK), mouse anti-

247 human CD31-PerCP-Cy5.5 and rat anti-human CD45-APC-Cy7 (BioLegend, London, UK). Flow 

248 cytometry was carried out on a BD LSR Fortessa 5L flow cytometer (BD Biosciences, Oxford, UK). 

249 Analysis was carried using FlowJo software (BD Biosciences, Oxford, UK).

250

251 Generation of a 3D in-vitro organotypic model of a receptive endometrium

252 EECs were primed in ESC medium (containing 1 μg/ml insulin and 0.3 ng/ml E2) for 48 hours at 37C 

253 in an atmosphere of 5% CO2. When the EECs had already been incubating with ESC medium 24 

254 hours, St-T1b cells were seeded at a ratio of 1:3 growth factor-reduced (GFR) Matrigel (BD 

255 Biosciences, Oxford, UK) in ESC medium, at a density of 6 x 106 cells/ml, 60 l/well (3.6 x 105 

256 cells/well) in wells of a 96-well plate, and allowed to set into a 3D structure at 37C in an atmosphere 

257 of 5% CO2 over 45 minutes. A further 200 l ESC medium was subsequently added to wells and 

258 maintained overnight at 37C in an atmosphere of 5% CO2. Once the EECs had been primed in ESC 

259 medium for 48 hours, and the St-T1b cells grown within GFR Matrigel overnight, the medium was 

260 removed from wells containing the St-T1b 3D structures, and EECs were trypsinated, washed, 

261 resuspended in ESC medium and seeded on top of the 3D St-T1b cells at a density of 1 x 107 cells/ml, 

262 100 l/well (1 x 106 cells/well). To confirm that the phenotypic changes resulting from the hormonal 

263 stimulation were dependent on cell-to-cell communication between the stromal and epithelial 

264 compartments in our model, a parallel group was included, in which EECs were cultured alone 

265 without ESCs on GFR Matrigel-coated plates. Cells were further incubated overnight at 37C in an 

266 atmosphere of 5% CO2. Following overnight incubation, hormonal stimuli were added to cells every 

267 48 hours as described in Table 1, with the first addition of stimuli considered as day 0. Cells were 

268 fixed with 4% PFA on days 4, 6 and 8 for quantitative in-cell western analyses. 

269

270 Quantification of integrin V3 expression by in-cell western assay

271 Fixed cells were blocked overnight with Odyssey® buffer (LI-COR Biosciences, Cambridge, UK), 

272 followed by incubation with mouse anti-human integrin V3 (Abcam, Cambridge, UK; ab190147; 

273 1:100), overnight at 4C. Cells were then washed with PBS and the subsequent protocol, using a 

274 goat anti-mouse IRDye 800CW antibody and the CellTagTM 700 normalisation stain (LI-COR 
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275 Biosciences, Cambridge, UK), was carried out according to the manufacturer’s instructions. Cells 

276 were imaged and analysed using the Odyssey CLx Near-Infrared Fluorescence Imaging System (LI-

277 COR Biosciences, Cambridge, UK). In each experiment, data were normalised such that the integrin 

278 V3 expression in the control (unstimulated) wells were given a value of 100.

279

280 Statistical analysis

281 One-way ANOVA with Tukey’s multiple comparison post-test was used to determine P values using 

282 GraphPad Prism. P < 0.05 was considered statistically significant.

283

284 Results

285 Decidualisation induces the transient upregulation of ST2L in St-T1b cells 

286 Decidualisation was induced in St-T1b cells with increasing levels of MPA, E2 and cAMP over 8 days 

287 (Table 1), to model the rising progesterone and estrogen levels that drive the structural and 

288 functional changes in the secretory stage endometrium. Transformation of the St-T1b cells into 

289 characteristically larger, rounded cells, ‘decidualised’ stromal cells, with increased cytoplasmic and 

290 nuclear size, was observed. Decidualisation was confirmed by immunocytochemical analyses of 

291 insulin-like growth factor-binding protein-1 (IGFBP-1) expression (Figure 1A). IGFBP-1 is a widely 

292 used marker to assess the differentiation status and quality of the decidual response of ESCs in 

293 culture (Gao, Mazella et al. 1994, Giudice, Mark et al. 1998, Fazleabas, Kim et al. 2004, Kim, Taylor 

294 et al. 2007, Samalecos, Reimann et al. 2009, Gellersen and Brosens 2014, Tamura, Jozaki et al. 2018). 

295 Furthermore, decidual transformation of ESCs was additionally corroborated by visible enlargement 

296 and rounding of the nucleus and an expanding cytoplasm upon hormonal stimulation, which also 

297 induced a transient upregulation of the interleukin-33 (IL-33) transmembrane receptor, ST2L, on 

298 day 6 (Figure 1B), indicating a transient autoinflammatory decidual response.

299

300 Primary human endometrial epithelial cells were rapidly expanded in vitro, by conditional 

301 reprogramming, with retention of epithelial markers cells 

302 Epithelial cells can be rapidly expanded in vitro, by conditional reprogramming, with the use of a 

303 Rho kinase inhibitor (Y-27632) and irradiated fibroblast feeder cells (Liu, Ory et al. 2012, 

304 Suprynowicz, Upadhyay et al. 2012, Palechor-Ceron, Suprynowicz et al. 2013). This technique was 

305 adapted for human EECs in the current study, following isolation from clinical endometrial biopsies 

306 by tissue digestion with collagenase and DNase, and separation from ESCs (Figure 2A). Conditionally 
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307 reprogrammed EECs were generated, and these cells could be passaged several times with retention 

308 of epithelial markers. The conditionally reprogrammed EECs could be cryopreserved in single cell 

309 suspension in mFreSR™1 freezing medium and successfully revived following cryopreservation. EEC 

310 phenotype was confirmed by immunocytochemical expression of the epithelial marker cytokeratin-

311 18 (CK-18) and absence of the stromal cell marker vimentin (Figure 2B). Further validation of an 

312 epithelial phenotype was conducted by flow cytometric analyses, which demonstrated that the cells 

313 expressed two additional epithelial markers, EpCAM and E-cadherin, but did not express the 

314 leukocyte and endothelial cell markers, CD45 and CD31, respectively (Figure 2C). 

315

316 Generation of a novel endometrial organotypic in vitro co-culture model of the ‘window of 

317 implantation’ 

318 Firstly, EECs and ESCs were primed in medium containing with E2 and insulin to model the 

319 proliferative stage of the uterine cycle. EECs were then co-cultured with St-T1b cells in a 3D structure 

320 (Figure 3A), to produce an endometrial organotypic co-culture model. The organotypic 3D co-

321 cultures were subjected to decidualisation hormonal stimuli over 8 days (Table 1), to model the 

322 secretory stage of the uterine cycle and ultimately a receptive endometrial phenotype. EECs were 

323 monitored for expression of integrin αVβ3 (a key marker of uterine receptivity) by quantitative 

324 immunocytochemical detection, and in-cell western analyses demonstrated that integrin αVβ3 

325 expression by EECs was significantly higher on day 8 after hormonal stimulation compared to basal 

326 expression where the cells did not receive any hormonal stimuli (P < 0.0005), as well as in 

327 comparison to integrin αVβ3 expression on day 4 of treatment (P < 0.05) (Figure 3B). There was no 

328 significant change over time in basal integrin αVβ3 expression in the control unstimulated group, 

329 and the data from the stimulated cells were therefore normalised to the control unstimulated 

330 group. Furthermore, there was no induction of epithelial V3 expression in a parallel group in 

331 which EECs were cultured alone and subjected to hormonal stimuli over 8 days, indicating combined 

332 effects of hormone treatment and cell-to-cell communication between the stromal and epithelial 

333 compartments in our model (Supplementary figure 1).

334

335 Discussion

336 Decidualisation begins during the secretory phase of the menstrual cycle in response to rising 

337 steroid hormone levels, and is marked by the differentiation of fibroblast-like ESCs into specialised 

338 decidual cells, secretory changes in the uterine epithelial glands, the accumulation of uterine natural 
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339 killer cells, and vascular changes in the uterine spiral arteries (Maruyama and Yoshimura 2008, 

340 Cartwright, Fraser et al. 2010, Fraser, Whitley et al. 2015). These changes are not only important for 

341 implantation success, but defective endometrial receptivity is also associated with a wide range of 

342 gynaecological, reproductive, obstetric disorders, as well as in the pathophysiology reproductive 

343 malignancies (Makieva, Giacomini et al. 2018). 

344 The key molecular players of ESC decidual transformation are progesterone and cAMP, which act 

345 synergistically to stimulate successful differentiation of ESCs into their decidualised state (Brar, 

346 Frank et al. 1997, Gellersen and Brosens 2003). Progesterone acts on ESCs by binding to the 

347 progesterone receptor (PR), a member of the steroid/thyroid hormone receptor superfamily of 

348 ligand-activated transcription factors (Gellersen and Brosens 2003). Estrogen is responsible for 

349 inducing PR expression in ESCs that determine progesterone responsiveness during the secretory 

350 stage of uterine cycle (Patel, Elguero et al. 2015). Rising progesterone levels drive the structural and 

351 biochemical changes from proliferative to secretory ESC status, with a simultaneous generation of 

352 endometrial receptivity and opening of the ‘window of implantation’ (Paulson 2011), and activation 

353 of the cAMP second messenger pathway can direct cellular specificity to progesterone action 

354 through the induction of diverse transcription factors that affect PR function (Gellersen and Brosens 

355 2003).  The initiation of endometrial receptivity is dependent on the local removal of steroid action 

356 in the endometrial epithelium, facilitated via selective downregulation of epithelial PRs and 

357 estrogen receptors (ERs), combined with the steroid-mediated paracrine effects from the stromal 

358 compartment. Through the selective epithelial cell PR and ER downregulation, it is believed that 

359 progesterone and estrogen act on stromal cells, which then influence epithelial cells through specific 

360 paracrine factors (Lessey, Ilesanmi et al. 1996, Lessey 1998). However, although adequate 

361 progesterone signalling is required to establish a receptive endometrial status, some studies suggest 

362 that untimely, excess progesterone can compromise decidualisation and endometrial receptivity 

363 (Labarta, Martínez-Conejero et al. 2011, Liang, Liu et al. 2018). Furthermore, while progesterone is 

364 responsible for the structural ESC changes during decidualisation, animal studies have 

365 demonstrated that uterine estrogen biosynthesis is crucial for the progression of decidualisation, 

366 possibly by promoting stromal cell gap junction communication, which is known to be implicated in 

367 preparing the endometrium for implantation (Ma, Song et al. 2003, Das, Mantena et al. 2009). 

368 Moreover, studies in mice have shown that estrogen is critical in regulating the receptive 

369 endometrial state; low estrogen levels can extend the ‘window of implantation’, whereas 

370 excessively high estrogen levels can promptly initiate a refractory state, indicating that a very 

371 narrow range of estrogen levels can determine the duration of endometrial receptivity, which could 
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372 have implications in the human setting (Ma, Song et al. 2003). Ovarian hormonal signalling must 

373 therefore be stringently regulated to establish an adequately programmed, appropriately timed 

374 receptive uterine environment to ensure pregnancy success, and to maintain gynaecological and 

375 reproductive health.

376

377 In the present study, decidualisation was induced with increasing doses of MPA, 8-Br-cAMP and E2 

378 over 8 days, in order to recapitulate the time it takes for these functional changes to occur in vivo, 

379 since the ‘window of implantation’ becomes apparent (through detection of epithelial integrin V3 

380 expression) 68 days after ovulation (Lessey 1998). Frequently used in vitro decidualisation 

381 protocols include treatment of ESCs with constant doses of various combinations of progesterone 

382 or a progestin, a cAMP-inducing analogue and E2, with high variability in duration of treatment 

383 (Logan, Ponnampalam et al. 2013, Gellersen and Brosens 2014, Michalski, Chadchan et al. 2018). 

384 Early in vitro decidualisation studies established that progestins (such as MPA) induce enhanced 

385 decidual effects in cultured ESCs compared to progesterone, that a combination of progesterone 

386 with E2 can amplify decidual effects in ESCs compared to treatment with progesterone alone, and 

387 that the cAMP signal transduction cascade is a key stimulant in progesterone-dependent 

388 decidualisation (Eckert and Katzenellenbogen 1981, Irwin, Kirk et al. 1989, Levin, Tonetta et al. 1990, 

389 Gellersen, Kempf et al. 1994, Brar, Frank et al. 1997). Observations were based on physiological 

390 doses of ovarian hormones and cAMP stimulation that induced ESC ultrastructural and molecular 

391 changes characteristic of in vivo decidualisation (Eckert and Katzenellenbogen 1981, Irwin, Kirk et 

392 al. 1989, Gellersen, Kempf et al. 1994). While the majority of in vitro decidualisation protocols make 

393 use of continuous hormonal stimulatory doses (Logan, Ponnampalam et al. 2013, Gellersen and 

394 Brosens 2014, Michalski, Chadchan et al. 2018), we used increasing doses of hormonal and cAMP 

395 stimulation, to better represent the in vivo post-ovulatory rise in ovarian hormones and local cAMP 

396 production that controls decidualisation and endometrial receptivity. Our study demonstrates that 

397 these rising levels of ovarian hormones and cAMP can induce the transient upregulation of the IL-

398 33 receptor, ST2L, which was not observed when ESCs were subjected to the standard continuous 

399 doses of hormonal and cAMP stimulation reported in the literature (Logan, Ponnampalam et al. 

400 2013, Gellersen and Brosens 2014, Michalski, Chadchan et al. 2018) (Supplementary Figure 1). 

401 Decidualising ESCs have been shown to induce a transitory, acute autoinflammatory response, 

402 through secretion of IL-33 (a key regulator of the innate immune response), whilst upregulating the 

403 expression of its receptor, ST2L. This IL-33-ST2L signalling induces receptivity gene expression in the 

404 overlying epithelium, rendering the endometrium transiently receptive for the implantation of a 
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405 conceptus (Salker, Nautiyal et al. 2012). In the absence of an implanting conceptus, the ESCs mount 

406 an anti-inflammatory response that involves the downregulation of ST2L (Salker, Nautiyal et al. 

407 2012). 

408

409 Human studies are restricted by a lack of access to tissue throughout the different stages of the 

410 menstrual cycle. The current study provides a simple in vitro organotypic co-culture model of a 3D 

411 uterine structure, using Matrigel, an ESC cell line, and conditionally reprogrammed EECs. Matrigel is 

412 rich in laminin and collagen, bearing similarities to the uterine extracellular matrix composition 

413 (Tarrade, Goffin et al. 2002). Furthermore, it has been suggested that in addition to inducing a 

414 stromal regulatory phenotype, Matrigel is able to act as a mediator for ESCs to signal to EECs, in a 

415 similar paracrine manner to what occurs in living uterine tissue, when ESCs and EECs are co-cultured 

416 with Matrigel serving as the basement membrane (Arnold, Kaufman et al. 2001). The St-T1b ESC cell 

417 line used in our study expresses phenotypic ESC markers and can mimic primary decidual stromal 

418 cell responses in vitro (Samalecos, Reimann et al. 2009), and its use eliminates patient variability, as 

419 well as the possibility of ‘contaminating’ EECs being present within the stromal ESC component of 

420 the model. However, an EEC cell line was not utilised, as all commonly-used EEC cell lines are derived 

421 from malignant endometrial adenocarcinoma tissues. Since cancer cells have undergone numerous 

422 genetic and epigenetic alterations, adenocarcinoma-derived cell lines are not representative of non-

423 cancerous biological processes such as decidualisation and the induction of endometrial receptivity. 

424 Conditional reprogramming transcends the difficulty of growing primary EECs in long-term culture, 

425 but allows propagation of primary epithelial cells into a highly proliferative state, whilst cells 

426 maintain their original karyotype and remain in a non-neoplastic state (Liu, Ory et al. 2012, 

427 Suprynowicz, Upadhyay et al. 2012, Palechor-Ceron, Suprynowicz et al. 2013). Cells are denoted as 

428 ‘conditionally reprogrammed’ due to the conditional induction of cell proliferation, with increased 

429 telomerase expression, by a combination of Y-27632 (which suppresses differentiation and extends 

430 life span in calcium- and serum-containing medium) and diffusible factor(s) released by the 

431 irradiation-induced apoptotic 3T3 feeder cells (Suprynowicz, Upadhyay et al. 2012, Palechor-Ceron, 

432 Suprynowicz et al. 2013). It has been suggested that the unrestricted cell proliferation induced by 

433 conditional reprogramming is mediated through the induction of telomerase and cytoskeletal 

434 remodelling and/or interference with the p16/Rb pathway (Liu, Ory et al. 2012, Palechor-Ceron, 

435 Suprynowicz et al. 2013). The capacity for rapid establishment of karyotype-stable cell cultures from 

436 normal human epithelium facilitates in vitro cellular studies without the drawbacks of cell cultures 

437 generated, for example, from induced pluripotent stem cells, such as genetic instability, 
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438 tumourigenicity and altered antigenicity (Suprynowicz, Upadhyay et al. 2012). Large numbers of 

439 EECs were generated through conditional reprogramming in the present study, which could be 

440 passaged multiple times with the retention of epithelial markers, thus providing the advantages of 

441 a conventional cell line. 

442  

443 The luminal epithelium is perceived as the fundamental site for endometrial receptivity (Idelevich 

444 and Vilella 2020), and integrin V3 is a cell-surface adhesion receptor that appears on the apex of 

445 endometrial luminal epithelial cell surfaces, coincident with the ‘window of implantation’, and has 

446 putative roles in embryo attachment during implantation (Rai, Hopkisson et al. 1996, Apparao, 

447 Murray et al. 2001, Lessey 2002, Lessey and Castelbaum 2002). Integrin V3 is maximally 

448 expressed during the ‘window of implantation’ (Apparao, Murray et al. 2001), and its endometrial 

449 expression is significantly lower in cases of unexplained infertility, indicating that aberrant epithelial 

450 integrin V3 expression may be associated defective endometrial receptivity (Elnaggar, Farag et 

451 al. 2017). Here, we capitalise on the acute inflammatory initiation phase of decidual transformation 

452 that promotes the generation of endometrial receptivity. This temporal endometrial phenotypic 

453 change is not only important for implantation success, but its dysregulation is also associated with 

454 a wide range of gynaecological, reproductive, and obstetric disorders, as well as in the 

455 pathophysiology of reproductive malignancies (Makieva, Giacomini et al. 2018). It has been 

456 suggested that endometrial receptivity is mediated through both direct and indirect progesterone 

457 action (Lessey 2003). Epithelial steroid receptor expression varies during the menstrual cycle, with 

458 high PR levels in the proliferative phase and selective loss of epithelial PR (and reduced ER) 

459 expression in the secretory phase (Lessey, Ilesanmi et al. 1996), demonstrating a direct action of 

460 progesterone on epithelial cells. Endometrial receptivity is tightly associated with the shifts in PR 

461 and ER expression, which occur at the time of its onset around 56 days post-ovulation, concomitant 

462 with the appearance of epithelial integrin V3 (Lessey 1998). Stromal cells, on the other hand, 

463 maintain their PR expression throughout the menstrual cycle, and progesterone action on stromal 

464 cells generates paracrine mediators (such as the secretion of specific growth factors, cytokines and 

465 inflammatory mediators) (Al-Sabbagh, Fusi et al. 2011, Salker, Nautiyal et al. 2012, Chen, Erikson et 

466 al. 2013) that promote epithelial gene expression, indicating the indirect action of progesterone, via 

467 stromal cells, in the induction of an epithelial receptive phenotype (Lessey 1998, Lessey 2003, 

468 Salker, Nautiyal et al. 2012). The addition of hormonal stimuli to our ESC-EEC co-culture system 

469 induced an autoinflammatory decidual stromal response and the upregulation of epithelial integrin 

470 V3, representing phenotypic endometrial changes coincident with the ‘window of implantation’. 
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471

472 Epithelial integrin V3 expression within our 3D co-culture model coincided with the timing of the 

473 transient ST2L upregulation that was observed in ESCs, and was subsequently further amplified. 

474 Furthermore, there was no induction of epithelial integrin V3 expression when EECs were 

475 cultured alone, without ESCs, and subjected to hormonal stimulation (Supplementary Figure 1), 

476 suggesting that the induction of epithelial integrin V3 expression upon hormonal stimulation may 

477 have resulted from EEC-ESC crosstalk following IL-33-ST2L signalling within the stromal 

478 compartment, particularly since rising progesterone levels induce the downregulation of epithelial 

479 PR and ER expression during the secretory stage, permitting progesterone and estrogen to act on 

480 ESCs (Lessey, Ilesanmi et al. 1996, Lessey 1998). However, further experiments would be required 

481 to confirm whether these well-known endometrial functional changes are responsible for the lack 

482 of induction of integrin V3 in EECs in monoculture, following hormonal stimulation, that was 

483 observed in the current study. In addition, differences were observed with modifications of 

484 decidualisation stimulation doses: while ESCs treated with increasing doses exceeding physiological 

485 hormonal and cAMP levels still elicited a transient ST2L upregulation, continuous stimulatory doses 

486 did not. Nonetheless, both of these stimulation protocols induced epithelial V3 expression, albeit 

487 to a lesser amplitude (Supplementary Figure 1) than detected upon treatment with increasing 

488 physiological stimulatory doses. Such observations and nuances highlight the significance of 

489 appropriate experimental design, and also denote the importance of the interdependent 

490 relationship between the timing and level of ovarian hormonal signalling that is a likely requisite in 

491 the process of endometrial receptivity. 

492

493 Limitations of the study

494 We acknowledge that the simplified functional endometrial organotypic model system presented 

495 here does not fully represent all the cellular components and communications that are implicated 

496 in the early events leading up to and during the ‘window of implantation’. These include glandular 

497 epithelial cells that undergo secretory transformation to provide histiotrophic nutrition for 

498 implanting embryo, decidual natural killer cells that have important functions in stromal-immune 

499 crosstalk, uterine vascular development, embryo implantation and trophoblast invasion, or vascular 

500 components that undergo changes (Maruyama and Yoshimura 2008, Cartwright, Fraser et al. 2010, 

501 Weimar, Post Uiterweer et al. 2013, Fraser, Whitley et al. 2015). However, ESCs are the main cell-

502 type in the uterine microenvironment, and through an initial acute autoinflammatory decidual 

503 response, they are pivotal for transforming the uterus into a receptive phenotype by signalling to 

Page 48 of 65

https://mc.manuscriptcentral.com/hropen

Manuscripts submitted to Human Reproduction Open



For Review Only

18

504 the overlying epithelium to induce the expression of key receptivity molecules. We have therefore 

505 put emphasis on the stromal and luminal epithelial components for the development of our 

506 organotypic model system, paracrine interactions of which are central to the generation of 

507 endometrial receptivity (Lessey 1998, Lessey 2003, Al-Sabbagh, Fusi et al. 2011, Salker, Nautiyal et 

508 al. 2012, Lucas, Dyer et al. 2016). In addition, our model could benefit from further validation, for 

509 example, via photomicrographic verification of accurately representative 3D spatial relationships of 

510 the cell-types, through characterisation of EEC and ESC steroid receptor expression upon hormonal 

511 stimulation, and by using the iGenomix® (iGenomix UK Ltd, Surrey, UK) Endometrial Receptivity 

512 Array (ERA) genomic tool (Katzorke, Vilella et al. 2016), for additional confirmation of a receptive 

513 endometrial phenotype.

514

515 Concluding remarks

516 Endometrial cell and molecular signalling errors are widely associated with uterine pathologies 

517 ranging from infertility to cancer (Makieva, Giacomini et al. 2018). Any disturbance in decidual 

518 transformation of the endometrium, and in turn endometrial receptivity, can cause endometrial 

519 functional inadequacy, leading to implantation failure or pregnancy loss resulting from abnormal 

520 implantation. Dysregulation of decidualisation and endometrial receptivity have been implicated in 

521 infertility, implantation failure, recurrent miscarriage, pre-eclampsia and intrauterine growth 

522 restriction (Norwitz 2006, Strowitzki, Germeyer et al. 2006, Cartwright, Fraser et al. 2010, Lessey 

523 2011, Patel and Lessey 2011, Gellersen and Brosens 2014, Timeva, Shterev et al. 2014, Rabaglino, 

524 Post Uiterweer et al. 2015, Tan, Hang et al. 2015, Conrad, Rabaglino et al. 2017). In addition, several 

525 gynaecological disorders, including endometriosis, polycystic ovarian syndrome, hydrosalpinges and 

526 luteal phase defect, are also associated with decreased endometrial receptivity and anomalous 

527 expression of endometrial biomarkers (Donaghay and Lessey 2007). The endometrial organotypic 

528 system presented here may therefore facilitate a better understanding of interactions within the 

529 uterine microenvironment. These could include, for example, the immunomodulatory and vascular 

530 changes that are of critical importance during the secretory stage, as well as the application to the 

531 current model of previously described organoid systems, or embryo implantation and trophoblast 

532 invasion study protocols (Teklenburg, Salker et al. 2010, Fraser, Whitley et al. 2012, Wang, Pilla et 

533 al. 2012, Wallace, Host et al. 2013, James, Tun et al. 2016, Turco, Gardner et al. 2017), taking into 

534 consideration both the respective distinct stages of decidualisation and implantation in any future 

535 studies conducted. Other further potential applications would be for the development of advances 

536 in contraceptives, as well as to investigate how various drugs (such as those used in infertility or 
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537 chemotherapy treatments) may interfere with endometrial signalling pathways, particularly where 

538 human in vivo studies are not feasible. The co-culture system developed here, therefore has the 

539 scope to be applied in an extensive range of settings, allowing investigations for the comprehensive 

540 understanding of the molecular interactions and cellular consequences within the uterine 

541 microenvironment during this early transitory period, in the broad context of several of 

542 reproductive, obstetric and gynaecological pathologies. 
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769 Table and figure legends 

770 Table 1: To produce a physiologically representative decidual response in vitro, cells were stimulated 

771 with minimal medium 1 (MM1) containing increasing concentrations of medroxyprogesterone 

772 acetate (MPA), 8-bromoadenosine 3',5'-cyclic adenosine monophosphate (8-Br-cAMP) and 17-

773 estradiol (E2), or MM1 with 0.001% ethanol (EtOH), every 48 hours, and monitored over 8 days.

774

775 Figure 1: Hormonal stimulation of St-T1b cells with medroxyprogesterone acetate, 8-

776 bromoadenosine 3',5'-cyclic adenosine monophosphate and 17-estradiol. Decidualisation 

777 confirmed by immunohistochemical detection of [A] IGFBP-1 expression, and [B] the transient 

778 upregulation of ST2L expression. Scale bars = 100 m.

779

780 Figure 2: [A] Endometrial epithelial cells (EECs) were isolated from endometrial biopsies and 

781 expanded in vitro by conditional reprogramming. Confirmation of epithelial phenotype by [B] 

782 immunocytochemical analyses demonstrated cytokeratin-18 (CK18) expression and negative 

783 vimentin staining in EECs, with endometrial stromal cells (ESCs) serving as negative and positive 

784 controls, respectively. Scale bars = 100 m. [C] Flow cytometric analyses demonstrated EpCAM and 

785 E-cadherin expression by EECs, but no CD31 and CD45 expression.

786

787 Figure 3. [A] To construct a 3D endometrial organotypic co-culture model, St-T1b cells were 

788 embedded in growth factor-reduced Matrigel, with a single layer of EECs seeded on top. [B] In-cell 

789 western analysis was conducted to quantify epithelial integrin αVβ3 expression with or without 

790 treatment with medroxyprogesterone acetate, cyclic adenosine monophosphate and 17β-estradiol, 

791 on days 4, 6 and 8. Results are mean ± SEM of eight separate experiments. **P <0.05; ***P < 0.0001; 

792 one-way ANOVA with Tukey’s multiple comparison post-test analysis. 
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Table 1

Timeline Hormonal stimuli added with MM1 Control (unstimulated cells)

Day 0 0.25 M MPA + 0.25 mM 8-Br-cAMP  + 1 nM E2 MM1 + 0.001% EtOH

Days 2, 4 and 6 1 M MPA + 0.5 mM 8-Br-cAMP + 10 nM E2 MM1 + 0.001% EtOH
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Figure 1: Hormonal stimulation of St-T1b cells with medroxyprogesterone acetate, 8-bromoadenosine 3',5'-
cyclic adenosine monophosphate and 17β-estradiol. Decidualisation confirmed by immunohistochemical 

detection of [A] IGFBP-1 expression, and [B] the transient upregulation of ST2L expression. Scale bars = 
100 μm. 
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Figure 2: Endometrial epithelial cells (EECs) were isolated from endometrial biopsies and expanded in vitro 
by conditional reprogramming. Confirmation of epithelial phenotype by [B] immunocytochemical analyses 
demonstrated cytokeratin-18 (CK18) expression and negative vimentin staining in EECs, with endometrial 
stromal cells (ESCs) serving as negative and positive controls, respectively. Scale bars = 100 μm. [C] Flow 

cytometric analyses demonstrated EpCAM and E-cadherin expression by EECs, but no CD31 and CD45 
expression. 
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Figure 3. [A] To construct a 3D endometrial organotypic co-culture model, St-T1b cells were embedded in 
growth factor-reduced Matrigel, with a single layer of EECs seeded on top. [B] In-cell western analysis was 

conducted to quantify epithelial integrin αVβ3 expression with or without treatment with 
medroxyprogesterone acetate, cyclic adenosine monophosphate and 17β-estradiol, on days 4, 6 and 8. 

Results are mean ± SEM of eight separate experiments. **P <0.05; ***P < 0.0001; one-way ANOVA with 
Tukey’s multiple comparison post-test analysis. 
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1 Supplementary table and figure legends

2 Supplementary table 1: Continuous stimulatory dose: St-T1b cells were stimulated with minimal 

3 medium 1 (MM1) containing medroxyprogesterone acetate (MPA), 8-bromoadenosine 3',5'-

4 cyclic adenosine monophosphate (8-Br-cAMP) and 17-estradiol (E2), or MM1 with 0.001% 

5 ethanol (EtOH), every 48 hours, and monitored over 8 days. 

6

7 Supplementary table 2: High stimulatory dose: to produce a decidual response to doses 

8 exceeding physiological levels, St-T1b cells were stimulated with minimal medium 1 (MM1) 

9 containing increasing concentrations of medroxyprogesterone acetate (MPA), 8-bromoadenosine 

10 3',5'-cyclic adenosine monophosphate (8-Br-cAMP) and 17-estradiol (E2) , or MM1 with 0.001% 

11 ethanol (EtOH), every 48 hours, and monitored over 8 days. 

12

13 Supplementary figure 1: [A] ST2L expression by St-T1b cells following stimulation with 

14 continuous stimulatory doses (Supplementary table 1) or high stimulatory doses (Supplementary 

15 table 2) of medroxyprogesterone acetate, 8-bromoadenosine 3',5'-cyclic adenosine 

16 monophosphate and 17-estradiol. Scale bars = 100 m. [B] Integrin V3 expression by 

17 endometrial epithelial cells (EECs) following stimulation with increasing physiological stimulatory 

18 hormonal doses (Table 1). Scale bars = 100 m. St-T1b cells were embedded in growth factor-

19 reduced Matrigel, with a single layer of EECs seeded on top, to produce a 3D endometrial 

20 organotypic co-culture model. In-cell western analysis was conducted to quantify EEC integrin 

21 αVβ3 expression upon treatment of the 3D co-culture system with [C] continuous stimulatory 

22 doses (Supplementary table 1) or [D] high stimulatory doses (Supplementary table 2). Results are 

23 mean ± SEM of at least eight separate experiments. *P <0.05; **P < 0.001; one-way ANOVA with 

24 Tukey’s multiple comparison post-test analysis.

25

26 Supplementary table 3: Representative in-cell western (ICW) data (arbitrary units indicating 

27 epithelial integrin V3 expression) for Figure 3B (increasing physiological stimulatory hormonal 

28 doses), Supplementary figure 1A (continuous stimulatory dose) and Supplementary figure 1B 

29 (high, increasing stimulatory doses).

30

31 Supplementary table 4: Pooled (n = 8) raw in-cell western data (arbitrary units indicating 

32 epithelial integrin V3 expression) for Figure 3B. 
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Supplementary Figure 1 
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Supplementary table 1 

Supplementary table 2

Supplementary table 3

ICW data for Figure 3B   

Control
(unstimulated)

Day 4
(stimulated)

Day 6
(stimulated)

Day 8
(stimulated)

100 149.0756 154.6218 300.1681

100 112.471 88.8437 158.6287

100 267.8411 222.1139 447.6012

100 135.1058 138.3982 149.2945

100 140.3425 141.0379 227.453

100 129.3527 205.7315 296.1996

100 210.4804 356.5579 418.6499

100 142.8542 324.3868 401.865

100 152.6217733 194.3709778 277.0797922

ICW data for Supplementary figure 1B
Control

(unstimulated)
Day 4

(stimulated)
Day 6

(stimulated)
Day 8

(stimulated)
100 75.19325 239.1597 355.6303

100 118.629 148.5476 190.55

100 74.74048 97.92388 98.05363

100 315.8171 88.8437 158.6287

100 135.5762 171.2046 212.3987

Timeline Hormonal stimuli added with MM1 Control (unstimulated cells)

Days 0, 2, 4 and 6 1 M MPA + 0.5 mM 8-Br-cAMP + 10 nM E2 MM1 + 0.001% EtOH

Timeline Hormonal stimuli added with MM1 Control (unstimulated cells)

Day 0 0.25 M MPA + 0.25 mM 8-Br-cAMP  + 1 nM E2 MM1 + 0.001% EtOH

Day 2 1 M MPA + 0.5 mM 8-Br-cAMP + 5 nM E2 MM1 + 0.001% EtOH

Days 4 and 6 1.5 M MPA + 0.75 mM 8-Br-cAMP + 10 nM E2 MM1 + 0.001% EtOH
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100 163.675 126.7834 181.522

100 196.3695 152.1088 217.7816

100 175.9984 473.9915 545.8747

100 156.9998663 187.3203975 245.0549538

ICW data for Supplementary figure 1C

Control
(unstimulated)

Day 4
(stimulated)

Day 6
(stimulated)

Day 8
(stimulated)

100 211.0924 187.0588 267.2269

100 91.67312 134.3726 80.86754

100 71.88581 143.8581 148.7024

100 208.3208 414.9925 514.3928

100 122.5634 108.7667 118.1735

100 133.3119 133.7754 240.9735

100 117.1173 117.3026 180.7508

100 153.6793 153.9226 237.1782

100 242.0323 256.5242 433.3141

100 211.0924 187.0588 267.2269

100 150.1862589 183.3970556 246.8421933

Supplementary table 4 

Day 4 Day 6 Day 8

Control
(unstimulated) 17.348 19.104 18.711

Hormonal stimulation 
(increasing physiological 

stimulatory doses)
26.741 34.389 46.93
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